1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "sysemu/sev.h" 43 #include "qapi/visitor.h" 44 #include "qapi/qapi-types-common.h" 45 #include "qapi/qapi-visit-common.h" 46 #include "sysemu/reset.h" 47 48 #include "hw/boards.h" 49 50 /* This check must be after config-host.h is included */ 51 #ifdef CONFIG_EVENTFD 52 #include <sys/eventfd.h> 53 #endif 54 55 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 56 * need to use the real host PAGE_SIZE, as that's what KVM will use. 57 */ 58 #define PAGE_SIZE qemu_real_host_page_size 59 60 //#define DEBUG_KVM 61 62 #ifdef DEBUG_KVM 63 #define DPRINTF(fmt, ...) \ 64 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 65 #else 66 #define DPRINTF(fmt, ...) \ 67 do { } while (0) 68 #endif 69 70 #define KVM_MSI_HASHTAB_SIZE 256 71 72 struct KVMParkedVcpu { 73 unsigned long vcpu_id; 74 int kvm_fd; 75 QLIST_ENTRY(KVMParkedVcpu) node; 76 }; 77 78 struct KVMState 79 { 80 AccelState parent_obj; 81 82 int nr_slots; 83 int fd; 84 int vmfd; 85 int coalesced_mmio; 86 int coalesced_pio; 87 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 88 bool coalesced_flush_in_progress; 89 int vcpu_events; 90 int robust_singlestep; 91 int debugregs; 92 #ifdef KVM_CAP_SET_GUEST_DEBUG 93 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 94 #endif 95 int max_nested_state_len; 96 int many_ioeventfds; 97 int intx_set_mask; 98 int kvm_shadow_mem; 99 bool kernel_irqchip_allowed; 100 bool kernel_irqchip_required; 101 OnOffAuto kernel_irqchip_split; 102 bool sync_mmu; 103 uint64_t manual_dirty_log_protect; 104 /* The man page (and posix) say ioctl numbers are signed int, but 105 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 106 * unsigned, and treating them as signed here can break things */ 107 unsigned irq_set_ioctl; 108 unsigned int sigmask_len; 109 GHashTable *gsimap; 110 #ifdef KVM_CAP_IRQ_ROUTING 111 struct kvm_irq_routing *irq_routes; 112 int nr_allocated_irq_routes; 113 unsigned long *used_gsi_bitmap; 114 unsigned int gsi_count; 115 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 116 #endif 117 KVMMemoryListener memory_listener; 118 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 119 120 /* memory encryption */ 121 void *memcrypt_handle; 122 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 123 124 /* For "info mtree -f" to tell if an MR is registered in KVM */ 125 int nr_as; 126 struct KVMAs { 127 KVMMemoryListener *ml; 128 AddressSpace *as; 129 } *as; 130 }; 131 132 KVMState *kvm_state; 133 bool kvm_kernel_irqchip; 134 bool kvm_split_irqchip; 135 bool kvm_async_interrupts_allowed; 136 bool kvm_halt_in_kernel_allowed; 137 bool kvm_eventfds_allowed; 138 bool kvm_irqfds_allowed; 139 bool kvm_resamplefds_allowed; 140 bool kvm_msi_via_irqfd_allowed; 141 bool kvm_gsi_routing_allowed; 142 bool kvm_gsi_direct_mapping; 143 bool kvm_allowed; 144 bool kvm_readonly_mem_allowed; 145 bool kvm_vm_attributes_allowed; 146 bool kvm_direct_msi_allowed; 147 bool kvm_ioeventfd_any_length_allowed; 148 bool kvm_msi_use_devid; 149 static bool kvm_immediate_exit; 150 static hwaddr kvm_max_slot_size = ~0; 151 152 static const KVMCapabilityInfo kvm_required_capabilites[] = { 153 KVM_CAP_INFO(USER_MEMORY), 154 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 155 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 156 KVM_CAP_LAST_INFO 157 }; 158 159 static NotifierList kvm_irqchip_change_notifiers = 160 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 161 162 struct KVMResampleFd { 163 int gsi; 164 EventNotifier *resample_event; 165 QLIST_ENTRY(KVMResampleFd) node; 166 }; 167 typedef struct KVMResampleFd KVMResampleFd; 168 169 /* 170 * Only used with split irqchip where we need to do the resample fd 171 * kick for the kernel from userspace. 172 */ 173 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 174 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 175 176 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 177 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 178 179 static inline void kvm_resample_fd_remove(int gsi) 180 { 181 KVMResampleFd *rfd; 182 183 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 184 if (rfd->gsi == gsi) { 185 QLIST_REMOVE(rfd, node); 186 g_free(rfd); 187 break; 188 } 189 } 190 } 191 192 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 193 { 194 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 195 196 rfd->gsi = gsi; 197 rfd->resample_event = event; 198 199 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 200 } 201 202 void kvm_resample_fd_notify(int gsi) 203 { 204 KVMResampleFd *rfd; 205 206 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 207 if (rfd->gsi == gsi) { 208 event_notifier_set(rfd->resample_event); 209 trace_kvm_resample_fd_notify(gsi); 210 return; 211 } 212 } 213 } 214 215 int kvm_get_max_memslots(void) 216 { 217 KVMState *s = KVM_STATE(current_accel()); 218 219 return s->nr_slots; 220 } 221 222 bool kvm_memcrypt_enabled(void) 223 { 224 if (kvm_state && kvm_state->memcrypt_handle) { 225 return true; 226 } 227 228 return false; 229 } 230 231 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 232 { 233 if (kvm_state->memcrypt_handle && 234 kvm_state->memcrypt_encrypt_data) { 235 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 236 ptr, len); 237 } 238 239 return 1; 240 } 241 242 /* Called with KVMMemoryListener.slots_lock held */ 243 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 244 { 245 KVMState *s = kvm_state; 246 int i; 247 248 for (i = 0; i < s->nr_slots; i++) { 249 if (kml->slots[i].memory_size == 0) { 250 return &kml->slots[i]; 251 } 252 } 253 254 return NULL; 255 } 256 257 bool kvm_has_free_slot(MachineState *ms) 258 { 259 KVMState *s = KVM_STATE(ms->accelerator); 260 bool result; 261 KVMMemoryListener *kml = &s->memory_listener; 262 263 kvm_slots_lock(kml); 264 result = !!kvm_get_free_slot(kml); 265 kvm_slots_unlock(kml); 266 267 return result; 268 } 269 270 /* Called with KVMMemoryListener.slots_lock held */ 271 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 272 { 273 KVMSlot *slot = kvm_get_free_slot(kml); 274 275 if (slot) { 276 return slot; 277 } 278 279 fprintf(stderr, "%s: no free slot available\n", __func__); 280 abort(); 281 } 282 283 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 284 hwaddr start_addr, 285 hwaddr size) 286 { 287 KVMState *s = kvm_state; 288 int i; 289 290 for (i = 0; i < s->nr_slots; i++) { 291 KVMSlot *mem = &kml->slots[i]; 292 293 if (start_addr == mem->start_addr && size == mem->memory_size) { 294 return mem; 295 } 296 } 297 298 return NULL; 299 } 300 301 /* 302 * Calculate and align the start address and the size of the section. 303 * Return the size. If the size is 0, the aligned section is empty. 304 */ 305 static hwaddr kvm_align_section(MemoryRegionSection *section, 306 hwaddr *start) 307 { 308 hwaddr size = int128_get64(section->size); 309 hwaddr delta, aligned; 310 311 /* kvm works in page size chunks, but the function may be called 312 with sub-page size and unaligned start address. Pad the start 313 address to next and truncate size to previous page boundary. */ 314 aligned = ROUND_UP(section->offset_within_address_space, 315 qemu_real_host_page_size); 316 delta = aligned - section->offset_within_address_space; 317 *start = aligned; 318 if (delta > size) { 319 return 0; 320 } 321 322 return (size - delta) & qemu_real_host_page_mask; 323 } 324 325 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 326 hwaddr *phys_addr) 327 { 328 KVMMemoryListener *kml = &s->memory_listener; 329 int i, ret = 0; 330 331 kvm_slots_lock(kml); 332 for (i = 0; i < s->nr_slots; i++) { 333 KVMSlot *mem = &kml->slots[i]; 334 335 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 336 *phys_addr = mem->start_addr + (ram - mem->ram); 337 ret = 1; 338 break; 339 } 340 } 341 kvm_slots_unlock(kml); 342 343 return ret; 344 } 345 346 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 347 { 348 KVMState *s = kvm_state; 349 struct kvm_userspace_memory_region mem; 350 int ret; 351 352 mem.slot = slot->slot | (kml->as_id << 16); 353 mem.guest_phys_addr = slot->start_addr; 354 mem.userspace_addr = (unsigned long)slot->ram; 355 mem.flags = slot->flags; 356 357 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 358 /* Set the slot size to 0 before setting the slot to the desired 359 * value. This is needed based on KVM commit 75d61fbc. */ 360 mem.memory_size = 0; 361 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 362 if (ret < 0) { 363 goto err; 364 } 365 } 366 mem.memory_size = slot->memory_size; 367 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 368 slot->old_flags = mem.flags; 369 err: 370 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 371 mem.memory_size, mem.userspace_addr, ret); 372 if (ret < 0) { 373 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 374 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 375 __func__, mem.slot, slot->start_addr, 376 (uint64_t)mem.memory_size, strerror(errno)); 377 } 378 return ret; 379 } 380 381 int kvm_destroy_vcpu(CPUState *cpu) 382 { 383 KVMState *s = kvm_state; 384 long mmap_size; 385 struct KVMParkedVcpu *vcpu = NULL; 386 int ret = 0; 387 388 DPRINTF("kvm_destroy_vcpu\n"); 389 390 ret = kvm_arch_destroy_vcpu(cpu); 391 if (ret < 0) { 392 goto err; 393 } 394 395 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 396 if (mmap_size < 0) { 397 ret = mmap_size; 398 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 399 goto err; 400 } 401 402 ret = munmap(cpu->kvm_run, mmap_size); 403 if (ret < 0) { 404 goto err; 405 } 406 407 vcpu = g_malloc0(sizeof(*vcpu)); 408 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 409 vcpu->kvm_fd = cpu->kvm_fd; 410 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 411 err: 412 return ret; 413 } 414 415 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 416 { 417 struct KVMParkedVcpu *cpu; 418 419 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 420 if (cpu->vcpu_id == vcpu_id) { 421 int kvm_fd; 422 423 QLIST_REMOVE(cpu, node); 424 kvm_fd = cpu->kvm_fd; 425 g_free(cpu); 426 return kvm_fd; 427 } 428 } 429 430 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 431 } 432 433 int kvm_init_vcpu(CPUState *cpu) 434 { 435 KVMState *s = kvm_state; 436 long mmap_size; 437 int ret; 438 439 DPRINTF("kvm_init_vcpu\n"); 440 441 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 