1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 //#define DEBUG_KVM 73 74 #ifdef DEBUG_KVM 75 #define DPRINTF(fmt, ...) \ 76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 77 #else 78 #define DPRINTF(fmt, ...) \ 79 do { } while (0) 80 #endif 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 KVMState *kvm_state; 89 bool kvm_kernel_irqchip; 90 bool kvm_split_irqchip; 91 bool kvm_async_interrupts_allowed; 92 bool kvm_halt_in_kernel_allowed; 93 bool kvm_eventfds_allowed; 94 bool kvm_irqfds_allowed; 95 bool kvm_resamplefds_allowed; 96 bool kvm_msi_via_irqfd_allowed; 97 bool kvm_gsi_routing_allowed; 98 bool kvm_gsi_direct_mapping; 99 bool kvm_allowed; 100 bool kvm_readonly_mem_allowed; 101 bool kvm_vm_attributes_allowed; 102 bool kvm_direct_msi_allowed; 103 bool kvm_ioeventfd_any_length_allowed; 104 bool kvm_msi_use_devid; 105 bool kvm_has_guest_debug; 106 static int kvm_sstep_flags; 107 static bool kvm_immediate_exit; 108 static hwaddr kvm_max_slot_size = ~0; 109 110 static const KVMCapabilityInfo kvm_required_capabilites[] = { 111 KVM_CAP_INFO(USER_MEMORY), 112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 114 KVM_CAP_LAST_INFO 115 }; 116 117 static NotifierList kvm_irqchip_change_notifiers = 118 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 119 120 struct KVMResampleFd { 121 int gsi; 122 EventNotifier *resample_event; 123 QLIST_ENTRY(KVMResampleFd) node; 124 }; 125 typedef struct KVMResampleFd KVMResampleFd; 126 127 /* 128 * Only used with split irqchip where we need to do the resample fd 129 * kick for the kernel from userspace. 130 */ 131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 132 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 133 134 static QemuMutex kml_slots_lock; 135 136 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 137 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 138 139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 140 141 static inline void kvm_resample_fd_remove(int gsi) 142 { 143 KVMResampleFd *rfd; 144 145 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 146 if (rfd->gsi == gsi) { 147 QLIST_REMOVE(rfd, node); 148 g_free(rfd); 149 break; 150 } 151 } 152 } 153 154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 155 { 156 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 157 158 rfd->gsi = gsi; 159 rfd->resample_event = event; 160 161 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 162 } 163 164 void kvm_resample_fd_notify(int gsi) 165 { 166 KVMResampleFd *rfd; 167 168 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 169 if (rfd->gsi == gsi) { 170 event_notifier_set(rfd->resample_event); 171 trace_kvm_resample_fd_notify(gsi); 172 return; 173 } 174 } 175 } 176 177 int kvm_get_max_memslots(void) 178 { 179 KVMState *s = KVM_STATE(current_accel()); 180 181 return s->nr_slots; 182 } 183 184 /* Called with KVMMemoryListener.slots_lock held */ 185 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 186 { 187 KVMState *s = kvm_state; 188 int i; 189 190 for (i = 0; i < s->nr_slots; i++) { 191 if (kml->slots[i].memory_size == 0) { 192 return &kml->slots[i]; 193 } 194 } 195 196 return NULL; 197 } 198 199 bool kvm_has_free_slot(MachineState *ms) 200 { 201 KVMState *s = KVM_STATE(ms->accelerator); 202 bool result; 203 KVMMemoryListener *kml = &s->memory_listener; 204 205 kvm_slots_lock(); 206 result = !!kvm_get_free_slot(kml); 207 kvm_slots_unlock(); 208 209 return result; 210 } 211 212 /* Called with KVMMemoryListener.slots_lock held */ 213 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 214 { 215 KVMSlot *slot = kvm_get_free_slot(kml); 216 217 if (slot) { 218 return slot; 219 } 220 221 fprintf(stderr, "%s: no free slot available\n", __func__); 222 abort(); 223 } 224 225 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 226 hwaddr start_addr, 227 hwaddr size) 228 { 229 KVMState *s = kvm_state; 230 int i; 231 232 for (i = 0; i < s->nr_slots; i++) { 233 KVMSlot *mem = &kml->slots[i]; 234 235 if (start_addr == mem->start_addr && size == mem->memory_size) { 236 return mem; 237 } 238 } 239 240 return NULL; 241 } 242 243 /* 244 * Calculate and align the start address and the size of the section. 245 * Return the size. If the size is 0, the aligned section is empty. 246 */ 247 static hwaddr kvm_align_section(MemoryRegionSection *section, 248 hwaddr *start) 249 { 250 hwaddr size = int128_get64(section->size); 251 hwaddr delta, aligned; 252 253 /* kvm works in page size chunks, but the function may be called 254 with sub-page size and unaligned start address. Pad the start 255 address to next and truncate size to previous page boundary. */ 256 aligned = ROUND_UP(section->offset_within_address_space, 257 qemu_real_host_page_size()); 258 delta = aligned - section->offset_within_address_space; 259 *start = aligned; 260 if (delta > size) { 261 return 0; 262 } 263 264 return (size - delta) & qemu_real_host_page_mask(); 265 } 266 267 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 268 hwaddr *phys_addr) 269 { 270 KVMMemoryListener *kml = &s->memory_listener; 271 int i, ret = 0; 272 273 kvm_slots_lock(); 274 for (i = 0; i < s->nr_slots; i++) { 275 KVMSlot *mem = &kml->slots[i]; 276 277 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 278 *phys_addr = mem->start_addr + (ram - mem->ram); 279 ret = 1; 280 break; 281 } 282 } 283 kvm_slots_unlock(); 284 285 return ret; 286 } 287 288 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 289 { 290 KVMState *s = kvm_state; 291 struct kvm_userspace_memory_region mem; 292 int ret; 293 294 mem.slot = slot->slot | (kml->as_id << 16); 295 mem.guest_phys_addr = slot->start_addr; 296 mem.userspace_addr = (unsigned long)slot->ram; 297 mem.flags = slot->flags; 298 299 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 300 /* Set the slot size to 0 before setting the slot to the desired 301 * value. This is needed based on KVM commit 75d61fbc. */ 302 mem.memory_size = 0; 303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 304 if (ret < 0) { 305 goto err; 306 } 307 } 308 mem.memory_size = slot->memory_size; 309 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 310 slot->old_flags = mem.flags; 311 err: 312 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 313 mem.memory_size, mem.userspace_addr, ret); 314 if (ret < 0) { 315 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 316 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 317 __func__, mem.slot, slot->start_addr, 318 (uint64_t)mem.memory_size, strerror(errno)); 319 } 320 return ret; 321 } 322 323 static int do_kvm_destroy_vcpu(CPUState *cpu) 324 { 325 KVMState *s = kvm_state; 326 long mmap_size; 327 struct KVMParkedVcpu *vcpu = NULL; 328 int ret = 0; 329 330 DPRINTF("kvm_destroy_vcpu\n"); 331 332 ret = kvm_arch_destroy_vcpu(cpu); 333 if (ret < 0) { 334 goto err; 335 } 336 337 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 338 if (mmap_size < 0) { 339 ret = mmap_size; 340 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 341 goto err; 342 } 343 344 ret = munmap(cpu->kvm_run, mmap_size); 345 if (ret < 0) { 346 goto err; 347 } 348 349 if (cpu->kvm_dirty_gfns) { 350 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 351 if (ret < 0) { 352 goto err; 353 } 354 } 355 356 vcpu = g_malloc0(sizeof(*vcpu)); 357 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 358 vcpu->kvm_fd = cpu->kvm_fd; 359 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 360 err: 361 return ret; 362 } 363 364 void kvm_destroy_vcpu(CPUState *cpu) 365 { 366 if (do_kvm_destroy_vcpu(cpu) < 0) { 367 error_report("kvm_destroy_vcpu failed"); 368 exit(EXIT_FAILURE); 369 } 370 } 371 372 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 373 { 374 struct KVMParkedVcpu *cpu; 375 376 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 377 if (cpu->vcpu_id == vcpu_id) { 378 int kvm_fd; 379 380 QLIST_REMOVE(cpu, node); 381 kvm_fd = cpu->kvm_fd; 382 g_free(cpu); 383 return kvm_fd; 384 } 385 } 386 387 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 388 } 389 390 int kvm_init_vcpu(CPUState *cpu, Error **errp) 391 { 392 KVMState *s = kvm_state; 393 long mmap_size; 394 int ret; 395 396 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 397 398 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 399 if (ret < 0) { 400 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 401 kvm_arch_vcpu_id(cpu)); 402 goto err; 403 } 404 405 cpu->kvm_fd = ret; 406 cpu->kvm_state = s; 407 cpu->vcpu_dirty = true; 408 cpu->dirty_pages = 0; 409 cpu->throttle_us_per_full = 0; 410 411 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 412 if (mmap_size < 0) { 413 ret = mmap_size; 414 error_setg_errno(errp, -mmap_size, 415 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 416 goto err; 417 } 418 419 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 420 cpu->kvm_fd, 0); 421 if (cpu->kvm_run == MAP_FAILED) { 422 ret = -errno; 423 error_setg_errno(errp, ret, 424 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 425 kvm_arch_vcpu_id(cpu)); 426 goto err; 427 } 428 429 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 430 s->coalesced_mmio_ring = 431 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 432 } 433 434 if (s->kvm_dirty_ring_size) { 435 /* Use MAP_SHARED to share pages with the kernel */ 436 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 437 PROT_READ | PROT_WRITE, MAP_SHARED, 438 cpu->kvm_fd, 439 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 440 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 441 ret = -errno; 442 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 443 goto err; 444 } 445 } 446 447 ret = kvm_arch_init_vcpu(cpu); 448 if (ret < 0) { 449 error_setg_errno(errp, -ret, 450 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 451 kvm_arch_vcpu_id(cpu)); 452 } 453 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 454 455 err: 456 return ret; 457 } 458 459 /* 460 * dirty pages logging control 461 */ 462 463 static int kvm_mem_flags(MemoryRegion *mr) 464 { 465 bool readonly = mr->readonly || memory_region_is_romd(mr); 466 int flags = 0; 467 468 if (memory_region_get_dirty_log_mask(mr) != 0) { 469 flags |= KVM_MEM_LOG_DIRTY_PAGES; 470 } 471 if (readonly && kvm_readonly_mem_allowed) { 472 flags |= KVM_MEM_READONLY; 473 } 474 return flags; 475 } 476 477 /* Called with KVMMemoryListener.slots_lock held */ 478 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 479 MemoryRegion *mr) 480 { 481 mem->flags = kvm_mem_flags(mr); 482 483 /* If nothing changed effectively, no need to issue ioctl */ 484 if (mem->flags == mem->old_flags) { 485 return 0; 486 } 487 488 kvm_slot_init_dirty_bitmap(mem); 489 return kvm_set_user_memory_region(kml, mem, false); 490 } 491 492 static int kvm_section_update_flags(KVMMemoryListener *kml, 493 MemoryRegionSection *section) 494 { 495 hwaddr start_addr, size, slot_size; 496 KVMSlot *mem; 497 int ret = 0; 498 499 size = kvm_align_section(section, &start_addr); 500 if (!size) { 501 return 0; 502 } 503 504 kvm_slots_lock(); 505 506 while (size && !ret) { 507 slot_size = MIN(kvm_max_slot_size, size); 508 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 509 if (!mem) { 510 /* We don't have a slot if we want to trap every access. */ 511 goto out; 512 } 513 514 ret = kvm_slot_update_flags(kml, mem, section->mr); 515 start_addr += slot_size; 516 size -= slot_size; 517 } 518 519 out: 520 kvm_slots_unlock(); 521 return ret; 522 } 523 524 static void kvm_log_start(MemoryListener *listener, 525 MemoryRegionSection *section, 526 int old, int new) 527 { 528 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 529 int r; 530 531 if (old != 0) { 532 return; 533 } 534 535 r = kvm_section_update_flags(kml, section); 536 if (r < 0) { 537 abort(); 538 } 539 } 540 541 static void kvm_log_stop(MemoryListener *listener, 542 MemoryRegionSection *section, 543 int old, int new) 544 { 545 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 546 int r; 547 548 if (new != 0) { 549 return; 550 } 551 552 r = kvm_section_update_flags(kml, section); 553 if (r < 0) { 554 abort(); 555 } 556 } 557 558 /* get kvm's dirty pages bitmap and update qemu's */ 559 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 560 { 561 ram_addr_t start = slot->ram_start_offset; 562 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 563 564 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 565 } 566 567 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 568 { 569 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 570 } 571 572 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 573 574 /* Allocate the dirty bitmap for a slot */ 575 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 576 { 577 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 578 return; 579 } 580 581 /* 582 * XXX bad kernel interface alert 583 * For dirty bitmap, kernel allocates array of size aligned to 584 * bits-per-long. But for case when the kernel is 64bits and 585 * the userspace is 32bits, userspace can't align to the same 586 * bits-per-long, since sizeof(long) is different between kernel 587 * and user space. This way, userspace will provide buffer which 588 * may be 4 bytes less than the kernel will use, resulting in 589 * userspace memory corruption (which is not detectable by valgrind 590 * too, in most cases). 591 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 592 * a hope that sizeof(long) won't become >8 any time soon. 593 * 594 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 595 * And mem->memory_size is aligned to it (otherwise this mem can't 596 * be registered to KVM). 