xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 5bfb75f15297a91161f720f997792dd9abc05dea)
1  /*
2   * QEMU KVM support
3   *
4   * Copyright IBM, Corp. 2008
5   *           Red Hat, Inc. 2008
6   *
7   * Authors:
8   *  Anthony Liguori   <aliguori@us.ibm.com>
9   *  Glauber Costa     <gcosta@redhat.com>
10   *
11   * This work is licensed under the terms of the GNU GPL, version 2 or later.
12   * See the COPYING file in the top-level directory.
13   *
14   */
15  
16  #include "qemu/osdep.h"
17  #include <sys/ioctl.h>
18  #include <poll.h>
19  
20  #include <linux/kvm.h>
21  
22  #include "qemu/atomic.h"
23  #include "qemu/option.h"
24  #include "qemu/config-file.h"
25  #include "qemu/error-report.h"
26  #include "qapi/error.h"
27  #include "hw/pci/msi.h"
28  #include "hw/pci/msix.h"
29  #include "hw/s390x/adapter.h"
30  #include "exec/gdbstub.h"
31  #include "sysemu/kvm_int.h"
32  #include "sysemu/runstate.h"
33  #include "sysemu/cpus.h"
34  #include "sysemu/accel-blocker.h"
35  #include "qemu/bswap.h"
36  #include "exec/memory.h"
37  #include "exec/ram_addr.h"
38  #include "qemu/event_notifier.h"
39  #include "qemu/main-loop.h"
40  #include "trace.h"
41  #include "hw/irq.h"
42  #include "qapi/visitor.h"
43  #include "qapi/qapi-types-common.h"
44  #include "qapi/qapi-visit-common.h"
45  #include "sysemu/reset.h"
46  #include "qemu/guest-random.h"
47  #include "sysemu/hw_accel.h"
48  #include "kvm-cpus.h"
49  #include "sysemu/dirtylimit.h"
50  #include "qemu/range.h"
51  
52  #include "hw/boards.h"
53  #include "sysemu/stats.h"
54  
55  /* This check must be after config-host.h is included */
56  #ifdef CONFIG_EVENTFD
57  #include <sys/eventfd.h>
58  #endif
59  
60  /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61   * need to use the real host PAGE_SIZE, as that's what KVM will use.
62   */
63  #ifdef PAGE_SIZE
64  #undef PAGE_SIZE
65  #endif
66  #define PAGE_SIZE qemu_real_host_page_size()
67  
68  #ifndef KVM_GUESTDBG_BLOCKIRQ
69  #define KVM_GUESTDBG_BLOCKIRQ 0
70  #endif
71  
72  struct KVMParkedVcpu {
73      unsigned long vcpu_id;
74      int kvm_fd;
75      QLIST_ENTRY(KVMParkedVcpu) node;
76  };
77  
78  KVMState *kvm_state;
79  bool kvm_kernel_irqchip;
80  bool kvm_split_irqchip;
81  bool kvm_async_interrupts_allowed;
82  bool kvm_halt_in_kernel_allowed;
83  bool kvm_resamplefds_allowed;
84  bool kvm_msi_via_irqfd_allowed;
85  bool kvm_gsi_routing_allowed;
86  bool kvm_gsi_direct_mapping;
87  bool kvm_allowed;
88  bool kvm_readonly_mem_allowed;
89  bool kvm_vm_attributes_allowed;
90  bool kvm_msi_use_devid;
91  static bool kvm_has_guest_debug;
92  static int kvm_sstep_flags;
93  static bool kvm_immediate_exit;
94  static hwaddr kvm_max_slot_size = ~0;
95  
96  static const KVMCapabilityInfo kvm_required_capabilites[] = {
97      KVM_CAP_INFO(USER_MEMORY),
98      KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
99      KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
100      KVM_CAP_INFO(INTERNAL_ERROR_DATA),
101      KVM_CAP_INFO(IOEVENTFD),
102      KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
103      KVM_CAP_LAST_INFO
104  };
105  
106  static NotifierList kvm_irqchip_change_notifiers =
107      NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
108  
109  struct KVMResampleFd {
110      int gsi;
111      EventNotifier *resample_event;
112      QLIST_ENTRY(KVMResampleFd) node;
113  };
114  typedef struct KVMResampleFd KVMResampleFd;
115  
116  /*
117   * Only used with split irqchip where we need to do the resample fd
118   * kick for the kernel from userspace.
119   */
120  static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
121      QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
122  
123  static QemuMutex kml_slots_lock;
124  
125  #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
126  #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
127  
128  static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
129  
130  static inline void kvm_resample_fd_remove(int gsi)
131  {
132      KVMResampleFd *rfd;
133  
134      QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
135          if (rfd->gsi == gsi) {
136              QLIST_REMOVE(rfd, node);
137              g_free(rfd);
138              break;
139          }
140      }
141  }
142  
143  static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
144  {
145      KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
146  
147      rfd->gsi = gsi;
148      rfd->resample_event = event;
149  
150      QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
151  }
152  
153  void kvm_resample_fd_notify(int gsi)
154  {
155      KVMResampleFd *rfd;
156  
157      QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
158          if (rfd->gsi == gsi) {
159              event_notifier_set(rfd->resample_event);
160              trace_kvm_resample_fd_notify(gsi);
161              return;
162          }
163      }
164  }
165  
166  unsigned int kvm_get_max_memslots(void)
167  {
168      KVMState *s = KVM_STATE(current_accel());
169  
170      return s->nr_slots;
171  }
172  
173  unsigned int kvm_get_free_memslots(void)
174  {
175      unsigned int used_slots = 0;
176      KVMState *s = kvm_state;
177      int i;
178  
179      kvm_slots_lock();
180      for (i = 0; i < s->nr_as; i++) {
181          if (!s->as[i].ml) {
182              continue;
183          }
184          used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
185      }
186      kvm_slots_unlock();
187  
188      return s->nr_slots - used_slots;
189  }
190  
191  /* Called with KVMMemoryListener.slots_lock held */
192  static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
193  {
194      KVMState *s = kvm_state;
195      int i;
196  
197      for (i = 0; i < s->nr_slots; i++) {
198          if (kml->slots[i].memory_size == 0) {
199              return &kml->slots[i];
200          }
201      }
202  
203      return NULL;
204  }
205  
206  /* Called with KVMMemoryListener.slots_lock held */
207  static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
208  {
209      KVMSlot *slot = kvm_get_free_slot(kml);
210  
211      if (slot) {
212          return slot;
213      }
214  
215      fprintf(stderr, "%s: no free slot available\n", __func__);
216      abort();
217  }
218  
219  static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
220                                           hwaddr start_addr,
221                                           hwaddr size)
222  {
223      KVMState *s = kvm_state;
224      int i;
225  
226      for (i = 0; i < s->nr_slots; i++) {
227          KVMSlot *mem = &kml->slots[i];
228  
229          if (start_addr == mem->start_addr && size == mem->memory_size) {
230              return mem;
231          }
232      }
233  
234      return NULL;
235  }
236  
237  /*
238   * Calculate and align the start address and the size of the section.
239   * Return the size. If the size is 0, the aligned section is empty.
240   */
241  static hwaddr kvm_align_section(MemoryRegionSection *section,
242                                  hwaddr *start)
243  {
244      hwaddr size = int128_get64(section->size);
245      hwaddr delta, aligned;
246  
247      /* kvm works in page size chunks, but the function may be called
248         with sub-page size and unaligned start address. Pad the start
249         address to next and truncate size to previous page boundary. */
250      aligned = ROUND_UP(section->offset_within_address_space,
251                         qemu_real_host_page_size());
252      delta = aligned - section->offset_within_address_space;
253      *start = aligned;
254      if (delta > size) {
255          return 0;
256      }
257  
258      return (size - delta) & qemu_real_host_page_mask();
259  }
260  
261  int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
262                                         hwaddr *phys_addr)
263  {
264      KVMMemoryListener *kml = &s->memory_listener;
265      int i, ret = 0;
266  
267      kvm_slots_lock();
268      for (i = 0; i < s->nr_slots; i++) {
269          KVMSlot *mem = &kml->slots[i];
270  
271          if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
272              *phys_addr = mem->start_addr + (ram - mem->ram);
273              ret = 1;
274              break;
275          }
276      }
277      kvm_slots_unlock();
278  
279      return ret;
280  }
281  
282  static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
283  {
284      KVMState *s = kvm_state;
285      struct kvm_userspace_memory_region mem;
286      int ret;
287  
288      mem.slot = slot->slot | (kml->as_id << 16);
289      mem.guest_phys_addr = slot->start_addr;
290      mem.userspace_addr = (unsigned long)slot->ram;
291      mem.flags = slot->flags;
292  
293      if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
294          /* Set the slot size to 0 before setting the slot to the desired
295           * value. This is needed based on KVM commit 75d61fbc. */
296          mem.memory_size = 0;
297          ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
298          if (ret < 0) {
299              goto err;
300          }
301      }
302      mem.memory_size = slot->memory_size;
303      ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
304      slot->old_flags = mem.flags;
305  err:
306      trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
307                                mem.memory_size, mem.userspace_addr, ret);
308      if (ret < 0) {
309          error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
310                       " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
311                       __func__, mem.slot, slot->start_addr,
312                       (uint64_t)mem.memory_size, strerror(errno));
313      }
314      return ret;
315  }
316  
317  static int do_kvm_destroy_vcpu(CPUState *cpu)
318  {
319      KVMState *s = kvm_state;
320      long mmap_size;
321      struct KVMParkedVcpu *vcpu = NULL;
322      int ret = 0;
323  
324      trace_kvm_destroy_vcpu();
325  
326      ret = kvm_arch_destroy_vcpu(cpu);
327      if (ret < 0) {
328          goto err;
329      }
330  
331      mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
332      if (mmap_size < 0) {
333          ret = mmap_size;
334          trace_kvm_failed_get_vcpu_mmap_size();
335          goto err;
336      }
337  
338      ret = munmap(cpu->kvm_run, mmap_size);
339      if (ret < 0) {
340          goto err;
341      }
342  
343      if (cpu->kvm_dirty_gfns) {
344          ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
345          if (ret < 0) {
346              goto err;
347          }
348      }
349  
350      vcpu = g_malloc0(sizeof(*vcpu));
351      vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
352      vcpu->kvm_fd = cpu->kvm_fd;
353      QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
354  err:
355      return ret;
356  }
357  
358  void kvm_destroy_vcpu(CPUState *cpu)
359  {
360      if (do_kvm_destroy_vcpu(cpu) < 0) {
361          error_report("kvm_destroy_vcpu failed");
362          exit(EXIT_FAILURE);
363      }
364  }
365  
366  static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
367  {
368      struct KVMParkedVcpu *cpu;
369  
370      QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
371          if (cpu->vcpu_id == vcpu_id) {
372              int kvm_fd;
373  
374              QLIST_REMOVE(cpu, node);
375              kvm_fd = cpu->kvm_fd;
376              g_free(cpu);
377              return kvm_fd;
378          }
379      }
380  
381      return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
382  }
383  
384  int kvm_init_vcpu(CPUState *cpu, Error **errp)
385  {
386      KVMState *s = kvm_state;
387      long mmap_size;
388      int ret;
389  
390      trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
391  
392      ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
393      if (ret < 0) {
394          error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
395                           kvm_arch_vcpu_id(cpu));
396          goto err;
397      }
398  
399      cpu->kvm_fd = ret;
400      cpu->kvm_state = s;
401      cpu->vcpu_dirty = true;
402      cpu->dirty_pages = 0;
403      cpu->throttle_us_per_full = 0;
404  
405      mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
406      if (mmap_size < 0) {
407          ret = mmap_size;
408          error_setg_errno(errp, -mmap_size,
409                           "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
410          goto err;
411      }
412  
413      cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
414                          cpu->kvm_fd, 0);
415      if (cpu->kvm_run == MAP_FAILED) {
416          ret = -errno;
417          error_setg_errno(errp, ret,
418                           "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
419                           kvm_arch_vcpu_id(cpu));
420          goto err;
421      }
422  
423      if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
424          s->coalesced_mmio_ring =
425              (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
426      }
427  
428      if (s->kvm_dirty_ring_size) {
429          /* Use MAP_SHARED to share pages with the kernel */
430          cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
431                                     PROT_READ | PROT_WRITE, MAP_SHARED,
432                                     cpu->kvm_fd,
433                                     PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
434          if (cpu->kvm_dirty_gfns == MAP_FAILED) {
435              ret = -errno;
436              goto err;
437          }
438      }
439  
440      ret = kvm_arch_init_vcpu(cpu);
441      if (ret < 0) {
442          error_setg_errno(errp, -ret,
443                           "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
444                           kvm_arch_vcpu_id(cpu));
445      }
446      cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
447  
448  err:
449      return ret;
450  }
451  
452  /*
453   * dirty pages logging control
454   */
455  
456  static int kvm_mem_flags(MemoryRegion *mr)
457  {
458      bool readonly = mr->readonly || memory_region_is_romd(mr);
459      int flags = 0;
460  
461      if (memory_region_get_dirty_log_mask(mr) != 0) {
462          flags |= KVM_MEM_LOG_DIRTY_PAGES;
463      }
464      if (readonly && kvm_readonly_mem_allowed) {
465          flags |= KVM_MEM_READONLY;
466      }
467      return flags;
468  }
469  
470  /* Called with KVMMemoryListener.slots_lock held */
471  static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
472                                   MemoryRegion *mr)
473  {
474      mem->flags = kvm_mem_flags(mr);
475  
476      /* If nothing changed effectively, no need to issue ioctl */
477      if (mem->flags == mem->old_flags) {
478          return 0;
479      }
480  
481      kvm_slot_init_dirty_bitmap(mem);
482      return kvm_set_user_memory_region(kml, mem, false);
483  }
484  
485  static int kvm_section_update_flags(KVMMemoryListener *kml,
486                                      MemoryRegionSection *section)
487  {
488      hwaddr start_addr, size, slot_size;
489      KVMSlot *mem;
490      int ret = 0;
491  
492      size = kvm_align_section(section, &start_addr);
493      if (!size) {
494          return 0;
495      }
496  
497      kvm_slots_lock();
498  
499      while (size && !ret) {
500          slot_size = MIN(kvm_max_slot_size, size);
501          mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
502          if (!mem) {
503              /* We don't have a slot if we want to trap every access. */
504              goto out;
505          }
506  
507          ret = kvm_slot_update_flags(kml, mem, section->mr);
508          start_addr += slot_size;
509          size -= slot_size;
510      }
511  
512  out:
513      kvm_slots_unlock();
514      return ret;
515  }
516  
517  static void kvm_log_start(MemoryListener *listener,
518                            MemoryRegionSection *section,
519                            int old, int new)
520  {
521      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
522      int r;
523  
524      if (old != 0) {
525          return;
526      }
527  
528      r = kvm_section_update_flags(kml, section);
529      if (r < 0) {
530          abort();
531      }
532  }
533  
534  static void kvm_log_stop(MemoryListener *listener,
535                            MemoryRegionSection *section,
536                            int old, int new)
537  {
538      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
539      int r;
540  
541      if (new != 0) {
542          return;
543      }
544  
545      r = kvm_section_update_flags(kml, section);
546      if (r < 0) {
547          abort();
548      }
549  }
550  
551  /* get kvm's dirty pages bitmap and update qemu's */
552  static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
553  {
554      ram_addr_t start = slot->ram_start_offset;
555      ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
556  
557      cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
558  }
559  
560  static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
561  {
562      memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
563  }
564  
565  #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
566  
567  /* Allocate the dirty bitmap for a slot  */
568  static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
569  {
570      if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
571          return;
572      }
573  
574      /*
575       * XXX bad kernel interface alert
576       * For dirty bitmap, kernel allocates array of size aligned to
577       * bits-per-long.  But for case when the kernel is 64bits and
578       * the userspace is 32bits, userspace can't align to the same
579       * bits-per-long, since sizeof(long) is different between kernel
580       * and user space.  This way, userspace will provide buffer which
581       * may be 4 bytes less than the kernel will use, resulting in
582       * userspace memory corruption (which is not detectable by valgrind
583       * too, in most cases).