442 if (ret < 0) { 443 DPRINTF("kvm_create_vcpu failed\n"); 444 goto err; 445 } 446 447 cpu->kvm_fd = ret; 448 cpu->kvm_state = s; 449 cpu->vcpu_dirty = true; 450 451 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 452 if (mmap_size < 0) { 453 ret = mmap_size; 454 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 455 goto err; 456 } 457 458 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 459 cpu->kvm_fd, 0); 460 if (cpu->kvm_run == MAP_FAILED) { 461 ret = -errno; 462 DPRINTF("mmap'ing vcpu state failed\n"); 463 goto err; 464 } 465 466 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 467 s->coalesced_mmio_ring = 468 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 469 } 470 471 ret = kvm_arch_init_vcpu(cpu); 472 err: 473 return ret; 474 } 475 476 /* 477 * dirty pages logging control 478 */ 479 480 static int kvm_mem_flags(MemoryRegion *mr) 481 { 482 bool readonly = mr->readonly || memory_region_is_romd(mr); 483 int flags = 0; 484 485 if (memory_region_get_dirty_log_mask(mr) != 0) { 486 flags |= KVM_MEM_LOG_DIRTY_PAGES; 487 } 488 if (readonly && kvm_readonly_mem_allowed) { 489 flags |= KVM_MEM_READONLY; 490 } 491 return flags; 492 } 493 494 /* Called with KVMMemoryListener.slots_lock held */ 495 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 496 MemoryRegion *mr) 497 { 498 mem->flags = kvm_mem_flags(mr); 499 500 /* If nothing changed effectively, no need to issue ioctl */ 501 if (mem->flags == mem->old_flags) { 502 return 0; 503 } 504 505 return kvm_set_user_memory_region(kml, mem, false); 506 } 507 508 static int kvm_section_update_flags(KVMMemoryListener *kml, 509 MemoryRegionSection *section) 510 { 511 hwaddr start_addr, size, slot_size; 512 KVMSlot *mem; 513 int ret = 0; 514 515 size = kvm_align_section(section, &start_addr); 516 if (!size) { 517 return 0; 518 } 519 520 kvm_slots_lock(kml); 521 522 while (size && !ret) { 523 slot_size = MIN(kvm_max_slot_size, size); 524 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 525 if (!mem) { 526 /* We don't have a slot if we want to trap every access. */ 527 goto out; 528 } 529 530 ret = kvm_slot_update_flags(kml, mem, section->mr); 531 start_addr += slot_size; 532 size -= slot_size; 533 } 534 535 out: 536 kvm_slots_unlock(kml); 537 return ret; 538 } 539 540 static void kvm_log_start(MemoryListener *listener, 541 MemoryRegionSection *section, 542 int old, int new) 543 { 544 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 545 int r; 546 547 if (old != 0) { 548 return; 549 } 550 551 r = kvm_section_update_flags(kml, section); 552 if (r < 0) { 553 abort(); 554 } 555 } 556 557 static void kvm_log_stop(MemoryListener *listener, 558 MemoryRegionSection *section, 559 int old, int new) 560 { 561 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 562 int r; 563 564 if (new != 0) { 565 return; 566 } 567 568 r = kvm_section_update_flags(kml, section); 569 if (r < 0) { 570 abort(); 571 } 572 } 573 574 /* get kvm's dirty pages bitmap and update qemu's */ 575 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 576 unsigned long *bitmap) 577 { 578 ram_addr_t start = section->offset_within_region + 579 memory_region_get_ram_addr(section->mr); 580 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 581 582 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 583 return 0; 584 } 585 586 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 587 588 /* Allocate the dirty bitmap for a slot */ 589 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 590 { 591 /* 592 * XXX bad kernel interface alert 593 * For dirty bitmap, kernel allocates array of size aligned to 594 * bits-per-long. But for case when the kernel is 64bits and 595 * the userspace is 32bits, userspace can't align to the same 596 * bits-per-long, since sizeof(long) is different between kernel 597 * and user space. This way, userspace will provide buffer which 598 * may be 4 bytes less than the kernel will use, resulting in 599 * userspace memory corruption (which is not detectable by valgrind 600 * too, in most cases). 601 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 602 * a hope that sizeof(long) won't become >8 any time soon. 603 */ 604 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 605 /*HOST_LONG_BITS*/ 64) / 8; 606 mem->dirty_bmap = g_malloc0(bitmap_size); 607 } 608 609 /** 610 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 611 * 612 * This function will first try to fetch dirty bitmap from the kernel, 613 * and then updates qemu's dirty bitmap. 614 * 615 * NOTE: caller must be with kml->slots_lock held. 616 * 617 * @kml: the KVM memory listener object 618 * @section: the memory section to sync the dirty bitmap with 619 */ 620 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 621 MemoryRegionSection *section) 622 { 623 KVMState *s = kvm_state; 624 struct kvm_dirty_log d = {}; 625 KVMSlot *mem; 626 hwaddr start_addr, size; 627 hwaddr slot_size, slot_offset = 0; 628 int ret = 0; 629 630 size = kvm_align_section(section, &start_addr); 631 while (size) { 632 MemoryRegionSection subsection = *section; 633 634 slot_size = MIN(kvm_max_slot_size, size); 635 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 636 if (!mem) { 637 /* We don't have a slot if we want to trap every access. */ 638 goto out; 639 } 640 641 if (!mem->dirty_bmap) { 642 /* Allocate on the first log_sync, once and for all */ 643 kvm_memslot_init_dirty_bitmap(mem); 644 } 645 646 d.dirty_bitmap = mem->dirty_bmap; 647 d.slot = mem->slot | (kml->as_id << 16); 648 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 649 DPRINTF("ioctl failed %d\n", errno); 650 ret = -1; 651 goto out; 652 } 653 654 subsection.offset_within_region += slot_offset; 655 subsection.size = int128_make64(slot_size); 656 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 657 658 slot_offset += slot_size; 659 start_addr += slot_size; 660 size -= slot_size; 661 } 662 out: 663 return ret; 664 } 665 666 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 667 #define KVM_CLEAR_LOG_SHIFT 6 668 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 669 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 670 671 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 672 uint64_t size) 673 { 674 KVMState *s = kvm_state; 675 uint64_t end, bmap_start, start_delta, bmap_npages; 676 struct kvm_clear_dirty_log d; 677 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 678 int ret; 679 680 /* 681 * We need to extend either the start or the size or both to 682 * satisfy the KVM interface requirement. Firstly, do the start 683 * page alignment on 64 host pages 684 */ 685 bmap_start = start & KVM_CLEAR_LOG_MASK; 686 start_delta = start - bmap_start; 687 bmap_start /= psize; 688 689 /* 690 * The kernel interface has restriction on the size too, that either: 691 * 692 * (1) the size is 64 host pages aligned (just like the start), or 693 * (2) the size fills up until the end of the KVM memslot. 694 */ 695 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 696 << KVM_CLEAR_LOG_SHIFT; 697 end = mem->memory_size / psize; 698 if (bmap_npages > end - bmap_start) { 699 bmap_npages = end - bmap_start; 700 } 701 start_delta /= psize; 702 703 /* 704 * Prepare the bitmap to clear dirty bits. Here we must guarantee 705 * that we won't clear any unknown dirty bits otherwise we might 706 * accidentally clear some set bits which are not yet synced from 707 * the kernel into QEMU's bitmap, then we'll lose track of the 708 * guest modifications upon those pages (which can directly lead 709 * to guest data loss or panic after migration). 710 * 711 * Layout of the KVMSlot.dirty_bmap: 712 * 713 * |<-------- bmap_npages -----------..>| 714 * [1] 715 * start_delta size 716 * |----------------|-------------|------------------|------------| 717 * ^ ^ ^ ^ 718 * | | | | 719 * start bmap_start (start) end 720 * of memslot of memslot 721 * 722 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 723 */ 724 725 assert(bmap_start % BITS_PER_LONG == 0); 726 /* We should never do log_clear before log_sync */ 727 assert(mem->dirty_bmap); 728 if (start_delta) { 729 /* Slow path - we need to manipulate a temp bitmap */ 730 bmap_clear = bitmap_new(bmap_npages); 731 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 732 bmap_start, start_delta + size / psize); 733 /* 734 * We need to fill the holes at start because that was not 735 * specified by the caller and we extended the bitmap only for 736 * 64 pages alignment 737 */ 738 bitmap_clear(bmap_clear, 0, start_delta); 739 d.dirty_bitmap = bmap_clear; 740 } else { 741 /* Fast path - start address aligns well with BITS_PER_LONG */ 742 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 743 } 744 745 d.first_page = bmap_start; 746 /* It should never overflow. If it happens, say something */ 747 assert(bmap_npages <= UINT32_MAX); 748 d.num_pages = bmap_npages; 749 d.slot = mem->slot | (as_id << 16); 750 751 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 752 ret = -errno; 753 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 754 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 755 __func__, d.slot, (uint64_t)d.first_page, 756 (uint32_t)d.num_pages, ret); 757 } else { 758 ret = 0; 759 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 760 } 761 762 /* 763 * After we have updated the remote dirty bitmap, we update the 764 * cached bitmap as well for the memslot, then if another user 765 * clears the same region we know we shouldn't clear it again on 766 * the remote otherwise it's data loss as well. 767 */ 768 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 769 size / psize); 770 /* This handles the NULL case well */ 771 g_free(bmap_clear); 772 return ret; 773 } 774 775 776 /** 777 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 778 * 779 * NOTE: this will be a no-op if we haven't enabled manual dirty log 780 * protection in the host kernel because in that case this operation 781 * will be done within log_sync(). 