1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "system/kvm_int.h" 32 #include "system/runstate.h" 33 #include "system/cpus.h" 34 #include "system/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/tswap.h" 37 #include "system/memory.h" 38 #include "system/ram_addr.h" 39 #include "qemu/event_notifier.h" 40 #include "qemu/main-loop.h" 41 #include "trace.h" 42 #include "hw/irq.h" 43 #include "qapi/visitor.h" 44 #include "qapi/qapi-types-common.h" 45 #include "qapi/qapi-visit-common.h" 46 #include "system/reset.h" 47 #include "qemu/guest-random.h" 48 #include "system/hw_accel.h" 49 #include "kvm-cpus.h" 50 #include "system/dirtylimit.h" 51 #include "qemu/range.h" 52 53 #include "hw/boards.h" 54 #include "system/stats.h" 55 56 /* This check must be after config-host.h is included */ 57 #ifdef CONFIG_EVENTFD 58 #include <sys/eventfd.h> 59 #endif 60 61 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) 62 # define KVM_HAVE_MCE_INJECTION 1 63 #endif 64 65 66 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 67 * need to use the real host PAGE_SIZE, as that's what KVM will use. 68 */ 69 #ifdef PAGE_SIZE 70 #undef PAGE_SIZE 71 #endif 72 #define PAGE_SIZE qemu_real_host_page_size() 73 74 #ifndef KVM_GUESTDBG_BLOCKIRQ 75 #define KVM_GUESTDBG_BLOCKIRQ 0 76 #endif 77 78 /* Default num of memslots to be allocated when VM starts */ 79 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 80 /* Default max allowed memslots if kernel reported nothing */ 81 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32 82 83 struct KVMParkedVcpu { 84 unsigned long vcpu_id; 85 int kvm_fd; 86 QLIST_ENTRY(KVMParkedVcpu) node; 87 }; 88 89 KVMState *kvm_state; 90 bool kvm_kernel_irqchip; 91 bool kvm_split_irqchip; 92 bool kvm_async_interrupts_allowed; 93 bool kvm_halt_in_kernel_allowed; 94 bool kvm_resamplefds_allowed; 95 bool kvm_msi_via_irqfd_allowed; 96 bool kvm_gsi_routing_allowed; 97 bool kvm_gsi_direct_mapping; 98 bool kvm_allowed; 99 bool kvm_readonly_mem_allowed; 100 bool kvm_vm_attributes_allowed; 101 bool kvm_msi_use_devid; 102 bool kvm_pre_fault_memory_supported; 103 static bool kvm_has_guest_debug; 104 static int kvm_sstep_flags; 105 static bool kvm_immediate_exit; 106 static uint64_t kvm_supported_memory_attributes; 107 static bool kvm_guest_memfd_supported; 108 static hwaddr kvm_max_slot_size = ~0; 109 110 static const KVMCapabilityInfo kvm_required_capabilites[] = { 111 KVM_CAP_INFO(USER_MEMORY), 112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 114 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 115 KVM_CAP_INFO(IOEVENTFD), 116 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 117 KVM_CAP_LAST_INFO 118 }; 119 120 static NotifierList kvm_irqchip_change_notifiers = 121 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 122 123 struct KVMResampleFd { 124 int gsi; 125 EventNotifier *resample_event; 126 QLIST_ENTRY(KVMResampleFd) node; 127 }; 128 typedef struct KVMResampleFd KVMResampleFd; 129 130 /* 131 * Only used with split irqchip where we need to do the resample fd 132 * kick for the kernel from userspace. 133 */ 134 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 135 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 136 137 static QemuMutex kml_slots_lock; 138 139 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 140 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 141 142 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 143 144 static inline void kvm_resample_fd_remove(int gsi) 145 { 146 KVMResampleFd *rfd; 147 148 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 149 if (rfd->gsi == gsi) { 150 QLIST_REMOVE(rfd, node); 151 g_free(rfd); 152 break; 153 } 154 } 155 } 156 157 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 158 { 159 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 160 161 rfd->gsi = gsi; 162 rfd->resample_event = event; 163 164 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 165 } 166 167 void kvm_resample_fd_notify(int gsi) 168 { 169 KVMResampleFd *rfd; 170 171 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 172 if (rfd->gsi == gsi) { 173 event_notifier_set(rfd->resample_event); 174 trace_kvm_resample_fd_notify(gsi); 175 return; 176 } 177 } 178 } 179 180 /** 181 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 182 * 183 * @kml: The KVMMemoryListener* to grow the slots[] array 184 * @nr_slots_new: The new size of slots[] array 185 * 186 * Returns: True if the array grows larger, false otherwise. 