597 */ 598 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 599 /*HOST_LONG_BITS*/ 64) / 8; 600 mem->dirty_bmap = g_malloc0(bitmap_size); 601 mem->dirty_bmap_size = bitmap_size; 602 } 603 604 /* 605 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 606 * succeeded, false otherwise 607 */ 608 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 609 { 610 struct kvm_dirty_log d = {}; 611 int ret; 612 613 d.dirty_bitmap = slot->dirty_bmap; 614 d.slot = slot->slot | (slot->as_id << 16); 615 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 616 617 if (ret == -ENOENT) { 618 /* kernel does not have dirty bitmap in this slot */ 619 ret = 0; 620 } 621 if (ret) { 622 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 623 __func__, ret); 624 } 625 return ret == 0; 626 } 627 628 /* Should be with all slots_lock held for the address spaces. */ 629 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 630 uint32_t slot_id, uint64_t offset) 631 { 632 KVMMemoryListener *kml; 633 KVMSlot *mem; 634 635 if (as_id >= s->nr_as) { 636 return; 637 } 638 639 kml = s->as[as_id].ml; 640 mem = &kml->slots[slot_id]; 641 642 if (!mem->memory_size || offset >= 643 (mem->memory_size / qemu_real_host_page_size())) { 644 return; 645 } 646 647 set_bit(offset, mem->dirty_bmap); 648 } 649 650 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 651 { 652 /* 653 * Read the flags before the value. Pairs with barrier in 654 * KVM's kvm_dirty_ring_push() function. 655 */ 656 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 657 } 658 659 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 660 { 661 /* 662 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 663 * sees the full content of the ring: 664 * 665 * CPU0 CPU1 CPU2 666 * ------------------------------------------------------------------------------ 667 * fill gfn0 668 * store-rel flags for gfn0 669 * load-acq flags for gfn0 670 * store-rel RESET for gfn0 671 * ioctl(RESET_RINGS) 672 * load-acq flags for gfn0 673 * check if flags have RESET 674 * 675 * The synchronization goes from CPU2 to CPU0 to CPU1. 676 */ 677 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 678 } 679 680 /* 681 * Should be with all slots_lock held for the address spaces. It returns the 682 * dirty page we've collected on this dirty ring. 683 */ 684 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 685 { 686 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 687 uint32_t ring_size = s->kvm_dirty_ring_size; 688 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 689 690 /* 691 * It's possible that we race with vcpu creation code where the vcpu is 692 * put onto the vcpus list but not yet initialized the dirty ring 693 * structures. If so, skip it. 694 */ 695 if (!cpu->created) { 696 return 0; 697 } 698 699 assert(dirty_gfns && ring_size); 700 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 701 702 while (true) { 703 cur = &dirty_gfns[fetch % ring_size]; 704 if (!dirty_gfn_is_dirtied(cur)) { 705 break; 706 } 707 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 708 cur->offset); 709 dirty_gfn_set_collected(cur); 710 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 711 fetch++; 712 count++; 713 } 714 cpu->kvm_fetch_index = fetch; 715 cpu->dirty_pages += count; 716 717 return count; 718 } 719 720 /* Must be with slots_lock held */ 721 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 722 { 723 int ret; 724 uint64_t total = 0; 725 int64_t stamp; 726 727 stamp = get_clock(); 728 729 if (cpu) { 730 total = kvm_dirty_ring_reap_one(s, cpu); 731 } else { 732 CPU_FOREACH(cpu) { 733 total += kvm_dirty_ring_reap_one(s, cpu); 734 } 735 } 736 737 if (total) { 738 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 739 assert(ret == total); 740 } 741 742 stamp = get_clock() - stamp; 743 744 if (total) { 745 trace_kvm_dirty_ring_reap(total, stamp / 1000); 746 } 747 748 return total; 749 } 750 751 /* 752 * Currently for simplicity, we must hold BQL before calling this. We can 753 * consider to drop the BQL if we're clear with all the race conditions. 754 */ 755 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 756 { 757 uint64_t total; 758 759 /* 760 * We need to lock all kvm slots for all address spaces here, 761 * because: 762 * 763 * (1) We need to mark dirty for dirty bitmaps in multiple slots 764 * and for tons of pages, so it's better to take the lock here 765 * once rather than once per page. And more importantly, 766 * 767 * (2) We must _NOT_ publish dirty bits to the other threads 768 * (e.g., the migration thread) via the kvm memory slot dirty 769 * bitmaps before correctly re-protect those dirtied pages. 770 * Otherwise we can have potential risk of data corruption if 771 * the page data is read in the other thread before we do 772 * reset below. 773 */ 774 kvm_slots_lock(); 775 total = kvm_dirty_ring_reap_locked(s, cpu); 776 kvm_slots_unlock(); 777 778 return total; 779 } 780 781 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 782 { 783 /* No need to do anything */ 784 } 785 786 /* 787 * Kick all vcpus out in a synchronized way. When returned, we 788 * guarantee that every vcpu has been kicked and at least returned to 789 * userspace once. 790 */ 791 static void kvm_cpu_synchronize_kick_all(void) 792 { 793 CPUState *cpu; 794 795 CPU_FOREACH(cpu) { 796 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 797 } 798 } 799 800 /* 801 * Flush all the existing dirty pages to the KVM slot buffers. When 802 * this call returns, we guarantee that all the touched dirty pages 803 * before calling this function have been put into the per-kvmslot 804 * dirty bitmap. 805 * 806 * This function must be called with BQL held. 807 */ 808 static void kvm_dirty_ring_flush(void) 809 { 810 trace_kvm_dirty_ring_flush(0); 811 /* 812 * The function needs to be serialized. Since this function 813 * should always be with BQL held, serialization is guaranteed. 814 * However, let's be sure of it. 815 */ 816 assert(qemu_mutex_iothread_locked()); 817 /* 818 * First make sure to flush the hardware buffers by kicking all 819 * vcpus out in a synchronous way. 820 */ 821 kvm_cpu_synchronize_kick_all(); 822 kvm_dirty_ring_reap(kvm_state, NULL); 823 trace_kvm_dirty_ring_flush(1); 824 } 825 826 /** 827 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 828 * 829 * This function will first try to fetch dirty bitmap from the kernel, 830 * and then updates qemu's dirty bitmap. 831 * 832 * NOTE: caller must be with kml->slots_lock held. 833 * 834 * @kml: the KVM memory listener object 835 * @section: the memory section to sync the dirty bitmap with 836 */ 837 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 838 MemoryRegionSection *section) 839 { 840 KVMState *s = kvm_state; 841 KVMSlot *mem; 842 hwaddr start_addr, size; 843 hwaddr slot_size; 844 845 size = kvm_align_section(section, &start_addr); 846 while (size) { 847 slot_size = MIN(kvm_max_slot_size, size); 848 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 849 if (!mem) { 850 /* We don't have a slot if we want to trap every access. */ 851 return; 852 } 853 if (kvm_slot_get_dirty_log(s, mem)) { 854 kvm_slot_sync_dirty_pages(mem); 855 } 856 start_addr += slot_size; 857 size -= slot_size; 858 } 859 } 860 861 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 862 #define KVM_CLEAR_LOG_SHIFT 6 863 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 864 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 865 866 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 867 uint64_t size) 868 { 869 KVMState *s = kvm_state; 870 uint64_t end, bmap_start, start_delta, bmap_npages; 871 struct kvm_clear_dirty_log d; 872 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 873 int ret; 874 875 /* 876 * We need to extend either the start or the size or both to 877 * satisfy the KVM interface requirement. Firstly, do the start 878 * page alignment on 64 host pages 879 */ 880 bmap_start = start & KVM_CLEAR_LOG_MASK; 881 start_delta = start - bmap_start; 882 bmap_start /= psize; 883 884 /* 885 * The kernel interface has restriction on the size too, that either: 886 * 887 * (1) the size is 64 host pages aligned (just like the start), or 888 * (2) the size fills up until the end of the KVM memslot. 889 */ 890 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 891 << KVM_CLEAR_LOG_SHIFT; 892 end = mem->memory_size / psize; 893 if (bmap_npages > end - bmap_start) { 894 bmap_npages = end - bmap_start; 895 } 896 start_delta /= psize; 897 898 /* 899 * Prepare the bitmap to clear dirty bits. Here we must guarantee 900 * that we won't clear any unknown dirty bits otherwise we might 901 * accidentally clear some set bits which are not yet synced from 902 * the kernel into QEMU's bitmap, then we'll lose track of the 903 * guest modifications upon those pages (which can directly lead 904 * to guest data loss or panic after migration). 905 * 906 * Layout of the KVMSlot.dirty_bmap: 907 * 908 * |<-------- bmap_npages -----------..>| 909 * [1] 910 * start_delta size 911 * |----------------|-------------|------------------|------------| 912 * ^ ^ ^ ^ 913 * | | | | 914 * start bmap_start (start) end 915 * of memslot of memslot 916 * 917 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 918 */ 919 920 assert(bmap_start % BITS_PER_LONG == 0); 921 /* We should never do log_clear before log_sync */ 922 assert(mem->dirty_bmap); 923 if (start_delta || bmap_npages - size / psize) { 924 /* Slow path - we need to manipulate a temp bitmap */ 925 bmap_clear = bitmap_new(bmap_npages); 926 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 927 bmap_start, start_delta + size / psize); 928 /* 929 * We need to fill the holes at start because that was not 930 * specified by the caller and we extended the bitmap only for 931 * 64 pages alignment 932 */ 933 bitmap_clear(bmap_clear, 0, start_delta); 934 d.dirty_bitmap = bmap_clear; 935 } else { 936 /* 937 * Fast path - both start and size align well with BITS_PER_LONG 938 * (or the end of memory slot) 939 */ 940 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 941 } 942 943 d.first_page = bmap_start; 944 /* It should never overflow. If it happens, say something */ 945 assert(bmap_npages <= UINT32_MAX); 946 d.num_pages = bmap_npages; 947 d.slot = mem->slot | (as_id << 16); 948 949 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 950 if (ret < 0 && ret != -ENOENT) { 951 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 952 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 953 __func__, d.slot, (uint64_t)d.first_page, 954 (uint32_t)d.num_pages, ret); 955 } else { 956 ret = 0; 957 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 958 } 959 960 /* 961 * After we have updated the remote dirty bitmap, we update the 962 * cached bitmap as well for the memslot, then if another user 963 * clears the same region we know we shouldn't clear it again on 964 * the remote otherwise it's data loss as well. 965 */ 966 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 967 size / psize); 968 /* This handles the NULL case well */ 969 g_free(bmap_clear); 970 return ret; 971 } 972 973 974 /** 975 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 976 * 977 * NOTE: this will be a no-op if we haven't enabled manual dirty log 978 * protection in the host kernel because in that case this operation 979 * will be done within log_sync(). 980 * 981 * @kml: the kvm memory listener 982 * @section: the memory range to clear dirty bitmap 983 */ 984 static int kvm_physical_log_clear(KVMMemoryListener *kml, 985 MemoryRegionSection *section) 986 { 987 KVMState *s = kvm_state; 988 uint64_t start, size, offset, count; 989 KVMSlot *mem; 990 int ret = 0, i; 991 992 if (!s->manual_dirty_log_protect) { 993 /* No need to do explicit clear */ 994 return ret; 995 } 996 997 start = section->offset_within_address_space; 998 size = int128_get64(section->size); 999 1000 if (!size) { 1001 /* Nothing more we can do... */ 1002 return ret; 1003 } 1004 1005 kvm_slots_lock(); 1006 1007 for (i = 0; i < s->nr_slots; i++) { 1008 mem = &kml->slots[i]; 1009 /* Discard slots that are empty or do not overlap the section */ 1010 if (!mem->memory_size || 1011 mem->start_addr > start + size - 1 || 1012 start > mem->start_addr + mem->memory_size - 1) { 1013 continue; 1014 } 1015 1016 if (start >= mem->start_addr) { 1017 /* The slot starts before section or is aligned to it. */ 1018 offset = start - mem->start_addr; 1019 count = MIN(mem->memory_size - offset, size); 1020 } else { 1021 /* The slot starts after section. */ 1022 offset = 0; 1023 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1024 } 1025 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1026 if (ret < 0) { 1027 break; 1028 } 1029 } 1030 1031 kvm_slots_unlock(); 1032 1033 return ret; 1034 } 1035 1036 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1037 MemoryRegionSection *secion, 1038 hwaddr start, hwaddr size) 1039 { 1040 KVMState *s = kvm_state; 1041 1042 if (s->coalesced_mmio) { 1043 struct kvm_coalesced_mmio_zone zone; 1044 1045 zone.addr = start; 1046 zone.size = size; 1047 zone.pad = 0; 1048 1049 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1050 } 1051 } 1052 1053 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1054 MemoryRegionSection *secion, 1055 hwaddr start, hwaddr size) 1056 { 1057 KVMState *s = kvm_state; 1058 1059 if (s->coalesced_mmio) { 1060 struct kvm_coalesced_mmio_zone zone; 1061 1062 zone.addr = start; 1063 zone.size = size; 1064 zone.pad = 0; 1065 1066 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1067 } 1068 } 1069 1070 static void kvm_coalesce_pio_add(MemoryListener *listener, 1071 MemoryRegionSection *section, 1072 hwaddr start, hwaddr size) 1073 { 1074 KVMState *s = kvm_state; 1075 1076 if (s->coalesced_pio) { 1077 struct kvm_coalesced_mmio_zone zone; 1078 1079 zone.addr = start; 1080 zone.size = size; 1081 zone.pio = 1; 1082 1083 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1084 } 1085 } 1086 1087 static void kvm_coalesce_pio_del(MemoryListener *listener, 1088 MemoryRegionSection *section, 1089 hwaddr start, hwaddr size) 1090 { 1091 KVMState *s = kvm_state; 1092 1093 if (s->coalesced_pio) { 1094 struct kvm_coalesced_mmio_zone zone; 1095 1096 zone.addr = start; 1097 zone.size = size; 1098 zone.pio = 1; 1099 1100 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1101 } 1102 } 1103 1104 static MemoryListener kvm_coalesced_pio_listener = { 1105 .name = "kvm-coalesced-pio", 1106 .coalesced_io_add = kvm_coalesce_pio_add, 1107 .coalesced_io_del = kvm_coalesce_pio_del, 1108 .priority = MEMORY_LISTENER_PRIORITY_MIN, 1109 }; 1110 1111 int kvm_check_extension(KVMState *s, unsigned int extension) 1112 { 1113 int ret; 1114 1115 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1116 if (ret < 0) { 1117 ret = 0; 1118 } 1119 1120 return ret; 1121 } 1122 1123 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1124 { 1125 int ret; 1126 1127 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1128 if (ret < 0) { 1129 /* VM wide version not implemented, use global one instead */ 1130 ret = kvm_check_extension(s, extension); 1131 } 1132 1133 return ret; 1134 } 1135 1136 typedef struct HWPoisonPage { 1137 ram_addr_t ram_addr; 1138 QLIST_ENTRY(HWPoisonPage) list; 1139 } HWPoisonPage; 1140 1141 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1142 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1143 1144 static void kvm_unpoison_all(void *param) 1145 { 1146 HWPoisonPage *page, *next_page; 1147 1148 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1149 QLIST_REMOVE(page, list); 1150 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1151 g_free(page); 1152 } 1153 } 1154 1155 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1156 { 1157 HWPoisonPage *page; 1158 1159 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1160 if (page->ram_addr == ram_addr) { 1161 return; 1162 } 1163 } 1164 page = g_new(HWPoisonPage, 1); 1165 page->ram_addr = ram_addr; 1166 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1167 } 1168 1169 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1170 { 1171 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1172 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1173 * endianness, but the memory core hands them in target endianness. 