782 * 783 * @kml: the kvm memory listener 784 * @section: the memory range to clear dirty bitmap 785 */ 786 static int kvm_physical_log_clear(KVMMemoryListener *kml, 787 MemoryRegionSection *section) 788 { 789 KVMState *s = kvm_state; 790 uint64_t start, size, offset, count; 791 KVMSlot *mem; 792 int ret = 0, i; 793 794 if (!s->manual_dirty_log_protect) { 795 /* No need to do explicit clear */ 796 return ret; 797 } 798 799 start = section->offset_within_address_space; 800 size = int128_get64(section->size); 801 802 if (!size) { 803 /* Nothing more we can do... */ 804 return ret; 805 } 806 807 kvm_slots_lock(kml); 808 809 for (i = 0; i < s->nr_slots; i++) { 810 mem = &kml->slots[i]; 811 /* Discard slots that are empty or do not overlap the section */ 812 if (!mem->memory_size || 813 mem->start_addr > start + size - 1 || 814 start > mem->start_addr + mem->memory_size - 1) { 815 continue; 816 } 817 818 if (start >= mem->start_addr) { 819 /* The slot starts before section or is aligned to it. */ 820 offset = start - mem->start_addr; 821 count = MIN(mem->memory_size - offset, size); 822 } else { 823 /* The slot starts after section. */ 824 offset = 0; 825 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 826 } 827 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 828 if (ret < 0) { 829 break; 830 } 831 } 832 833 kvm_slots_unlock(kml); 834 835 return ret; 836 } 837 838 static void kvm_coalesce_mmio_region(MemoryListener *listener, 839 MemoryRegionSection *secion, 840 hwaddr start, hwaddr size) 841 { 842 KVMState *s = kvm_state; 843 844 if (s->coalesced_mmio) { 845 struct kvm_coalesced_mmio_zone zone; 846 847 zone.addr = start; 848 zone.size = size; 849 zone.pad = 0; 850 851 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 852 } 853 } 854 855 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 856 MemoryRegionSection *secion, 857 hwaddr start, hwaddr size) 858 { 859 KVMState *s = kvm_state; 860 861 if (s->coalesced_mmio) { 862 struct kvm_coalesced_mmio_zone zone; 863 864 zone.addr = start; 865 zone.size = size; 866 zone.pad = 0; 867 868 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 869 } 870 } 871 872 static void kvm_coalesce_pio_add(MemoryListener *listener, 873 MemoryRegionSection *section, 874 hwaddr start, hwaddr size) 875 { 876 KVMState *s = kvm_state; 877 878 if (s->coalesced_pio) { 879 struct kvm_coalesced_mmio_zone zone; 880 881 zone.addr = start; 882 zone.size = size; 883 zone.pio = 1; 884 885 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 886 } 887 } 888 889 static void kvm_coalesce_pio_del(MemoryListener *listener, 890 MemoryRegionSection *section, 891 hwaddr start, hwaddr size) 892 { 893 KVMState *s = kvm_state; 894 895 if (s->coalesced_pio) { 896 struct kvm_coalesced_mmio_zone zone; 897 898 zone.addr = start; 899 zone.size = size; 900 zone.pio = 1; 901 902 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 903 } 904 } 905 906 static MemoryListener kvm_coalesced_pio_listener = { 907 .coalesced_io_add = kvm_coalesce_pio_add, 908 .coalesced_io_del = kvm_coalesce_pio_del, 909 }; 910 911 int kvm_check_extension(KVMState *s, unsigned int extension) 912 { 913 int ret; 914 915 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 916 if (ret < 0) { 917 ret = 0; 918 } 919 920 return ret; 921 } 922 923 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 924 { 925 int ret; 926 927 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 928 if (ret < 0) { 929 /* VM wide version not implemented, use global one instead */ 930 ret = kvm_check_extension(s, extension); 931 } 932 933 return ret; 934 } 935 936 typedef struct HWPoisonPage { 937 ram_addr_t ram_addr; 938 QLIST_ENTRY(HWPoisonPage) list; 939 } HWPoisonPage; 940 941 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 942 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 943 944 static void kvm_unpoison_all(void *param) 945 { 946 HWPoisonPage *page, *next_page; 947 948 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 949 QLIST_REMOVE(page, list); 950 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 951 g_free(page); 952 } 953 } 954 955 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 956 { 957 HWPoisonPage *page; 958 959 QLIST_FOREACH(page, &hwpoison_page_list, list) { 960 if (page->ram_addr == ram_addr) { 961 return; 962 } 963 } 964 page = g_new(HWPoisonPage, 1); 965 page->ram_addr = ram_addr; 966 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 967 } 968 969 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 970 { 971 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 972 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 973 * endianness, but the memory core hands them in target endianness. 974 * For example, PPC is always treated as big-endian even if running 975 * on KVM and on PPC64LE. Correct here. 976 */ 977 switch (size) { 978 case 2: 979 val = bswap16(val); 980 break; 981 case 4: 982 val = bswap32(val); 983 break; 984 } 985 #endif 986 return val; 987 } 988 989 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 990 bool assign, uint32_t size, bool datamatch) 991 { 992 int ret; 993 struct kvm_ioeventfd iofd = { 994 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 995 .addr = addr, 996 .len = size, 997 .flags = 0, 998 .fd = fd, 999 }; 1000 1001 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1002 datamatch); 1003 if (!kvm_enabled()) { 1004 return -ENOSYS; 1005 } 1006 1007 if (datamatch) { 1008 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1009 } 1010 if (!assign) { 1011 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1012 } 1013 1014 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1015 1016 if (ret < 0) { 1017 return -errno; 1018 } 1019 1020 return 0; 1021 } 1022 1023 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1024 bool assign, uint32_t size, bool datamatch) 1025 { 1026 struct kvm_ioeventfd kick = { 1027 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1028 .addr = addr, 1029 .flags = KVM_IOEVENTFD_FLAG_PIO, 1030 .len = size, 1031 .fd = fd, 1032 }; 1033 int r; 1034 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1035 if (!kvm_enabled()) { 1036 return -ENOSYS; 1037 } 1038 if (datamatch) { 1039 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1040 } 1041 if (!assign) { 1042 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1043 } 1044 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1045 if (r < 0) { 1046 return r; 1047 } 1048 return 0; 1049 } 1050 1051 1052 static int kvm_check_many_ioeventfds(void) 1053 { 1054 /* Userspace can use ioeventfd for io notification. This requires a host 1055 * that supports eventfd(2) and an I/O thread; since eventfd does not 1056 * support SIGIO it cannot interrupt the vcpu. 1057 * 1058 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1059 * can avoid creating too many ioeventfds. 1060 */ 1061 #if defined(CONFIG_EVENTFD) 1062 int ioeventfds[7]; 1063 int i, ret = 0; 1064 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1065 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1066 if (ioeventfds[i] < 0) { 1067 break; 1068 } 1069 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1070 if (ret < 0) { 1071 close(ioeventfds[i]); 1072 break; 1073 } 1074 } 1075 1076 /* Decide whether many devices are supported or not */ 1077 ret = i == ARRAY_SIZE(ioeventfds); 1078 1079 while (i-- > 0) { 1080 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1081 close(ioeventfds[i]); 1082 } 1083 return ret; 1084 #else 1085 return 0; 1086 #endif 1087 } 1088 1089 static const KVMCapabilityInfo * 1090 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1091 { 1092 while (list->name) { 1093 if (!kvm_check_extension(s, list->value)) { 1094 return list; 1095 } 1096 list++; 1097 } 1098 return NULL; 1099 } 1100 1101 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1102 { 1103 g_assert( 1104 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1105 ); 1106 kvm_max_slot_size = max_slot_size; 1107 } 1108 1109 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1110 MemoryRegionSection *section, bool add) 1111 { 1112 KVMSlot *mem; 1113 int err; 1114 MemoryRegion *mr = section->mr; 1115 bool writeable = !mr->readonly && !mr->rom_device; 1116 hwaddr start_addr, size, slot_size; 1117 void *ram; 1118 1119 if (!memory_region_is_ram(mr)) { 1120 if (writeable || !kvm_readonly_mem_allowed) { 1121 return; 1122 } else if (!mr->romd_mode) { 1123 /* If the memory device is not in romd_mode, then we actually want 1124 * to remove the kvm memory slot so all accesses will trap. */ 1125 add = false; 1126 } 1127 } 1128 1129 size = kvm_align_section(section, &start_addr); 1130 if (!size) { 1131 return; 1132 } 1133 1134 /* use aligned delta to align the ram address */ 1135 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1136 (start_addr - section->offset_within_address_space); 1137 1138 kvm_slots_lock(kml); 1139 1140 if (!add) { 1141 do { 1142 slot_size = MIN(kvm_max_slot_size, size); 1143 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1144 if (!mem) { 1145 goto out; 1146 } 1147 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1148 kvm_physical_sync_dirty_bitmap(kml, section); 1149 } 1150 1151 /* unregister the slot */ 1152 g_free(mem->dirty_bmap); 1153 mem->dirty_bmap = NULL; 1154 mem->memory_size = 0; 1155 mem->flags = 0; 1156 err = kvm_set_user_memory_region(kml, mem, false); 1157 if (err) { 1158 fprintf(stderr, "%s: error unregistering slot: %s\n", 1159 __func__, strerror(-err)); 1160 abort(); 1161 } 1162 start_addr += slot_size; 1163 size -= slot_size; 1164 } while (size); 1165 goto out; 1166 } 1167 1168 /* register the new slot */ 1169 do { 1170 slot_size = MIN(kvm_max_slot_size, size); 1171 mem = kvm_alloc_slot(kml); 1172 mem->memory_size = slot_size; 1173 mem->start_addr = start_addr; 1174 mem->ram = ram; 1175 mem->flags = kvm_mem_flags(mr); 1176 1177 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1178 /* 1179 * Reallocate the bmap; it means it doesn't disappear in 1180 * middle of a migrate. 