584       * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
585       * a hope that sizeof(long) won't become >8 any time soon.
586       *
587       * Note: the granule of kvm dirty log is qemu_real_host_page_size.
588       * And mem->memory_size is aligned to it (otherwise this mem can't
589       * be registered to KVM).
590       */
591      hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
592                                          /*HOST_LONG_BITS*/ 64) / 8;
593      mem->dirty_bmap = g_malloc0(bitmap_size);
594      mem->dirty_bmap_size = bitmap_size;
595  }
596  
597  /*
598   * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
599   * succeeded, false otherwise
600   */
601  static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
602  {
603      struct kvm_dirty_log d = {};
604      int ret;
605  
606      d.dirty_bitmap = slot->dirty_bmap;
607      d.slot = slot->slot | (slot->as_id << 16);
608      ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
609  
610      if (ret == -ENOENT) {
611          /* kernel does not have dirty bitmap in this slot */
612          ret = 0;
613      }
614      if (ret) {
615          error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
616                            __func__, ret);
617      }
618      return ret == 0;
619  }
620  
621  /* Should be with all slots_lock held for the address spaces. */
622  static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
623                                       uint32_t slot_id, uint64_t offset)
624  {
625      KVMMemoryListener *kml;
626      KVMSlot *mem;
627  
628      if (as_id >= s->nr_as) {
629          return;
630      }
631  
632      kml = s->as[as_id].ml;
633      mem = &kml->slots[slot_id];
634  
635      if (!mem->memory_size || offset >=
636          (mem->memory_size / qemu_real_host_page_size())) {
637          return;
638      }
639  
640      set_bit(offset, mem->dirty_bmap);
641  }
642  
643  static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
644  {
645      /*
646       * Read the flags before the value.  Pairs with barrier in
647       * KVM's kvm_dirty_ring_push() function.
648       */
649      return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
650  }
651  
652  static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
653  {
654      /*
655       * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
656       * sees the full content of the ring:
657       *
658       * CPU0                     CPU1                         CPU2
659       * ------------------------------------------------------------------------------
660       *                                                       fill gfn0
661       *                                                       store-rel flags for gfn0
662       * load-acq flags for gfn0
663       * store-rel RESET for gfn0
664       *                          ioctl(RESET_RINGS)
665       *                            load-acq flags for gfn0
666       *                            check if flags have RESET
667       *
668       * The synchronization goes from CPU2 to CPU0 to CPU1.
669       */
670      qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
671  }
672  
673  /*
674   * Should be with all slots_lock held for the address spaces.  It returns the
675   * dirty page we've collected on this dirty ring.
676   */
677  static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
678  {
679      struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
680      uint32_t ring_size = s->kvm_dirty_ring_size;
681      uint32_t count = 0, fetch = cpu->kvm_fetch_index;
682  
683      /*
684       * It's possible that we race with vcpu creation code where the vcpu is
685       * put onto the vcpus list but not yet initialized the dirty ring
686       * structures.  If so, skip it.
687       */
688      if (!cpu->created) {
689          return 0;
690      }
691  
692      assert(dirty_gfns && ring_size);
693      trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
694  
695      while (true) {
696          cur = &dirty_gfns[fetch % ring_size];
697          if (!dirty_gfn_is_dirtied(cur)) {
698              break;
699          }
700          kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
701                                   cur->offset);
702          dirty_gfn_set_collected(cur);
703          trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
704          fetch++;
705          count++;
706      }
707      cpu->kvm_fetch_index = fetch;
708      cpu->dirty_pages += count;
709  
710      return count;
711  }
712  
713  /* Must be with slots_lock held */
714  static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
715  {
716      int ret;
717      uint64_t total = 0;
718      int64_t stamp;
719  
720      stamp = get_clock();
721  
722      if (cpu) {
723          total = kvm_dirty_ring_reap_one(s, cpu);
724      } else {
725          CPU_FOREACH(cpu) {
726              total += kvm_dirty_ring_reap_one(s, cpu);
727          }
728      }
729  
730      if (total) {
731          ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
732          assert(ret == total);
733      }
734  
735      stamp = get_clock() - stamp;
736  
737      if (total) {
738          trace_kvm_dirty_ring_reap(total, stamp / 1000);
739      }
740  
741      return total;
742  }
743  
744  /*
745   * Currently for simplicity, we must hold BQL before calling this.  We can
746   * consider to drop the BQL if we're clear with all the race conditions.
747   */
748  static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
749  {
750      uint64_t total;
751  
752      /*
753       * We need to lock all kvm slots for all address spaces here,
754       * because:
755       *
756       * (1) We need to mark dirty for dirty bitmaps in multiple slots
757       *     and for tons of pages, so it's better to take the lock here
758       *     once rather than once per page.  And more importantly,
759       *
760       * (2) We must _NOT_ publish dirty bits to the other threads
761       *     (e.g., the migration thread) via the kvm memory slot dirty
762       *     bitmaps before correctly re-protect those dirtied pages.
763       *     Otherwise we can have potential risk of data corruption if
764       *     the page data is read in the other thread before we do
765       *     reset below.
766       */
767      kvm_slots_lock();
768      total = kvm_dirty_ring_reap_locked(s, cpu);
769      kvm_slots_unlock();
770  
771      return total;
772  }
773  
774  static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
775  {
776      /* No need to do anything */
777  }
778  
779  /*
780   * Kick all vcpus out in a synchronized way.  When returned, we
781   * guarantee that every vcpu has been kicked and at least returned to
782   * userspace once.
783   */
784  static void kvm_cpu_synchronize_kick_all(void)
785  {
786      CPUState *cpu;
787  
788      CPU_FOREACH(cpu) {
789          run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
790      }
791  }
792  
793  /*
794   * Flush all the existing dirty pages to the KVM slot buffers.  When
795   * this call returns, we guarantee that all the touched dirty pages
796   * before calling this function have been put into the per-kvmslot
797   * dirty bitmap.
798   *
799   * This function must be called with BQL held.
800   */
801  static void kvm_dirty_ring_flush(void)
802  {
803      trace_kvm_dirty_ring_flush(0);
804      /*
805       * The function needs to be serialized.  Since this function
806       * should always be with BQL held, serialization is guaranteed.
807       * However, let's be sure of it.
808       */
809      assert(bql_locked());
810      /*
811       * First make sure to flush the hardware buffers by kicking all
812       * vcpus out in a synchronous way.
813       */
814      kvm_cpu_synchronize_kick_all();
815      kvm_dirty_ring_reap(kvm_state, NULL);
816      trace_kvm_dirty_ring_flush(1);
817  }
818  
819  /**
820   * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
821   *
822   * This function will first try to fetch dirty bitmap from the kernel,
823   * and then updates qemu's dirty bitmap.
824   *
825   * NOTE: caller must be with kml->slots_lock held.
826   *
827   * @kml: the KVM memory listener object
828   * @section: the memory section to sync the dirty bitmap with
829   */
830  static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
831                                             MemoryRegionSection *section)
832  {
833      KVMState *s = kvm_state;
834      KVMSlot *mem;
835      hwaddr start_addr, size;
836      hwaddr slot_size;
837  
838      size = kvm_align_section(section, &start_addr);
839      while (size) {
840          slot_size = MIN(kvm_max_slot_size, size);
841          mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
842          if (!mem) {
843              /* We don't have a slot if we want to trap every access. */
844              return;
845          }
846          if (kvm_slot_get_dirty_log(s, mem)) {
847              kvm_slot_sync_dirty_pages(mem);
848          }
849          start_addr += slot_size;
850          size -= slot_size;
851      }
852  }
853  
854  /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
855  #define KVM_CLEAR_LOG_SHIFT  6
856  #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
857  #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
858  
859  static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
860                                    uint64_t size)
861  {
862      KVMState *s = kvm_state;
863      uint64_t end, bmap_start, start_delta, bmap_npages;
864      struct kvm_clear_dirty_log d;
865      unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
866      int ret;
867  
868      /*
869       * We need to extend either the start or the size or both to
870       * satisfy the KVM interface requirement.  Firstly, do the start
871       * page alignment on 64 host pages
872       */
873      bmap_start = start & KVM_CLEAR_LOG_MASK;
874      start_delta = start - bmap_start;
875      bmap_start /= psize;
876  
877      /*
878       * The kernel interface has restriction on the size too, that either:
879       *
880       * (1) the size is 64 host pages aligned (just like the start), or
881       * (2) the size fills up until the end of the KVM memslot.
882       */
883      bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
884          << KVM_CLEAR_LOG_SHIFT;
885      end = mem->memory_size / psize;
886      if (bmap_npages > end - bmap_start) {
887          bmap_npages = end - bmap_start;
888      }
889      start_delta /= psize;
890  
891      /*
892       * Prepare the bitmap to clear dirty bits.  Here we must guarantee
893       * that we won't clear any unknown dirty bits otherwise we might
894       * accidentally clear some set bits which are not yet synced from
895       * the kernel into QEMU's bitmap, then we'll lose track of the
896       * guest modifications upon those pages (which can directly lead
897       * to guest data loss or panic after migration).
898       *
899       * Layout of the KVMSlot.dirty_bmap:
900       *
901       *                   |<-------- bmap_npages -----------..>|
902       *                                                     [1]
903       *                     start_delta         size
904       *  |----------------|-------------|------------------|------------|
905       *  ^                ^             ^                               ^
906       *  |                |             |                               |
907       * start          bmap_start     (start)                         end
908       * of memslot                                             of memslot
909       *
910       * [1] bmap_npages can be aligned to either 64 pages or the end of slot
911       */
912  
913      assert(bmap_start % BITS_PER_LONG == 0);
914      /* We should never do log_clear before log_sync */
915      assert(mem->dirty_bmap);
916      if (start_delta || bmap_npages - size / psize) {
917          /* Slow path - we need to manipulate a temp bitmap */
918          bmap_clear = bitmap_new(bmap_npages);
919          bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
920                                      bmap_start, start_delta + size / psize);
921          /*
922           * We need to fill the holes at start because that was not
923           * specified by the caller and we extended the bitmap only for
924           * 64 pages alignment
925           */
926          bitmap_clear(bmap_clear, 0, start_delta);
927          d.dirty_bitmap = bmap_clear;
928      } else {
929          /*
930           * Fast path - both start and size align well with BITS_PER_LONG
931           * (or the end of memory slot)
932           */
933          d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
934      }
935  
936      d.first_page = bmap_start;
937      /* It should never overflow.  If it happens, say something */
938      assert(bmap_npages <= UINT32_MAX);
939      d.num_pages = bmap_npages;
940      d.slot = mem->slot | (as_id << 16);
941  
942      ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
943      if (ret < 0 && ret != -ENOENT) {
944          error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
945                       "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
946                       __func__, d.slot, (uint64_t)d.first_page,
947                       (uint32_t)d.num_pages, ret);
948      } else {
949          ret = 0;
950          trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
951      }
952  
953      /*
954       * After we have updated the remote dirty bitmap, we update the
955       * cached bitmap as well for the memslot, then if another user
956       * clears the same region we know we shouldn't clear it again on
957       * the remote otherwise it's data loss as well.
958       */
959      bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
960                   size / psize);
961      /* This handles the NULL case well */
962      g_free(bmap_clear);
963      return ret;
964  }
965  
966  
967  /**
968   * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
969   *
970   * NOTE: this will be a no-op if we haven't enabled manual dirty log
971   * protection in the host kernel because in that case this operation
972   * will be done within log_sync().