1174 * For example, PPC is always treated as big-endian even if running 1175 * on KVM and on PPC64LE. Correct here. 1176 */ 1177 switch (size) { 1178 case 2: 1179 val = bswap16(val); 1180 break; 1181 case 4: 1182 val = bswap32(val); 1183 break; 1184 } 1185 #endif 1186 return val; 1187 } 1188 1189 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1190 bool assign, uint32_t size, bool datamatch) 1191 { 1192 int ret; 1193 struct kvm_ioeventfd iofd = { 1194 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1195 .addr = addr, 1196 .len = size, 1197 .flags = 0, 1198 .fd = fd, 1199 }; 1200 1201 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1202 datamatch); 1203 if (!kvm_enabled()) { 1204 return -ENOSYS; 1205 } 1206 1207 if (datamatch) { 1208 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1209 } 1210 if (!assign) { 1211 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1212 } 1213 1214 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1215 1216 if (ret < 0) { 1217 return -errno; 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1224 bool assign, uint32_t size, bool datamatch) 1225 { 1226 struct kvm_ioeventfd kick = { 1227 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1228 .addr = addr, 1229 .flags = KVM_IOEVENTFD_FLAG_PIO, 1230 .len = size, 1231 .fd = fd, 1232 }; 1233 int r; 1234 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1235 if (!kvm_enabled()) { 1236 return -ENOSYS; 1237 } 1238 if (datamatch) { 1239 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1240 } 1241 if (!assign) { 1242 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1243 } 1244 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1245 if (r < 0) { 1246 return r; 1247 } 1248 return 0; 1249 } 1250 1251 1252 static int kvm_check_many_ioeventfds(void) 1253 { 1254 /* Userspace can use ioeventfd for io notification. This requires a host 1255 * that supports eventfd(2) and an I/O thread; since eventfd does not 1256 * support SIGIO it cannot interrupt the vcpu. 1257 * 1258 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1259 * can avoid creating too many ioeventfds. 1260 */ 1261 #if defined(CONFIG_EVENTFD) 1262 int ioeventfds[7]; 1263 int i, ret = 0; 1264 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1265 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1266 if (ioeventfds[i] < 0) { 1267 break; 1268 } 1269 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1270 if (ret < 0) { 1271 close(ioeventfds[i]); 1272 break; 1273 } 1274 } 1275 1276 /* Decide whether many devices are supported or not */ 1277 ret = i == ARRAY_SIZE(ioeventfds); 1278 1279 while (i-- > 0) { 1280 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1281 close(ioeventfds[i]); 1282 } 1283 return ret; 1284 #else 1285 return 0; 1286 #endif 1287 } 1288 1289 static const KVMCapabilityInfo * 1290 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1291 { 1292 while (list->name) { 1293 if (!kvm_check_extension(s, list->value)) { 1294 return list; 1295 } 1296 list++; 1297 } 1298 return NULL; 1299 } 1300 1301 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1302 { 1303 g_assert( 1304 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1305 ); 1306 kvm_max_slot_size = max_slot_size; 1307 } 1308 1309 /* Called with KVMMemoryListener.slots_lock held */ 1310 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1311 MemoryRegionSection *section, bool add) 1312 { 1313 KVMSlot *mem; 1314 int err; 1315 MemoryRegion *mr = section->mr; 1316 bool writable = !mr->readonly && !mr->rom_device; 1317 hwaddr start_addr, size, slot_size, mr_offset; 1318 ram_addr_t ram_start_offset; 1319 void *ram; 1320 1321 if (!memory_region_is_ram(mr)) { 1322 if (writable || !kvm_readonly_mem_allowed) { 1323 return; 1324 } else if (!mr->romd_mode) { 1325 /* If the memory device is not in romd_mode, then we actually want 1326 * to remove the kvm memory slot so all accesses will trap. */ 1327 add = false; 1328 } 1329 } 1330 1331 size = kvm_align_section(section, &start_addr); 1332 if (!size) { 1333 return; 1334 } 1335 1336 /* The offset of the kvmslot within the memory region */ 1337 mr_offset = section->offset_within_region + start_addr - 1338 section->offset_within_address_space; 1339 1340 /* use aligned delta to align the ram address and offset */ 1341 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1342 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1343 1344 if (!add) { 1345 do { 1346 slot_size = MIN(kvm_max_slot_size, size); 1347 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1348 if (!mem) { 1349 return; 1350 } 1351 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1352 /* 1353 * NOTE: We should be aware of the fact that here we're only 1354 * doing a best effort to sync dirty bits. No matter whether 1355 * we're using dirty log or dirty ring, we ignored two facts: 1356 * 1357 * (1) dirty bits can reside in hardware buffers (PML) 1358 * 1359 * (2) after we collected dirty bits here, pages can be dirtied 1360 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1361 * remove the slot. 1362 * 1363 * Not easy. Let's cross the fingers until it's fixed. 1364 */ 1365 if (kvm_state->kvm_dirty_ring_size) { 1366 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1367 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1368 kvm_slot_sync_dirty_pages(mem); 1369 kvm_slot_get_dirty_log(kvm_state, mem); 1370 } 1371 } else { 1372 kvm_slot_get_dirty_log(kvm_state, mem); 1373 } 1374 kvm_slot_sync_dirty_pages(mem); 1375 } 1376 1377 /* unregister the slot */ 1378 g_free(mem->dirty_bmap); 1379 mem->dirty_bmap = NULL; 1380 mem->memory_size = 0; 1381 mem->flags = 0; 1382 err = kvm_set_user_memory_region(kml, mem, false); 1383 if (err) { 1384 fprintf(stderr, "%s: error unregistering slot: %s\n", 1385 __func__, strerror(-err)); 1386 abort(); 1387 } 1388 start_addr += slot_size; 1389 size -= slot_size; 1390 } while (size); 1391 return; 1392 } 1393 1394 /* register the new slot */ 1395 do { 1396 slot_size = MIN(kvm_max_slot_size, size); 1397 mem = kvm_alloc_slot(kml); 1398 mem->as_id = kml->as_id; 1399 mem->memory_size = slot_size; 1400 mem->start_addr = start_addr; 1401 mem->ram_start_offset = ram_start_offset; 1402 mem->ram = ram; 1403 mem->flags = kvm_mem_flags(mr); 1404 kvm_slot_init_dirty_bitmap(mem); 1405 err = kvm_set_user_memory_region(kml, mem, true); 1406 if (err) { 1407 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1408 strerror(-err)); 1409 abort(); 1410 } 1411 start_addr += slot_size; 1412 ram_start_offset += slot_size; 1413 ram += slot_size; 1414 size -= slot_size; 1415 } while (size); 1416 } 1417 1418 static void *kvm_dirty_ring_reaper_thread(void *data) 1419 { 1420 KVMState *s = data; 1421 struct KVMDirtyRingReaper *r = &s->reaper; 1422 1423 rcu_register_thread(); 1424 1425 trace_kvm_dirty_ring_reaper("init"); 1426 1427 while (true) { 1428 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1429 trace_kvm_dirty_ring_reaper("wait"); 1430 /* 1431 * TODO: provide a smarter timeout rather than a constant? 1432 */ 1433 sleep(1); 1434 1435 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1436 if (dirtylimit_in_service()) { 1437 continue; 1438 } 1439 1440 trace_kvm_dirty_ring_reaper("wakeup"); 1441 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1442 1443 qemu_mutex_lock_iothread(); 1444 kvm_dirty_ring_reap(s, NULL); 1445 qemu_mutex_unlock_iothread(); 1446 1447 r->reaper_iteration++; 1448 } 1449 1450 trace_kvm_dirty_ring_reaper("exit"); 1451 1452 rcu_unregister_thread(); 1453 1454 return NULL; 1455 } 1456 1457 static int kvm_dirty_ring_reaper_init(KVMState *s) 1458 { 1459 struct KVMDirtyRingReaper *r = &s->reaper; 1460 1461 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1462 kvm_dirty_ring_reaper_thread, 1463 s, QEMU_THREAD_JOINABLE); 1464 1465 return 0; 1466 } 1467 1468 static int kvm_dirty_ring_init(KVMState *s) 1469 { 1470 uint32_t ring_size = s->kvm_dirty_ring_size; 1471 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1472 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1473 int ret; 1474 1475 s->kvm_dirty_ring_size = 0; 1476 s->kvm_dirty_ring_bytes = 0; 1477 1478 /* Bail if the dirty ring size isn't specified */ 1479 if (!ring_size) { 1480 return 0; 1481 } 1482 1483 /* 1484 * Read the max supported pages. Fall back to dirty logging mode 1485 * if the dirty ring isn't supported. 1486 */ 1487 ret = kvm_vm_check_extension(s, capability); 1488 if (ret <= 0) { 1489 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1490 ret = kvm_vm_check_extension(s, capability); 1491 } 1492 1493 if (ret <= 0) { 1494 warn_report("KVM dirty ring not available, using bitmap method"); 1495 return 0; 1496 } 1497 1498 if (ring_bytes > ret) { 1499 error_report("KVM dirty ring size %" PRIu32 " too big " 1500 "(maximum is %ld). Please use a smaller value.", 1501 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1502 return -EINVAL; 1503 } 1504 1505 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1506 if (ret) { 1507 error_report("Enabling of KVM dirty ring failed: %s. " 1508 "Suggested minimum value is 1024.", strerror(-ret)); 1509 return -EIO; 1510 } 1511 1512 /* Enable the backup bitmap if it is supported */ 1513 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1514 if (ret > 0) { 1515 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1516 if (ret) { 1517 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1518 "%s. ", strerror(-ret)); 1519 return -EIO; 1520 } 1521 1522 s->kvm_dirty_ring_with_bitmap = true; 1523 } 1524 1525 s->kvm_dirty_ring_size = ring_size; 1526 s->kvm_dirty_ring_bytes = ring_bytes; 1527 1528 return 0; 1529 } 1530 1531 static void kvm_region_add(MemoryListener *listener, 1532 MemoryRegionSection *section) 1533 { 1534 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1535 KVMMemoryUpdate *update; 1536 1537 update = g_new0(KVMMemoryUpdate, 1); 1538 update->section = *section; 1539 1540 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1541 } 1542 1543 static void kvm_region_del(MemoryListener *listener, 1544 MemoryRegionSection *section) 1545 { 1546 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1547 KVMMemoryUpdate *update; 1548 1549 update = g_new0(KVMMemoryUpdate, 1); 1550 update->section = *section; 1551 1552 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1553 } 1554 1555 static void kvm_region_commit(MemoryListener *listener) 1556 { 1557 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1558 listener); 1559 KVMMemoryUpdate *u1, *u2; 1560 bool need_inhibit = false; 1561 1562 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1563 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1564 return; 1565 } 1566 1567 /* 1568 * We have to be careful when regions to add overlap with ranges to remove. 1569 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1570 * is currently active. 1571 * 1572 * The lists are order by addresses, so it's easy to find overlaps. 1573 */ 1574 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1575 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1576 while (u1 && u2) { 1577 Range r1, r2; 1578 1579 range_init_nofail(&r1, u1->section.offset_within_address_space, 1580 int128_get64(u1->section.size)); 1581 range_init_nofail(&r2, u2->section.offset_within_address_space, 1582 int128_get64(u2->section.size)); 1583 1584 if (range_overlaps_range(&r1, &r2)) { 1585 need_inhibit = true; 1586 break; 1587 } 1588 if (range_lob(&r1) < range_lob(&r2)) { 1589 u1 = QSIMPLEQ_NEXT(u1, next); 1590 } else { 1591 u2 = QSIMPLEQ_NEXT(u2, next); 1592 } 1593 } 1594 1595 kvm_slots_lock(); 1596 if (need_inhibit) { 1597 accel_ioctl_inhibit_begin(); 1598 } 1599 1600 /* Remove all memslots before adding the new ones. */ 1601 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1602 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1603 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1604 1605 kvm_set_phys_mem(kml, &u1->section, false); 1606 memory_region_unref(u1->section.mr); 1607 1608 g_free(u1); 1609 } 1610 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1611 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1612 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1613 1614 memory_region_ref(u1->section.mr); 1615 kvm_set_phys_mem(kml, &u1->section, true); 1616 1617 g_free(u1); 1618 } 1619 1620 if (need_inhibit) { 1621 accel_ioctl_inhibit_end(); 1622 } 1623 kvm_slots_unlock(); 1624 } 1625 1626 static void kvm_log_sync(MemoryListener *listener, 1627 MemoryRegionSection *section) 1628 { 1629 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1630 1631 kvm_slots_lock(); 1632 kvm_physical_sync_dirty_bitmap(kml, section); 1633 kvm_slots_unlock(); 1634 } 1635 1636 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1637 { 1638 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1639 KVMState *s = kvm_state; 1640 KVMSlot *mem; 1641 int i; 1642 1643 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1644 kvm_dirty_ring_flush(); 1645 1646 /* 1647 * TODO: make this faster when nr_slots is big while there are 1648 * only a few used slots (small VMs). 