1181 */ 1182 kvm_memslot_init_dirty_bitmap(mem); 1183 } 1184 err = kvm_set_user_memory_region(kml, mem, true); 1185 if (err) { 1186 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1187 strerror(-err)); 1188 abort(); 1189 } 1190 start_addr += slot_size; 1191 ram += slot_size; 1192 size -= slot_size; 1193 } while (size); 1194 1195 out: 1196 kvm_slots_unlock(kml); 1197 } 1198 1199 static void kvm_region_add(MemoryListener *listener, 1200 MemoryRegionSection *section) 1201 { 1202 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1203 1204 memory_region_ref(section->mr); 1205 kvm_set_phys_mem(kml, section, true); 1206 } 1207 1208 static void kvm_region_del(MemoryListener *listener, 1209 MemoryRegionSection *section) 1210 { 1211 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1212 1213 kvm_set_phys_mem(kml, section, false); 1214 memory_region_unref(section->mr); 1215 } 1216 1217 static void kvm_log_sync(MemoryListener *listener, 1218 MemoryRegionSection *section) 1219 { 1220 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1221 int r; 1222 1223 kvm_slots_lock(kml); 1224 r = kvm_physical_sync_dirty_bitmap(kml, section); 1225 kvm_slots_unlock(kml); 1226 if (r < 0) { 1227 abort(); 1228 } 1229 } 1230 1231 static void kvm_log_clear(MemoryListener *listener, 1232 MemoryRegionSection *section) 1233 { 1234 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1235 int r; 1236 1237 r = kvm_physical_log_clear(kml, section); 1238 if (r < 0) { 1239 error_report_once("%s: kvm log clear failed: mr=%s " 1240 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1241 section->mr->name, section->offset_within_region, 1242 int128_get64(section->size)); 1243 abort(); 1244 } 1245 } 1246 1247 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1248 MemoryRegionSection *section, 1249 bool match_data, uint64_t data, 1250 EventNotifier *e) 1251 { 1252 int fd = event_notifier_get_fd(e); 1253 int r; 1254 1255 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1256 data, true, int128_get64(section->size), 1257 match_data); 1258 if (r < 0) { 1259 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1260 __func__, strerror(-r), -r); 1261 abort(); 1262 } 1263 } 1264 1265 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1266 MemoryRegionSection *section, 1267 bool match_data, uint64_t data, 1268 EventNotifier *e) 1269 { 1270 int fd = event_notifier_get_fd(e); 1271 int r; 1272 1273 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1274 data, false, int128_get64(section->size), 1275 match_data); 1276 if (r < 0) { 1277 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1278 __func__, strerror(-r), -r); 1279 abort(); 1280 } 1281 } 1282 1283 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1284 MemoryRegionSection *section, 1285 bool match_data, uint64_t data, 1286 EventNotifier *e) 1287 { 1288 int fd = event_notifier_get_fd(e); 1289 int r; 1290 1291 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1292 data, true, int128_get64(section->size), 1293 match_data); 1294 if (r < 0) { 1295 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1296 __func__, strerror(-r), -r); 1297 abort(); 1298 } 1299 } 1300 1301 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1302 MemoryRegionSection *section, 1303 bool match_data, uint64_t data, 1304 EventNotifier *e) 1305 1306 { 1307 int fd = event_notifier_get_fd(e); 1308 int r; 1309 1310 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1311 data, false, int128_get64(section->size), 1312 match_data); 1313 if (r < 0) { 1314 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1315 __func__, strerror(-r), -r); 1316 abort(); 1317 } 1318 } 1319 1320 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1321 AddressSpace *as, int as_id) 1322 { 1323 int i; 1324 1325 qemu_mutex_init(&kml->slots_lock); 1326 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1327 kml->as_id = as_id; 1328 1329 for (i = 0; i < s->nr_slots; i++) { 1330 kml->slots[i].slot = i; 1331 } 1332 1333 kml->listener.region_add = kvm_region_add; 1334 kml->listener.region_del = kvm_region_del; 1335 kml->listener.log_start = kvm_log_start; 1336 kml->listener.log_stop = kvm_log_stop; 1337 kml->listener.log_sync = kvm_log_sync; 1338 kml->listener.log_clear = kvm_log_clear; 1339 kml->listener.priority = 10; 1340 1341 memory_listener_register(&kml->listener, as); 1342 1343 for (i = 0; i < s->nr_as; ++i) { 1344 if (!s->as[i].as) { 1345 s->as[i].as = as; 1346 s->as[i].ml = kml; 1347 break; 1348 } 1349 } 1350 } 1351 1352 static MemoryListener kvm_io_listener = { 1353 .eventfd_add = kvm_io_ioeventfd_add, 1354 .eventfd_del = kvm_io_ioeventfd_del, 1355 .priority = 10, 1356 }; 1357 1358 int kvm_set_irq(KVMState *s, int irq, int level) 1359 { 1360 struct kvm_irq_level event; 1361 int ret; 1362 1363 assert(kvm_async_interrupts_enabled()); 1364 1365 event.level = level; 1366 event.irq = irq; 1367 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1368 if (ret < 0) { 1369 perror("kvm_set_irq"); 1370 abort(); 1371 } 1372 1373 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1374 } 1375 1376 #ifdef KVM_CAP_IRQ_ROUTING 1377 typedef struct KVMMSIRoute { 1378 struct kvm_irq_routing_entry kroute; 1379 QTAILQ_ENTRY(KVMMSIRoute) entry; 1380 } KVMMSIRoute; 1381 1382 static void set_gsi(KVMState *s, unsigned int gsi) 1383 { 1384 set_bit(gsi, s->used_gsi_bitmap); 1385 } 1386 1387 static void clear_gsi(KVMState *s, unsigned int gsi) 1388 { 1389 clear_bit(gsi, s->used_gsi_bitmap); 1390 } 1391 1392 void kvm_init_irq_routing(KVMState *s) 1393 { 1394 int gsi_count, i; 1395 1396 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1397 if (gsi_count > 0) { 1398 /* Round up so we can search ints using ffs */ 1399 s->used_gsi_bitmap = bitmap_new(gsi_count); 1400 s->gsi_count = gsi_count; 1401 } 1402 1403 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1404 s->nr_allocated_irq_routes = 0; 1405 1406 if (!kvm_direct_msi_allowed) { 1407 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1408 QTAILQ_INIT(&s->msi_hashtab[i]); 1409 } 1410 } 1411 1412 kvm_arch_init_irq_routing(s); 1413 } 1414 1415 void kvm_irqchip_commit_routes(KVMState *s) 1416 { 1417 int ret; 1418 1419 if (kvm_gsi_direct_mapping()) { 1420 return; 1421 } 1422 1423 if (!kvm_gsi_routing_enabled()) { 1424 return; 1425 } 1426 1427 s->irq_routes->flags = 0; 1428 trace_kvm_irqchip_commit_routes(); 1429 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1430 assert(ret == 0); 1431 } 1432 1433 static void kvm_add_routing_entry(KVMState *s, 1434 struct kvm_irq_routing_entry *entry) 1435 { 1436 struct kvm_irq_routing_entry *new; 1437 int n, size; 1438 1439 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1440 n = s->nr_allocated_irq_routes * 2; 1441 if (n < 64) { 1442 n = 64; 1443 } 1444 size = sizeof(struct kvm_irq_routing); 1445 size += n * sizeof(*new); 1446 s->irq_routes = g_realloc(s->irq_routes, size); 1447 s->nr_allocated_irq_routes = n; 1448 } 1449 n = s->irq_routes->nr++; 1450 new = &s->irq_routes->entries[n]; 1451 1452 *new = *entry; 1453 1454 set_gsi(s, entry->gsi); 1455 } 1456 1457 static int kvm_update_routing_entry(KVMState *s, 1458 struct kvm_irq_routing_entry *new_entry) 1459 { 1460 struct kvm_irq_routing_entry *entry; 1461 int n; 1462 1463 for (n = 0; n < s->irq_routes->nr; n++) { 1464 entry = &s->irq_routes->entries[n]; 1465 if (entry->gsi != new_entry->gsi) { 1466 continue; 1467 } 1468 1469 if(!memcmp(entry, new_entry, sizeof *entry)) { 1470 return 0; 1471 } 1472 1473 *entry = *new_entry; 1474 1475 return 0; 1476 } 1477 1478 return -ESRCH; 1479 } 1480 1481 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1482 { 1483 struct kvm_irq_routing_entry e = {}; 1484 1485 assert(pin < s->gsi_count); 1486 1487 e.gsi = irq; 1488 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1489 e.flags = 0; 1490 e.u.irqchip.irqchip = irqchip; 1491 e.u.irqchip.pin = pin; 1492 kvm_add_routing_entry(s, &e); 1493 } 1494 1495 void kvm_irqchip_release_virq(KVMState *s, int virq) 1496 { 1497 struct kvm_irq_routing_entry *e; 1498 int i; 1499 1500 if (kvm_gsi_direct_mapping()) { 1501 return; 1502 } 1503 1504 for (i = 0; i < s->irq_routes->nr; i++) { 1505 e = &s->irq_routes->entries[i]; 1506 if (e->gsi == virq) { 1507 s->irq_routes->nr--; 1508 *e = s->irq_routes->entries[s->irq_routes->nr]; 1509 } 1510 } 1511 clear_gsi(s, virq); 1512 kvm_arch_release_virq_post(virq); 1513 trace_kvm_irqchip_release_virq(virq); 1514 } 1515 1516 void kvm_irqchip_add_change_notifier(Notifier *n) 1517 { 1518 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1519 } 1520 1521 void kvm_irqchip_remove_change_notifier(Notifier *n) 1522 { 1523 notifier_remove(n); 1524 } 1525 1526 void kvm_irqchip_change_notify(void) 1527 { 1528 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1529 } 1530 1531 static unsigned int kvm_hash_msi(uint32_t data) 1532 { 1533 /* This is optimized for IA32 MSI layout. However, no other arch shall 1534 * repeat the mistake of not providing a direct MSI injection API. */ 1535 return data & 0xff; 1536 } 1537 1538 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1539 { 1540 KVMMSIRoute *route, *next; 1541 unsigned int hash; 1542 1543 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1544 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1545 kvm_irqchip_release_virq(s, route->kroute.gsi); 1546 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1547 g_free(route); 1548 } 1549 } 1550 } 1551 1552 static int kvm_irqchip_get_virq(KVMState *s) 1553 { 1554 int next_virq; 1555 1556 /* 1557 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1558 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1559 * number can succeed even though a new route entry cannot be added. 