187 */ 188 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 189 { 190 unsigned int i, cur = kml->nr_slots_allocated; 191 KVMSlot *slots; 192 193 if (nr_slots_new > kvm_state->nr_slots_max) { 194 nr_slots_new = kvm_state->nr_slots_max; 195 } 196 197 if (cur >= nr_slots_new) { 198 /* Big enough, no need to grow, or we reached max */ 199 return false; 200 } 201 202 if (cur == 0) { 203 slots = g_new0(KVMSlot, nr_slots_new); 204 } else { 205 assert(kml->slots); 206 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 207 /* 208 * g_renew() doesn't initialize extended buffers, however kvm 209 * memslots require fields to be zero-initialized. E.g. pointers, 210 * memory_size field, etc. 211 */ 212 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 213 } 214 215 for (i = cur; i < nr_slots_new; i++) { 216 slots[i].slot = i; 217 } 218 219 kml->slots = slots; 220 kml->nr_slots_allocated = nr_slots_new; 221 trace_kvm_slots_grow(cur, nr_slots_new); 222 223 return true; 224 } 225 226 static bool kvm_slots_double(KVMMemoryListener *kml) 227 { 228 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 229 } 230 231 unsigned int kvm_get_max_memslots(void) 232 { 233 KVMState *s = KVM_STATE(current_accel()); 234 235 return s->nr_slots_max; 236 } 237 238 unsigned int kvm_get_free_memslots(void) 239 { 240 unsigned int used_slots = 0; 241 KVMState *s = kvm_state; 242 int i; 243 244 kvm_slots_lock(); 245 for (i = 0; i < s->nr_as; i++) { 246 if (!s->as[i].ml) { 247 continue; 248 } 249 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used); 250 } 251 kvm_slots_unlock(); 252 253 return s->nr_slots_max - used_slots; 254 } 255 256 /* Called with KVMMemoryListener.slots_lock held */ 257 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 258 { 259 unsigned int n; 260 int i; 261 262 for (i = 0; i < kml->nr_slots_allocated; i++) { 263 if (kml->slots[i].memory_size == 0) { 264 return &kml->slots[i]; 265 } 266 } 267 268 /* 269 * If no free slots, try to grow first by doubling. Cache the old size 270 * here to avoid another round of search: if the grow succeeded, it 271 * means slots[] now must have the existing "n" slots occupied, 272 * followed by one or more free slots starting from slots[n]. 273 */ 274 n = kml->nr_slots_allocated; 275 if (kvm_slots_double(kml)) { 276 return &kml->slots[n]; 277 } 278 279 return NULL; 280 } 281 282 /* Called with KVMMemoryListener.slots_lock held */ 283 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 284 { 285 KVMSlot *slot = kvm_get_free_slot(kml); 286 287 if (slot) { 288 return slot; 289 } 290 291 fprintf(stderr, "%s: no free slot available\n", __func__); 292 abort(); 293 } 294 295 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 296 hwaddr start_addr, 297 hwaddr size) 298 { 299 int i; 300 301 for (i = 0; i < kml->nr_slots_allocated; i++) { 302 KVMSlot *mem = &kml->slots[i]; 303 304 if (start_addr == mem->start_addr && size == mem->memory_size) { 305 return mem; 306 } 307 } 308 309 return NULL; 310 } 311 312 /* 313 * Calculate and align the start address and the size of the section. 314 * Return the size. If the size is 0, the aligned section is empty. 315 */ 316 static hwaddr kvm_align_section(MemoryRegionSection *section, 317 hwaddr *start) 318 { 319 hwaddr size = int128_get64(section->size); 320 hwaddr delta, aligned; 321 322 /* kvm works in page size chunks, but the function may be called 323 with sub-page size and unaligned start address. Pad the start 324 address to next and truncate size to previous page boundary. */ 325 aligned = ROUND_UP(section->offset_within_address_space, 326 qemu_real_host_page_size()); 327 delta = aligned - section->offset_within_address_space; 328 *start = aligned; 329 if (delta > size) { 330 return 0; 331 } 332 333 return (size - delta) & qemu_real_host_page_mask(); 334 } 335 336 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 337 hwaddr *phys_addr) 338 { 339 KVMMemoryListener *kml = &s->memory_listener; 340 int i, ret = 0; 341 342 kvm_slots_lock(); 343 for (i = 0; i < kml->nr_slots_allocated; i++) { 344 KVMSlot *mem = &kml->slots[i]; 345 346 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 347 *phys_addr = mem->start_addr + (ram - mem->ram); 348 ret = 1; 349 break; 350 } 351 } 352 kvm_slots_unlock(); 353 354 return ret; 355 } 356 357 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 358 { 359 KVMState *s = kvm_state; 360 struct kvm_userspace_memory_region2 mem; 361 int ret; 362 363 mem.slot = slot->slot | (kml->as_id << 16); 364 mem.guest_phys_addr = slot->start_addr; 365 mem.userspace_addr = (unsigned long)slot->ram; 366 mem.flags = slot->flags; 367 mem.guest_memfd = slot->guest_memfd; 368 mem.guest_memfd_offset = slot->guest_memfd_offset; 369 370 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 371 /* Set the slot size to 0 before setting the slot to the desired 372 * value. This is needed based on KVM commit 75d61fbc. */ 373 mem.memory_size = 0; 374 375 if (kvm_guest_memfd_supported) { 376 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 377 } else { 378 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 379 } 380 if (ret < 0) { 381 goto err; 382 } 383 } 384 mem.memory_size = slot->memory_size; 385 if (kvm_guest_memfd_supported) { 386 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 387 } else { 388 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 389 } 390 slot->old_flags = mem.flags; 391 err: 392 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 393 mem.guest_phys_addr, mem.memory_size, 394 mem.userspace_addr, mem.guest_memfd, 395 mem.guest_memfd_offset, ret); 396 if (ret < 0) { 397 if (kvm_guest_memfd_supported) { 398 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 399 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 400 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 401 " guest_memfd_offset=0x%" PRIx64 ": %s", 402 __func__, mem.slot, slot->start_addr, 403 (uint64_t)mem.memory_size, mem.flags, 404 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 405 strerror(errno)); 406 } else { 407 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 408 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 409 __func__, mem.slot, slot->start_addr, 410 (uint64_t)mem.memory_size, strerror(errno)); 411 } 412 } 413 return ret; 414 } 415 416 void kvm_park_vcpu(CPUState *cpu) 417 { 418 struct KVMParkedVcpu *vcpu; 419 420 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 421 422 vcpu = g_malloc0(sizeof(*vcpu)); 423 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 424 vcpu->kvm_fd = cpu->kvm_fd; 425 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 426 } 427 428 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 429 { 430 struct KVMParkedVcpu *cpu; 431 int kvm_fd = -ENOENT; 432 433 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 434 if (cpu->vcpu_id == vcpu_id) { 435 QLIST_REMOVE(cpu, node); 436 kvm_fd = cpu->kvm_fd; 437 g_free(cpu); 438 break; 439 } 440 } 441 442 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 443 444 return kvm_fd; 445 } 446 447 static void kvm_reset_parked_vcpus(KVMState *s) 448 { 449 struct KVMParkedVcpu *cpu; 450 451 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 452 kvm_arch_reset_parked_vcpu(cpu->vcpu_id, cpu->kvm_fd); 453 } 454 } 455 456 /** 457 * kvm_create_vcpu - Gets a parked KVM vCPU or creates a KVM vCPU 458 * @cpu: QOM CPUState object for which KVM vCPU has to be fetched/created. 459 * 460 * @returns: 0 when success, errno (<0) when failed. 461 */ 462 static int kvm_create_vcpu(CPUState *cpu) 463 { 464 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 465 KVMState *s = kvm_state; 466 int kvm_fd; 467 468 /* check if the KVM vCPU already exist but is parked */ 469 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 470 if (kvm_fd < 0) { 471 /* vCPU not parked: create a new KVM vCPU */ 472 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 473 if (kvm_fd < 0) { 474 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 475 return kvm_fd; 476 } 477 } 478 479 cpu->kvm_fd = kvm_fd; 480 cpu->kvm_state = s; 481 if (!s->guest_state_protected) { 482 cpu->vcpu_dirty = true; 483 } 484 cpu->dirty_pages = 0; 485 cpu->throttle_us_per_full = 0; 486 487 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 488 489 return 0; 490 } 491 492 int kvm_create_and_park_vcpu(CPUState *cpu) 493 { 494 int ret = 0; 495 496 ret = kvm_create_vcpu(cpu); 497 if (!ret) { 498 kvm_park_vcpu(cpu); 499 } 500 501 return ret; 502 } 503 504 static int