973   *
974   * @kml:     the kvm memory listener
975   * @section: the memory range to clear dirty bitmap
976   */
977  static int kvm_physical_log_clear(KVMMemoryListener *kml,
978                                    MemoryRegionSection *section)
979  {
980      KVMState *s = kvm_state;
981      uint64_t start, size, offset, count;
982      KVMSlot *mem;
983      int ret = 0, i;
984  
985      if (!s->manual_dirty_log_protect) {
986          /* No need to do explicit clear */
987          return ret;
988      }
989  
990      start = section->offset_within_address_space;
991      size = int128_get64(section->size);
992  
993      if (!size) {
994          /* Nothing more we can do... */
995          return ret;
996      }
997  
998      kvm_slots_lock();
999  
1000      for (i = 0; i < s->nr_slots; i++) {
1001          mem = &kml->slots[i];
1002          /* Discard slots that are empty or do not overlap the section */
1003          if (!mem->memory_size ||
1004              mem->start_addr > start + size - 1 ||
1005              start > mem->start_addr + mem->memory_size - 1) {
1006              continue;
1007          }
1008  
1009          if (start >= mem->start_addr) {
1010              /* The slot starts before section or is aligned to it.  */
1011              offset = start - mem->start_addr;
1012              count = MIN(mem->memory_size - offset, size);
1013          } else {
1014              /* The slot starts after section.  */
1015              offset = 0;
1016              count = MIN(mem->memory_size, size - (mem->start_addr - start));
1017          }
1018          ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1019          if (ret < 0) {
1020              break;
1021          }
1022      }
1023  
1024      kvm_slots_unlock();
1025  
1026      return ret;
1027  }
1028  
1029  static void kvm_coalesce_mmio_region(MemoryListener *listener,
1030                                       MemoryRegionSection *secion,
1031                                       hwaddr start, hwaddr size)
1032  {
1033      KVMState *s = kvm_state;
1034  
1035      if (s->coalesced_mmio) {
1036          struct kvm_coalesced_mmio_zone zone;
1037  
1038          zone.addr = start;
1039          zone.size = size;
1040          zone.pad = 0;
1041  
1042          (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1043      }
1044  }
1045  
1046  static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1047                                         MemoryRegionSection *secion,
1048                                         hwaddr start, hwaddr size)
1049  {
1050      KVMState *s = kvm_state;
1051  
1052      if (s->coalesced_mmio) {
1053          struct kvm_coalesced_mmio_zone zone;
1054  
1055          zone.addr = start;
1056          zone.size = size;
1057          zone.pad = 0;
1058  
1059          (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1060      }
1061  }
1062  
1063  static void kvm_coalesce_pio_add(MemoryListener *listener,
1064                                  MemoryRegionSection *section,
1065                                  hwaddr start, hwaddr size)
1066  {
1067      KVMState *s = kvm_state;
1068  
1069      if (s->coalesced_pio) {
1070          struct kvm_coalesced_mmio_zone zone;
1071  
1072          zone.addr = start;
1073          zone.size = size;
1074          zone.pio = 1;
1075  
1076          (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1077      }
1078  }
1079  
1080  static void kvm_coalesce_pio_del(MemoryListener *listener,
1081                                  MemoryRegionSection *section,
1082                                  hwaddr start, hwaddr size)
1083  {
1084      KVMState *s = kvm_state;
1085  
1086      if (s->coalesced_pio) {
1087          struct kvm_coalesced_mmio_zone zone;
1088  
1089          zone.addr = start;
1090          zone.size = size;
1091          zone.pio = 1;
1092  
1093          (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1094       }
1095  }
1096  
1097  int kvm_check_extension(KVMState *s, unsigned int extension)
1098  {
1099      int ret;
1100  
1101      ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1102      if (ret < 0) {
1103          ret = 0;
1104      }
1105  
1106      return ret;
1107  }
1108  
1109  int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1110  {
1111      int ret;
1112  
1113      ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1114      if (ret < 0) {
1115          /* VM wide version not implemented, use global one instead */
1116          ret = kvm_check_extension(s, extension);
1117      }
1118  
1119      return ret;
1120  }
1121  
1122  typedef struct HWPoisonPage {
1123      ram_addr_t ram_addr;
1124      QLIST_ENTRY(HWPoisonPage) list;
1125  } HWPoisonPage;
1126  
1127  static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1128      QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1129  
1130  static void kvm_unpoison_all(void *param)
1131  {
1132      HWPoisonPage *page, *next_page;
1133  
1134      QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1135          QLIST_REMOVE(page, list);
1136          qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1137          g_free(page);
1138      }
1139  }
1140  
1141  void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1142  {
1143      HWPoisonPage *page;
1144  
1145      QLIST_FOREACH(page, &hwpoison_page_list, list) {
1146          if (page->ram_addr == ram_addr) {
1147              return;
1148          }
1149      }
1150      page = g_new(HWPoisonPage, 1);
1151      page->ram_addr = ram_addr;
1152      QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1153  }
1154  
1155  static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1156  {
1157  #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1158      /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1159       * endianness, but the memory core hands them in target endianness.
1160       * For example, PPC is always treated as big-endian even if running
1161       * on KVM and on PPC64LE.  Correct here.
1162       */
1163      switch (size) {
1164      case 2:
1165          val = bswap16(val);
1166          break;
1167      case 4:
1168          val = bswap32(val);
1169          break;
1170      }
1171  #endif
1172      return val;
1173  }
1174  
1175  static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1176                                    bool assign, uint32_t size, bool datamatch)
1177  {
1178      int ret;
1179      struct kvm_ioeventfd iofd = {
1180          .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1181          .addr = addr,
1182          .len = size,
1183          .flags = 0,
1184          .fd = fd,
1185      };
1186  
1187      trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1188                                   datamatch);
1189      if (!kvm_enabled()) {
1190          return -ENOSYS;
1191      }
1192  
1193      if (datamatch) {
1194          iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1195      }
1196      if (!assign) {
1197          iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1198      }
1199  
1200      ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1201  
1202      if (ret < 0) {
1203          return -errno;
1204      }
1205  
1206      return 0;
1207  }
1208  
1209  static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1210                                   bool assign, uint32_t size, bool datamatch)
1211  {
1212      struct kvm_ioeventfd kick = {
1213          .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1214          .addr = addr,
1215          .flags = KVM_IOEVENTFD_FLAG_PIO,
1216          .len = size,
1217          .fd = fd,
1218      };
1219      int r;
1220      trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1221      if (!kvm_enabled()) {
1222          return -ENOSYS;
1223      }
1224      if (datamatch) {
1225          kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1226      }
1227      if (!assign) {
1228          kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1229      }
1230      r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1231      if (r < 0) {
1232          return r;
1233      }
1234      return 0;
1235  }
1236  
1237  
1238  static const KVMCapabilityInfo *
1239  kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1240  {
1241      while (list->name) {
1242          if (!kvm_check_extension(s, list->value)) {
1243              return list;
1244          }
1245          list++;
1246      }
1247      return NULL;
1248  }
1249  
1250  void kvm_set_max_memslot_size(hwaddr max_slot_size)
1251  {
1252      g_assert(
1253          ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1254      );
1255      kvm_max_slot_size = max_slot_size;
1256  }
1257  
1258  /* Called with KVMMemoryListener.slots_lock held */
1259  static void kvm_set_phys_mem(KVMMemoryListener *kml,
1260                               MemoryRegionSection *section, bool add)
1261  {
1262      KVMSlot *mem;
1263      int err;
1264      MemoryRegion *mr = section->mr;
1265      bool writable = !mr->readonly && !mr->rom_device;
1266      hwaddr start_addr, size, slot_size, mr_offset;
1267      ram_addr_t ram_start_offset;
1268      void *ram;
1269  
1270      if (!memory_region_is_ram(mr)) {
1271          if (writable || !kvm_readonly_mem_allowed) {
1272              return;
1273          } else if (!mr->romd_mode) {
1274              /* If the memory device is not in romd_mode, then we actually want
1275               * to remove the kvm memory slot so all accesses will trap. */
1276              add = false;
1277          }
1278      }
1279  
1280      size = kvm_align_section(section, &start_addr);
1281      if (!size) {
1282          return;
1283      }
1284  
1285      /* The offset of the kvmslot within the memory region */
1286      mr_offset = section->offset_within_region + start_addr -
1287          section->offset_within_address_space;
1288  
1289      /* use aligned delta to align the ram address and offset */
1290      ram = memory_region_get_ram_ptr(mr) + mr_offset;
1291      ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1292  
1293      if (!add) {
1294          do {
1295              slot_size = MIN(kvm_max_slot_size, size);
1296              mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1297              if (!mem) {
1298                  return;
1299              }
1300              if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1301                  /*
1302                   * NOTE: We should be aware of the fact that here we're only
1303                   * doing a best effort to sync dirty bits.  No matter whether
1304                   * we're using dirty log or dirty ring, we ignored two facts:
1305                   *
1306                   * (1) dirty bits can reside in hardware buffers (PML)
1307                   *
1308                   * (2) after we collected dirty bits here, pages can be dirtied
1309                   * again before we do the final KVM_SET_USER_MEMORY_REGION to
1310                   * remove the slot.
1311                   *
1312                   * Not easy.  Let's cross the fingers until it's fixed.
1313                   */
1314                  if (kvm_state->kvm_dirty_ring_size) {
1315                      kvm_dirty_ring_reap_locked(kvm_state, NULL);
1316                      if (kvm_state->kvm_dirty_ring_with_bitmap) {
1317                          kvm_slot_sync_dirty_pages(mem);
1318                          kvm_slot_get_dirty_log(kvm_state, mem);
1319                      }
1320                  } else {
1321                      kvm_slot_get_dirty_log(kvm_state, mem);
1322                  }
1323                  kvm_slot_sync_dirty_pages(mem);
1324              }
1325  
1326              /* unregister the slot */
1327              g_free(mem->dirty_bmap);
1328              mem->dirty_bmap = NULL;
1329              mem->memory_size = 0;
1330              mem->flags = 0;
1331              err = kvm_set_user_memory_region(kml, mem, false);
1332              if (err) {
1333                  fprintf(stderr, "%s: error unregistering slot: %s\n",
1334                          __func__, strerror(-err));
1335                  abort();
1336              }
1337              start_addr += slot_size;
1338              size -= slot_size;
1339              kml->nr_used_slots--;
1340          } while (size);
1341          return;
1342      }
1343  
1344      /* register the new slot */
1345      do {
1346          slot_size = MIN(kvm_max_slot_size, size);
1347          mem = kvm_alloc_slot(kml);
1348          mem->as_id = kml->as_id;
1349          mem->memory_size = slot_size;
1350          mem->start_addr = start_addr;
1351          mem->ram_start_offset = ram_start_offset;
1352          mem->ram = ram;
1353          mem->flags = kvm_mem_flags(mr);
1354          kvm_slot_init_dirty_bitmap(mem);
1355          err = kvm_set_user_memory_region(kml, mem, true);
1356          if (err) {
1357              fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1358                      strerror(-err));
1359              abort();
1360          }
1361          start_addr += slot_size;
1362          ram_start_offset += slot_size;
1363          ram += slot_size;
1364          size -= slot_size;
1365          kml->nr_used_slots++;
1366      } while (size);
1367  }
1368  
1369  static void *kvm_dirty_ring_reaper_thread(void *data)
1370  {
1371      KVMState *s = data;
1372      struct KVMDirtyRingReaper *r = &s->reaper;
1373  
1374      rcu_register_thread();
1375  
1376      trace_kvm_dirty_ring_reaper("init");
1377  
1378      while (true) {
1379          r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1380          trace_kvm_dirty_ring_reaper("wait");
1381          /*
1382           * TODO: provide a smarter timeout rather than a constant?
1383           */
1384          sleep(1);
1385  
1386          /* keep sleeping so that dirtylimit not be interfered by reaper */
1387          if (dirtylimit_in_service()) {
1388              continue;
1389          }
1390  
1391          trace_kvm_dirty_ring_reaper("wakeup");
1392          r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1393  
1394          bql_lock();
1395          kvm_dirty_ring_reap(s, NULL);
1396          bql_unlock();
1397  
1398          r->reaper_iteration++;
1399      }
1400  
1401      trace_kvm_dirty_ring_reaper("exit");
1402  
1403      rcu_unregister_thread();
1404  
1405      return NULL;
1406  }
1407  
1408  static void kvm_dirty_ring_reaper_init(KVMState *s)
1409  {
1410      struct KVMDirtyRingReaper *r = &s->reaper;
1411  
1412      qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1413                         kvm_dirty_ring_reaper_thread,
1414                         s, QEMU_THREAD_JOINABLE);
1415  }
1416  
1417  static int kvm_dirty_ring_init(KVMState *s)
1418  {
1419      uint32_t ring_size = s->kvm_dirty_ring_size;
1420      uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1421      unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1422      int ret;
1423  
1424      s->kvm_dirty_ring_size = 0;
1425      s->kvm_dirty_ring_bytes = 0;
1426  
1427      /* Bail if the dirty ring size isn't specified */
1428      if (!ring_size) {
1429          return 0;
1430      }
1431  
1432      /*
1433       * Read the max supported pages. Fall back to dirty logging mode
1434       * if the dirty ring isn't supported.
1435       */
1436      ret = kvm_vm_check_extension(s, capability);
1437      if (ret <= 0) {
1438          capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1439          ret = kvm_vm_check_extension(s, capability);
1440      }
1441  
1442      if (ret <= 0) {
1443          warn_report("KVM dirty ring not available, using bitmap method");
1444          return 0;
1445      }
1446  
1447      if (ring_bytes > ret) {
1448          error_report("KVM dirty ring size %" PRIu32 " too big "
1449                       "(maximum is %ld).  Please use a smaller value.",
1450                       ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1451          return -EINVAL;
1452      }
1453  
1454      ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1455      if (ret) {
1456          error_report("Enabling of KVM dirty ring failed: %s. "
1457                       "Suggested minimum value is 1024.", strerror(-ret));
1458          return -EIO;
1459      }
1460  
1461      /* Enable the backup bitmap if it is supported */
1462      ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1463      if (ret > 0) {
1464          ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1465          if (ret) {
1466              error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1467                           "%s. ", strerror(-ret));
1468              return -EIO;
1469          }
1470  
1471          s->kvm_dirty_ring_with_bitmap = true;
1472      }
1473  
1474      s->kvm_dirty_ring_size = ring_size;
1475      s->kvm_dirty_ring_bytes = ring_bytes;
1476  
1477      return 0;
1478  }
1479  
1480  static void kvm_region_add(MemoryListener *listener,
1481                             MemoryRegionSection *section)
1482  {
1483      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1484      KVMMemoryUpdate *update;
1485  
1486      update = g_new0(KVMMemoryUpdate, 1);
1487      update->section = *section;
1488  
1489      QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1490  }
1491  
1492  static void kvm_region_del(MemoryListener *listener,
1493                             MemoryRegionSection *section)
1494  {
1495      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1496      KVMMemoryUpdate *update;
1497  
1498      update = g_new0(KVMMemoryUpdate, 1);
1499      update->section = *section;
1500  
1501      QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1502  }
1503  
1504  static void kvm_region_commit(MemoryListener *listener)
1505  {
1506      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1507                                            listener);
1508      KVMMemoryUpdate *u1, *u2;
1509      bool need_inhibit = false;
1510  
1511      if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1512          QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1513          return;
1514      }
1515  
1516      /*
1517       * We have to be careful when regions to add overlap with ranges to remove.
1518       * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1519       * is currently active.
1520       *
1521       * The lists are order by addresses, so it's easy to find overlaps.
1522       */
1523      u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1524      u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1525      while (u1 && u2) {
1526          Range r1, r2;
1527  
1528          range_init_nofail(&r1, u1->section.offset_within_address_space,
1529                            int128_get64(u1->section.size));
1530          range_init_nofail(&r2, u2->section.offset_within_address_space,
1531                            int128_get64(u2->section.size));
1532  
1533          if (range_overlaps_range(&r1, &r2)) {
1534              need_inhibit = true;
1535              break;
1536          }
1537          if (range_lob(&r1) < range_lob(&r2)) {
1538              u1 = QSIMPLEQ_NEXT(u1, next);
1539          } else {
1540              u2 = QSIMPLEQ_NEXT(u2, next);
1541          }
1542      }
1543  
1544      kvm_slots_lock();
1545      if (need_inhibit) {
1546          accel_ioctl_inhibit_begin();
1547      }
1548  
1549      /* Remove all memslots before adding the new ones. */
1550      while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1551          u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1552          QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1553  
1554          kvm_set_phys_mem(kml, &u1->section, false);
1555          memory_region_unref(u1->section.mr);
1556  
1557          g_free(u1);
1558      }
1559      while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1560          u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1561          QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1562  
1563          memory_region_ref(u1->section.mr);
1564          kvm_set_phys_mem(kml, &u1->section, true);
1565  
1566          g_free(u1);
1567      }
1568  
1569      if (need_inhibit) {
1570          accel_ioctl_inhibit_end();
1571      }
1572      kvm_slots_unlock();
1573  }
1574  
1575  static void kvm_log_sync(MemoryListener *listener,
1576                           MemoryRegionSection *section)
1577  {
1578      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1579  
1580      kvm_slots_lock();
1581      kvm_physical_sync_dirty_bitmap(kml, section);
1582      kvm_slots_unlock();
1583  }
1584  
1585  static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1586  {
1587      KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1588      KVMState *s = kvm_state;
1589      KVMSlot *mem;
1590      int i;
1591  
1592      /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1593      kvm_dirty_ring_flush();
1594  
1595      /*
1596       * TODO: make this faster when nr_slots is big while there are
1597       * only a few used slots (small VMs).