1649 */ 1650 kvm_slots_lock(); 1651 for (i = 0; i < s->nr_slots; i++) { 1652 mem = &kml->slots[i]; 1653 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1654 kvm_slot_sync_dirty_pages(mem); 1655 1656 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1657 kvm_slot_get_dirty_log(s, mem)) { 1658 kvm_slot_sync_dirty_pages(mem); 1659 } 1660 1661 /* 1662 * This is not needed by KVM_GET_DIRTY_LOG because the 1663 * ioctl will unconditionally overwrite the whole region. 1664 * However kvm dirty ring has no such side effect. 1665 */ 1666 kvm_slot_reset_dirty_pages(mem); 1667 } 1668 } 1669 kvm_slots_unlock(); 1670 } 1671 1672 static void kvm_log_clear(MemoryListener *listener, 1673 MemoryRegionSection *section) 1674 { 1675 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1676 int r; 1677 1678 r = kvm_physical_log_clear(kml, section); 1679 if (r < 0) { 1680 error_report_once("%s: kvm log clear failed: mr=%s " 1681 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1682 section->mr->name, section->offset_within_region, 1683 int128_get64(section->size)); 1684 abort(); 1685 } 1686 } 1687 1688 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1689 MemoryRegionSection *section, 1690 bool match_data, uint64_t data, 1691 EventNotifier *e) 1692 { 1693 int fd = event_notifier_get_fd(e); 1694 int r; 1695 1696 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1697 data, true, int128_get64(section->size), 1698 match_data); 1699 if (r < 0) { 1700 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1701 __func__, strerror(-r), -r); 1702 abort(); 1703 } 1704 } 1705 1706 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1707 MemoryRegionSection *section, 1708 bool match_data, uint64_t data, 1709 EventNotifier *e) 1710 { 1711 int fd = event_notifier_get_fd(e); 1712 int r; 1713 1714 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1715 data, false, int128_get64(section->size), 1716 match_data); 1717 if (r < 0) { 1718 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1719 __func__, strerror(-r), -r); 1720 abort(); 1721 } 1722 } 1723 1724 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1725 MemoryRegionSection *section, 1726 bool match_data, uint64_t data, 1727 EventNotifier *e) 1728 { 1729 int fd = event_notifier_get_fd(e); 1730 int r; 1731 1732 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1733 data, true, int128_get64(section->size), 1734 match_data); 1735 if (r < 0) { 1736 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1737 __func__, strerror(-r), -r); 1738 abort(); 1739 } 1740 } 1741 1742 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1743 MemoryRegionSection *section, 1744 bool match_data, uint64_t data, 1745 EventNotifier *e) 1746 1747 { 1748 int fd = event_notifier_get_fd(e); 1749 int r; 1750 1751 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1752 data, false, int128_get64(section->size), 1753 match_data); 1754 if (r < 0) { 1755 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1756 __func__, strerror(-r), -r); 1757 abort(); 1758 } 1759 } 1760 1761 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1762 AddressSpace *as, int as_id, const char *name) 1763 { 1764 int i; 1765 1766 kml->slots = g_new0(KVMSlot, s->nr_slots); 1767 kml->as_id = as_id; 1768 1769 for (i = 0; i < s->nr_slots; i++) { 1770 kml->slots[i].slot = i; 1771 } 1772 1773 QSIMPLEQ_INIT(&kml->transaction_add); 1774 QSIMPLEQ_INIT(&kml->transaction_del); 1775 1776 kml->listener.region_add = kvm_region_add; 1777 kml->listener.region_del = kvm_region_del; 1778 kml->listener.commit = kvm_region_commit; 1779 kml->listener.log_start = kvm_log_start; 1780 kml->listener.log_stop = kvm_log_stop; 1781 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1782 kml->listener.name = name; 1783 1784 if (s->kvm_dirty_ring_size) { 1785 kml->listener.log_sync_global = kvm_log_sync_global; 1786 } else { 1787 kml->listener.log_sync = kvm_log_sync; 1788 kml->listener.log_clear = kvm_log_clear; 1789 } 1790 1791 memory_listener_register(&kml->listener, as); 1792 1793 for (i = 0; i < s->nr_as; ++i) { 1794 if (!s->as[i].as) { 1795 s->as[i].as = as; 1796 s->as[i].ml = kml; 1797 break; 1798 } 1799 } 1800 } 1801 1802 static MemoryListener kvm_io_listener = { 1803 .name = "kvm-io", 1804 .eventfd_add = kvm_io_ioeventfd_add, 1805 .eventfd_del = kvm_io_ioeventfd_del, 1806 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1807 }; 1808 1809 int kvm_set_irq(KVMState *s, int irq, int level) 1810 { 1811 struct kvm_irq_level event; 1812 int ret; 1813 1814 assert(kvm_async_interrupts_enabled()); 1815 1816 event.level = level; 1817 event.irq = irq; 1818 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1819 if (ret < 0) { 1820 perror("kvm_set_irq"); 1821 abort(); 1822 } 1823 1824 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1825 } 1826 1827 #ifdef KVM_CAP_IRQ_ROUTING 1828 typedef struct KVMMSIRoute { 1829 struct kvm_irq_routing_entry kroute; 1830 QTAILQ_ENTRY(KVMMSIRoute) entry; 1831 } KVMMSIRoute; 1832 1833 static void set_gsi(KVMState *s, unsigned int gsi) 1834 { 1835 set_bit(gsi, s->used_gsi_bitmap); 1836 } 1837 1838 static void clear_gsi(KVMState *s, unsigned int gsi) 1839 { 1840 clear_bit(gsi, s->used_gsi_bitmap); 1841 } 1842 1843 void kvm_init_irq_routing(KVMState *s) 1844 { 1845 int gsi_count, i; 1846 1847 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1848 if (gsi_count > 0) { 1849 /* Round up so we can search ints using ffs */ 1850 s->used_gsi_bitmap = bitmap_new(gsi_count); 1851 s->gsi_count = gsi_count; 1852 } 1853 1854 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1855 s->nr_allocated_irq_routes = 0; 1856 1857 if (!kvm_direct_msi_allowed) { 1858 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1859 QTAILQ_INIT(&s->msi_hashtab[i]); 1860 } 1861 } 1862 1863 kvm_arch_init_irq_routing(s); 1864 } 1865 1866 void kvm_irqchip_commit_routes(KVMState *s) 1867 { 1868 int ret; 1869 1870 if (kvm_gsi_direct_mapping()) { 1871 return; 1872 } 1873 1874 if (!kvm_gsi_routing_enabled()) { 1875 return; 1876 } 1877 1878 s->irq_routes->flags = 0; 1879 trace_kvm_irqchip_commit_routes(); 1880 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1881 assert(ret == 0); 1882 } 1883 1884 static void kvm_add_routing_entry(KVMState *s, 1885 struct kvm_irq_routing_entry *entry) 1886 { 1887 struct kvm_irq_routing_entry *new; 1888 int n, size; 1889 1890 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1891 n = s->nr_allocated_irq_routes * 2; 1892 if (n < 64) { 1893 n = 64; 1894 } 1895 size = sizeof(struct kvm_irq_routing); 1896 size += n * sizeof(*new); 1897 s->irq_routes = g_realloc(s->irq_routes, size); 1898 s->nr_allocated_irq_routes = n; 1899 } 1900 n = s->irq_routes->nr++; 1901 new = &s->irq_routes->entries[n]; 1902 1903 *new = *entry; 1904 1905 set_gsi(s, entry->gsi); 1906 } 1907 1908 static int kvm_update_routing_entry(KVMState *s, 1909 struct kvm_irq_routing_entry *new_entry) 1910 { 1911 struct kvm_irq_routing_entry *entry; 1912 int n; 1913 1914 for (n = 0; n < s->irq_routes->nr; n++) { 1915 entry = &s->irq_routes->entries[n]; 1916 if (entry->gsi != new_entry->gsi) { 1917 continue; 1918 } 1919 1920 if(!memcmp(entry, new_entry, sizeof *entry)) { 1921 return 0; 1922 } 1923 1924 *entry = *new_entry; 1925 1926 return 0; 1927 } 1928 1929 return -ESRCH; 1930 } 1931 1932 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1933 { 1934 struct kvm_irq_routing_entry e = {}; 1935 1936 assert(pin < s->gsi_count); 1937 1938 e.gsi = irq; 1939 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1940 e.flags = 0; 1941 e.u.irqchip.irqchip = irqchip; 1942 e.u.irqchip.pin = pin; 1943 kvm_add_routing_entry(s, &e); 1944 } 1945 1946 void kvm_irqchip_release_virq(KVMState *s, int virq) 1947 { 1948 struct kvm_irq_routing_entry *e; 1949 int i; 1950 1951 if (kvm_gsi_direct_mapping()) { 1952 return; 1953 } 1954 1955 for (i = 0; i < s->irq_routes->nr; i++) { 1956 e = &s->irq_routes->entries[i]; 1957 if (e->gsi == virq) { 1958 s->irq_routes->nr--; 1959 *e = s->irq_routes->entries[s->irq_routes->nr]; 1960 } 1961 } 1962 clear_gsi(s, virq); 1963 kvm_arch_release_virq_post(virq); 1964 trace_kvm_irqchip_release_virq(virq); 1965 } 1966 1967 void kvm_irqchip_add_change_notifier(Notifier *n) 1968 { 1969 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1970 } 1971 1972 void kvm_irqchip_remove_change_notifier(Notifier *n) 1973 { 1974 notifier_remove(n); 1975 } 1976 1977 void kvm_irqchip_change_notify(void) 1978 { 1979 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1980 } 1981 1982 static unsigned int kvm_hash_msi(uint32_t data) 1983 { 1984 /* This is optimized for IA32 MSI layout. However, no other arch shall 1985 * repeat the mistake of not providing a direct MSI injection API. */ 1986 return data & 0xff; 1987 } 1988 1989 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1990 { 1991 KVMMSIRoute *route, *next; 1992 unsigned int hash; 1993 1994 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1995 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1996 kvm_irqchip_release_virq(s, route->kroute.gsi); 1997 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1998 g_free(route); 1999 } 2000 } 2001 } 2002 2003 static int kvm_irqchip_get_virq(KVMState *s) 2004 { 2005 int next_virq; 2006 2007 /* 2008 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 2009 * GSI numbers are more than the number of IRQ route. Allocating a GSI 2010 * number can succeed even though a new route entry cannot be added. 2011 * When this happens, flush dynamic MSI entries to free IRQ route entries. 2012 */ 2013 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 2014 kvm_flush_dynamic_msi_routes(s); 2015 } 2016 2017 /* Return the lowest unused GSI in the bitmap */ 2018 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2019 if (next_virq >= s->gsi_count) { 2020 return -ENOSPC; 2021 } else { 2022 return next_virq; 2023 } 2024 } 2025 2026 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 2027 { 2028 unsigned int hash = kvm_hash_msi(msg.data); 2029 KVMMSIRoute *route; 2030 2031 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 2032 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 2033 route->kroute.u.msi.address_hi == (msg.address >> 32) && 2034 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 2035 return route; 2036 } 2037 } 2038 return NULL; 2039 } 2040 2041 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2042 { 2043 struct kvm_msi msi; 2044 KVMMSIRoute *route; 2045 2046 if (kvm_direct_msi_allowed) { 2047 msi.address_lo = (uint32_t)msg.address; 2048 msi.address_hi = msg.address >> 32; 2049 msi.data = le32_to_cpu(msg.data); 2050 msi.flags = 0; 2051 memset(msi.pad, 0, sizeof(msi.pad)); 2052 2053 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2054 } 2055 2056 route = kvm_lookup_msi_route(s, msg); 2057 if (!route) { 2058 int virq; 2059 2060 virq = kvm_irqchip_get_virq(s); 2061 if (virq < 0) { 2062 return virq; 2063 } 2064 2065 route = g_new0(KVMMSIRoute, 1); 2066 route->kroute.gsi = virq; 2067 route->kroute.type = KVM_IRQ_ROUTING_MSI; 2068 route->kroute.flags = 0; 2069 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 2070 route->kroute.u.msi.address_hi = msg.address >> 32; 2071 route->kroute.u.msi.data = le32_to_cpu(msg.data); 2072 2073 kvm_add_routing_entry(s, &route->kroute); 2074 kvm_irqchip_commit_routes(s); 2075 2076 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 2077 entry); 2078 } 2079 2080 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 2081 2082 return kvm_set_irq(s, route->kroute.gsi, 1); 2083 } 2084 2085 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2086 { 2087 struct kvm_irq_routing_entry kroute = {}; 2088 int virq; 2089 KVMState *s = c->s; 2090 MSIMessage msg = {0, 0}; 2091 2092 if (pci_available && dev) { 2093 msg = pci_get_msi_message(dev, vector); 2094 } 2095 2096 if (kvm_gsi_direct_mapping()) { 2097 return kvm_arch_msi_data_to_gsi(msg.data); 2098 } 2099 2100 if (!kvm_gsi_routing_enabled()) { 2101 return -ENOSYS; 2102 } 2103 2104 virq = kvm_irqchip_get_virq(s); 2105 if (virq < 0) { 2106 return virq; 2107 } 2108 2109 kroute.gsi = virq; 2110 kroute.type = KVM_IRQ_ROUTING_MSI; 2111 kroute.flags = 0; 2112 kroute.u.msi.address_lo = (uint32_t)msg.address; 2113 kroute.u.msi.address_hi = msg.address >> 32; 2114 kroute.u.msi.data = le32_to_cpu(msg.data); 2115 if (pci_available && kvm_msi_devid_required()) { 2116 kroute.flags = KVM_MSI_VALID_DEVID; 2117 kroute.u.msi.devid = pci_requester_id(dev); 2118 } 2119 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2120 kvm_irqchip_release_virq(s, virq); 2121 return -EINVAL; 2122 } 2123 2124 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2125 vector, virq); 2126 2127 kvm_add_routing_entry(s, &kroute); 2128 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2129 c->changes++; 2130 2131 return virq; 2132 } 2133 2134 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2135 PCIDevice *dev) 2136 { 2137 struct kvm_irq_routing_entry kroute = {}; 2138 2139 if (kvm_gsi_direct_mapping()) { 2140 return 0; 2141 } 2142 2143 if (!kvm_irqchip_in_kernel()) { 2144 return -ENOSYS; 2145 } 2146 2147 kroute.gsi = virq; 2148 kroute.type = KVM_IRQ_ROUTING_MSI; 2149 kroute.flags = 0; 2150 kroute.u.msi.address_lo = (uint32_t)msg.address; 2151 kroute.u.msi.address_hi = msg.address >> 32; 2152 kroute.u.msi.data = le32_to_cpu(msg.data); 2153 if (pci_available && kvm_msi_devid_required()) { 2154 kroute.flags = KVM_MSI_VALID_DEVID; 2155 kroute.u.msi.devid = pci_requester_id(dev); 2156 } 2157 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2158 return -EINVAL; 2159 } 2160 2161 trace_kvm_irqchip_update_msi_route(virq); 2162 2163 return kvm_update_routing_entry(s, &kroute); 2164 } 2165 2166 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2167 EventNotifier *resample, int virq, 2168 bool assign) 2169 { 2170 int fd = event_notifier_get_fd(event); 2171 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2172 2173 struct kvm_irqfd irqfd = { 2174 .fd = fd, 2175 .gsi = virq, 2176 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2177 }; 2178 2179 if (rfd != -1) { 2180 assert(assign); 2181 if (kvm_irqchip_is_split()) { 2182 /* 2183 * When the slow irqchip (e.g. IOAPIC) is in the 2184 * userspace, KVM kernel resamplefd will not work because 2185 * the EOI of the interrupt will be delivered to userspace 2186 * instead, so the KVM kernel resamplefd kick will be 2187 * skipped. The userspace here mimics what the kernel 2188 * provides with resamplefd, remember the resamplefd and 2189 * kick it when we receive EOI of this IRQ. 2190 * 2191 * This is hackery because IOAPIC is mostly bypassed 2192 * (except EOI broadcasts) when irqfd is used. However 2193 * this can bring much performance back for split irqchip 2194 * with INTx IRQs (for VFIO, this gives 93% perf of the 2195 * full fast path, which is 46% perf boost comparing to 2196 * the INTx slow path). 