1560 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1561 */ 1562 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1563 kvm_flush_dynamic_msi_routes(s); 1564 } 1565 1566 /* Return the lowest unused GSI in the bitmap */ 1567 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1568 if (next_virq >= s->gsi_count) { 1569 return -ENOSPC; 1570 } else { 1571 return next_virq; 1572 } 1573 } 1574 1575 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1576 { 1577 unsigned int hash = kvm_hash_msi(msg.data); 1578 KVMMSIRoute *route; 1579 1580 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1581 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1582 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1583 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1584 return route; 1585 } 1586 } 1587 return NULL; 1588 } 1589 1590 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1591 { 1592 struct kvm_msi msi; 1593 KVMMSIRoute *route; 1594 1595 if (kvm_direct_msi_allowed) { 1596 msi.address_lo = (uint32_t)msg.address; 1597 msi.address_hi = msg.address >> 32; 1598 msi.data = le32_to_cpu(msg.data); 1599 msi.flags = 0; 1600 memset(msi.pad, 0, sizeof(msi.pad)); 1601 1602 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1603 } 1604 1605 route = kvm_lookup_msi_route(s, msg); 1606 if (!route) { 1607 int virq; 1608 1609 virq = kvm_irqchip_get_virq(s); 1610 if (virq < 0) { 1611 return virq; 1612 } 1613 1614 route = g_malloc0(sizeof(KVMMSIRoute)); 1615 route->kroute.gsi = virq; 1616 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1617 route->kroute.flags = 0; 1618 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1619 route->kroute.u.msi.address_hi = msg.address >> 32; 1620 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1621 1622 kvm_add_routing_entry(s, &route->kroute); 1623 kvm_irqchip_commit_routes(s); 1624 1625 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1626 entry); 1627 } 1628 1629 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1630 1631 return kvm_set_irq(s, route->kroute.gsi, 1); 1632 } 1633 1634 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1635 { 1636 struct kvm_irq_routing_entry kroute = {}; 1637 int virq; 1638 MSIMessage msg = {0, 0}; 1639 1640 if (pci_available && dev) { 1641 msg = pci_get_msi_message(dev, vector); 1642 } 1643 1644 if (kvm_gsi_direct_mapping()) { 1645 return kvm_arch_msi_data_to_gsi(msg.data); 1646 } 1647 1648 if (!kvm_gsi_routing_enabled()) { 1649 return -ENOSYS; 1650 } 1651 1652 virq = kvm_irqchip_get_virq(s); 1653 if (virq < 0) { 1654 return virq; 1655 } 1656 1657 kroute.gsi = virq; 1658 kroute.type = KVM_IRQ_ROUTING_MSI; 1659 kroute.flags = 0; 1660 kroute.u.msi.address_lo = (uint32_t)msg.address; 1661 kroute.u.msi.address_hi = msg.address >> 32; 1662 kroute.u.msi.data = le32_to_cpu(msg.data); 1663 if (pci_available && kvm_msi_devid_required()) { 1664 kroute.flags = KVM_MSI_VALID_DEVID; 1665 kroute.u.msi.devid = pci_requester_id(dev); 1666 } 1667 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1668 kvm_irqchip_release_virq(s, virq); 1669 return -EINVAL; 1670 } 1671 1672 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1673 vector, virq); 1674 1675 kvm_add_routing_entry(s, &kroute); 1676 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1677 kvm_irqchip_commit_routes(s); 1678 1679 return virq; 1680 } 1681 1682 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1683 PCIDevice *dev) 1684 { 1685 struct kvm_irq_routing_entry kroute = {}; 1686 1687 if (kvm_gsi_direct_mapping()) { 1688 return 0; 1689 } 1690 1691 if (!kvm_irqchip_in_kernel()) { 1692 return -ENOSYS; 1693 } 1694 1695 kroute.gsi = virq; 1696 kroute.type = KVM_IRQ_ROUTING_MSI; 1697 kroute.flags = 0; 1698 kroute.u.msi.address_lo = (uint32_t)msg.address; 1699 kroute.u.msi.address_hi = msg.address >> 32; 1700 kroute.u.msi.data = le32_to_cpu(msg.data); 1701 if (pci_available && kvm_msi_devid_required()) { 1702 kroute.flags = KVM_MSI_VALID_DEVID; 1703 kroute.u.msi.devid = pci_requester_id(dev); 1704 } 1705 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1706 return -EINVAL; 1707 } 1708 1709 trace_kvm_irqchip_update_msi_route(virq); 1710 1711 return kvm_update_routing_entry(s, &kroute); 1712 } 1713 1714 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1715 EventNotifier *resample, int virq, 1716 bool assign) 1717 { 1718 int fd = event_notifier_get_fd(event); 1719 int rfd = resample ? event_notifier_get_fd(resample) : -1; 1720 1721 struct kvm_irqfd irqfd = { 1722 .fd = fd, 1723 .gsi = virq, 1724 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1725 }; 1726 1727 if (rfd != -1) { 1728 assert(assign); 1729 if (kvm_irqchip_is_split()) { 1730 /* 1731 * When the slow irqchip (e.g. IOAPIC) is in the 1732 * userspace, KVM kernel resamplefd will not work because 1733 * the EOI of the interrupt will be delivered to userspace 1734 * instead, so the KVM kernel resamplefd kick will be 1735 * skipped. The userspace here mimics what the kernel 1736 * provides with resamplefd, remember the resamplefd and 1737 * kick it when we receive EOI of this IRQ. 1738 * 1739 * This is hackery because IOAPIC is mostly bypassed 1740 * (except EOI broadcasts) when irqfd is used. However 1741 * this can bring much performance back for split irqchip 1742 * with INTx IRQs (for VFIO, this gives 93% perf of the 1743 * full fast path, which is 46% perf boost comparing to 1744 * the INTx slow path). 1745 */ 1746 kvm_resample_fd_insert(virq, resample); 1747 } else { 1748 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1749 irqfd.resamplefd = rfd; 1750 } 1751 } else if (!assign) { 1752 if (kvm_irqchip_is_split()) { 1753 kvm_resample_fd_remove(virq); 1754 } 1755 } 1756 1757 if (!kvm_irqfds_enabled()) { 1758 return -ENOSYS; 1759 } 1760 1761 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1762 } 1763 1764 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1765 { 1766 struct kvm_irq_routing_entry kroute = {}; 1767 int virq; 1768 1769 if (!kvm_gsi_routing_enabled()) { 1770 return -ENOSYS; 1771 } 1772 1773 virq = kvm_irqchip_get_virq(s); 1774 if (virq < 0) { 1775 return virq; 1776 } 1777 1778 kroute.gsi = virq; 1779 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1780 kroute.flags = 0; 1781 kroute.u.adapter.summary_addr = adapter->summary_addr; 1782 kroute.u.adapter.ind_addr = adapter->ind_addr; 1783 kroute.u.adapter.summary_offset = adapter->summary_offset; 1784 kroute.u.adapter.ind_offset = adapter->ind_offset; 1785 kroute.u.adapter.adapter_id = adapter->adapter_id; 1786 1787 kvm_add_routing_entry(s, &kroute); 1788 1789 return virq; 1790 } 1791 1792 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1793 { 1794 struct kvm_irq_routing_entry kroute = {}; 1795 int virq; 1796 1797 if (!kvm_gsi_routing_enabled()) { 1798 return -ENOSYS; 1799 } 1800 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1801 return -ENOSYS; 1802 } 1803 virq = kvm_irqchip_get_virq(s); 1804 if (virq < 0) { 1805 return virq; 1806 } 1807 1808 kroute.gsi = virq; 1809 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1810 kroute.flags = 0; 1811 kroute.u.hv_sint.vcpu = vcpu; 1812 kroute.u.hv_sint.sint = sint; 1813 1814 kvm_add_routing_entry(s, &kroute); 1815 kvm_irqchip_commit_routes(s); 1816 1817 return virq; 1818 } 1819 1820 #else /* !KVM_CAP_IRQ_ROUTING */ 1821 1822 void kvm_init_irq_routing(KVMState *s) 1823 { 1824 } 1825 1826 void kvm_irqchip_release_virq(KVMState *s, int virq) 1827 { 1828 } 1829 1830 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1831 { 1832 abort(); 1833 } 1834 1835 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1836 { 1837 return -ENOSYS; 1838 } 1839 1840 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1841 { 1842 return -ENOSYS; 1843 } 1844 1845 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1846 { 1847 return -ENOSYS; 1848 } 1849 1850 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1851 EventNotifier *resample, int virq, 1852 bool assign) 1853 { 1854 abort(); 1855 } 1856 1857 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1858 { 1859 return -ENOSYS; 1860 } 1861 #endif /* !KVM_CAP_IRQ_ROUTING */ 1862 1863 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1864 EventNotifier *rn, int virq) 1865 { 1866 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 1867 } 1868 1869 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1870 int virq) 1871 { 1872 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 1873 } 1874 1875 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1876 EventNotifier *rn, qemu_irq irq) 1877 { 1878 gpointer key, gsi; 1879 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1880 1881 if (!found) { 1882 return -ENXIO; 1883 } 1884 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1885 } 1886 1887 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1888 qemu_irq irq) 1889 { 1890 gpointer key, gsi; 1891 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1892 1893 if (!found) { 1894 return -ENXIO; 1895 } 1896 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1897 } 1898 1899 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1900 { 1901 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1902 } 1903 1904 static void kvm_irqchip_create(KVMState *s) 1905 { 1906 int ret; 1907 1908 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 1909 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1910 ; 1911 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1912 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1913 if (ret < 0) { 1914 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1915 exit(1); 1916 } 1917 } else { 1918 return; 1919 } 1920 1921 /* First probe and see if there's a arch-specific hook to create the 1922 * in-kernel irqchip for us */ 1923 ret = kvm_arch_irqchip_create(s); 1924 if (ret == 0) { 1925 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 1926 perror("Split IRQ chip mode not supported."); 1927 exit(1); 1928 } else { 1929 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1930 } 1931 } 1932 if (ret < 0) { 1933 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1934 exit(1); 1935 } 1936 1937 kvm_kernel_irqchip = true; 1938 /* If we have an in-kernel IRQ chip then we must have asynchronous 1939 * interrupt delivery (though the reverse is not necessarily true) 1940 */ 1941 kvm_async_interrupts_allowed = true; 1942 kvm_halt_in_kernel_allowed = true; 1943 1944 kvm_init_irq_routing(s); 1945 1946 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1947 } 1948 1949 /* Find number of supported CPUs using the recommended 1950 * procedure from the kernel API documentation to cope with 1951 * older kernels that may be missing capabilities. 1952 */ 1953 static int kvm_recommended_vcpus(KVMState *s) 1954 { 1955 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1956 return (ret) ? ret : 4; 1957 } 1958 1959 static int kvm_max_vcpus(KVMState *s) 1960 { 1961 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1962 return (ret) ? ret : kvm_recommended_vcpus(s); 1963 } 1964 1965 static int kvm_max_vcpu_id(KVMState *s) 1966 { 1967 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1968 return (ret) ? ret : kvm_max_vcpus(s); 1969 } 1970 1971 bool kvm_vcpu_id_is_valid(int vcpu_id) 1972 { 1973 KVMState *s = KVM_STATE(current_accel()); 1974 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1975 } 1976 1977 static int kvm_init(MachineState *ms) 1978 { 1979 MachineClass *mc = MACHINE_GET_CLASS(ms); 1980 static const char upgrade_note[] = 1981 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1982 "(see http://sourceforge.net/projects/kvm).