1598       */
1599      kvm_slots_lock();
1600      for (i = 0; i < s->nr_slots; i++) {
1601          mem = &kml->slots[i];
1602          if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1603              kvm_slot_sync_dirty_pages(mem);
1604  
1605              if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1606                  kvm_slot_get_dirty_log(s, mem)) {
1607                  kvm_slot_sync_dirty_pages(mem);
1608              }
1609  
1610              /*
1611               * This is not needed by KVM_GET_DIRTY_LOG because the
1612               * ioctl will unconditionally overwrite the whole region.
1613               * However kvm dirty ring has no such side effect.
1614               */
1615              kvm_slot_reset_dirty_pages(mem);
1616          }
1617      }
1618      kvm_slots_unlock();
1619  }
1620  
1621  static void kvm_log_clear(MemoryListener *listener,
1622                            MemoryRegionSection *section)
1623  {
1624      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1625      int r;
1626  
1627      r = kvm_physical_log_clear(kml, section);
1628      if (r < 0) {
1629          error_report_once("%s: kvm log clear failed: mr=%s "
1630                            "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1631                            section->mr->name, section->offset_within_region,
1632                            int128_get64(section->size));
1633          abort();
1634      }
1635  }
1636  
1637  static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1638                                    MemoryRegionSection *section,
1639                                    bool match_data, uint64_t data,
1640                                    EventNotifier *e)
1641  {
1642      int fd = event_notifier_get_fd(e);
1643      int r;
1644  
1645      r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1646                                 data, true, int128_get64(section->size),
1647                                 match_data);
1648      if (r < 0) {
1649          fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1650                  __func__, strerror(-r), -r);
1651          abort();
1652      }
1653  }
1654  
1655  static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1656                                    MemoryRegionSection *section,
1657                                    bool match_data, uint64_t data,
1658                                    EventNotifier *e)
1659  {
1660      int fd = event_notifier_get_fd(e);
1661      int r;
1662  
1663      r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1664                                 data, false, int128_get64(section->size),
1665                                 match_data);
1666      if (r < 0) {
1667          fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1668                  __func__, strerror(-r), -r);
1669          abort();
1670      }
1671  }
1672  
1673  static void kvm_io_ioeventfd_add(MemoryListener *listener,
1674                                   MemoryRegionSection *section,
1675                                   bool match_data, uint64_t data,
1676                                   EventNotifier *e)
1677  {
1678      int fd = event_notifier_get_fd(e);
1679      int r;
1680  
1681      r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1682                                data, true, int128_get64(section->size),
1683                                match_data);
1684      if (r < 0) {
1685          fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1686                  __func__, strerror(-r), -r);
1687          abort();
1688      }
1689  }
1690  
1691  static void kvm_io_ioeventfd_del(MemoryListener *listener,
1692                                   MemoryRegionSection *section,
1693                                   bool match_data, uint64_t data,
1694                                   EventNotifier *e)
1695  
1696  {
1697      int fd = event_notifier_get_fd(e);
1698      int r;
1699  
1700      r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1701                                data, false, int128_get64(section->size),
1702                                match_data);
1703      if (r < 0) {
1704          fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1705                  __func__, strerror(-r), -r);
1706          abort();
1707      }
1708  }
1709  
1710  void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1711                                    AddressSpace *as, int as_id, const char *name)
1712  {
1713      int i;
1714  
1715      kml->slots = g_new0(KVMSlot, s->nr_slots);
1716      kml->as_id = as_id;
1717  
1718      for (i = 0; i < s->nr_slots; i++) {
1719          kml->slots[i].slot = i;
1720      }
1721  
1722      QSIMPLEQ_INIT(&kml->transaction_add);
1723      QSIMPLEQ_INIT(&kml->transaction_del);
1724  
1725      kml->listener.region_add = kvm_region_add;
1726      kml->listener.region_del = kvm_region_del;
1727      kml->listener.commit = kvm_region_commit;
1728      kml->listener.log_start = kvm_log_start;
1729      kml->listener.log_stop = kvm_log_stop;
1730      kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1731      kml->listener.name = name;
1732  
1733      if (s->kvm_dirty_ring_size) {
1734          kml->listener.log_sync_global = kvm_log_sync_global;
1735      } else {
1736          kml->listener.log_sync = kvm_log_sync;
1737          kml->listener.log_clear = kvm_log_clear;
1738      }
1739  
1740      memory_listener_register(&kml->listener, as);
1741  
1742      for (i = 0; i < s->nr_as; ++i) {
1743          if (!s->as[i].as) {
1744              s->as[i].as = as;
1745              s->as[i].ml = kml;
1746              break;
1747          }
1748      }
1749  }
1750  
1751  static MemoryListener kvm_io_listener = {
1752      .name = "kvm-io",
1753      .coalesced_io_add = kvm_coalesce_pio_add,
1754      .coalesced_io_del = kvm_coalesce_pio_del,
1755      .eventfd_add = kvm_io_ioeventfd_add,
1756      .eventfd_del = kvm_io_ioeventfd_del,
1757      .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1758  };
1759  
1760  int kvm_set_irq(KVMState *s, int irq, int level)
1761  {
1762      struct kvm_irq_level event;
1763      int ret;
1764  
1765      assert(kvm_async_interrupts_enabled());
1766  
1767      event.level = level;
1768      event.irq = irq;
1769      ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1770      if (ret < 0) {
1771          perror("kvm_set_irq");
1772          abort();
1773      }
1774  
1775      return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1776  }
1777  
1778  #ifdef KVM_CAP_IRQ_ROUTING
1779  typedef struct KVMMSIRoute {
1780      struct kvm_irq_routing_entry kroute;
1781      QTAILQ_ENTRY(KVMMSIRoute) entry;
1782  } KVMMSIRoute;
1783  
1784  static void set_gsi(KVMState *s, unsigned int gsi)
1785  {
1786      set_bit(gsi, s->used_gsi_bitmap);
1787  }
1788  
1789  static void clear_gsi(KVMState *s, unsigned int gsi)
1790  {
1791      clear_bit(gsi, s->used_gsi_bitmap);
1792  }
1793  
1794  void kvm_init_irq_routing(KVMState *s)
1795  {
1796      int gsi_count;
1797  
1798      gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1799      if (gsi_count > 0) {
1800          /* Round up so we can search ints using ffs */
1801          s->used_gsi_bitmap = bitmap_new(gsi_count);
1802          s->gsi_count = gsi_count;
1803      }
1804  
1805      s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1806      s->nr_allocated_irq_routes = 0;
1807  
1808      kvm_arch_init_irq_routing(s);
1809  }
1810  
1811  void kvm_irqchip_commit_routes(KVMState *s)
1812  {
1813      int ret;
1814  
1815      if (kvm_gsi_direct_mapping()) {
1816          return;
1817      }
1818  
1819      if (!kvm_gsi_routing_enabled()) {
1820          return;
1821      }
1822  
1823      s->irq_routes->flags = 0;
1824      trace_kvm_irqchip_commit_routes();
1825      ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1826      assert(ret == 0);
1827  }
1828  
1829  static void kvm_add_routing_entry(KVMState *s,
1830                                    struct kvm_irq_routing_entry *entry)
1831  {
1832      struct kvm_irq_routing_entry *new;
1833      int n, size;
1834  
1835      if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1836          n = s->nr_allocated_irq_routes * 2;
1837          if (n < 64) {
1838              n = 64;
1839          }
1840          size = sizeof(struct kvm_irq_routing);
1841          size += n * sizeof(*new);
1842          s->irq_routes = g_realloc(s->irq_routes, size);
1843          s->nr_allocated_irq_routes = n;
1844      }
1845      n = s->irq_routes->nr++;
1846      new = &s->irq_routes->entries[n];
1847  
1848      *new = *entry;
1849  
1850      set_gsi(s, entry->gsi);
1851  }
1852  
1853  static int kvm_update_routing_entry(KVMState *s,
1854                                      struct kvm_irq_routing_entry *new_entry)
1855  {
1856      struct kvm_irq_routing_entry *entry;
1857      int n;
1858  
1859      for (n = 0; n < s->irq_routes->nr; n++) {
1860          entry = &s->irq_routes->entries[n];
1861          if (entry->gsi != new_entry->gsi) {
1862              continue;
1863          }
1864  
1865          if(!memcmp(entry, new_entry, sizeof *entry)) {
1866              return 0;
1867          }
1868  
1869          *entry = *new_entry;
1870  
1871          return 0;
1872      }
1873  
1874      return -ESRCH;
1875  }
1876  
1877  void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1878  {
1879      struct kvm_irq_routing_entry e = {};
1880  
1881      assert(pin < s->gsi_count);
1882  
1883      e.gsi = irq;
1884      e.type = KVM_IRQ_ROUTING_IRQCHIP;
1885      e.flags = 0;
1886      e.u.irqchip.irqchip = irqchip;
1887      e.u.irqchip.pin = pin;
1888      kvm_add_routing_entry(s, &e);
1889  }
1890  
1891  void kvm_irqchip_release_virq(KVMState *s, int virq)
1892  {
1893      struct kvm_irq_routing_entry *e;
1894      int i;
1895  
1896      if (kvm_gsi_direct_mapping()) {
1897          return;
1898      }
1899  
1900      for (i = 0; i < s->irq_routes->nr; i++) {
1901          e = &s->irq_routes->entries[i];
1902          if (e->gsi == virq) {
1903              s->irq_routes->nr--;
1904              *e = s->irq_routes->entries[s->irq_routes->nr];
1905          }
1906      }
1907      clear_gsi(s, virq);
1908      kvm_arch_release_virq_post(virq);
1909      trace_kvm_irqchip_release_virq(virq);
1910  }
1911  
1912  void kvm_irqchip_add_change_notifier(Notifier *n)
1913  {
1914      notifier_list_add(&kvm_irqchip_change_notifiers, n);
1915  }
1916  
1917  void kvm_irqchip_remove_change_notifier(Notifier *n)
1918  {
1919      notifier_remove(n);
1920  }
1921  
1922  void kvm_irqchip_change_notify(void)
1923  {
1924      notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1925  }
1926  
1927  static int kvm_irqchip_get_virq(KVMState *s)
1928  {
1929      int next_virq;
1930  
1931      /* Return the lowest unused GSI in the bitmap */
1932      next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1933      if (next_virq >= s->gsi_count) {
1934          return -ENOSPC;
1935      } else {
1936          return next_virq;
1937      }
1938  }
1939  
1940  int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1941  {
1942      struct kvm_msi msi;
1943  
1944      msi.address_lo = (uint32_t)msg.address;
1945      msi.address_hi = msg.address >> 32;
1946      msi.data = le32_to_cpu(msg.data);
1947      msi.flags = 0;
1948      memset(msi.pad, 0, sizeof(msi.pad));
1949  
1950      return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1951  }
1952  
1953  int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1954  {
1955      struct kvm_irq_routing_entry kroute = {};
1956      int virq;
1957      KVMState *s = c->s;
1958      MSIMessage msg = {0, 0};
1959  
1960      if (pci_available && dev) {
1961          msg = pci_get_msi_message(dev, vector);
1962      }
1963  
1964      if (kvm_gsi_direct_mapping()) {
1965          return kvm_arch_msi_data_to_gsi(msg.data);
1966      }
1967  
1968      if (!kvm_gsi_routing_enabled()) {
1969          return -ENOSYS;
1970      }
1971  
1972      virq = kvm_irqchip_get_virq(s);
1973      if (virq < 0) {
1974          return virq;
1975      }
1976  
1977      kroute.gsi = virq;
1978      kroute.type = KVM_IRQ_ROUTING_MSI;
1979      kroute.flags = 0;
1980      kroute.u.msi.address_lo = (uint32_t)msg.address;
1981      kroute.u.msi.address_hi = msg.address >> 32;
1982      kroute.u.msi.data = le32_to_cpu(msg.data);
1983      if (pci_available && kvm_msi_devid_required()) {
1984          kroute.flags = KVM_MSI_VALID_DEVID;
1985          kroute.u.msi.devid = pci_requester_id(dev);
1986      }
1987      if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1988          kvm_irqchip_release_virq(s, virq);
1989          return -EINVAL;
1990      }
1991  
1992      trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1993                                      vector, virq);
1994  
1995      kvm_add_routing_entry(s, &kroute);
1996      kvm_arch_add_msi_route_post(&kroute, vector, dev);
1997      c->changes++;
1998  
1999      return virq;
2000  }
2001  
2002  int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2003                                   PCIDevice *dev)
2004  {
2005      struct kvm_irq_routing_entry kroute = {};
2006  
2007      if (kvm_gsi_direct_mapping()) {
2008          return 0;
2009      }
2010  
2011      if (!kvm_irqchip_in_kernel()) {
2012          return -ENOSYS;
2013      }
2014  
2015      kroute.gsi = virq;
2016      kroute.type = KVM_IRQ_ROUTING_MSI;
2017      kroute.flags = 0;
2018      kroute.u.msi.address_lo = (uint32_t)msg.address;
2019      kroute.u.msi.address_hi = msg.address >> 32;
2020      kroute.u.msi.data = le32_to_cpu(msg.data);
2021      if (pci_available && kvm_msi_devid_required()) {
2022          kroute.flags = KVM_MSI_VALID_DEVID;
2023          kroute.u.msi.devid = pci_requester_id(dev);
2024      }
2025      if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2026          return -EINVAL;
2027      }
2028  
2029      trace_kvm_irqchip_update_msi_route(virq);
2030  
2031      return kvm_update_routing_entry(s, &kroute);
2032  }
2033  
2034  static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2035                                      EventNotifier *resample, int virq,
2036                                      bool assign)
2037  {
2038      int fd = event_notifier_get_fd(event);
2039      int rfd = resample ? event_notifier_get_fd(resample) : -1;
2040  
2041      struct kvm_irqfd irqfd = {
2042          .fd = fd,
2043          .gsi = virq,
2044          .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2045      };
2046  
2047      if (rfd != -1) {
2048          assert(assign);
2049          if (kvm_irqchip_is_split()) {
2050              /*
2051               * When the slow irqchip (e.g. IOAPIC) is in the
2052               * userspace, KVM kernel resamplefd will not work because
2053               * the EOI of the interrupt will be delivered to userspace
2054               * instead, so the KVM kernel resamplefd kick will be
2055               * skipped.  The userspace here mimics what the kernel
2056               * provides with resamplefd, remember the resamplefd and
2057               * kick it when we receive EOI of this IRQ.