2197 */ 2198 kvm_resample_fd_insert(virq, resample); 2199 } else { 2200 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2201 irqfd.resamplefd = rfd; 2202 } 2203 } else if (!assign) { 2204 if (kvm_irqchip_is_split()) { 2205 kvm_resample_fd_remove(virq); 2206 } 2207 } 2208 2209 if (!kvm_irqfds_enabled()) { 2210 return -ENOSYS; 2211 } 2212 2213 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2214 } 2215 2216 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2217 { 2218 struct kvm_irq_routing_entry kroute = {}; 2219 int virq; 2220 2221 if (!kvm_gsi_routing_enabled()) { 2222 return -ENOSYS; 2223 } 2224 2225 virq = kvm_irqchip_get_virq(s); 2226 if (virq < 0) { 2227 return virq; 2228 } 2229 2230 kroute.gsi = virq; 2231 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2232 kroute.flags = 0; 2233 kroute.u.adapter.summary_addr = adapter->summary_addr; 2234 kroute.u.adapter.ind_addr = adapter->ind_addr; 2235 kroute.u.adapter.summary_offset = adapter->summary_offset; 2236 kroute.u.adapter.ind_offset = adapter->ind_offset; 2237 kroute.u.adapter.adapter_id = adapter->adapter_id; 2238 2239 kvm_add_routing_entry(s, &kroute); 2240 2241 return virq; 2242 } 2243 2244 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2245 { 2246 struct kvm_irq_routing_entry kroute = {}; 2247 int virq; 2248 2249 if (!kvm_gsi_routing_enabled()) { 2250 return -ENOSYS; 2251 } 2252 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2253 return -ENOSYS; 2254 } 2255 virq = kvm_irqchip_get_virq(s); 2256 if (virq < 0) { 2257 return virq; 2258 } 2259 2260 kroute.gsi = virq; 2261 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2262 kroute.flags = 0; 2263 kroute.u.hv_sint.vcpu = vcpu; 2264 kroute.u.hv_sint.sint = sint; 2265 2266 kvm_add_routing_entry(s, &kroute); 2267 kvm_irqchip_commit_routes(s); 2268 2269 return virq; 2270 } 2271 2272 #else /* !KVM_CAP_IRQ_ROUTING */ 2273 2274 void kvm_init_irq_routing(KVMState *s) 2275 { 2276 } 2277 2278 void kvm_irqchip_release_virq(KVMState *s, int virq) 2279 { 2280 } 2281 2282 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2283 { 2284 abort(); 2285 } 2286 2287 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2288 { 2289 return -ENOSYS; 2290 } 2291 2292 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2293 { 2294 return -ENOSYS; 2295 } 2296 2297 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2298 { 2299 return -ENOSYS; 2300 } 2301 2302 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2303 EventNotifier *resample, int virq, 2304 bool assign) 2305 { 2306 abort(); 2307 } 2308 2309 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2310 { 2311 return -ENOSYS; 2312 } 2313 #endif /* !KVM_CAP_IRQ_ROUTING */ 2314 2315 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2316 EventNotifier *rn, int virq) 2317 { 2318 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2319 } 2320 2321 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2322 int virq) 2323 { 2324 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2325 } 2326 2327 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2328 EventNotifier *rn, qemu_irq irq) 2329 { 2330 gpointer key, gsi; 2331 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2332 2333 if (!found) { 2334 return -ENXIO; 2335 } 2336 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2337 } 2338 2339 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2340 qemu_irq irq) 2341 { 2342 gpointer key, gsi; 2343 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2344 2345 if (!found) { 2346 return -ENXIO; 2347 } 2348 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2349 } 2350 2351 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2352 { 2353 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2354 } 2355 2356 static void kvm_irqchip_create(KVMState *s) 2357 { 2358 int ret; 2359 2360 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2361 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2362 ; 2363 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2364 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2365 if (ret < 0) { 2366 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2367 exit(1); 2368 } 2369 } else { 2370 return; 2371 } 2372 2373 /* First probe and see if there's a arch-specific hook to create the 2374 * in-kernel irqchip for us */ 2375 ret = kvm_arch_irqchip_create(s); 2376 if (ret == 0) { 2377 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2378 error_report("Split IRQ chip mode not supported."); 2379 exit(1); 2380 } else { 2381 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2382 } 2383 } 2384 if (ret < 0) { 2385 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2386 exit(1); 2387 } 2388 2389 kvm_kernel_irqchip = true; 2390 /* If we have an in-kernel IRQ chip then we must have asynchronous 2391 * interrupt delivery (though the reverse is not necessarily true) 2392 */ 2393 kvm_async_interrupts_allowed = true; 2394 kvm_halt_in_kernel_allowed = true; 2395 2396 kvm_init_irq_routing(s); 2397 2398 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2399 } 2400 2401 /* Find number of supported CPUs using the recommended 2402 * procedure from the kernel API documentation to cope with 2403 * older kernels that may be missing capabilities. 2404 */ 2405 static int kvm_recommended_vcpus(KVMState *s) 2406 { 2407 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2408 return (ret) ? ret : 4; 2409 } 2410 2411 static int kvm_max_vcpus(KVMState *s) 2412 { 2413 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2414 return (ret) ? ret : kvm_recommended_vcpus(s); 2415 } 2416 2417 static int kvm_max_vcpu_id(KVMState *s) 2418 { 2419 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2420 return (ret) ? ret : kvm_max_vcpus(s); 2421 } 2422 2423 bool kvm_vcpu_id_is_valid(int vcpu_id) 2424 { 2425 KVMState *s = KVM_STATE(current_accel()); 2426 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2427 } 2428 2429 bool kvm_dirty_ring_enabled(void) 2430 { 2431 return kvm_state->kvm_dirty_ring_size ? true : false; 2432 } 2433 2434 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2435 strList *names, strList *targets, Error **errp); 2436 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2437 2438 uint32_t kvm_dirty_ring_size(void) 2439 { 2440 return kvm_state->kvm_dirty_ring_size; 2441 } 2442 2443 static int kvm_init(MachineState *ms) 2444 { 2445 MachineClass *mc = MACHINE_GET_CLASS(ms); 2446 static const char upgrade_note[] = 2447 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2448 "(see http://sourceforge.net/projects/kvm).\n"; 2449 const struct { 2450 const char *name; 2451 int num; 2452 } num_cpus[] = { 2453 { "SMP", ms->smp.cpus }, 2454 { "hotpluggable", ms->smp.max_cpus }, 2455 { /* end of list */ } 2456 }, *nc = num_cpus; 2457 int soft_vcpus_limit, hard_vcpus_limit; 2458 KVMState *s; 2459 const KVMCapabilityInfo *missing_cap; 2460 int ret; 2461 int type; 2462 uint64_t dirty_log_manual_caps; 2463 2464 qemu_mutex_init(&kml_slots_lock); 2465 2466 s = KVM_STATE(ms->accelerator); 2467 2468 /* 2469 * On systems where the kernel can support different base page 2470 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2471 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2472 * page size for the system though. 2473 */ 2474 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2475 2476 s->sigmask_len = 8; 2477 accel_blocker_init(); 2478 2479 #ifdef KVM_CAP_SET_GUEST_DEBUG 2480 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2481 #endif 2482 QLIST_INIT(&s->kvm_parked_vcpus); 2483 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2484 if (s->fd == -1) { 2485 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2486 ret = -errno; 2487 goto err; 2488 } 2489 2490 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2491 if (ret < KVM_API_VERSION) { 2492 if (ret >= 0) { 2493 ret = -EINVAL; 2494 } 2495 fprintf(stderr, "kvm version too old\n"); 2496 goto err; 2497 } 2498 2499 if (ret > KVM_API_VERSION) { 2500 ret = -EINVAL; 2501 fprintf(stderr, "kvm version not supported\n"); 2502 goto err; 2503 } 2504 2505 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2506 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2507 2508 /* If unspecified, use the default value */ 2509 if (!s->nr_slots) { 2510 s->nr_slots = 32; 2511 } 2512 2513 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2514 if (s->nr_as <= 1) { 2515 s->nr_as = 1; 2516 } 2517 s->as = g_new0(struct KVMAs, s->nr_as); 2518 2519 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2520 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2521 "kvm-type", 2522 &error_abort); 2523 type = mc->kvm_type(ms, kvm_type); 2524 } else if (mc->kvm_type) { 2525 type = mc->kvm_type(ms, NULL); 2526 } else { 2527 type = kvm_arch_get_default_type(ms); 2528 } 2529 2530 do { 2531 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2532 } while (ret == -EINTR); 2533 2534 if (ret < 0) { 2535 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2536 strerror(-ret)); 2537 2538 #ifdef TARGET_S390X 2539 if (ret == -EINVAL) { 2540 fprintf(stderr, 2541 "Host kernel setup problem detected. Please verify:\n"); 2542 fprintf(stderr, "- for kernels supporting the switch_amode or" 2543 " user_mode parameters, whether\n"); 2544 fprintf(stderr, 2545 " user space is running in primary address space\n"); 2546 fprintf(stderr, 2547 "- for kernels supporting the vm.allocate_pgste sysctl, " 2548 "whether it is enabled\n"); 2549 } 2550 #elif defined(TARGET_PPC) 2551 if (ret == -EINVAL) { 2552 fprintf(stderr, 2553 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2554 (type == 2) ? "pr" : "hv"); 2555 } 2556 #endif 2557 goto err; 2558 } 2559 2560 s->vmfd = ret; 2561 2562 /* check the vcpu limits */ 2563 soft_vcpus_limit = kvm_recommended_vcpus(s); 2564 hard_vcpus_limit = kvm_max_vcpus(s); 2565 2566 while (nc->name) { 2567 if (nc->num > soft_vcpus_limit) { 2568 warn_report("Number of %s cpus requested (%d) exceeds " 2569 "the recommended cpus supported by KVM (%d)", 2570 nc->name, nc->num, soft_vcpus_limit); 2571 2572 if (nc->num > hard_vcpus_limit) { 2573 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2574 "the maximum cpus supported by KVM (%d)\n", 2575 nc->name, nc->num, hard_vcpus_limit); 2576 exit(1); 2577 } 2578 } 2579 nc++; 2580 } 2581 2582 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2583 if (!missing_cap) { 2584 missing_cap = 2585 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2586 } 2587 if (missing_cap) { 2588 ret = -EINVAL; 2589 fprintf(stderr, "kvm does not support %s\n%s", 2590 missing_cap->name, upgrade_note); 2591 goto err; 2592 } 2593 2594 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2595 s->coalesced_pio = s->coalesced_mmio && 2596 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2597 2598 /* 2599 * Enable KVM dirty ring if supported, otherwise fall back to 2600 * dirty logging mode 2601 */ 2602 ret = kvm_dirty_ring_init(s); 2603 if (ret < 0) { 2604 goto err; 2605 } 2606 2607 /* 2608 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2609 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2610 * page is wr-protected initially, which is against how kvm dirty ring is 2611 * usage - kvm dirty ring requires all pages are wr-protected at the very 2612 * beginning. Enabling this feature for dirty ring causes data corruption. 2613 * 2614 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2615 * we may expect a higher stall time when starting the migration. In the 2616 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2617 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2618 * guest pages. 