do_kvm_destroy_vcpu(CPUState *cpu) 505 { 506 KVMState *s = kvm_state; 507 int mmap_size; 508 int ret = 0; 509 510 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 511 512 ret = kvm_arch_destroy_vcpu(cpu); 513 if (ret < 0) { 514 goto err; 515 } 516 517 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 518 if (mmap_size < 0) { 519 ret = mmap_size; 520 trace_kvm_failed_get_vcpu_mmap_size(); 521 goto err; 522 } 523 524 /* If I am the CPU that created coalesced_mmio_ring, then discard it */ 525 if (s->coalesced_mmio_ring == (void *)cpu->kvm_run + PAGE_SIZE) { 526 s->coalesced_mmio_ring = NULL; 527 } 528 529 ret = munmap(cpu->kvm_run, mmap_size); 530 if (ret < 0) { 531 goto err; 532 } 533 cpu->kvm_run = NULL; 534 535 if (cpu->kvm_dirty_gfns) { 536 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 537 if (ret < 0) { 538 goto err; 539 } 540 cpu->kvm_dirty_gfns = NULL; 541 } 542 543 kvm_park_vcpu(cpu); 544 err: 545 return ret; 546 } 547 548 void kvm_destroy_vcpu(CPUState *cpu) 549 { 550 if (do_kvm_destroy_vcpu(cpu) < 0) { 551 error_report("kvm_destroy_vcpu failed"); 552 exit(EXIT_FAILURE); 553 } 554 } 555 556 int kvm_init_vcpu(CPUState *cpu, Error **errp) 557 { 558 KVMState *s = kvm_state; 559 int mmap_size; 560 int ret; 561 562 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 563 564 ret = kvm_arch_pre_create_vcpu(cpu, errp); 565 if (ret < 0) { 566 goto err; 567 } 568 569 ret = kvm_create_vcpu(cpu); 570 if (ret < 0) { 571 error_setg_errno(errp, -ret, 572 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 573 kvm_arch_vcpu_id(cpu)); 574 goto err; 575 } 576 577 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 578 if (mmap_size < 0) { 579 ret = mmap_size; 580 error_setg_errno(errp, -mmap_size, 581 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 582 goto err; 583 } 584 585 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 586 cpu->kvm_fd, 0); 587 if (cpu->kvm_run == MAP_FAILED) { 588 ret = -errno; 589 error_setg_errno(errp, ret, 590 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 591 kvm_arch_vcpu_id(cpu)); 592 goto err; 593 } 594 595 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 596 s->coalesced_mmio_ring = 597 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 598 } 599 600 if (s->kvm_dirty_ring_size) { 601 /* Use MAP_SHARED to share pages with the kernel */ 602 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 603 PROT_READ | PROT_WRITE, MAP_SHARED, 604 cpu->kvm_fd, 605 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 606 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 607 ret = -errno; 608 goto err; 609 } 610 } 611 612 ret = kvm_arch_init_vcpu(cpu); 613 if (ret < 0) { 614 error_setg_errno(errp, -ret, 615 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 616 kvm_arch_vcpu_id(cpu)); 617 } 618 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 619 620 err: 621 return ret; 622 } 623 624 void kvm_close(void) 625 { 626 CPUState *cpu; 627 628 if (!kvm_state || kvm_state->fd == -1) { 629 return; 630 } 631 632 CPU_FOREACH(cpu) { 633 cpu_remove_sync(cpu); 634 close(cpu->kvm_fd); 635 cpu->kvm_fd = -1; 636 close(cpu->kvm_vcpu_stats_fd); 637 cpu->kvm_vcpu_stats_fd = -1; 638 } 639 640 if (kvm_state && kvm_state->fd != -1) { 641 close(kvm_state->vmfd); 642 kvm_state->vmfd = -1; 643 close(kvm_state->fd); 644 kvm_state->fd = -1; 645 } 646 kvm_state = NULL; 647 } 648 649 /* 650 * dirty pages logging control 651 */ 652 653 static int kvm_mem_flags(MemoryRegion *mr) 654 { 655 bool readonly = mr->readonly || memory_region_is_romd(mr); 656 int flags = 0; 657 658 if (memory_region_get_dirty_log_mask(mr) != 0) { 659 flags |= KVM_MEM_LOG_DIRTY_PAGES; 660 } 661 if (readonly && kvm_readonly_mem_allowed) { 662 flags |= KVM_MEM_READONLY; 663 } 664 if (memory_region_has_guest_memfd(mr)) { 665 assert(kvm_guest_memfd_supported); 666 flags |= KVM_MEM_GUEST_MEMFD; 667 } 668 return flags; 669 } 670 671 /* Called with KVMMemoryListener.slots_lock held */ 672 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 673 MemoryRegion *mr) 674 { 675 mem->flags = kvm_mem_flags(mr); 676 677 /* If nothing changed effectively, no need to issue ioctl */ 678 if (mem->flags == mem->old_flags) { 679 return 0; 680 } 681 682 kvm_slot_init_dirty_bitmap(mem); 683 return kvm_set_user_memory_region(kml, mem, false); 684 } 685 686 