2058               *
2059               * This is hackery because IOAPIC is mostly bypassed
2060               * (except EOI broadcasts) when irqfd is used.  However
2061               * this can bring much performance back for split irqchip
2062               * with INTx IRQs (for VFIO, this gives 93% perf of the
2063               * full fast path, which is 46% perf boost comparing to
2064               * the INTx slow path).
2065               */
2066              kvm_resample_fd_insert(virq, resample);
2067          } else {
2068              irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2069              irqfd.resamplefd = rfd;
2070          }
2071      } else if (!assign) {
2072          if (kvm_irqchip_is_split()) {
2073              kvm_resample_fd_remove(virq);
2074          }
2075      }
2076  
2077      return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2078  }
2079  
2080  int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2081  {
2082      struct kvm_irq_routing_entry kroute = {};
2083      int virq;
2084  
2085      if (!kvm_gsi_routing_enabled()) {
2086          return -ENOSYS;
2087      }
2088  
2089      virq = kvm_irqchip_get_virq(s);
2090      if (virq < 0) {
2091          return virq;
2092      }
2093  
2094      kroute.gsi = virq;
2095      kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2096      kroute.flags = 0;
2097      kroute.u.adapter.summary_addr = adapter->summary_addr;
2098      kroute.u.adapter.ind_addr = adapter->ind_addr;
2099      kroute.u.adapter.summary_offset = adapter->summary_offset;
2100      kroute.u.adapter.ind_offset = adapter->ind_offset;
2101      kroute.u.adapter.adapter_id = adapter->adapter_id;
2102  
2103      kvm_add_routing_entry(s, &kroute);
2104  
2105      return virq;
2106  }
2107  
2108  int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2109  {
2110      struct kvm_irq_routing_entry kroute = {};
2111      int virq;
2112  
2113      if (!kvm_gsi_routing_enabled()) {
2114          return -ENOSYS;
2115      }
2116      if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2117          return -ENOSYS;
2118      }
2119      virq = kvm_irqchip_get_virq(s);
2120      if (virq < 0) {
2121          return virq;
2122      }
2123  
2124      kroute.gsi = virq;
2125      kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2126      kroute.flags = 0;
2127      kroute.u.hv_sint.vcpu = vcpu;
2128      kroute.u.hv_sint.sint = sint;
2129  
2130      kvm_add_routing_entry(s, &kroute);
2131      kvm_irqchip_commit_routes(s);
2132  
2133      return virq;
2134  }
2135  
2136  #else /* !KVM_CAP_IRQ_ROUTING */
2137  
2138  void kvm_init_irq_routing(KVMState *s)
2139  {
2140  }
2141  
2142  void kvm_irqchip_release_virq(KVMState *s, int virq)
2143  {
2144  }
2145  
2146  int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2147  {
2148      abort();
2149  }
2150  
2151  int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2152  {
2153      return -ENOSYS;
2154  }
2155  
2156  int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2157  {
2158      return -ENOSYS;
2159  }
2160  
2161  int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2162  {
2163      return -ENOSYS;
2164  }
2165  
2166  static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2167                                      EventNotifier *resample, int virq,
2168                                      bool assign)
2169  {
2170      abort();
2171  }
2172  
2173  int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2174  {
2175      return -ENOSYS;
2176  }
2177  #endif /* !KVM_CAP_IRQ_ROUTING */
2178  
2179  int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2180                                         EventNotifier *rn, int virq)
2181  {
2182      return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2183  }
2184  
2185  int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2186                                            int virq)
2187  {
2188      return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2189  }
2190  
2191  int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2192                                     EventNotifier *rn, qemu_irq irq)
2193  {
2194      gpointer key, gsi;
2195      gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2196  
2197      if (!found) {
2198          return -ENXIO;
2199      }
2200      return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2201  }
2202  
2203  int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2204                                        qemu_irq irq)
2205  {
2206      gpointer key, gsi;
2207      gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2208  
2209      if (!found) {
2210          return -ENXIO;
2211      }
2212      return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2213  }
2214  
2215  void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2216  {
2217      g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2218  }
2219  
2220  static void kvm_irqchip_create(KVMState *s)
2221  {
2222      int ret;
2223  
2224      assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2225      if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2226          ;
2227      } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2228          ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2229          if (ret < 0) {
2230              fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2231              exit(1);
2232          }
2233      } else {
2234          return;
2235      }
2236  
2237      if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2238          fprintf(stderr, "kvm: irqfd not implemented\n");
2239          exit(1);
2240      }
2241  
2242      /* First probe and see if there's a arch-specific hook to create the
2243       * in-kernel irqchip for us */
2244      ret = kvm_arch_irqchip_create(s);
2245      if (ret == 0) {
2246          if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2247              error_report("Split IRQ chip mode not supported.");
2248              exit(1);
2249          } else {
2250              ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2251          }
2252      }
2253      if (ret < 0) {
2254          fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2255          exit(1);
2256      }
2257  
2258      kvm_kernel_irqchip = true;
2259      /* If we have an in-kernel IRQ chip then we must have asynchronous
2260       * interrupt delivery (though the reverse is not necessarily true)
2261       */
2262      kvm_async_interrupts_allowed = true;
2263      kvm_halt_in_kernel_allowed = true;
2264  
2265      kvm_init_irq_routing(s);
2266  
2267      s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2268  }
2269  
2270  /* Find number of supported CPUs using the recommended
2271   * procedure from the kernel API documentation to cope with
2272   * older kernels that may be missing capabilities.
2273   */
2274  static int kvm_recommended_vcpus(KVMState *s)
2275  {
2276      int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2277      return (ret) ? ret : 4;
2278  }
2279  
2280  static int kvm_max_vcpus(KVMState *s)
2281  {
2282      int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2283      return (ret) ? ret : kvm_recommended_vcpus(s);
2284  }
2285  
2286  static int kvm_max_vcpu_id(KVMState *s)
2287  {
2288      int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2289      return (ret) ? ret : kvm_max_vcpus(s);
2290  }
2291  
2292  bool kvm_vcpu_id_is_valid(int vcpu_id)
2293  {
2294      KVMState *s = KVM_STATE(current_accel());
2295      return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2296  }
2297  
2298  bool kvm_dirty_ring_enabled(void)
2299  {
2300      return kvm_state->kvm_dirty_ring_size ? true : false;
2301  }
2302  
2303  static void query_stats_cb(StatsResultList **result, StatsTarget target,
2304                             strList *names, strList *targets, Error **errp);
2305  static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2306  
2307  uint32_t kvm_dirty_ring_size(void)
2308  {
2309      return kvm_state->kvm_dirty_ring_size;
2310  }
2311  
2312  static int kvm_init(MachineState *ms)
2313  {
2314      MachineClass *mc = MACHINE_GET_CLASS(ms);
2315      static const char upgrade_note[] =
2316          "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2317          "(see http://sourceforge.net/projects/kvm).\n";
2318      const struct {
2319          const char *name;
2320          int num;
2321      } num_cpus[] = {
2322          { "SMP",          ms->smp.cpus },
2323          { "hotpluggable", ms->smp.max_cpus },
2324          { /* end of list */ }
2325      }, *nc = num_cpus;
2326      int soft_vcpus_limit, hard_vcpus_limit;
2327      KVMState *s;
2328      const KVMCapabilityInfo *missing_cap;
2329      int ret;
2330      int type;
2331      uint64_t dirty_log_manual_caps;
2332  
2333      qemu_mutex_init(&kml_slots_lock);
2334  
2335      s = KVM_STATE(ms->accelerator);
2336  
2337      /*
2338       * On systems where the kernel can support different base page
2339       * sizes, host page size may be different from TARGET_PAGE_SIZE,
2340       * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2341       * page size for the system though.
2342       */
2343      assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2344  
2345      s->sigmask_len = 8;
2346      accel_blocker_init();
2347  
2348  #ifdef KVM_CAP_SET_GUEST_DEBUG
2349      QTAILQ_INIT(&s->kvm_sw_breakpoints);
2350  #endif
2351      QLIST_INIT(&s->kvm_parked_vcpus);
2352      s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
2353      if (s->fd == -1) {
2354          fprintf(stderr, "Could not access KVM kernel module: %m\n");
2355          ret = -errno;
2356          goto err;
2357      }
2358  
2359      ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2360      if (ret < KVM_API_VERSION) {
2361          if (ret >= 0) {
2362              ret = -EINVAL;
2363          }
2364          fprintf(stderr, "kvm version too old\n");
2365          goto err;
2366      }
2367  
2368      if (ret > KVM_API_VERSION) {
2369          ret = -EINVAL;
2370          fprintf(stderr, "kvm version not supported\n");
2371          goto err;
2372      }
2373  
2374      kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2375      s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2376  
2377      /* If unspecified, use the default value */
2378      if (!s->nr_slots) {
2379          s->nr_slots = 32;
2380      }
2381  
2382      s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2383      if (s->nr_as <= 1) {
2384          s->nr_as = 1;
2385      }
2386      s->as = g_new0(struct KVMAs, s->nr_as);
2387  
2388      if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2389          g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2390                                                              "kvm-type",
2391                                                              &error_abort);
2392          type = mc->kvm_type(ms, kvm_type);
2393      } else if (mc->kvm_type) {
2394          type = mc->kvm_type(ms, NULL);
2395      } else {
2396          type = kvm_arch_get_default_type(ms);
2397      }
2398  
2399      if (type < 0) {
2400          ret = -EINVAL;
2401          goto err;
2402      }
2403  
2404      do {
2405          ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2406      } while (ret == -EINTR);
2407  
2408      if (ret < 0) {
2409          fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2410                  strerror(-ret));
2411  
2412  #ifdef TARGET_S390X
2413          if (ret == -EINVAL) {
2414              fprintf(stderr,
2415                      "Host kernel setup problem detected. Please verify:\n");
2416              fprintf(stderr, "- for kernels supporting the switch_amode or"
2417                      " user_mode parameters, whether\n");
2418              fprintf(stderr,
2419                      "  user space is running in primary address space\n");
2420              fprintf(stderr,
2421                      "- for kernels supporting the vm.allocate_pgste sysctl, "
2422                      "whether it is enabled\n");
2423          }
2424  #elif defined(TARGET_PPC)
2425          if (ret == -EINVAL) {
2426              fprintf(stderr,
2427                      "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2428                      (type == 2) ? "pr" : "hv");
2429          }
2430  #endif
2431          goto err;
2432      }
2433  
2434      s->vmfd = ret;
2435  
2436      /* check the vcpu limits */
2437      soft_vcpus_limit = kvm_recommended_vcpus(s);
2438      hard_vcpus_limit = kvm_max_vcpus(s);
2439  
2440      while (nc->name) {
2441          if (nc->num > soft_vcpus_limit) {
2442              warn_report("Number of %s cpus requested (%d) exceeds "
2443                          "the recommended cpus supported by KVM (%d)",
2444                          nc->name, nc->num, soft_vcpus_limit);
2445  
2446              if (nc->num > hard_vcpus_limit) {
2447                  fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2448                          "the maximum cpus supported by KVM (%d)\n",
2449                          nc->name, nc->num, hard_vcpus_limit);
2450                  exit(1);
2451              }
2452          }
2453          nc++;
2454      }
2455  
2456      missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2457      if (!missing_cap) {
2458          missing_cap =
2459              kvm_check_extension_list(s, kvm_arch_required_capabilities);
2460      }
2461      if (missing_cap) {
2462          ret = -EINVAL;
2463          fprintf(stderr, "kvm does not support %s\n%s",
2464                  missing_cap->name, upgrade_note);
2465          goto err;
2466      }
2467  
2468      s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2469      s->coalesced_pio = s->coalesced_mmio &&
2470                         kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2471  
2472      /*
2473       * Enable KVM dirty ring if supported, otherwise fall back to
2474       * dirty logging mode
2475       */
2476      ret = kvm_dirty_ring_init(s);
2477      if (ret < 0) {
2478          goto err;
2479      }
2480  
2481      /*
2482       * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2483       * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2484       * page is wr-protected initially, which is against how kvm dirty ring is
2485       * usage - kvm dirty ring requires all pages are wr-protected at the very
2486       * beginning.  Enabling this feature for dirty ring causes data corruption.
2487       *
2488       * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2489       * we may expect a higher stall time when starting the migration.  In the
2490       * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2491       * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2492       * guest pages.