2619 */ 2620 if (!s->kvm_dirty_ring_size) { 2621 dirty_log_manual_caps = 2622 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2623 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2624 KVM_DIRTY_LOG_INITIALLY_SET); 2625 s->manual_dirty_log_protect = dirty_log_manual_caps; 2626 if (dirty_log_manual_caps) { 2627 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2628 dirty_log_manual_caps); 2629 if (ret) { 2630 warn_report("Trying to enable capability %"PRIu64" of " 2631 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2632 "Falling back to the legacy mode. ", 2633 dirty_log_manual_caps); 2634 s->manual_dirty_log_protect = 0; 2635 } 2636 } 2637 } 2638 2639 #ifdef KVM_CAP_VCPU_EVENTS 2640 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2641 #endif 2642 2643 s->robust_singlestep = 2644 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2645 2646 #ifdef KVM_CAP_DEBUGREGS 2647 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2648 #endif 2649 2650 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2651 2652 #ifdef KVM_CAP_IRQ_ROUTING 2653 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2654 #endif 2655 2656 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2657 2658 s->irq_set_ioctl = KVM_IRQ_LINE; 2659 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2660 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2661 } 2662 2663 kvm_readonly_mem_allowed = 2664 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2665 2666 kvm_eventfds_allowed = 2667 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2668 2669 kvm_irqfds_allowed = 2670 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2671 2672 kvm_resamplefds_allowed = 2673 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2674 2675 kvm_vm_attributes_allowed = 2676 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2677 2678 kvm_ioeventfd_any_length_allowed = 2679 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2680 2681 #ifdef KVM_CAP_SET_GUEST_DEBUG 2682 kvm_has_guest_debug = 2683 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2684 #endif 2685 2686 kvm_sstep_flags = 0; 2687 if (kvm_has_guest_debug) { 2688 kvm_sstep_flags = SSTEP_ENABLE; 2689 2690 #if defined KVM_CAP_SET_GUEST_DEBUG2 2691 int guest_debug_flags = 2692 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2693 2694 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2695 kvm_sstep_flags |= SSTEP_NOIRQ; 2696 } 2697 #endif 2698 } 2699 2700 kvm_state = s; 2701 2702 ret = kvm_arch_init(ms, s); 2703 if (ret < 0) { 2704 goto err; 2705 } 2706 2707 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2708 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2709 } 2710 2711 qemu_register_reset(kvm_unpoison_all, NULL); 2712 2713 if (s->kernel_irqchip_allowed) { 2714 kvm_irqchip_create(s); 2715 } 2716 2717 if (kvm_eventfds_allowed) { 2718 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2719 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2720 } 2721 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2722 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2723 2724 kvm_memory_listener_register(s, &s->memory_listener, 2725 &address_space_memory, 0, "kvm-memory"); 2726 if (kvm_eventfds_allowed) { 2727 memory_listener_register(&kvm_io_listener, 2728 &address_space_io); 2729 } 2730 memory_listener_register(&kvm_coalesced_pio_listener, 2731 &address_space_io); 2732 2733 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2734 2735 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2736 if (!s->sync_mmu) { 2737 ret = ram_block_discard_disable(true); 2738 assert(!ret); 2739 } 2740 2741 if (s->kvm_dirty_ring_size) { 2742 ret = kvm_dirty_ring_reaper_init(s); 2743 if (ret) { 2744 goto err; 2745 } 2746 } 2747 2748 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2749 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2750 query_stats_schemas_cb); 2751 } 2752 2753 return 0; 2754 2755 err: 2756 assert(ret < 0); 2757 if (s->vmfd >= 0) { 2758 close(s->vmfd); 2759 } 2760 if (s->fd != -1) { 2761 close(s->fd); 2762 } 2763 g_free(s->memory_listener.slots); 2764 2765 return ret; 2766 } 2767 2768 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2769 { 2770 s->sigmask_len = sigmask_len; 2771 } 2772 2773 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2774 int size, uint32_t count) 2775 { 2776 int i; 2777 uint8_t *ptr = data; 2778 2779 for (i = 0; i < count; i++) { 2780 address_space_rw(&address_space_io, port, attrs, 2781 ptr, size, 2782 direction == KVM_EXIT_IO_OUT); 2783 ptr += size; 2784 } 2785 } 2786 2787 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2788 { 2789 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2790 run->internal.suberror); 2791 2792 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2793 int i; 2794 2795 for (i = 0; i < run->internal.ndata; ++i) { 2796 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2797 i, (uint64_t)run->internal.data[i]); 2798 } 2799 } 2800 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2801 fprintf(stderr, "emulation failure\n"); 2802 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2803 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2804 return EXCP_INTERRUPT; 2805 } 2806 } 2807 /* FIXME: Should trigger a qmp message to let management know 2808 * something went wrong. 2809 */ 2810 return -1; 2811 } 2812 2813 void kvm_flush_coalesced_mmio_buffer(void) 2814 { 2815 KVMState *s = kvm_state; 2816 2817 if (!s || s->coalesced_flush_in_progress) { 2818 return; 2819 } 2820 2821 s->coalesced_flush_in_progress = true; 2822 2823 if (s->coalesced_mmio_ring) { 2824 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2825 while (ring->first != ring->last) { 2826 struct kvm_coalesced_mmio *ent; 2827 2828 ent = &ring->coalesced_mmio[ring->first]; 2829 2830 if (ent->pio == 1) { 2831 address_space_write(&address_space_io, ent->phys_addr, 2832 MEMTXATTRS_UNSPECIFIED, ent->data, 2833 ent->len); 2834 } else { 2835 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2836 } 2837 smp_wmb(); 2838 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2839 } 2840 } 2841 2842 s->coalesced_flush_in_progress = false; 2843 } 2844 2845 bool kvm_cpu_check_are_resettable(void) 2846 { 2847 return kvm_arch_cpu_check_are_resettable(); 2848 } 2849 2850 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2851 { 2852 if (!cpu->vcpu_dirty) { 2853 kvm_arch_get_registers(cpu); 2854 cpu->vcpu_dirty = true; 2855 } 2856 } 2857 2858 void kvm_cpu_synchronize_state(CPUState *cpu) 2859 { 2860 if (!cpu->vcpu_dirty) { 2861 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2862 } 2863 } 2864 2865 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2866 { 2867 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2868 cpu->vcpu_dirty = false; 2869 } 2870 2871 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2872 { 2873 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2874 } 2875 2876 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2877 { 2878 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2879 cpu->vcpu_dirty = false; 2880 } 2881 2882 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2883 { 2884 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2885 } 2886 2887 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2888 { 2889 cpu->vcpu_dirty = true; 2890 } 2891 2892 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2893 { 2894 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2895 } 2896 2897 #ifdef KVM_HAVE_MCE_INJECTION 2898 static __thread void *pending_sigbus_addr; 2899 static __thread int pending_sigbus_code; 2900 static __thread bool have_sigbus_pending; 2901 #endif 2902 2903 static void kvm_cpu_kick(CPUState *cpu) 2904 { 2905 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2906 } 2907 2908 static void kvm_cpu_kick_self(void) 2909 { 2910 if (kvm_immediate_exit) { 2911 kvm_cpu_kick(current_cpu); 2912 } else { 2913 qemu_cpu_kick_self(); 2914 } 2915 } 2916 2917 static void kvm_eat_signals(CPUState *cpu) 2918 { 2919 struct timespec ts = { 0, 0 }; 2920 siginfo_t siginfo; 2921 sigset_t waitset; 2922 sigset_t chkset; 2923 int r; 2924 2925 if (kvm_immediate_exit) { 2926 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2927 /* Write kvm_run->immediate_exit before the cpu->exit_request 2928 * write in kvm_cpu_exec. 2929 */ 2930 smp_wmb(); 2931 return; 2932 } 2933 2934 sigemptyset(&waitset); 2935 sigaddset(&waitset, SIG_IPI); 2936 2937 do { 2938 r = sigtimedwait(&waitset, &siginfo, &ts); 2939 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2940 perror("sigtimedwait"); 2941 exit(1); 2942 } 2943 2944 r = sigpending(&chkset); 2945 if (r == -1) { 2946 perror("sigpending"); 2947 exit(1); 2948 } 2949 } while (sigismember(&chkset, SIG_IPI)); 2950 } 2951 2952 int kvm_cpu_exec(CPUState *cpu) 2953 { 2954 struct kvm_run *run = cpu->kvm_run; 2955 int ret, run_ret; 2956 2957 DPRINTF("kvm_cpu_exec()\n"); 2958 2959 if (kvm_arch_process_async_events(cpu)) { 2960 qatomic_set(&cpu->exit_request, 0); 2961 return EXCP_HLT; 2962 } 2963 2964 qemu_mutex_unlock_iothread(); 2965 cpu_exec_start(cpu); 2966 2967 do { 2968 MemTxAttrs attrs; 2969 2970 if (cpu->vcpu_dirty) { 2971 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2972 cpu->vcpu_dirty = false; 2973 } 2974 2975 kvm_arch_pre_run(cpu, run); 2976 if (qatomic_read(&cpu->exit_request)) { 2977 DPRINTF("interrupt exit requested\n"); 2978 /* 2979 * KVM requires us to reenter the kernel after IO exits to complete 2980 * instruction emulation. This self-signal will ensure that we 2981 * leave ASAP again. 2982 */ 2983 kvm_cpu_kick_self(); 2984 } 2985 2986 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2987 * Matching barrier in kvm_eat_signals. 2988 */ 2989 smp_rmb(); 2990 2991 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2992 2993 attrs = kvm_arch_post_run(cpu, run); 2994 2995 #ifdef KVM_HAVE_MCE_INJECTION 2996 if (unlikely(have_sigbus_pending)) { 2997 qemu_mutex_lock_iothread(); 2998 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2999 pending_sigbus_addr); 3000 have_sigbus_pending = false; 3001 qemu_mutex_unlock_iothread(); 3002 } 3003 #endif 3004 3005 if (run_ret < 0) { 3006 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3007 DPRINTF("io window exit\n"); 3008 kvm_eat_signals(cpu); 3009 ret = EXCP_INTERRUPT; 3010 break; 3011 } 3012 fprintf(stderr, "error: kvm run failed %s\n", 3013 strerror(-run_ret)); 3014 #ifdef TARGET_PPC 3015 if (run_ret == -EBUSY) { 3016 fprintf(stderr, 3017 "This is probably because your SMT is enabled.\n" 3018 "VCPU can only run on primary threads with all " 3019 "secondary threads offline.\n"); 3020 } 3021 #endif 3022 ret = -1; 3023 break; 3024 } 3025 3026 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3027 switch (run->exit_reason) { 3028 case KVM_EXIT_IO: 3029 DPRINTF("handle_io\n"); 3030 /* Called outside BQL */ 3031 kvm_handle_io(run->io.port, attrs, 3032 (uint8_t *)run + run->io.data_offset, 3033 run->io.direction, 3034 run->io.size, 3035 run->io.count); 3036 ret = 0; 3037 break; 3038 case KVM_EXIT_MMIO: 3039 DPRINTF("handle_mmio\n"); 3040 /* Called outside BQL */ 3041 address_space_rw(&address_space_memory, 3042 run->mmio.phys_addr, attrs, 3043 run->mmio.data, 3044 run->mmio.len, 3045 run->mmio.is_write); 3046 ret = 0; 3047 break; 3048 case KVM_EXIT_IRQ_WINDOW_OPEN: 3049 DPRINTF("irq_window_open\n"); 3050 ret = EXCP_INTERRUPT; 3051 break; 3052 case KVM_EXIT_SHUTDOWN: 3053 DPRINTF("shutdown\n"); 3054 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3055 ret = EXCP_INTERRUPT; 3056 break; 3057 case KVM_EXIT_UNKNOWN: 3058 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3059 (uint64_t)run->hw.hardware_exit_reason); 3060 ret = -1; 3061 break; 3062 case KVM_EXIT_INTERNAL_ERROR: 3063 ret = kvm_handle_internal_error(cpu, run); 3064 break; 3065 case KVM_EXIT_DIRTY_RING_FULL: 3066 /* 3067 * We shouldn't continue if the dirty ring of this vcpu is 3068 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3069 */ 3070 trace_kvm_dirty_ring_full(cpu->cpu_index); 3071 qemu_mutex_lock_iothread(); 3072 /* 3073 * We throttle vCPU by making it sleep once it exit from kernel 3074 * due to dirty ring full. In the dirtylimit scenario, reaping 3075 * all vCPUs after a single vCPU dirty ring get full result in 3076 * the miss of sleep, so just reap the ring-fulled vCPU. 3077 */ 3078 if (dirtylimit_in_service()) { 3079 kvm_dirty_ring_reap(kvm_state, cpu); 3080 } else { 3081 kvm_dirty_ring_reap(kvm_state, NULL); 3082 } 3083 qemu_mutex_unlock_iothread(); 3084 dirtylimit_vcpu_execute(cpu); 3085 ret = 0; 3086 break; 3087 case KVM_EXIT_SYSTEM_EVENT: 3088 switch (run->system_event.type) { 3089 case KVM_SYSTEM_EVENT_SHUTDOWN: 3090 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3091 ret = EXCP_INTERRUPT; 3092 break; 3093 case KVM_SYSTEM_EVENT_RESET: 3094 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3095 ret = EXCP_INTERRUPT; 3096 break; 3097 case KVM_SYSTEM_EVENT_CRASH: 3098 kvm_cpu_synchronize_state(cpu); 3099 qemu_mutex_lock_iothread(); 3100 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3101 qemu_mutex_unlock_iothread(); 3102 ret = 0; 3103 break; 3104 default: 3105 DPRINTF("kvm_arch_handle_exit\n"); 3106 ret = kvm_arch_handle_exit(cpu, run); 3107 break; 3108 } 3109 break; 3110 default: 3111 DPRINTF("kvm_arch_handle_exit\n"); 3112 ret = kvm_arch_handle_exit(cpu, run); 3113 break; 3114 } 3115 } while (ret == 0); 3116 3117 cpu_exec_end(cpu); 3118 qemu_mutex_lock_iothread(); 3119 3120 if (ret < 0) { 3121 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3122 vm_stop(RUN_STATE_INTERNAL_ERROR); 3123 } 3124 3125 qatomic_set(&cpu->exit_request, 0); 3126 return ret; 3127 } 3128 3129 int kvm_ioctl(KVMState *s, int type, ...) 3130 { 3131 int ret; 3132 void *arg; 3133 va_list ap; 3134 3135 va_start(ap, type); 3136 arg = va_arg(ap, void *); 3137 va_end(ap); 3138 3139 trace_kvm_ioctl(type, arg); 3140 ret = ioctl(s->fd, type, arg); 3141 if (ret == -1) { 3142 ret = -errno; 3143 } 3144 return ret; 3145 } 3146 3147 int kvm_vm_ioctl(KVMState *s, int type, ...) 