\n"; 1983 struct { 1984 const char *name; 1985 int num; 1986 } num_cpus[] = { 1987 { "SMP", ms->smp.cpus }, 1988 { "hotpluggable", ms->smp.max_cpus }, 1989 { NULL, } 1990 }, *nc = num_cpus; 1991 int soft_vcpus_limit, hard_vcpus_limit; 1992 KVMState *s; 1993 const KVMCapabilityInfo *missing_cap; 1994 int ret; 1995 int type = 0; 1996 const char *kvm_type; 1997 uint64_t dirty_log_manual_caps; 1998 1999 s = KVM_STATE(ms->accelerator); 2000 2001 /* 2002 * On systems where the kernel can support different base page 2003 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2004 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2005 * page size for the system though. 2006 */ 2007 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2008 2009 s->sigmask_len = 8; 2010 2011 #ifdef KVM_CAP_SET_GUEST_DEBUG 2012 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2013 #endif 2014 QLIST_INIT(&s->kvm_parked_vcpus); 2015 s->vmfd = -1; 2016 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2017 if (s->fd == -1) { 2018 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2019 ret = -errno; 2020 goto err; 2021 } 2022 2023 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2024 if (ret < KVM_API_VERSION) { 2025 if (ret >= 0) { 2026 ret = -EINVAL; 2027 } 2028 fprintf(stderr, "kvm version too old\n"); 2029 goto err; 2030 } 2031 2032 if (ret > KVM_API_VERSION) { 2033 ret = -EINVAL; 2034 fprintf(stderr, "kvm version not supported\n"); 2035 goto err; 2036 } 2037 2038 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2039 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2040 2041 /* If unspecified, use the default value */ 2042 if (!s->nr_slots) { 2043 s->nr_slots = 32; 2044 } 2045 2046 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2047 if (s->nr_as <= 1) { 2048 s->nr_as = 1; 2049 } 2050 s->as = g_new0(struct KVMAs, s->nr_as); 2051 2052 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 2053 if (mc->kvm_type) { 2054 type = mc->kvm_type(ms, kvm_type); 2055 } else if (kvm_type) { 2056 ret = -EINVAL; 2057 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 2058 goto err; 2059 } 2060 2061 do { 2062 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2063 } while (ret == -EINTR); 2064 2065 if (ret < 0) { 2066 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2067 strerror(-ret)); 2068 2069 #ifdef TARGET_S390X 2070 if (ret == -EINVAL) { 2071 fprintf(stderr, 2072 "Host kernel setup problem detected. Please verify:\n"); 2073 fprintf(stderr, "- for kernels supporting the switch_amode or" 2074 " user_mode parameters, whether\n"); 2075 fprintf(stderr, 2076 " user space is running in primary address space\n"); 2077 fprintf(stderr, 2078 "- for kernels supporting the vm.allocate_pgste sysctl, " 2079 "whether it is enabled\n"); 2080 } 2081 #endif 2082 goto err; 2083 } 2084 2085 s->vmfd = ret; 2086 2087 /* check the vcpu limits */ 2088 soft_vcpus_limit = kvm_recommended_vcpus(s); 2089 hard_vcpus_limit = kvm_max_vcpus(s); 2090 2091 while (nc->name) { 2092 if (nc->num > soft_vcpus_limit) { 2093 warn_report("Number of %s cpus requested (%d) exceeds " 2094 "the recommended cpus supported by KVM (%d)", 2095 nc->name, nc->num, soft_vcpus_limit); 2096 2097 if (nc->num > hard_vcpus_limit) { 2098 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2099 "the maximum cpus supported by KVM (%d)\n", 2100 nc->name, nc->num, hard_vcpus_limit); 2101 exit(1); 2102 } 2103 } 2104 nc++; 2105 } 2106 2107 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2108 if (!missing_cap) { 2109 missing_cap = 2110 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2111 } 2112 if (missing_cap) { 2113 ret = -EINVAL; 2114 fprintf(stderr, "kvm does not support %s\n%s", 2115 missing_cap->name, upgrade_note); 2116 goto err; 2117 } 2118 2119 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2120 s->coalesced_pio = s->coalesced_mmio && 2121 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2122 2123 dirty_log_manual_caps = 2124 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2125 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2126 KVM_DIRTY_LOG_INITIALLY_SET); 2127 s->manual_dirty_log_protect = dirty_log_manual_caps; 2128 if (dirty_log_manual_caps) { 2129 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2130 dirty_log_manual_caps); 2131 if (ret) { 2132 warn_report("Trying to enable capability %"PRIu64" of " 2133 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2134 "Falling back to the legacy mode. ", 2135 dirty_log_manual_caps); 2136 s->manual_dirty_log_protect = 0; 2137 } 2138 } 2139 2140 #ifdef KVM_CAP_VCPU_EVENTS 2141 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2142 #endif 2143 2144 s->robust_singlestep = 2145 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2146 2147 #ifdef KVM_CAP_DEBUGREGS 2148 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2149 #endif 2150 2151 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2152 2153 #ifdef KVM_CAP_IRQ_ROUTING 2154 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2155 #endif 2156 2157 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2158 2159 s->irq_set_ioctl = KVM_IRQ_LINE; 2160 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2161 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2162 } 2163 2164 kvm_readonly_mem_allowed = 2165 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2166 2167 kvm_eventfds_allowed = 2168 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2169 2170 kvm_irqfds_allowed = 2171 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2172 2173 kvm_resamplefds_allowed = 2174 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2175 2176 kvm_vm_attributes_allowed = 2177 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2178 2179 kvm_ioeventfd_any_length_allowed = 2180 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2181 2182 kvm_state = s; 2183 2184 /* 2185 * if memory encryption object is specified then initialize the memory 2186 * encryption context. 2187 */ 2188 if (ms->memory_encryption) { 2189 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 2190 if (!kvm_state->memcrypt_handle) { 2191 ret = -1; 2192 goto err; 2193 } 2194 2195 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 2196 } 2197 2198 ret = kvm_arch_init(ms, s); 2199 if (ret < 0) { 2200 goto err; 2201 } 2202 2203 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2204 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2205 } 2206 2207 qemu_register_reset(kvm_unpoison_all, NULL); 2208 2209 if (s->kernel_irqchip_allowed) { 2210 kvm_irqchip_create(s); 2211 } 2212 2213 if (kvm_eventfds_allowed) { 2214 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2215 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2216 } 2217 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2218 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2219 2220 kvm_memory_listener_register(s, &s->memory_listener, 2221 &address_space_memory, 0); 2222 memory_listener_register(&kvm_io_listener, 2223 &address_space_io); 2224 memory_listener_register(&kvm_coalesced_pio_listener, 2225 &address_space_io); 2226 2227 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2228 2229 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2230 if (!s->sync_mmu) { 2231 ret = ram_block_discard_disable(true); 2232 assert(!ret); 2233 } 2234 2235 return 0; 2236 2237 err: 2238 assert(ret < 0); 2239 if (s->vmfd >= 0) { 2240 close(s->vmfd); 2241 } 2242 if (s->fd != -1) { 2243 close(s->fd); 2244 } 2245 g_free(s->memory_listener.slots); 2246 2247 return ret; 2248 } 2249 2250 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2251 { 2252 s->sigmask_len = sigmask_len; 2253 } 2254 2255 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2256 int size, uint32_t count) 2257 { 2258 int i; 2259 uint8_t *ptr = data; 2260 2261 for (i = 0; i < count; i++) { 2262 address_space_rw(&address_space_io, port, attrs, 2263 ptr, size, 2264 direction == KVM_EXIT_IO_OUT); 2265 ptr += size; 2266 } 2267 } 2268 2269 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2270 { 2271 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2272 run->internal.suberror); 2273 2274 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2275 int i; 2276 2277 for (i = 0; i < run->internal.ndata; ++i) { 2278 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2279 i, (uint64_t)run->internal.data[i]); 2280 } 2281 } 2282 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2283 fprintf(stderr, "emulation failure\n"); 2284 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2285 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2286 return EXCP_INTERRUPT; 2287 } 2288 } 2289 /* FIXME: Should trigger a qmp message to let management know 2290 * something went wrong. 2291 */ 2292 return -1; 2293 } 2294 2295 void kvm_flush_coalesced_mmio_buffer(void) 2296 { 2297 KVMState *s = kvm_state; 2298 2299 if (s->coalesced_flush_in_progress) { 2300 return; 2301 } 2302 2303 s->coalesced_flush_in_progress = true; 2304 2305 if (s->coalesced_mmio_ring) { 2306 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2307 while (ring->first != ring->last) { 2308 struct kvm_coalesced_mmio *ent; 2309 2310 ent = &ring->coalesced_mmio[ring->first]; 2311 2312 if (ent->pio == 1) { 2313 address_space_write(&address_space_io, ent->phys_addr, 2314 MEMTXATTRS_UNSPECIFIED, ent->data, 2315 ent->len); 2316 } else { 2317 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2318 } 2319 smp_wmb(); 2320 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2321 } 2322 } 2323 2324 s->coalesced_flush_in_progress = false; 2325 } 2326 2327 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2328 { 2329 if (!cpu->vcpu_dirty) { 2330 kvm_arch_get_registers(cpu); 2331 cpu->vcpu_dirty = true; 2332 } 2333 } 2334 2335 void kvm_cpu_synchronize_state(CPUState *cpu) 2336 { 2337 if (!cpu->vcpu_dirty) { 2338 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2339 } 2340 } 2341 2342 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2343 { 2344 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2345 cpu->vcpu_dirty = false; 2346 } 2347 2348 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2349 { 2350 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2351 } 2352 2353 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2354 { 2355 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2356 cpu->vcpu_dirty = false; 2357 } 2358 2359 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2360 { 2361 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2362 } 2363 2364 