2493       */
2494      if (!s->kvm_dirty_ring_size) {
2495          dirty_log_manual_caps =
2496              kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2497          dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2498                                    KVM_DIRTY_LOG_INITIALLY_SET);
2499          s->manual_dirty_log_protect = dirty_log_manual_caps;
2500          if (dirty_log_manual_caps) {
2501              ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2502                                      dirty_log_manual_caps);
2503              if (ret) {
2504                  warn_report("Trying to enable capability %"PRIu64" of "
2505                              "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2506                              "Falling back to the legacy mode. ",
2507                              dirty_log_manual_caps);
2508                  s->manual_dirty_log_protect = 0;
2509              }
2510          }
2511      }
2512  
2513  #ifdef KVM_CAP_VCPU_EVENTS
2514      s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2515  #endif
2516      s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2517  
2518      s->irq_set_ioctl = KVM_IRQ_LINE;
2519      if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2520          s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2521      }
2522  
2523      kvm_readonly_mem_allowed =
2524          (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2525  
2526      kvm_resamplefds_allowed =
2527          (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2528  
2529      kvm_vm_attributes_allowed =
2530          (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2531  
2532  #ifdef KVM_CAP_SET_GUEST_DEBUG
2533      kvm_has_guest_debug =
2534          (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2535  #endif
2536  
2537      kvm_sstep_flags = 0;
2538      if (kvm_has_guest_debug) {
2539          kvm_sstep_flags = SSTEP_ENABLE;
2540  
2541  #if defined KVM_CAP_SET_GUEST_DEBUG2
2542          int guest_debug_flags =
2543              kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2544  
2545          if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2546              kvm_sstep_flags |= SSTEP_NOIRQ;
2547          }
2548  #endif
2549      }
2550  
2551      kvm_state = s;
2552  
2553      ret = kvm_arch_init(ms, s);
2554      if (ret < 0) {
2555          goto err;
2556      }
2557  
2558      if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2559          s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2560      }
2561  
2562      qemu_register_reset(kvm_unpoison_all, NULL);
2563  
2564      if (s->kernel_irqchip_allowed) {
2565          kvm_irqchip_create(s);
2566      }
2567  
2568      s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2569      s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2570      s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2571      s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2572  
2573      kvm_memory_listener_register(s, &s->memory_listener,
2574                                   &address_space_memory, 0, "kvm-memory");
2575      memory_listener_register(&kvm_io_listener,
2576                               &address_space_io);
2577  
2578      s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2579      if (!s->sync_mmu) {
2580          ret = ram_block_discard_disable(true);
2581          assert(!ret);
2582      }
2583  
2584      if (s->kvm_dirty_ring_size) {
2585          kvm_dirty_ring_reaper_init(s);
2586      }
2587  
2588      if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2589          add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2590                              query_stats_schemas_cb);
2591      }
2592  
2593      return 0;
2594  
2595  err:
2596      assert(ret < 0);
2597      if (s->vmfd >= 0) {
2598          close(s->vmfd);
2599      }
2600      if (s->fd != -1) {
2601          close(s->fd);
2602      }
2603      g_free(s->as);
2604      g_free(s->memory_listener.slots);
2605  
2606      return ret;
2607  }
2608  
2609  void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2610  {
2611      s->sigmask_len = sigmask_len;
2612  }
2613  
2614  static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2615                            int size, uint32_t count)
2616  {
2617      int i;
2618      uint8_t *ptr = data;
2619  
2620      for (i = 0; i < count; i++) {
2621          address_space_rw(&address_space_io, port, attrs,
2622                           ptr, size,
2623                           direction == KVM_EXIT_IO_OUT);
2624          ptr += size;
2625      }
2626  }
2627  
2628  static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2629  {
2630      int i;
2631  
2632      fprintf(stderr, "KVM internal error. Suberror: %d\n",
2633              run->internal.suberror);
2634  
2635      for (i = 0; i < run->internal.ndata; ++i) {
2636          fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2637                  i, (uint64_t)run->internal.data[i]);
2638      }
2639      if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2640          fprintf(stderr, "emulation failure\n");
2641          if (!kvm_arch_stop_on_emulation_error(cpu)) {
2642              cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2643              return EXCP_INTERRUPT;
2644          }
2645      }
2646      /* FIXME: Should trigger a qmp message to let management know
2647       * something went wrong.
2648       */
2649      return -1;
2650  }
2651  
2652  void kvm_flush_coalesced_mmio_buffer(void)
2653  {
2654      KVMState *s = kvm_state;
2655  
2656      if (!s || s->coalesced_flush_in_progress) {
2657          return;
2658      }
2659  
2660      s->coalesced_flush_in_progress = true;
2661  
2662      if (s->coalesced_mmio_ring) {
2663          struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2664          while (ring->first != ring->last) {
2665              struct kvm_coalesced_mmio *ent;
2666  
2667              ent = &ring->coalesced_mmio[ring->first];
2668  
2669              if (ent->pio == 1) {
2670                  address_space_write(&address_space_io, ent->phys_addr,
2671                                      MEMTXATTRS_UNSPECIFIED, ent->data,
2672                                      ent->len);
2673              } else {
2674                  cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2675              }
2676              smp_wmb();
2677              ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2678          }
2679      }
2680  
2681      s->coalesced_flush_in_progress = false;
2682  }
2683  
2684  bool kvm_cpu_check_are_resettable(void)
2685  {
2686      return kvm_arch_cpu_check_are_resettable();
2687  }
2688  
2689  static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2690  {
2691      if (!cpu->vcpu_dirty) {
2692          int ret = kvm_arch_get_registers(cpu);
2693          if (ret) {
2694              error_report("Failed to get registers: %s", strerror(-ret));
2695              cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2696              vm_stop(RUN_STATE_INTERNAL_ERROR);
2697          }
2698  
2699          cpu->vcpu_dirty = true;
2700      }
2701  }
2702  
2703  void kvm_cpu_synchronize_state(CPUState *cpu)
2704  {
2705      if (!cpu->vcpu_dirty) {
2706          run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2707      }
2708  }
2709  
2710  static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2711  {
2712      int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2713      if (ret) {
2714          error_report("Failed to put registers after reset: %s", strerror(-ret));
2715          cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2716          vm_stop(RUN_STATE_INTERNAL_ERROR);
2717      }
2718  
2719      cpu->vcpu_dirty = false;
2720  }
2721  
2722  void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2723  {
2724      run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2725  }
2726  
2727  static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2728  {
2729      int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2730      if (ret) {
2731          error_report("Failed to put registers after init: %s", strerror(-ret));
2732          exit(1);
2733      }
2734  
2735      cpu->vcpu_dirty = false;
2736  }
2737  
2738  void kvm_cpu_synchronize_post_init(CPUState *cpu)
2739  {
2740      run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2741  }
2742  
2743  static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2744  {
2745      cpu->vcpu_dirty = true;
2746  }
2747  
2748  void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2749  {
2750      run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2751  }
2752  
2753  #ifdef KVM_HAVE_MCE_INJECTION
2754  static __thread void *pending_sigbus_addr;
2755  static __thread int pending_sigbus_code;
2756  static __thread bool have_sigbus_pending;
2757  #endif
2758  
2759  static void kvm_cpu_kick(CPUState *cpu)
2760  {
2761      qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2762  }
2763  
2764  static void kvm_cpu_kick_self(void)
2765  {
2766      if (kvm_immediate_exit) {
2767          kvm_cpu_kick(current_cpu);
2768      } else {
2769          qemu_cpu_kick_self();
2770      }
2771  }
2772  
2773  static void kvm_eat_signals(CPUState *cpu)
2774  {
2775      struct timespec ts = { 0, 0 };
2776      siginfo_t siginfo;
2777      sigset_t waitset;
2778      sigset_t chkset;
2779      int r;
2780  
2781      if (kvm_immediate_exit) {
2782          qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2783          /* Write kvm_run->immediate_exit before the cpu->exit_request
2784           * write in kvm_cpu_exec.
2785           */
2786          smp_wmb();
2787          return;
2788      }
2789  
2790      sigemptyset(&waitset);
2791      sigaddset(&waitset, SIG_IPI);
2792  
2793      do {
2794          r = sigtimedwait(&waitset, &siginfo, &ts);
2795          if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2796              perror("sigtimedwait");
2797              exit(1);
2798          }
2799  
2800          r = sigpending(&chkset);
2801          if (r == -1) {
2802              perror("sigpending");
2803              exit(1);
2804          }
2805      } while (sigismember(&chkset, SIG_IPI));
2806  }
2807  
2808  int kvm_cpu_exec(CPUState *cpu)
2809  {
2810      struct kvm_run *run = cpu->kvm_run;
2811      int ret, run_ret;
2812  
2813      trace_kvm_cpu_exec();
2814  
2815      if (kvm_arch_process_async_events(cpu)) {
2816          qatomic_set(&cpu->exit_request, 0);
2817          return EXCP_HLT;
2818      }
2819  
2820      bql_unlock();
2821      cpu_exec_start(cpu);
2822  
2823      do {
2824          MemTxAttrs attrs;
2825  
2826          if (cpu->vcpu_dirty) {
2827              ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2828              if (ret) {
2829                  error_report("Failed to put registers after init: %s",
2830                               strerror(-ret));
2831                  ret = -1;
2832                  break;
2833              }
2834  
2835              cpu->vcpu_dirty = false;
2836          }
2837  
2838          kvm_arch_pre_run(cpu, run);
2839          if (qatomic_read(&cpu->exit_request)) {
2840  	    trace_kvm_interrupt_exit_request();
2841              /*
2842               * KVM requires us to reenter the kernel after IO exits to complete
2843               * instruction emulation. This self-signal will ensure that we
2844               * leave ASAP again.
2845               */
2846              kvm_cpu_kick_self();
2847          }
2848  
2849          /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2850           * Matching barrier in kvm_eat_signals.
2851           */
2852          smp_rmb();
2853  
2854          run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2855  
2856          attrs = kvm_arch_post_run(cpu, run);
2857  
2858  #ifdef KVM_HAVE_MCE_INJECTION
2859          if (unlikely(have_sigbus_pending)) {
2860              bql_lock();
2861              kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2862                                      pending_sigbus_addr);
2863              have_sigbus_pending = false;
2864              bql_unlock();
2865          }
2866  #endif
2867  
2868          if (run_ret < 0) {
2869              if (run_ret == -EINTR || run_ret == -EAGAIN) {
2870                  trace_kvm_io_window_exit();
2871                  kvm_eat_signals(cpu);
2872                  ret = EXCP_INTERRUPT;
2873                  break;
2874              }
2875              fprintf(stderr, "error: kvm run failed %s\n",
2876                      strerror(-run_ret));
2877  #ifdef TARGET_PPC
2878              if (run_ret == -EBUSY) {
2879                  fprintf(stderr,
2880                          "This is probably because your SMT is enabled.\n"
2881                          "VCPU can only run on primary threads with all "
2882                          "secondary threads offline.\n");
2883              }
2884  #endif
2885              ret = -1;
2886              break;
2887          }
2888  
2889          trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2890          switch (run->exit_reason) {
2891          case KVM_EXIT_IO:
2892              /* Called outside BQL */
2893              kvm_handle_io(run->io.port, attrs,
2894                            (uint8_t *)run + run->io.data_offset,
2895                            run->io.direction,
2896                            run->io.size,
2897                            run->io.count);
2898              ret = 0;
2899              break;
2900          case KVM_EXIT_MMIO:
2901              /* Called outside BQL */
2902              address_space_rw(&address_space_memory,
2903                               run->mmio.phys_addr, attrs,
2904                               run->mmio.data,
2905                               run->mmio.len,
2906                               run->mmio.is_write);
2907              ret = 0;
2908              break;
2909          case KVM_EXIT_IRQ_WINDOW_OPEN:
2910              ret = EXCP_INTERRUPT;
2911              break;
2912          case KVM_EXIT_SHUTDOWN:
2913              qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2914              ret = EXCP_INTERRUPT;
2915              break;
2916          case KVM_EXIT_UNKNOWN:
2917              fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2918                      (uint64_t)run->hw.hardware_exit_reason);
2919              ret = -1;
2920              break;
2921          case KVM_EXIT_INTERNAL_ERROR:
2922              ret = kvm_handle_internal_error(cpu, run);
2923              break;
2924          case KVM_EXIT_DIRTY_RING_FULL:
2925              /*
2926               * We shouldn't continue if the dirty ring of this vcpu is
2927               * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
2928               */
2929              trace_kvm_dirty_ring_full(cpu->cpu_index);
2930              bql_lock();
2931              /*
2932               * We throttle vCPU by making it sleep once it exit from kernel
2933               * due to dirty ring full. In the dirtylimit scenario, reaping
2934               * all vCPUs after a single vCPU dirty ring get full result in
2935               * the miss of sleep, so just reap the ring-fulled vCPU.
2936               */
2937              if (dirtylimit_in_service()) {
2938                  kvm_dirty_ring_reap(kvm_state, cpu);
2939              } else {
2940                  kvm_dirty_ring_reap(kvm_state, NULL);
2941              }
2942              bql_unlock();
2943              dirtylimit_vcpu_execute(cpu);
2944              ret = 0;
2945              break;
2946          case KVM_EXIT_SYSTEM_EVENT:
2947              trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
2948              switch (run->system_event.type) {
2949              case KVM_SYSTEM_EVENT_SHUTDOWN:
2950                  qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2951                  ret = EXCP_INTERRUPT;
2952                  break;
2953              case KVM_SYSTEM_EVENT_RESET:
2954                  qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2955                  ret = EXCP_INTERRUPT;
2956                  break;
2957              case KVM_SYSTEM_EVENT_CRASH:
2958                  kvm_cpu_synchronize_state(cpu);
2959                  bql_lock();
2960                  qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2961                  bql_unlock();
2962                  ret = 0;
2963                  break;
2964              default:
2965                  ret = kvm_arch_handle_exit(cpu, run);
2966                  break;
2967              }
2968              break;
2969          default:
2970              ret = kvm_arch_handle_exit(cpu, run);
2971              break;
2972          }
2973      } while (ret == 0);
2974  
2975      cpu_exec_end(cpu);
2976      bql_lock();
2977  
2978      if (ret < 0) {
2979          cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2980          vm_stop(RUN_STATE_INTERNAL_ERROR);
2981      }
2982  
2983      qatomic_set(&cpu->exit_request, 0);
2984      return ret;
2985  }
2986  
2987  int kvm_ioctl(KVMState *s, int type, ...)
2988  {
2989      int ret;
2990      void *arg;
2991      va_list ap;
2992  
2993      va_start(ap, type);
2994      arg = va_arg(ap, void *);
2995      va_end(ap);
2996  
2997      trace_kvm_ioctl(type, arg);
2998      ret = ioctl(s->fd, type, arg);
2999      if (ret == -1) {
3000          ret = -errno;
3001      }
3002      return ret;
3003  }
3004  
3005  int kvm_vm_ioctl(KVMState *s, int type, ...)
3006  {
3007      int ret;
3008      void *arg;
3009      va_list ap;
3010  
3011      va_start(ap, type);
3012      arg = va_arg(ap, void *);
3013      va_end(ap);
3014  
3015      trace_kvm_vm_ioctl(type, arg);
3016      accel_ioctl_begin();
3017      ret = ioctl(s->vmfd, type, arg);
3018      accel_ioctl_end();
3019      if (ret == -1) {
3020          ret = -errno;
3021      }
3022      return ret;
3023  }
3024  
3025  int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3026  {
3027      int ret;
3028      void *arg;
3029      va_list ap;
3030  
3031      va_start(ap, type);
3032      arg = va_arg(ap, void *);
3033      va_end(ap);
3034  
3035      trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3036      accel_cpu_ioctl_begin(cpu);
3037      ret = ioctl(cpu->kvm_fd, type, arg);
3038      accel_cpu_ioctl_end(cpu);
3039      if (ret == -1) {
3040          ret = -errno;
3041      }
3042      return ret;
3043  }
3044  
3045  int kvm_device_ioctl(int fd, int type, ...)