3148 { 3149 int ret; 3150 void *arg; 3151 va_list ap; 3152 3153 va_start(ap, type); 3154 arg = va_arg(ap, void *); 3155 va_end(ap); 3156 3157 trace_kvm_vm_ioctl(type, arg); 3158 accel_ioctl_begin(); 3159 ret = ioctl(s->vmfd, type, arg); 3160 accel_ioctl_end(); 3161 if (ret == -1) { 3162 ret = -errno; 3163 } 3164 return ret; 3165 } 3166 3167 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3168 { 3169 int ret; 3170 void *arg; 3171 va_list ap; 3172 3173 va_start(ap, type); 3174 arg = va_arg(ap, void *); 3175 va_end(ap); 3176 3177 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3178 accel_cpu_ioctl_begin(cpu); 3179 ret = ioctl(cpu->kvm_fd, type, arg); 3180 accel_cpu_ioctl_end(cpu); 3181 if (ret == -1) { 3182 ret = -errno; 3183 } 3184 return ret; 3185 } 3186 3187 int kvm_device_ioctl(int fd, int type, ...) 3188 { 3189 int ret; 3190 void *arg; 3191 va_list ap; 3192 3193 va_start(ap, type); 3194 arg = va_arg(ap, void *); 3195 va_end(ap); 3196 3197 trace_kvm_device_ioctl(fd, type, arg); 3198 accel_ioctl_begin(); 3199 ret = ioctl(fd, type, arg); 3200 accel_ioctl_end(); 3201 if (ret == -1) { 3202 ret = -errno; 3203 } 3204 return ret; 3205 } 3206 3207 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3208 { 3209 int ret; 3210 struct kvm_device_attr attribute = { 3211 .group = group, 3212 .attr = attr, 3213 }; 3214 3215 if (!kvm_vm_attributes_allowed) { 3216 return 0; 3217 } 3218 3219 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3220 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3221 return ret ? 0 : 1; 3222 } 3223 3224 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3225 { 3226 struct kvm_device_attr attribute = { 3227 .group = group, 3228 .attr = attr, 3229 .flags = 0, 3230 }; 3231 3232 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3233 } 3234 3235 int kvm_device_access(int fd, int group, uint64_t attr, 3236 void *val, bool write, Error **errp) 3237 { 3238 struct kvm_device_attr kvmattr; 3239 int err; 3240 3241 kvmattr.flags = 0; 3242 kvmattr.group = group; 3243 kvmattr.attr = attr; 3244 kvmattr.addr = (uintptr_t)val; 3245 3246 err = kvm_device_ioctl(fd, 3247 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3248 &kvmattr); 3249 if (err < 0) { 3250 error_setg_errno(errp, -err, 3251 "KVM_%s_DEVICE_ATTR failed: Group %d " 3252 "attr 0x%016" PRIx64, 3253 write ? "SET" : "GET", group, attr); 3254 } 3255 return err; 3256 } 3257 3258 bool kvm_has_sync_mmu(void) 3259 { 3260 return kvm_state->sync_mmu; 3261 } 3262 3263 int kvm_has_vcpu_events(void) 3264 { 3265 return kvm_state->vcpu_events; 3266 } 3267 3268 int kvm_has_robust_singlestep(void) 3269 { 3270 return kvm_state->robust_singlestep; 3271 } 3272 3273 int kvm_has_debugregs(void) 3274 { 3275 return kvm_state->debugregs; 3276 } 3277 3278 int kvm_max_nested_state_length(void) 3279 { 3280 return kvm_state->max_nested_state_len; 3281 } 3282 3283 int kvm_has_many_ioeventfds(void) 3284 { 3285 if (!kvm_enabled()) { 3286 return 0; 3287 } 3288 return kvm_state->many_ioeventfds; 3289 } 3290 3291 int kvm_has_gsi_routing(void) 3292 { 3293 #ifdef KVM_CAP_IRQ_ROUTING 3294 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3295 #else 3296 return false; 3297 #endif 3298 } 3299 3300 int kvm_has_intx_set_mask(void) 3301 { 3302 return kvm_state->intx_set_mask; 3303 } 3304 3305 bool kvm_arm_supports_user_irq(void) 3306 { 3307 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3308 } 3309 3310 #ifdef KVM_CAP_SET_GUEST_DEBUG 3311 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3312 target_ulong pc) 3313 { 3314 struct kvm_sw_breakpoint *bp; 3315 3316 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3317 if (bp->pc == pc) { 3318 return bp; 3319 } 3320 } 3321 return NULL; 3322 } 3323 3324 int kvm_sw_breakpoints_active(CPUState *cpu) 3325 { 3326 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3327 } 3328 3329 struct kvm_set_guest_debug_data { 3330 struct kvm_guest_debug dbg; 3331 int err; 3332 }; 3333 3334 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3335 { 3336 struct kvm_set_guest_debug_data *dbg_data = 3337 (struct kvm_set_guest_debug_data *) data.host_ptr; 3338 3339 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3340 &dbg_data->dbg); 3341 } 3342 3343 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3344 { 3345 struct kvm_set_guest_debug_data data; 3346 3347 data.dbg.control = reinject_trap; 3348 3349 if (cpu->singlestep_enabled) { 3350 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3351 3352 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3353 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3354 } 3355 } 3356 kvm_arch_update_guest_debug(cpu, &data.dbg); 3357 3358 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3359 RUN_ON_CPU_HOST_PTR(&data)); 3360 return data.err; 3361 } 3362 3363 bool kvm_supports_guest_debug(void) 3364 { 3365 /* probed during kvm_init() */ 3366 return kvm_has_guest_debug; 3367 } 3368 3369 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3370 { 3371 struct kvm_sw_breakpoint *bp; 3372 int err; 3373 3374 if (type == GDB_BREAKPOINT_SW) { 3375 bp = kvm_find_sw_breakpoint(cpu, addr); 3376 if (bp) { 3377 bp->use_count++; 3378 return 0; 3379 } 3380 3381 bp = g_new(struct kvm_sw_breakpoint, 1); 3382 bp->pc = addr; 3383 bp->use_count = 1; 3384 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3385 if (err) { 3386 g_free(bp); 3387 return err; 3388 } 3389 3390 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3391 } else { 3392 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3393 if (err) { 3394 return err; 3395 } 3396 } 3397 3398 CPU_FOREACH(cpu) { 3399 err = kvm_update_guest_debug(cpu, 0); 3400 if (err) { 3401 return err; 3402 } 3403 } 3404 return 0; 3405 } 3406 3407 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3408 { 3409 struct kvm_sw_breakpoint *bp; 3410 int err; 3411 3412 if (type == GDB_BREAKPOINT_SW) { 3413 bp = kvm_find_sw_breakpoint(cpu, addr); 3414 if (!bp) { 3415 return -ENOENT; 3416 } 3417 3418 if (bp->use_count > 1) { 3419 bp->use_count--; 3420 return 0; 3421 } 3422 3423 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3424 if (err) { 3425 return err; 3426 } 3427 3428 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3429 g_free(bp); 3430 } else { 3431 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3432 if (err) { 3433 return err; 3434 } 3435 } 3436 3437 CPU_FOREACH(cpu) { 3438 err = kvm_update_guest_debug(cpu, 0); 3439 if (err) { 3440 return err; 3441 } 3442 } 3443 return 0; 3444 } 3445 3446 void kvm_remove_all_breakpoints(CPUState *cpu) 3447 { 3448 struct kvm_sw_breakpoint *bp, *next; 3449 KVMState *s = cpu->kvm_state; 3450 CPUState *tmpcpu; 3451 3452 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3453 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3454 /* Try harder to find a CPU that currently sees the breakpoint. */ 3455 CPU_FOREACH(tmpcpu) { 3456 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3457 break; 3458 } 3459 } 3460 } 3461 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3462 g_free(bp); 3463 } 3464 kvm_arch_remove_all_hw_breakpoints(); 3465 3466 CPU_FOREACH(cpu) { 3467 kvm_update_guest_debug(cpu, 0); 3468 } 3469 } 3470 3471 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3472 3473 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3474 { 3475 KVMState *s = kvm_state; 3476 struct kvm_signal_mask *sigmask; 3477 int r; 3478 3479 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3480 3481 sigmask->len = s->sigmask_len; 3482 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3483 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3484 g_free(sigmask); 3485 3486 return r; 3487 } 3488 3489 static void kvm_ipi_signal(int sig) 3490 { 3491 if (current_cpu) { 3492 assert(kvm_immediate_exit); 3493 kvm_cpu_kick(current_cpu); 3494 } 3495 } 3496 3497 void kvm_init_cpu_signals(CPUState *cpu) 3498 { 3499 int r; 3500 sigset_t set; 3501 struct sigaction sigact; 3502 3503 memset(&sigact, 0, sizeof(sigact)); 3504 sigact.sa_handler = kvm_ipi_signal; 3505 sigaction(SIG_IPI, &sigact, NULL); 3506 3507 pthread_sigmask(SIG_BLOCK, NULL, &set); 3508 #if defined KVM_HAVE_MCE_INJECTION 3509 sigdelset(&set, SIGBUS); 3510 pthread_sigmask(SIG_SETMASK, &set, NULL); 3511 #endif 3512 sigdelset(&set, SIG_IPI); 3513 if (kvm_immediate_exit) { 3514 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3515 } else { 3516 r = kvm_set_signal_mask(cpu, &set); 3517 } 3518 if (r) { 3519 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3520 exit(1); 3521 } 3522 } 3523 3524 /* Called asynchronously in VCPU thread. */ 3525 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3526 { 3527 #ifdef KVM_HAVE_MCE_INJECTION 3528 if (have_sigbus_pending) { 3529 return 1; 3530 } 3531 have_sigbus_pending = true; 3532 pending_sigbus_addr = addr; 3533 pending_sigbus_code = code; 3534 qatomic_set(&cpu->exit_request, 1); 3535 return 0; 3536 #else 3537 return 1; 3538 #endif 3539 } 3540 3541 /* Called synchronously (via signalfd) in main thread. */ 3542 int kvm_on_sigbus(int code, void *addr) 3543 { 3544 #ifdef KVM_HAVE_MCE_INJECTION 3545 /* Action required MCE kills the process if SIGBUS is blocked. Because 3546 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3547 * we can only get action optional here. 3548 */ 3549 assert(code != BUS_MCEERR_AR); 3550 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3551 return 0; 3552 #else 3553 return 1; 3554 #endif 3555 } 3556 3557 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3558 { 3559 int ret; 3560 struct kvm_create_device create_dev; 3561 3562 create_dev.type = type; 3563 create_dev.fd = -1; 3564 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3565 3566 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3567 return -ENOTSUP; 3568 } 3569 3570 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3571 if (ret) { 3572 return ret; 3573 } 3574 3575 return test ? 0 : create_dev.fd; 3576 } 3577 3578 bool kvm_device_supported(int vmfd, uint64_t type) 3579 { 3580 struct kvm_create_device create_dev = { 3581 .type = type, 3582 .fd = -1, 3583 .flags = KVM_CREATE_DEVICE_TEST, 3584 }; 3585 3586 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3587 return false; 3588 } 3589 3590 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3591 } 3592 3593 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3594 { 3595 struct kvm_one_reg reg; 3596 int r; 3597 3598 reg.id = id; 3599 reg.addr = (uintptr_t) source; 3600 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3601 if (r) { 3602 trace_kvm_failed_reg_set(id, strerror(-r)); 3603 } 3604 return r; 3605 } 3606 3607 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3608 { 3609 struct kvm_one_reg reg; 3610 int r; 3611 3612 reg.id = id; 3613 reg.addr = (uintptr_t) target; 3614 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3615 if (r) { 3616 trace_kvm_failed_reg_get(id, strerror(-r)); 3617 } 3618 return r; 3619 } 3620 3621 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3622 hwaddr start_addr, hwaddr size) 3623 { 3624 KVMState *kvm = KVM_STATE(ms->accelerator); 3625 int i; 3626 3627 for (i = 0; i < kvm->nr_as; ++i) { 3628 if (kvm->as[i].as == as && kvm->as[i].ml) { 3629 size = MIN(kvm_max_slot_size, size); 3630 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3631 start_addr, size); 3632 } 3633 } 3634 3635 return false; 3636 } 3637 3638 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3639 const char *name, void *opaque, 3640 Error **errp) 3641 { 3642 KVMState *s = KVM_STATE(obj); 3643 int64_t value = s->kvm_shadow_mem; 3644 3645 visit_type_int(v, name, &value, errp); 3646 } 3647 3648 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3649 const char *name, void *opaque, 3650 Error **errp) 3651 { 3652 KVMState *s = KVM_STATE(obj); 3653 int64_t value; 3654 3655 if (s->fd != -1) { 3656 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3657 return; 3658 } 3659 3660 if (!visit_type_int(v, name, &value, errp)) { 3661 return; 3662 } 3663 3664 s->kvm_shadow_mem = value; 3665 } 3666 3667 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3668 const char *name, void *opaque, 3669 Error **errp) 3670 { 3671 KVMState *s = KVM_STATE(obj); 3672 OnOffSplit mode; 3673 3674 if (s->fd != -1) { 3675 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3676 return; 3677 } 3678 3679 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3680 return; 3681 } 3682 switch (mode) { 3683 case ON_OFF_SPLIT_ON: 3684 s->kernel_irqchip_allowed = true; 3685 s->kernel_irqchip_required = true; 3686 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3687 break; 3688 case ON_OFF_SPLIT_OFF: 3689 s->kernel_irqchip_allowed = false; 3690 s->kernel_irqchip_required = false; 3691 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3692 break; 3693 case ON_OFF_SPLIT_SPLIT: 3694 s->kernel_irqchip_allowed = true; 3695 s->kernel_irqchip_required = true; 3696 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3697 break; 3698 default: 3699 /* The value was checked in visit_type_OnOffSplit() above. If 3700 * we get here, then something is wrong in QEMU. 3701 */ 3702 abort(); 3703 } 3704 } 3705 3706 bool kvm_kernel_irqchip_allowed(void) 3707 { 3708 return kvm_state->kernel_irqchip_allowed; 3709 } 3710 3711 bool kvm_kernel_irqchip_required(void) 3712 { 3713 return kvm_state->kernel_irqchip_required; 3714 } 3715 3716 bool kvm_kernel_irqchip_split(void) 3717 { 3718 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3719 } 3720 3721 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3722 const char *name, void *opaque, 3723 Error **errp) 3724 { 3725 KVMState *s = KVM_STATE(obj); 3726 uint32_t value = s->kvm_dirty_ring_size; 3727 3728 visit_type_uint32(v, name, &value, errp); 3729 } 3730 3731 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3732 const char *name, void *opaque, 3733 Error **errp) 3734 { 3735 KVMState *s = KVM_STATE(obj); 3736 uint32_t value; 3737 3738 if (s->fd != -1) { 3739 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3740 return; 3741 } 3742 3743 if (!visit_type_uint32(v, name, &value, errp)) { 3744 return; 3745 } 3746 if (value & (value - 1)) { 3747 error_setg(errp, "dirty-ring-size must be a power of two."); 3748 return; 3749 } 3750 3751 s->kvm_dirty_ring_size = value; 3752 } 3753 3754 static void