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2365 { 2366 cpu->vcpu_dirty = true; 2367 } 2368 2369 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2370 { 2371 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2372 } 2373 2374 #ifdef KVM_HAVE_MCE_INJECTION 2375 static __thread void *pending_sigbus_addr; 2376 static __thread int pending_sigbus_code; 2377 static __thread bool have_sigbus_pending; 2378 #endif 2379 2380 static void kvm_cpu_kick(CPUState *cpu) 2381 { 2382 atomic_set(&cpu->kvm_run->immediate_exit, 1); 2383 } 2384 2385 static void kvm_cpu_kick_self(void) 2386 { 2387 if (kvm_immediate_exit) { 2388 kvm_cpu_kick(current_cpu); 2389 } else { 2390 qemu_cpu_kick_self(); 2391 } 2392 } 2393 2394 static void kvm_eat_signals(CPUState *cpu) 2395 { 2396 struct timespec ts = { 0, 0 }; 2397 siginfo_t siginfo; 2398 sigset_t waitset; 2399 sigset_t chkset; 2400 int r; 2401 2402 if (kvm_immediate_exit) { 2403 atomic_set(&cpu->kvm_run->immediate_exit, 0); 2404 /* Write kvm_run->immediate_exit before the cpu->exit_request 2405 * write in kvm_cpu_exec. 2406 */ 2407 smp_wmb(); 2408 return; 2409 } 2410 2411 sigemptyset(&waitset); 2412 sigaddset(&waitset, SIG_IPI); 2413 2414 do { 2415 r = sigtimedwait(&waitset, &siginfo, &ts); 2416 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2417 perror("sigtimedwait"); 2418 exit(1); 2419 } 2420 2421 r = sigpending(&chkset); 2422 if (r == -1) { 2423 perror("sigpending"); 2424 exit(1); 2425 } 2426 } while (sigismember(&chkset, SIG_IPI)); 2427 } 2428 2429 int kvm_cpu_exec(CPUState *cpu) 2430 { 2431 struct kvm_run *run = cpu->kvm_run; 2432 int ret, run_ret; 2433 2434 DPRINTF("kvm_cpu_exec()\n"); 2435 2436 if (kvm_arch_process_async_events(cpu)) { 2437 atomic_set(&cpu->exit_request, 0); 2438 return EXCP_HLT; 2439 } 2440 2441 qemu_mutex_unlock_iothread(); 2442 cpu_exec_start(cpu); 2443 2444 do { 2445 MemTxAttrs attrs; 2446 2447 if (cpu->vcpu_dirty) { 2448 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2449 cpu->vcpu_dirty = false; 2450 } 2451 2452 kvm_arch_pre_run(cpu, run); 2453 if (atomic_read(&cpu->exit_request)) { 2454 DPRINTF("interrupt exit requested\n"); 2455 /* 2456 * KVM requires us to reenter the kernel after IO exits to complete 2457 * instruction emulation. This self-signal will ensure that we 2458 * leave ASAP again. 2459 */ 2460 kvm_cpu_kick_self(); 2461 } 2462 2463 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2464 * Matching barrier in kvm_eat_signals. 2465 */ 2466 smp_rmb(); 2467 2468 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2469 2470 attrs = kvm_arch_post_run(cpu, run); 2471 2472 #ifdef KVM_HAVE_MCE_INJECTION 2473 if (unlikely(have_sigbus_pending)) { 2474 qemu_mutex_lock_iothread(); 2475 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2476 pending_sigbus_addr); 2477 have_sigbus_pending = false; 2478 qemu_mutex_unlock_iothread(); 2479 } 2480 #endif 2481 2482 if (run_ret < 0) { 2483 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2484 DPRINTF("io window exit\n"); 2485 kvm_eat_signals(cpu); 2486 ret = EXCP_INTERRUPT; 2487 break; 2488 } 2489 fprintf(stderr, "error: kvm run failed %s\n", 2490 strerror(-run_ret)); 2491 #ifdef TARGET_PPC 2492 if (run_ret == -EBUSY) { 2493 fprintf(stderr, 2494 "This is probably because your SMT is enabled.\n" 2495 "VCPU can only run on primary threads with all " 2496 "secondary threads offline.\n"); 2497 } 2498 #endif 2499 ret = -1; 2500 break; 2501 } 2502 2503 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2504 switch (run->exit_reason) { 2505 case KVM_EXIT_IO: 2506 DPRINTF("handle_io\n"); 2507 /* Called outside BQL */ 2508 kvm_handle_io(run->io.port, attrs, 2509 (uint8_t *)run + run->io.data_offset, 2510 run->io.direction, 2511 run->io.size, 2512 run->io.count); 2513 ret = 0; 2514 break; 2515 case KVM_EXIT_MMIO: 2516 DPRINTF("handle_mmio\n"); 2517 /* Called outside BQL */ 2518 address_space_rw(&address_space_memory, 2519 run->mmio.phys_addr, attrs, 2520 run->mmio.data, 2521 run->mmio.len, 2522 run->mmio.is_write); 2523 ret = 0; 2524 break; 2525 case KVM_EXIT_IRQ_WINDOW_OPEN: 2526 DPRINTF("irq_window_open\n"); 2527 ret = EXCP_INTERRUPT; 2528 break; 2529 case KVM_EXIT_SHUTDOWN: 2530 DPRINTF("shutdown\n"); 2531 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2532 ret = EXCP_INTERRUPT; 2533 break; 2534 case KVM_EXIT_UNKNOWN: 2535 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2536 (uint64_t)run->hw.hardware_exit_reason); 2537 ret = -1; 2538 break; 2539 case KVM_EXIT_INTERNAL_ERROR: 2540 ret = kvm_handle_internal_error(cpu, run); 2541 break; 2542 case KVM_EXIT_SYSTEM_EVENT: 2543 switch (run->system_event.type) { 2544 case KVM_SYSTEM_EVENT_SHUTDOWN: 2545 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2546 ret = EXCP_INTERRUPT; 2547 break; 2548 case KVM_SYSTEM_EVENT_RESET: 2549 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2550 ret = EXCP_INTERRUPT; 2551 break; 2552 case KVM_SYSTEM_EVENT_CRASH: 2553 kvm_cpu_synchronize_state(cpu); 2554 qemu_mutex_lock_iothread(); 2555 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2556 qemu_mutex_unlock_iothread(); 2557 ret = 0; 2558 break; 2559 default: 2560 DPRINTF("kvm_arch_handle_exit\n"); 2561 ret = kvm_arch_handle_exit(cpu, run); 2562 break; 2563 } 2564 break; 2565 default: 2566 DPRINTF("kvm_arch_handle_exit\n"); 2567 ret = kvm_arch_handle_exit(cpu, run); 2568 break; 2569 } 2570 } while (ret == 0); 2571 2572 cpu_exec_end(cpu); 2573 qemu_mutex_lock_iothread(); 2574 2575 if (ret < 0) { 2576 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2577 vm_stop(RUN_STATE_INTERNAL_ERROR); 2578 } 2579 2580 atomic_set(&cpu->exit_request, 0); 2581 return ret; 2582 } 2583 2584 int kvm_ioctl(KVMState *s, int type, ...) 2585 { 2586 int ret; 2587 void *arg; 2588 va_list ap; 2589 2590 va_start(ap, type); 2591 arg = va_arg(ap, void *); 2592 va_end(ap); 2593 2594 trace_kvm_ioctl(type, arg); 2595 ret = ioctl(s->fd, type, arg); 2596 if (ret == -1) { 2597 ret = -errno; 2598 } 2599 return ret; 2600 } 2601 2602 int kvm_vm_ioctl(KVMState *s, int type, ...) 2603 { 2604 int ret; 2605 void *arg; 2606 va_list ap; 2607 2608 va_start(ap, type); 2609 arg = va_arg(ap, void *); 2610 va_end(ap); 2611 2612 trace_kvm_vm_ioctl(type, arg); 2613 ret = ioctl(s->vmfd, type, arg); 2614 if (ret == -1) { 2615 ret = -errno; 2616 } 2617 return ret; 2618 } 2619 2620 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2621 { 2622 int ret; 2623 void *arg; 2624 va_list ap; 2625 2626 va_start(ap, type); 2627 arg = va_arg(ap, void *); 2628 va_end(ap); 2629 2630 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2631 ret = ioctl(cpu->kvm_fd, type, arg); 2632 if (ret == -1) { 2633 ret = -errno; 2634 } 2635 return ret; 2636 } 2637 2638 int kvm_device_ioctl(int fd, int type, ...) 2639 { 2640 int ret; 2641 void *arg; 2642 va_list ap; 2643 2644 va_start(ap, type); 2645 arg = va_arg(ap, void *); 2646 va_end(ap); 2647 2648 trace_kvm_device_ioctl(fd, type, arg); 2649 ret = ioctl(fd, type, arg); 2650 if (ret == -1) { 2651 ret = -errno; 2652 } 2653 return ret; 2654 } 2655 2656 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2657 { 2658 int ret; 2659 struct kvm_device_attr attribute = { 2660 .group = group, 2661 .attr = attr, 2662 }; 2663 2664 if (!kvm_vm_attributes_allowed) { 2665 return 0; 2666 } 2667 2668 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2669 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2670 return ret ? 0 : 1; 2671 } 2672 2673 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2674 { 2675 struct kvm_device_attr attribute = { 2676 .group = group, 2677 .attr = attr, 2678 .flags = 0, 2679 }; 2680 2681 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2682 } 2683 2684 int kvm_device_access(int fd, int group, uint64_t attr, 2685 void *val, bool write, Error **errp) 2686 { 2687 struct kvm_device_attr kvmattr; 2688 int err; 2689 2690 kvmattr.flags = 0; 2691 kvmattr.group = group; 2692 kvmattr.attr = attr; 2693 kvmattr.addr = (uintptr_t)val; 2694 2695 err = kvm_device_ioctl(fd, 2696 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2697 &kvmattr); 2698 if (err < 0) { 2699 error_setg_errno(errp, -err, 2700 "KVM_%s_DEVICE_ATTR failed: Group %d " 2701 "attr 0x%016" PRIx64, 2702 write ? "SET" : "GET", group, attr); 2703 } 2704 return err; 2705 } 2706 2707 bool kvm_has_sync_mmu(void) 2708 { 2709 return kvm_state->sync_mmu; 2710 } 2711 2712 int kvm_has_vcpu_events(void) 2713 { 2714 return kvm_state->vcpu_events; 2715 } 2716 2717 int kvm_has_robust_singlestep(void) 2718 { 2719 return kvm_state->robust_singlestep; 2720 } 2721 2722 int kvm_has_debugregs(void) 2723 { 2724 return kvm_state->debugregs; 2725 } 2726 2727 int kvm_max_nested_state_length(void) 2728 { 2729 return kvm_state->max_nested_state_len; 2730 } 2731 2732 int kvm_has_many_ioeventfds(void) 2733 { 2734 if (!kvm_enabled()) { 2735 return 0; 2736 } 2737 return kvm_state->many_ioeventfds; 2738 } 2739 2740 int kvm_has_gsi_routing(void) 2741 { 2742 #ifdef KVM_CAP_IRQ_ROUTING 2743 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2744 #else 2745 return false; 2746 #endif 2747 } 2748 2749 int kvm_has_intx_set_mask(void) 2750 { 2751 return kvm_state->intx_set_mask; 2752 } 2753 2754 bool kvm_arm_supports_user_irq(void) 2755 { 2756 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2757 } 2758 2759 #ifdef KVM_CAP_SET_GUEST_DEBUG 2760 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2761 target_ulong pc) 2762 { 2763 struct kvm_sw_breakpoint *bp; 2764 2765 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2766 if (bp->pc == pc) { 2767 return bp; 2768 } 2769 } 2770 return NULL; 2771 } 2772 2773 int kvm_sw_breakpoints_active(CPUState *cpu) 2774 { 2775 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2776 } 2777 2778 struct kvm_set_guest_debug_data { 2779 struct kvm_guest_debug dbg; 2780 int err; 2781 }; 2782 2783 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2784 { 2785 struct kvm_set_guest_debug_data *dbg_data = 2786 (struct kvm_set_guest_debug_data *) data.host_ptr; 2787 2788 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2789 &dbg_data->dbg); 2790 } 2791 2792 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2793 { 2794 struct kvm_set_guest_debug_data data; 2795 2796 data.dbg.control = reinject_trap; 2797 2798 if (cpu->singlestep_enabled) { 2799 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2800 } 2801 kvm_arch_update_guest_debug(cpu, &data.dbg); 