3046  {
3047      int ret;
3048      void *arg;
3049      va_list ap;
3050  
3051      va_start(ap, type);
3052      arg = va_arg(ap, void *);
3053      va_end(ap);
3054  
3055      trace_kvm_device_ioctl(fd, type, arg);
3056      accel_ioctl_begin();
3057      ret = ioctl(fd, type, arg);
3058      accel_ioctl_end();
3059      if (ret == -1) {
3060          ret = -errno;
3061      }
3062      return ret;
3063  }
3064  
3065  int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3066  {
3067      int ret;
3068      struct kvm_device_attr attribute = {
3069          .group = group,
3070          .attr = attr,
3071      };
3072  
3073      if (!kvm_vm_attributes_allowed) {
3074          return 0;
3075      }
3076  
3077      ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3078      /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3079      return ret ? 0 : 1;
3080  }
3081  
3082  int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3083  {
3084      struct kvm_device_attr attribute = {
3085          .group = group,
3086          .attr = attr,
3087          .flags = 0,
3088      };
3089  
3090      return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3091  }
3092  
3093  int kvm_device_access(int fd, int group, uint64_t attr,
3094                        void *val, bool write, Error **errp)
3095  {
3096      struct kvm_device_attr kvmattr;
3097      int err;
3098  
3099      kvmattr.flags = 0;
3100      kvmattr.group = group;
3101      kvmattr.attr = attr;
3102      kvmattr.addr = (uintptr_t)val;
3103  
3104      err = kvm_device_ioctl(fd,
3105                             write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3106                             &kvmattr);
3107      if (err < 0) {
3108          error_setg_errno(errp, -err,
3109                           "KVM_%s_DEVICE_ATTR failed: Group %d "
3110                           "attr 0x%016" PRIx64,
3111                           write ? "SET" : "GET", group, attr);
3112      }
3113      return err;
3114  }
3115  
3116  bool kvm_has_sync_mmu(void)
3117  {
3118      return kvm_state->sync_mmu;
3119  }
3120  
3121  int kvm_has_vcpu_events(void)
3122  {
3123      return kvm_state->vcpu_events;
3124  }
3125  
3126  int kvm_max_nested_state_length(void)
3127  {
3128      return kvm_state->max_nested_state_len;
3129  }
3130  
3131  int kvm_has_gsi_routing(void)
3132  {
3133  #ifdef KVM_CAP_IRQ_ROUTING
3134      return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3135  #else
3136      return false;
3137  #endif
3138  }
3139  
3140  bool kvm_arm_supports_user_irq(void)
3141  {
3142      return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3143  }
3144  
3145  #ifdef KVM_CAP_SET_GUEST_DEBUG
3146  struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3147  {
3148      struct kvm_sw_breakpoint *bp;
3149  
3150      QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3151          if (bp->pc == pc) {
3152              return bp;
3153          }
3154      }
3155      return NULL;
3156  }
3157  
3158  int kvm_sw_breakpoints_active(CPUState *cpu)
3159  {
3160      return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3161  }
3162  
3163  struct kvm_set_guest_debug_data {
3164      struct kvm_guest_debug dbg;
3165      int err;
3166  };
3167  
3168  static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3169  {
3170      struct kvm_set_guest_debug_data *dbg_data =
3171          (struct kvm_set_guest_debug_data *) data.host_ptr;
3172  
3173      dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3174                                     &dbg_data->dbg);
3175  }
3176  
3177  int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3178  {
3179      struct kvm_set_guest_debug_data data;
3180  
3181      data.dbg.control = reinject_trap;
3182  
3183      if (cpu->singlestep_enabled) {
3184          data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3185  
3186          if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3187              data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3188          }
3189      }
3190      kvm_arch_update_guest_debug(cpu, &data.dbg);
3191  
3192      run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3193                 RUN_ON_CPU_HOST_PTR(&data));
3194      return data.err;
3195  }
3196  
3197  bool kvm_supports_guest_debug(void)
3198  {
3199      /* probed during kvm_init() */
3200      return kvm_has_guest_debug;
3201  }
3202  
3203  int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3204  {
3205      struct kvm_sw_breakpoint *bp;
3206      int err;
3207  
3208      if (type == GDB_BREAKPOINT_SW) {
3209          bp = kvm_find_sw_breakpoint(cpu, addr);
3210          if (bp) {
3211              bp->use_count++;
3212              return 0;
3213          }
3214  
3215          bp = g_new(struct kvm_sw_breakpoint, 1);
3216          bp->pc = addr;
3217          bp->use_count = 1;
3218          err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3219          if (err) {
3220              g_free(bp);
3221              return err;
3222          }
3223  
3224          QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3225      } else {
3226          err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3227          if (err) {
3228              return err;
3229          }
3230      }
3231  
3232      CPU_FOREACH(cpu) {
3233          err = kvm_update_guest_debug(cpu, 0);
3234          if (err) {
3235              return err;
3236          }
3237      }
3238      return 0;
3239  }
3240  
3241  int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3242  {
3243      struct kvm_sw_breakpoint *bp;
3244      int err;
3245  
3246      if (type == GDB_BREAKPOINT_SW) {
3247          bp = kvm_find_sw_breakpoint(cpu, addr);
3248          if (!bp) {
3249              return -ENOENT;
3250          }
3251  
3252          if (bp->use_count > 1) {
3253              bp->use_count--;
3254              return 0;
3255          }
3256  
3257          err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3258          if (err) {
3259              return err;
3260          }
3261  
3262          QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3263          g_free(bp);
3264      } else {
3265          err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3266          if (err) {
3267              return err;
3268          }
3269      }
3270  
3271      CPU_FOREACH(cpu) {
3272          err = kvm_update_guest_debug(cpu, 0);
3273          if (err) {
3274              return err;
3275          }
3276      }
3277      return 0;
3278  }
3279  
3280  void kvm_remove_all_breakpoints(CPUState *cpu)
3281  {
3282      struct kvm_sw_breakpoint *bp, *next;
3283      KVMState *s = cpu->kvm_state;
3284      CPUState *tmpcpu;
3285  
3286      QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3287          if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3288              /* Try harder to find a CPU that currently sees the breakpoint. */
3289              CPU_FOREACH(tmpcpu) {
3290                  if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3291                      break;
3292                  }
3293              }
3294          }
3295          QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3296          g_free(bp);
3297      }
3298      kvm_arch_remove_all_hw_breakpoints();
3299  
3300      CPU_FOREACH(cpu) {
3301          kvm_update_guest_debug(cpu, 0);
3302      }
3303  }
3304  
3305  #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3306  
3307  static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3308  {
3309      KVMState *s = kvm_state;
3310      struct kvm_signal_mask *sigmask;
3311      int r;
3312  
3313      sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3314  
3315      sigmask->len = s->sigmask_len;
3316      memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3317      r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3318      g_free(sigmask);
3319  
3320      return r;
3321  }
3322  
3323  static void kvm_ipi_signal(int sig)
3324  {
3325      if (current_cpu) {
3326          assert(kvm_immediate_exit);
3327          kvm_cpu_kick(current_cpu);
3328      }
3329  }
3330  
3331  void kvm_init_cpu_signals(CPUState *cpu)
3332  {
3333      int r;
3334      sigset_t set;
3335      struct sigaction sigact;
3336  
3337      memset(&sigact, 0, sizeof(sigact));
3338      sigact.sa_handler = kvm_ipi_signal;
3339      sigaction(SIG_IPI, &sigact, NULL);
3340  
3341      pthread_sigmask(SIG_BLOCK, NULL, &set);
3342  #if defined KVM_HAVE_MCE_INJECTION
3343      sigdelset(&set, SIGBUS);
3344      pthread_sigmask(SIG_SETMASK, &set, NULL);
3345  #endif
3346      sigdelset(&set, SIG_IPI);
3347      if (kvm_immediate_exit) {
3348          r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3349      } else {
3350          r = kvm_set_signal_mask(cpu, &set);
3351      }
3352      if (r) {
3353          fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3354          exit(1);
3355      }
3356  }
3357  
3358  /* Called asynchronously in VCPU thread.  */
3359  int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3360  {
3361  #ifdef KVM_HAVE_MCE_INJECTION
3362      if (have_sigbus_pending) {
3363          return 1;
3364      }
3365      have_sigbus_pending = true;
3366      pending_sigbus_addr = addr;
3367      pending_sigbus_code = code;
3368      qatomic_set(&cpu->exit_request, 1);
3369      return 0;
3370  #else
3371      return 1;
3372  #endif
3373  }
3374  
3375  /* Called synchronously (via signalfd) in main thread.  */
3376  int kvm_on_sigbus(int code, void *addr)
3377  {
3378  #ifdef KVM_HAVE_MCE_INJECTION
3379      /* Action required MCE kills the process if SIGBUS is blocked.  Because
3380       * that's what happens in the I/O thread, where we handle MCE via signalfd,
3381       * we can only get action optional here.
3382       */
3383      assert(code != BUS_MCEERR_AR);
3384      kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3385      return 0;
3386  #else
3387      return 1;
3388  #endif
3389  }
3390  
3391  int kvm_create_device(KVMState *s, uint64_t type, bool test)
3392  {
3393      int ret;
3394      struct kvm_create_device create_dev;
3395  
3396      create_dev.type = type;
3397      create_dev.fd = -1;
3398      create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3399  
3400      if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3401          return -ENOTSUP;
3402      }
3403  
3404      ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3405      if (ret) {
3406          return ret;
3407      }
3408  
3409      return test ? 0 : create_dev.fd;
3410  }
3411  
3412  bool kvm_device_supported(int vmfd, uint64_t type)
3413  {
3414      struct kvm_create_device create_dev = {
3415          .type = type,
3416          .fd = -1,
3417          .flags = KVM_CREATE_DEVICE_TEST,
3418      };
3419  
3420      if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3421          return false;
3422      }
3423  
3424      return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3425  }
3426  
3427  int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3428  {
3429      struct kvm_one_reg reg;
3430      int r;
3431  
3432      reg.id = id;
3433      reg.addr = (uintptr_t) source;
3434      r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3435      if (r) {
3436          trace_kvm_failed_reg_set(id, strerror(-r));
3437      }
3438      return r;
3439  }
3440  
3441  int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3442  {
3443      struct kvm_one_reg reg;
3444      int r;
3445  
3446      reg.id = id;
3447      reg.addr = (uintptr_t) target;
3448      r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3449      if (r) {
3450          trace_kvm_failed_reg_get(id, strerror(-r));
3451      }
3452      return r;
3453  }
3454  
3455  static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3456                                   hwaddr start_addr, hwaddr size)
3457  {
3458      KVMState *kvm = KVM_STATE(ms->accelerator);
3459      int i;
3460  
3461      for (i = 0; i < kvm->nr_as; ++i) {
3462          if (kvm->as[i].as == as && kvm->as[i].ml) {
3463              size = MIN(kvm_max_slot_size, size);
3464              return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3465                                                      start_addr, size);
3466          }
3467      }
3468  
3469      return false;
3470  }
3471  
3472  static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3473                                     const char *name, void *opaque,
3474                                     Error **errp)
3475  {
3476      KVMState *s = KVM_STATE(obj);
3477      int64_t value = s->kvm_shadow_mem;
3478  
3479      visit_type_int(v, name, &value, errp);
3480  }
3481  
3482  static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3483                                     const char *name, void *opaque,
3484                                     Error **errp)
3485  {
3486      KVMState *s = KVM_STATE(obj);
3487      int64_t value;
3488  
3489      if (s->fd != -1) {
3490          error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3491          return;
3492      }
3493  
3494      if (!visit_type_int(v, name, &value, errp)) {
3495          return;
3496      }
3497  
3498      s->kvm_shadow_mem = value;
3499  }
3500  
3501  static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3502                                     const char *name, void *opaque,
3503                                     Error **errp)
3504  {
3505      KVMState *s = KVM_STATE(obj);
3506      OnOffSplit mode;
3507  
3508      if (s->fd != -1) {
3509          error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3510          return;
3511      }
3512  
3513      if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3514          return;
3515      }
3516      switch (mode) {
3517      case ON_OFF_SPLIT_ON:
3518          s->kernel_irqchip_allowed = true;
3519          s->kernel_irqchip_required = true;
3520          s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3521          break;
3522      case ON_OFF_SPLIT_OFF:
3523          s->kernel_irqchip_allowed = false;
3524          s->kernel_irqchip_required = false;
3525          s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3526          break;
3527      case ON_OFF_SPLIT_SPLIT:
3528          s->kernel_irqchip_allowed = true;
3529          s->kernel_irqchip_required = true;
3530          s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3531          break;
3532      default:
3533          /* The value was checked in visit_type_OnOffSplit() above. If
3534           * we get here, then something is wrong in QEMU.