kvm_accel_instance_init(Object *obj) 3755 { 3756 KVMState *s = KVM_STATE(obj); 3757 3758 s->fd = -1; 3759 s->vmfd = -1; 3760 s->kvm_shadow_mem = -1; 3761 s->kernel_irqchip_allowed = true; 3762 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3763 /* KVM dirty ring is by default off */ 3764 s->kvm_dirty_ring_size = 0; 3765 s->kvm_dirty_ring_with_bitmap = false; 3766 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3767 s->notify_window = 0; 3768 s->xen_version = 0; 3769 s->xen_gnttab_max_frames = 64; 3770 s->xen_evtchn_max_pirq = 256; 3771 } 3772 3773 /** 3774 * kvm_gdbstub_sstep_flags(): 3775 * 3776 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3777 * support is probed during kvm_init() 3778 */ 3779 static int kvm_gdbstub_sstep_flags(void) 3780 { 3781 return kvm_sstep_flags; 3782 } 3783 3784 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3785 { 3786 AccelClass *ac = ACCEL_CLASS(oc); 3787 ac->name = "KVM"; 3788 ac->init_machine = kvm_init; 3789 ac->has_memory = kvm_accel_has_memory; 3790 ac->allowed = &kvm_allowed; 3791 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3792 3793 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3794 NULL, kvm_set_kernel_irqchip, 3795 NULL, NULL); 3796 object_class_property_set_description(oc, "kernel-irqchip", 3797 "Configure KVM in-kernel irqchip"); 3798 3799 object_class_property_add(oc, "kvm-shadow-mem", "int", 3800 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3801 NULL, NULL); 3802 object_class_property_set_description(oc, "kvm-shadow-mem", 3803 "KVM shadow MMU size"); 3804 3805 object_class_property_add(oc, "dirty-ring-size", "uint32", 3806 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3807 NULL, NULL); 3808 object_class_property_set_description(oc, "dirty-ring-size", 3809 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3810 3811 kvm_arch_accel_class_init(oc); 3812 } 3813 3814 static const TypeInfo kvm_accel_type = { 3815 .name = TYPE_KVM_ACCEL, 3816 .parent = TYPE_ACCEL, 3817 .instance_init = kvm_accel_instance_init, 3818 .class_init = kvm_accel_class_init, 3819 .instance_size = sizeof(KVMState), 3820 }; 3821 3822 static void kvm_type_init(void) 3823 { 3824 type_register_static(&kvm_accel_type); 3825 } 3826 3827 type_init(kvm_type_init); 3828 3829 typedef struct StatsArgs { 3830 union StatsResultsType { 3831 StatsResultList **stats; 3832 StatsSchemaList **schema; 3833 } result; 3834 strList *names; 3835 Error **errp; 3836 } StatsArgs; 3837 3838 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3839 uint64_t *stats_data, 3840 StatsList *stats_list, 3841 Error **errp) 3842 { 3843 3844 Stats *stats; 3845 uint64List *val_list = NULL; 3846 3847 /* Only add stats that we understand. */ 3848 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3849 case KVM_STATS_TYPE_CUMULATIVE: 3850 case KVM_STATS_TYPE_INSTANT: 3851 case KVM_STATS_TYPE_PEAK: 3852 case KVM_STATS_TYPE_LINEAR_HIST: 3853 case KVM_STATS_TYPE_LOG_HIST: 3854 break; 3855 default: 3856 return stats_list; 3857 } 3858 3859 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3860 case KVM_STATS_UNIT_NONE: 3861 case KVM_STATS_UNIT_BYTES: 3862 case KVM_STATS_UNIT_CYCLES: 3863 case KVM_STATS_UNIT_SECONDS: 3864 case KVM_STATS_UNIT_BOOLEAN: 3865 break; 3866 default: 3867 return stats_list; 3868 } 3869 3870 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3871 case KVM_STATS_BASE_POW10: 3872 case KVM_STATS_BASE_POW2: 3873 break; 3874 default: 3875 return stats_list; 3876 } 3877 3878 /* Alloc and populate data list */ 3879 stats = g_new0(Stats, 1); 3880 stats->name = g_strdup(pdesc->name); 3881 stats->value = g_new0(StatsValue, 1);; 3882 3883 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3884 stats->value->u.boolean = *stats_data; 3885 stats->value->type = QTYPE_QBOOL; 3886 } else if (pdesc->size == 1) { 3887 stats->value->u.scalar = *stats_data; 3888 stats->value->type = QTYPE_QNUM; 3889 } else { 3890 int i; 3891 for (i = 0; i < pdesc->size; i++) { 3892 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3893 } 3894 stats->value->u.list = val_list; 3895 stats->value->type = QTYPE_QLIST; 3896 } 3897 3898 QAPI_LIST_PREPEND(stats_list, stats); 3899 return stats_list; 3900 } 3901 3902 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3903 StatsSchemaValueList *list, 3904 Error **errp) 3905 { 3906 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3907 schema_entry->value = g_new0(StatsSchemaValue, 1); 3908 3909 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3910 case KVM_STATS_TYPE_CUMULATIVE: 3911 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3912 break; 3913 case KVM_STATS_TYPE_INSTANT: 3914 schema_entry->value->type = STATS_TYPE_INSTANT; 3915 break; 3916 case KVM_STATS_TYPE_PEAK: 3917 schema_entry->value->type = STATS_TYPE_PEAK; 3918 break; 3919 case KVM_STATS_TYPE_LINEAR_HIST: 3920 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3921 schema_entry->value->bucket_size = pdesc->bucket_size; 3922 schema_entry->value->has_bucket_size = true; 3923 break; 3924 case KVM_STATS_TYPE_LOG_HIST: 3925 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3926 break; 3927 default: 3928 goto exit; 3929 } 3930 3931 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3932 case KVM_STATS_UNIT_NONE: 3933 break; 3934 case KVM_STATS_UNIT_BOOLEAN: 3935 schema_entry->value->has_unit = true; 3936 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3937 break; 3938 case KVM_STATS_UNIT_BYTES: 3939 schema_entry->value->has_unit = true; 3940 schema_entry->value->unit = STATS_UNIT_BYTES; 3941 break; 3942 case KVM_STATS_UNIT_CYCLES: 3943 schema_entry->value->has_unit = true; 3944 schema_entry->value->unit = STATS_UNIT_CYCLES; 3945 break; 3946 case KVM_STATS_UNIT_SECONDS: 3947 schema_entry->value->has_unit = true; 3948 schema_entry->value->unit = STATS_UNIT_SECONDS; 3949 break; 3950 default: 3951 goto exit; 3952 } 3953 3954 schema_entry->value->exponent = pdesc->exponent; 3955 if (pdesc->exponent) { 3956 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3957 case KVM_STATS_BASE_POW10: 3958 schema_entry->value->has_base = true; 3959 schema_entry->value->base = 10; 3960 break; 3961 case KVM_STATS_BASE_POW2: 3962 schema_entry->value->has_base = true; 3963 schema_entry->value->base = 2; 3964 break; 3965 default: 3966 goto exit; 3967 } 3968 } 3969 3970 schema_entry->value->name = g_strdup(pdesc->name); 3971 schema_entry->next = list; 3972 return schema_entry; 3973 exit: 3974 g_free(schema_entry->value); 3975 g_free(schema_entry); 3976 return list; 3977 } 3978 3979 /* Cached stats descriptors */ 3980 typedef struct StatsDescriptors { 3981 const char *ident; /* cache key, currently the StatsTarget */ 3982 struct kvm_stats_desc *kvm_stats_desc; 3983 struct kvm_stats_header kvm_stats_header; 3984 QTAILQ_ENTRY(StatsDescriptors) next; 3985 } StatsDescriptors; 3986 3987 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3988 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3989 3990 /* 3991 * Return the descriptors for 'target', that either have already been read 3992 * or are retrieved from 'stats_fd'. 3993 */ 3994 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3995 Error **errp) 3996 { 3997 StatsDescriptors *descriptors; 3998 const char *ident; 3999 struct kvm_stats_desc *kvm_stats_desc; 4000 struct kvm_stats_header *kvm_stats_header; 4001 size_t size_desc; 4002 ssize_t ret; 4003 4004 ident = StatsTarget_str(target); 4005 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4006 if (g_str_equal(descriptors->ident, ident)) { 4007 return descriptors; 4008 } 4009 } 4010 4011 descriptors = g_new0(StatsDescriptors, 1); 4012 4013 /* Read stats header */ 4014 kvm_stats_header = &descriptors->kvm_stats_header; 4015 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4016 if (ret != sizeof(*kvm_stats_header)) { 4017 error_setg(errp, "KVM stats: failed to read stats header: " 4018 "expected %zu actual %zu", 4019 sizeof(*kvm_stats_header), ret); 4020 g_free(descriptors); 4021 return NULL; 4022 } 4023 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4024 4025 /* Read stats descriptors */ 4026 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4027 ret = pread(stats_fd, kvm_stats_desc, 4028 size_desc * kvm_stats_header->num_desc, 4029 kvm_stats_header->desc_offset); 4030 4031 if (ret != size_desc * kvm_stats_header->num_desc) { 4032 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4033 "expected %zu actual %zu", 4034 size_desc * kvm_stats_header->num_desc, ret); 4035 g_free(descriptors); 4036 g_free(kvm_stats_desc); 4037 return NULL; 4038 } 4039 descriptors->kvm_stats_desc = kvm_stats_desc; 4040 descriptors->ident = ident; 4041 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4042 return descriptors; 4043 } 4044 4045 static void query_stats(StatsResultList **result, StatsTarget target, 4046 strList *names, int stats_fd, CPUState *cpu, 4047 Error **errp) 4048 { 4049 struct kvm_stats_desc *kvm_stats_desc; 4050 struct kvm_stats_header *kvm_stats_header; 4051 StatsDescriptors *descriptors; 4052 g_autofree uint64_t *stats_data = NULL; 4053 struct kvm_stats_desc *pdesc; 4054 StatsList *stats_list = NULL; 4055 size_t size_desc, size_data = 0; 4056 ssize_t ret; 4057 int i; 4058 4059 descriptors = find_stats_descriptors(target, stats_fd, errp); 4060 if (!descriptors) { 4061 return; 4062 } 4063 4064 kvm_stats_header = &descriptors->kvm_stats_header; 4065 kvm_stats_desc = descriptors->kvm_stats_desc; 4066 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4067 4068 /* Tally the total data size; read schema data */ 4069 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4070 pdesc = (void *)kvm_stats_desc + i * size_desc; 4071 size_data += pdesc->size * sizeof(*stats_data); 4072 } 4073 4074 stats_data = g_malloc0(size_data); 4075 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4076 4077 if (ret != size_data) { 4078 error_setg(errp, "KVM stats: failed to read data: " 4079 "expected %zu actual %zu", size_data, ret); 4080 return; 4081 } 4082 4083 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4084 uint64_t *stats; 4085 pdesc = (void *)kvm_stats_desc + i * size_desc; 4086 4087 /* Add entry to the list */ 4088 stats = (void *)stats_data + pdesc->offset; 4089 if (!apply_str_list_filter(pdesc->name, names)) { 4090 continue; 4091 } 4092 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4093 } 4094 4095 if (!stats_list) { 4096 return; 4097 } 4098 4099 switch (target) { 4100 case STATS_TARGET_VM: 4101 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4102 break; 4103 case STATS_TARGET_VCPU: 4104 add_stats_entry(result, STATS_PROVIDER_KVM, 4105 cpu->parent_obj.canonical_path, 4106 stats_list); 4107 break; 4108 default: 4109 g_assert_not_reached(); 4110 } 4111 } 4112 4113 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4114 int stats_fd, Error **errp) 4115 { 4116 struct kvm_stats_desc *kvm_stats_desc; 4117 struct kvm_stats_header *kvm_stats_header; 4118 StatsDescriptors *descriptors; 4119 struct kvm_stats_desc *pdesc; 4120 StatsSchemaValueList *stats_list = NULL; 4121 size_t size_desc; 4122 int i; 4123 4124 descriptors = find_stats_descriptors(target, stats_fd, errp); 4125 if (!descriptors) { 4126 return; 4127 } 4128 4129 kvm_stats_header = &descriptors->kvm_stats_header; 4130 kvm_stats_desc = descriptors->kvm_stats_desc; 4131 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4132 4133 /* Tally the total data size; read schema data */ 4134 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4135 pdesc = (void *)kvm_stats_desc + i * size_desc; 4136 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4137 } 4138 4139 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4140 } 4141 4142 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4143 { 4144 int stats_fd = cpu->kvm_vcpu_stats_fd; 4145 Error *local_err = NULL; 4146 4147 if (stats_fd == -1) { 4148 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4149 error_propagate(kvm_stats_args->errp, local_err); 4150 return; 4151 } 4152 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4153 kvm_stats_args->names, stats_fd, cpu, 4154 kvm_stats_args->errp); 4155 } 4156 4157 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4158 { 4159 int stats_fd = cpu->kvm_vcpu_stats_fd; 4160 Error *local_err = NULL; 4161 4162 if (stats_fd == -1) { 4163 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4164 error_propagate(kvm_stats_args->errp, local_err); 4165 return; 4166 } 4167 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4168 kvm_stats_args->errp); 4169 } 4170 4171 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4172 strList *names, strList *targets, Error **errp) 4173 { 4174 KVMState *s = kvm_state; 4175 CPUState *cpu; 4176 int stats_fd; 4177 4178 switch (target) { 4179 case STATS_TARGET_VM: 4180 { 4181 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4182 if (stats_fd == -1) { 4183 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4184 return; 4185 } 4186 query_stats(result, target, names, stats_fd, NULL, errp); 4187 close(stats_fd); 4188 break; 4189 } 4190 case STATS_TARGET_VCPU: 4191 { 4192 StatsArgs stats_args; 4193 stats_args.result.stats = result; 4194 stats_args.names = names; 4195 stats_args.errp = errp; 4196 CPU_FOREACH(cpu) { 4197 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4198 continue; 4199 } 4200 query_stats_vcpu(cpu, &stats_args); 4201 } 4202 break; 4203 } 4204 default: 4205 break; 4206 } 4207 } 4208 4209 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4210 { 4211 StatsArgs stats_args; 4212 KVMState *s = kvm_state; 4213 int stats_fd; 4214 4215 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4216 if (stats_fd == -1) { 4217 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4218 return; 4219 } 4220 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4221 close(stats_fd); 4222 4223 if (first_cpu) { 4224 stats_args.result.schema = result; 4225 stats_args.errp = errp; 4226 query_stats_schema_vcpu(first_cpu, &stats_args); 4227 } 4228 } 4229