2802 2803 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2804 RUN_ON_CPU_HOST_PTR(&data)); 2805 return data.err; 2806 } 2807 2808 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2809 target_ulong len, int type) 2810 { 2811 struct kvm_sw_breakpoint *bp; 2812 int err; 2813 2814 if (type == GDB_BREAKPOINT_SW) { 2815 bp = kvm_find_sw_breakpoint(cpu, addr); 2816 if (bp) { 2817 bp->use_count++; 2818 return 0; 2819 } 2820 2821 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2822 bp->pc = addr; 2823 bp->use_count = 1; 2824 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2825 if (err) { 2826 g_free(bp); 2827 return err; 2828 } 2829 2830 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2831 } else { 2832 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2833 if (err) { 2834 return err; 2835 } 2836 } 2837 2838 CPU_FOREACH(cpu) { 2839 err = kvm_update_guest_debug(cpu, 0); 2840 if (err) { 2841 return err; 2842 } 2843 } 2844 return 0; 2845 } 2846 2847 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2848 target_ulong len, int type) 2849 { 2850 struct kvm_sw_breakpoint *bp; 2851 int err; 2852 2853 if (type == GDB_BREAKPOINT_SW) { 2854 bp = kvm_find_sw_breakpoint(cpu, addr); 2855 if (!bp) { 2856 return -ENOENT; 2857 } 2858 2859 if (bp->use_count > 1) { 2860 bp->use_count--; 2861 return 0; 2862 } 2863 2864 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2865 if (err) { 2866 return err; 2867 } 2868 2869 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2870 g_free(bp); 2871 } else { 2872 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2873 if (err) { 2874 return err; 2875 } 2876 } 2877 2878 CPU_FOREACH(cpu) { 2879 err = kvm_update_guest_debug(cpu, 0); 2880 if (err) { 2881 return err; 2882 } 2883 } 2884 return 0; 2885 } 2886 2887 void kvm_remove_all_breakpoints(CPUState *cpu) 2888 { 2889 struct kvm_sw_breakpoint *bp, *next; 2890 KVMState *s = cpu->kvm_state; 2891 CPUState *tmpcpu; 2892 2893 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2894 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2895 /* Try harder to find a CPU that currently sees the breakpoint. */ 2896 CPU_FOREACH(tmpcpu) { 2897 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2898 break; 2899 } 2900 } 2901 } 2902 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2903 g_free(bp); 2904 } 2905 kvm_arch_remove_all_hw_breakpoints(); 2906 2907 CPU_FOREACH(cpu) { 2908 kvm_update_guest_debug(cpu, 0); 2909 } 2910 } 2911 2912 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2913 2914 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2915 { 2916 return -EINVAL; 2917 } 2918 2919 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2920 target_ulong len, int type) 2921 { 2922 return -EINVAL; 2923 } 2924 2925 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2926 target_ulong len, int type) 2927 { 2928 return -EINVAL; 2929 } 2930 2931 void kvm_remove_all_breakpoints(CPUState *cpu) 2932 { 2933 } 2934 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2935 2936 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2937 { 2938 KVMState *s = kvm_state; 2939 struct kvm_signal_mask *sigmask; 2940 int r; 2941 2942 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2943 2944 sigmask->len = s->sigmask_len; 2945 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2946 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2947 g_free(sigmask); 2948 2949 return r; 2950 } 2951 2952 static void kvm_ipi_signal(int sig) 2953 { 2954 if (current_cpu) { 2955 assert(kvm_immediate_exit); 2956 kvm_cpu_kick(current_cpu); 2957 } 2958 } 2959 2960 void kvm_init_cpu_signals(CPUState *cpu) 2961 { 2962 int r; 2963 sigset_t set; 2964 struct sigaction sigact; 2965 2966 memset(&sigact, 0, sizeof(sigact)); 2967 sigact.sa_handler = kvm_ipi_signal; 2968 sigaction(SIG_IPI, &sigact, NULL); 2969 2970 pthread_sigmask(SIG_BLOCK, NULL, &set); 2971 #if defined KVM_HAVE_MCE_INJECTION 2972 sigdelset(&set, SIGBUS); 2973 pthread_sigmask(SIG_SETMASK, &set, NULL); 2974 #endif 2975 sigdelset(&set, SIG_IPI); 2976 if (kvm_immediate_exit) { 2977 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2978 } else { 2979 r = kvm_set_signal_mask(cpu, &set); 2980 } 2981 if (r) { 2982 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2983 exit(1); 2984 } 2985 } 2986 2987 /* Called asynchronously in VCPU thread. */ 2988 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2989 { 2990 #ifdef KVM_HAVE_MCE_INJECTION 2991 if (have_sigbus_pending) { 2992 return 1; 2993 } 2994 have_sigbus_pending = true; 2995 pending_sigbus_addr = addr; 2996 pending_sigbus_code = code; 2997 atomic_set(&cpu->exit_request, 1); 2998 return 0; 2999 #else 3000 return 1; 3001 #endif 3002 } 3003 3004 /* Called synchronously (via signalfd) in main thread. */ 3005 int kvm_on_sigbus(int code, void *addr) 3006 { 3007 #ifdef KVM_HAVE_MCE_INJECTION 3008 /* Action required MCE kills the process if SIGBUS is blocked. Because 3009 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3010 * we can only get action optional here. 3011 */ 3012 assert(code != BUS_MCEERR_AR); 3013 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3014 return 0; 3015 #else 3016 return 1; 3017 #endif 3018 } 3019 3020 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3021 { 3022 int ret; 3023 struct kvm_create_device create_dev; 3024 3025 create_dev.type = type; 3026 create_dev.fd = -1; 3027 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3028 3029 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3030 return -ENOTSUP; 3031 } 3032 3033 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3034 if (ret) { 3035 return ret; 3036 } 3037 3038 return test ? 0 : create_dev.fd; 3039 } 3040 3041 bool kvm_device_supported(int vmfd, uint64_t type) 3042 { 3043 struct kvm_create_device create_dev = { 3044 .type = type, 3045 .fd = -1, 3046 .flags = KVM_CREATE_DEVICE_TEST, 3047 }; 3048 3049 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3050 return false; 3051 } 3052 3053 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3054 } 3055 3056 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3057 { 3058 struct kvm_one_reg reg; 3059 int r; 3060 3061 reg.id = id; 3062 reg.addr = (uintptr_t) source; 3063 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3064 if (r) { 3065 trace_kvm_failed_reg_set(id, strerror(-r)); 3066 } 3067 return r; 3068 } 3069 3070 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3071 { 3072 struct kvm_one_reg reg; 3073 int r; 3074 3075 reg.id = id; 3076 reg.addr = (uintptr_t) target; 3077 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3078 if (r) { 3079 trace_kvm_failed_reg_get(id, strerror(-r)); 3080 } 3081 return r; 3082 } 3083 3084 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3085 hwaddr start_addr, hwaddr size) 3086 { 3087 KVMState *kvm = KVM_STATE(ms->accelerator); 3088 int i; 3089 3090 for (i = 0; i < kvm->nr_as; ++i) { 3091 if (kvm->as[i].as == as && kvm->as[i].ml) { 3092 size = MIN(kvm_max_slot_size, size); 3093 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3094 start_addr, size); 3095 } 3096 } 3097 3098 return false; 3099 } 3100 3101 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3102 const char *name, void *opaque, 3103 Error **errp) 3104 { 3105 KVMState *s = KVM_STATE(obj); 3106 int64_t value = s->kvm_shadow_mem; 3107 3108 visit_type_int(v, name, &value, errp); 3109 } 3110 3111 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3112 const char *name, void *opaque, 3113 Error **errp) 3114 { 3115 KVMState *s = KVM_STATE(obj); 3116 int64_t value; 3117 3118 if (!visit_type_int(v, name, &value, errp)) { 3119 return; 3120 } 3121 3122 s->kvm_shadow_mem = value; 3123 } 3124 3125 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3126 const char *name, void *opaque, 3127 Error **errp) 3128 { 3129 KVMState *s = KVM_STATE(obj); 3130 OnOffSplit mode; 3131 3132 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3133 return; 3134 } 3135 switch (mode) { 3136 case ON_OFF_SPLIT_ON: 3137 s->kernel_irqchip_allowed = true; 3138 s->kernel_irqchip_required = true; 3139 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3140 break; 3141 case ON_OFF_SPLIT_OFF: 3142 s->kernel_irqchip_allowed = false; 3143 s->kernel_irqchip_required = false; 3144 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3145 break; 3146 case ON_OFF_SPLIT_SPLIT: 3147 s->kernel_irqchip_allowed = true; 3148 s->kernel_irqchip_required = true; 3149 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3150 break; 3151 default: 3152 /* The value was checked in visit_type_OnOffSplit() above. If 3153 * we get here, then something is wrong in QEMU. 3154 */ 3155 abort(); 3156 } 3157 } 3158 3159 bool kvm_kernel_irqchip_allowed(void) 3160 { 3161 return kvm_state->kernel_irqchip_allowed; 3162 } 3163 3164 bool kvm_kernel_irqchip_required(void) 3165 { 3166 return kvm_state->kernel_irqchip_required; 3167 } 3168 3169 bool kvm_kernel_irqchip_split(void) 3170 { 3171 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3172 } 3173 3174 static void kvm_accel_instance_init(Object *obj) 3175 { 3176 KVMState *s = KVM_STATE(obj); 3177 3178 s->kvm_shadow_mem = -1; 3179 s->kernel_irqchip_allowed = true; 3180 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3181 } 3182 3183 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3184 { 3185 AccelClass *ac = ACCEL_CLASS(oc); 3186 ac->name = "KVM"; 3187 ac->init_machine = kvm_init; 3188 ac->has_memory = kvm_accel_has_memory; 3189 ac->allowed = &kvm_allowed; 3190 3191 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3192 NULL, kvm_set_kernel_irqchip, 3193 NULL, NULL); 3194 object_class_property_set_description(oc, "kernel-irqchip", 3195 "Configure KVM in-kernel irqchip"); 3196 3197 object_class_property_add(oc, "kvm-shadow-mem", "int", 3198 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3199 NULL, NULL); 3200 object_class_property_set_description(oc, "kvm-shadow-mem", 3201 "KVM shadow MMU size"); 3202 } 3203 3204 static const TypeInfo kvm_accel_type = { 3205 .name = TYPE_KVM_ACCEL, 3206 .parent = TYPE_ACCEL, 3207 .instance_init = kvm_accel_instance_init, 3208 .class_init = kvm_accel_class_init, 3209 .instance_size = sizeof(KVMState), 3210 }; 3211 3212 static void kvm_type_init(void) 3213 { 3214 type_register_static(&kvm_accel_type); 3215 } 3216 3217 type_init(kvm_type_init); 3218