3535           */
3536          abort();
3537      }
3538  }
3539  
3540  bool kvm_kernel_irqchip_allowed(void)
3541  {
3542      return kvm_state->kernel_irqchip_allowed;
3543  }
3544  
3545  bool kvm_kernel_irqchip_required(void)
3546  {
3547      return kvm_state->kernel_irqchip_required;
3548  }
3549  
3550  bool kvm_kernel_irqchip_split(void)
3551  {
3552      return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3553  }
3554  
3555  static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3556                                      const char *name, void *opaque,
3557                                      Error **errp)
3558  {
3559      KVMState *s = KVM_STATE(obj);
3560      uint32_t value = s->kvm_dirty_ring_size;
3561  
3562      visit_type_uint32(v, name, &value, errp);
3563  }
3564  
3565  static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3566                                      const char *name, void *opaque,
3567                                      Error **errp)
3568  {
3569      KVMState *s = KVM_STATE(obj);
3570      uint32_t value;
3571  
3572      if (s->fd != -1) {
3573          error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3574          return;
3575      }
3576  
3577      if (!visit_type_uint32(v, name, &value, errp)) {
3578          return;
3579      }
3580      if (value & (value - 1)) {
3581          error_setg(errp, "dirty-ring-size must be a power of two.");
3582          return;
3583      }
3584  
3585      s->kvm_dirty_ring_size = value;
3586  }
3587  
3588  static char *kvm_get_device(Object *obj,
3589                              Error **errp G_GNUC_UNUSED)
3590  {
3591      KVMState *s = KVM_STATE(obj);
3592  
3593      return g_strdup(s->device);
3594  }
3595  
3596  static void kvm_set_device(Object *obj,
3597                             const char *value,
3598                             Error **errp G_GNUC_UNUSED)
3599  {
3600      KVMState *s = KVM_STATE(obj);
3601  
3602      g_free(s->device);
3603      s->device = g_strdup(value);
3604  }
3605  
3606  static void kvm_accel_instance_init(Object *obj)
3607  {
3608      KVMState *s = KVM_STATE(obj);
3609  
3610      s->fd = -1;
3611      s->vmfd = -1;
3612      s->kvm_shadow_mem = -1;
3613      s->kernel_irqchip_allowed = true;
3614      s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3615      /* KVM dirty ring is by default off */
3616      s->kvm_dirty_ring_size = 0;
3617      s->kvm_dirty_ring_with_bitmap = false;
3618      s->kvm_eager_split_size = 0;
3619      s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3620      s->notify_window = 0;
3621      s->xen_version = 0;
3622      s->xen_gnttab_max_frames = 64;
3623      s->xen_evtchn_max_pirq = 256;
3624      s->device = NULL;
3625  }
3626  
3627  /**
3628   * kvm_gdbstub_sstep_flags():
3629   *
3630   * Returns: SSTEP_* flags that KVM supports for guest debug. The
3631   * support is probed during kvm_init()
3632   */
3633  static int kvm_gdbstub_sstep_flags(void)
3634  {
3635      return kvm_sstep_flags;
3636  }
3637  
3638  static void kvm_accel_class_init(ObjectClass *oc, void *data)
3639  {
3640      AccelClass *ac = ACCEL_CLASS(oc);
3641      ac->name = "KVM";
3642      ac->init_machine = kvm_init;
3643      ac->has_memory = kvm_accel_has_memory;
3644      ac->allowed = &kvm_allowed;
3645      ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3646  
3647      object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3648          NULL, kvm_set_kernel_irqchip,
3649          NULL, NULL);
3650      object_class_property_set_description(oc, "kernel-irqchip",
3651          "Configure KVM in-kernel irqchip");
3652  
3653      object_class_property_add(oc, "kvm-shadow-mem", "int",
3654          kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3655          NULL, NULL);
3656      object_class_property_set_description(oc, "kvm-shadow-mem",
3657          "KVM shadow MMU size");
3658  
3659      object_class_property_add(oc, "dirty-ring-size", "uint32",
3660          kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3661          NULL, NULL);
3662      object_class_property_set_description(oc, "dirty-ring-size",
3663          "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3664  
3665      object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
3666      object_class_property_set_description(oc, "device",
3667          "Path to the device node to use (default: /dev/kvm)");
3668  
3669      kvm_arch_accel_class_init(oc);
3670  }
3671  
3672  static const TypeInfo kvm_accel_type = {
3673      .name = TYPE_KVM_ACCEL,
3674      .parent = TYPE_ACCEL,
3675      .instance_init = kvm_accel_instance_init,
3676      .class_init = kvm_accel_class_init,
3677      .instance_size = sizeof(KVMState),
3678  };
3679  
3680  static void kvm_type_init(void)
3681  {
3682      type_register_static(&kvm_accel_type);
3683  }
3684  
3685  type_init(kvm_type_init);
3686  
3687  typedef struct StatsArgs {
3688      union StatsResultsType {
3689          StatsResultList **stats;
3690          StatsSchemaList **schema;
3691      } result;
3692      strList *names;
3693      Error **errp;
3694  } StatsArgs;
3695  
3696  static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3697                                      uint64_t *stats_data,
3698                                      StatsList *stats_list,
3699                                      Error **errp)
3700  {
3701  
3702      Stats *stats;
3703      uint64List *val_list = NULL;
3704  
3705      /* Only add stats that we understand.  */
3706      switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3707      case KVM_STATS_TYPE_CUMULATIVE:
3708      case KVM_STATS_TYPE_INSTANT:
3709      case KVM_STATS_TYPE_PEAK:
3710      case KVM_STATS_TYPE_LINEAR_HIST:
3711      case KVM_STATS_TYPE_LOG_HIST:
3712          break;
3713      default:
3714          return stats_list;
3715      }
3716  
3717      switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3718      case KVM_STATS_UNIT_NONE:
3719      case KVM_STATS_UNIT_BYTES:
3720      case KVM_STATS_UNIT_CYCLES:
3721      case KVM_STATS_UNIT_SECONDS:
3722      case KVM_STATS_UNIT_BOOLEAN:
3723          break;
3724      default:
3725          return stats_list;
3726      }
3727  
3728      switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3729      case KVM_STATS_BASE_POW10:
3730      case KVM_STATS_BASE_POW2:
3731          break;
3732      default:
3733          return stats_list;
3734      }
3735  
3736      /* Alloc and populate data list */
3737      stats = g_new0(Stats, 1);
3738      stats->name = g_strdup(pdesc->name);
3739      stats->value = g_new0(StatsValue, 1);;
3740  
3741      if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3742          stats->value->u.boolean = *stats_data;
3743          stats->value->type = QTYPE_QBOOL;
3744      } else if (pdesc->size == 1) {
3745          stats->value->u.scalar = *stats_data;
3746          stats->value->type = QTYPE_QNUM;
3747      } else {
3748          int i;
3749          for (i = 0; i < pdesc->size; i++) {
3750              QAPI_LIST_PREPEND(val_list, stats_data[i]);
3751          }
3752          stats->value->u.list = val_list;
3753          stats->value->type = QTYPE_QLIST;
3754      }
3755  
3756      QAPI_LIST_PREPEND(stats_list, stats);
3757      return stats_list;
3758  }
3759  
3760  static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3761                                                   StatsSchemaValueList *list,
3762                                                   Error **errp)
3763  {
3764      StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3765      schema_entry->value = g_new0(StatsSchemaValue, 1);
3766  
3767      switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3768      case KVM_STATS_TYPE_CUMULATIVE:
3769          schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3770          break;
3771      case KVM_STATS_TYPE_INSTANT:
3772          schema_entry->value->type = STATS_TYPE_INSTANT;
3773          break;
3774      case KVM_STATS_TYPE_PEAK:
3775          schema_entry->value->type = STATS_TYPE_PEAK;
3776          break;
3777      case KVM_STATS_TYPE_LINEAR_HIST:
3778          schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3779          schema_entry->value->bucket_size = pdesc->bucket_size;
3780          schema_entry->value->has_bucket_size = true;
3781          break;
3782      case KVM_STATS_TYPE_LOG_HIST:
3783          schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3784          break;
3785      default:
3786          goto exit;
3787      }
3788  
3789      switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3790      case KVM_STATS_UNIT_NONE:
3791          break;
3792      case KVM_STATS_UNIT_BOOLEAN:
3793          schema_entry->value->has_unit = true;
3794          schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3795          break;
3796      case KVM_STATS_UNIT_BYTES:
3797          schema_entry->value->has_unit = true;
3798          schema_entry->value->unit = STATS_UNIT_BYTES;
3799          break;
3800      case KVM_STATS_UNIT_CYCLES:
3801          schema_entry->value->has_unit = true;
3802          schema_entry->value->unit = STATS_UNIT_CYCLES;
3803          break;
3804      case KVM_STATS_UNIT_SECONDS:
3805          schema_entry->value->has_unit = true;
3806          schema_entry->value->unit = STATS_UNIT_SECONDS;
3807          break;
3808      default:
3809          goto exit;
3810      }
3811  
3812      schema_entry->value->exponent = pdesc->exponent;
3813      if (pdesc->exponent) {
3814          switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3815          case KVM_STATS_BASE_POW10:
3816              schema_entry->value->has_base = true;
3817              schema_entry->value->base = 10;
3818              break;
3819          case KVM_STATS_BASE_POW2:
3820              schema_entry->value->has_base = true;
3821              schema_entry->value->base = 2;
3822              break;
3823          default:
3824              goto exit;
3825          }
3826      }
3827  
3828      schema_entry->value->name = g_strdup(pdesc->name);
3829      schema_entry->next = list;
3830      return schema_entry;
3831  exit:
3832      g_free(schema_entry->value);
3833      g_free(schema_entry);
3834      return list;
3835  }
3836  
3837  /* Cached stats descriptors */
3838  typedef struct StatsDescriptors {
3839      const char *ident; /* cache key, currently the StatsTarget */
3840      struct kvm_stats_desc *kvm_stats_desc;
3841      struct kvm_stats_header kvm_stats_header;
3842      QTAILQ_ENTRY(StatsDescriptors) next;
3843  } StatsDescriptors;
3844  
3845  static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3846      QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3847  
3848  /*
3849   * Return the descriptors for 'target', that either have already been read
3850   * or are retrieved from 'stats_fd'.
3851   */
3852  static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3853                                                  Error **errp)
3854  {
3855      StatsDescriptors *descriptors;
3856      const char *ident;
3857      struct kvm_stats_desc *kvm_stats_desc;
3858      struct kvm_stats_header *kvm_stats_header;
3859      size_t size_desc;
3860      ssize_t ret;
3861  
3862      ident = StatsTarget_str(target);
3863      QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3864          if (g_str_equal(descriptors->ident, ident)) {
3865              return descriptors;
3866          }
3867      }
3868  
3869      descriptors = g_new0(StatsDescriptors, 1);
3870  
3871      /* Read stats header */
3872      kvm_stats_header = &descriptors->kvm_stats_header;
3873      ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
3874      if (ret != sizeof(*kvm_stats_header)) {
3875          error_setg(errp, "KVM stats: failed to read stats header: "
3876                     "expected %zu actual %zu",
3877                     sizeof(*kvm_stats_header), ret);
3878          g_free(descriptors);
3879          return NULL;
3880      }
3881      size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3882  
3883      /* Read stats descriptors */
3884      kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3885      ret = pread(stats_fd, kvm_stats_desc,
3886                  size_desc * kvm_stats_header->num_desc,
3887                  kvm_stats_header->desc_offset);
3888  
3889      if (ret != size_desc * kvm_stats_header->num_desc) {
3890          error_setg(errp, "KVM stats: failed to read stats descriptors: "
3891                     "expected %zu actual %zu",
3892                     size_desc * kvm_stats_header->num_desc, ret);
3893          g_free(descriptors);
3894          g_free(kvm_stats_desc);
3895          return NULL;
3896      }
3897      descriptors->kvm_stats_desc = kvm_stats_desc;
3898      descriptors->ident = ident;
3899      QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3900      return descriptors;
3901  }
3902  
3903  static void query_stats(StatsResultList **result, StatsTarget target,
3904                          strList *names, int stats_fd, CPUState *cpu,
3905                          Error **errp)
3906  {
3907      struct kvm_stats_desc *kvm_stats_desc;
3908      struct kvm_stats_header *kvm_stats_header;
3909      StatsDescriptors *descriptors;
3910      g_autofree uint64_t *stats_data = NULL;
3911      struct kvm_stats_desc *pdesc;
3912      StatsList *stats_list = NULL;
3913      size_t size_desc, size_data = 0;
3914      ssize_t ret;
3915      int i;
3916  
3917      descriptors = find_stats_descriptors(target, stats_fd, errp);
3918      if (!descriptors) {
3919          return;
3920      }
3921  
3922      kvm_stats_header = &descriptors->kvm_stats_header;
3923      kvm_stats_desc = descriptors->kvm_stats_desc;
3924      size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3925  
3926      /* Tally the total data size; read schema data */
3927      for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3928          pdesc = (void *)kvm_stats_desc + i * size_desc;
3929          size_data += pdesc->size * sizeof(*stats_data);
3930      }
3931  
3932      stats_data = g_malloc0(size_data);
3933      ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
3934  
3935      if (ret != size_data) {
3936          error_setg(errp, "KVM stats: failed to read data: "
3937                     "expected %zu actual %zu", size_data, ret);
3938          return;
3939      }
3940  
3941      for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3942          uint64_t *stats;
3943          pdesc = (void *)kvm_stats_desc + i * size_desc;
3944  
3945          /* Add entry to the list */
3946          stats = (void *)stats_data + pdesc->offset;
3947          if (!apply_str_list_filter(pdesc->name, names)) {
3948              continue;
3949          }
3950          stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
3951      }
3952  
3953      if (!stats_list) {
3954          return;
3955      }
3956  
3957      switch (target) {
3958      case STATS_TARGET_VM:
3959          add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
3960          break;
3961      case STATS_TARGET_VCPU:
3962          add_stats_entry(result, STATS_PROVIDER_KVM,
3963                          cpu->parent_obj.canonical_path,
3964                          stats_list);
3965          break;
3966      default:
3967          g_assert_not_reached();
3968      }
3969  }
3970  
3971  static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
3972                                 int stats_fd, Error **errp)
3973  {
3974      struct kvm_stats_desc *kvm_stats_desc;
3975      struct kvm_stats_header *kvm_stats_header;
3976      StatsDescriptors *descriptors;
3977      struct kvm_stats_desc *pdesc;
3978      StatsSchemaValueList *stats_list = NULL;
3979      size_t size_desc;
3980      int i;
3981  
3982      descriptors = find_stats_descriptors(target, stats_fd, errp);
3983      if (!descriptors) {
3984          return;
3985      }
3986  
3987      kvm_stats_header = &descriptors->kvm_stats_header;
3988      kvm_stats_desc = descriptors->kvm_stats_desc;
3989      size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3990  
3991      /* Tally the total data size; read schema data */
3992      for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3993          pdesc = (void *)kvm_stats_desc + i * size_desc;
3994          stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
3995      }
3996  
3997      add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
3998  }
3999  
4000  static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4001  {
4002      int stats_fd = cpu->kvm_vcpu_stats_fd;
4003      Error *local_err = NULL;
4004  
4005      if (stats_fd == -1) {
4006          error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4007          error_propagate(kvm_stats_args->errp, local_err);
4008          return;
4009      }
4010      query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4011                  kvm_stats_args->names, stats_fd, cpu,
4012                  kvm_stats_args->errp);
4013  }
4014  
4015  static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4016  {
4017      int stats_fd = cpu->kvm_vcpu_stats_fd;
4018      Error *local_err = NULL;
4019  
4020      if (stats_fd == -1) {
4021          error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4022          error_propagate(kvm_stats_args->errp, local_err);
4023          return;
4024      }
4025      query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4026                         kvm_stats_args->errp);
4027  }
4028  
4029  static void query_stats_cb(StatsResultList **result, StatsTarget target,
4030                             strList *names, strList *targets, Error **errp)
4031  {
4032      KVMState *s = kvm_state;
4033      CPUState *cpu;
4034      int stats_fd;
4035  
4036      switch (target) {
4037      case STATS_TARGET_VM:
4038      {
4039          stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4040          if (stats_fd == -1) {
4041              error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4042              return;
4043          }
4044          query_stats(result, target, names, stats_fd, NULL, errp);
4045          close(stats_fd);
4046          break;
4047      }
4048      case STATS_TARGET_VCPU:
4049      {
4050          StatsArgs stats_args;
4051          stats_args.result.stats = result;
4052          stats_args.names = names;
4053          stats_args.errp = errp;
4054          CPU_FOREACH(cpu) {
4055              if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4056                  continue;
4057              }
4058              query_stats_vcpu(cpu, &stats_args);
4059          }
4060          break;
4061      }
4062      default:
4063          break;
4064      }
4065  }
4066  
4067  void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4068  {
4069      StatsArgs stats_args;
4070      KVMState *s = kvm_state;
4071      int stats_fd;
4072  
4073      stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4074      if (stats_fd == -1) {
4075          error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4076          return;
4077      }
4078      query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4079      close(stats_fd);
4080  
4081      if (first_cpu) {
4082          stats_args.result.schema = result;
4083          stats_args.errp = errp;
4084          query_stats_schema_vcpu(first_cpu, &stats_args);
4085      }
4086  }
4087