static int kvm_section_update_flags(KVMMemoryListener *kml, 687 MemoryRegionSection *section) 688 { 689 hwaddr start_addr, size, slot_size; 690 KVMSlot *mem; 691 int ret = 0; 692 693 size = kvm_align_section(section, &start_addr); 694 if (!size) { 695 return 0; 696 } 697 698 kvm_slots_lock(); 699 700 while (size && !ret) { 701 slot_size = MIN(kvm_max_slot_size, size); 702 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 703 if (!mem) { 704 /* We don't have a slot if we want to trap every access. */ 705 goto out; 706 } 707 708 ret = kvm_slot_update_flags(kml, mem, section->mr); 709 start_addr += slot_size; 710 size -= slot_size; 711 } 712 713 out: 714 kvm_slots_unlock(); 715 return ret; 716 } 717 718 static void kvm_log_start(MemoryListener *listener, 719 MemoryRegionSection *section, 720 int old, int new) 721 { 722 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 723 int r; 724 725 if (old != 0) { 726 return; 727 } 728 729 r = kvm_section_update_flags(kml, section); 730 if (r < 0) { 731 abort(); 732 } 733 } 734 735 static void kvm_log_stop(MemoryListener *listener, 736 MemoryRegionSection *section, 737 int old, int new) 738 { 739 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 740 int r; 741 742 if (new != 0) { 743 return; 744 } 745 746 r = kvm_section_update_flags(kml, section); 747 if (r < 0) { 748 abort(); 749 } 750 } 751 752 /* get kvm's dirty pages bitmap and update qemu's */ 753 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 754 { 755 ram_addr_t start = slot->ram_start_offset; 756 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 757 758 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 759 } 760 761 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 762 { 763 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 764 } 765 766 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 767 768 /* Allocate the dirty bitmap for a slot */ 769 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 770 { 771 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 772 return; 773 } 774 775 /* 776 * XXX bad kernel interface alert 777 * For dirty bitmap, kernel allocates array of size aligned to 778 * bits-per-long. But for case when the kernel is 64bits and 779 * the userspace is 32bits, userspace can't align to the same 780 * bits-per-long, since sizeof(long) is different between kernel 781 * and user space. This way, userspace will provide buffer which 782 * may be 4 bytes less than the kernel will use, resulting in 783 * userspace memory corruption (which is not detectable by valgrind 784 * too, in most cases). 785 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 786 * a hope that sizeof(long) won't become >8 any time soon. 787 * 788 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 789 * And mem->memory_size is aligned to it (otherwise this mem can't 790 * be registered to KVM). 791 */ 792 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 793 /*HOST_LONG_BITS*/ 64) / 8; 794 mem->dirty_bmap = g_malloc0(bitmap_size); 795 mem->dirty_bmap_size = bitmap_size; 796 } 797 798 /* 799 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 800 * succeeded, false otherwise 801 */ 802 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 803 { 804 struct kvm_dirty_log d = {}; 805 int ret; 806 807 d.dirty_bitmap = slot->dirty_bmap; 808 d.slot = slot->slot | (slot->as_id << 16); 809 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 810 811 if (ret == -ENOENT) { 812 /* kernel does not have dirty bitmap in this slot */ 813 ret = 0; 814 } 815 if (ret) { 816 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 817 __func__, ret); 818 } 819 return ret == 0; 820 } 821 822 /* Should be with all slots_lock held for the address spaces. */ 823 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 824 uint32_t slot_id, uint64_t offset) 825 { 826 KVMMemoryListener *kml; 827 KVMSlot *mem; 828 829 if (as_id >= s->nr_as) { 830 return; 831 } 832 833 kml = s->as[as_id].ml; 834 mem = &kml->slots[slot_id]; 835 836 if (!mem->memory_size || offset >= 837 (mem->memory_size / qemu_real_host_page_size())) { 838 return; 839 } 840 841 set_bit(offset, mem->dirty_bmap); 842 } 843 844 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 845 { 846 /* 847 * Read the flags before the value. Pairs with barrier in 848 * KVM's kvm_dirty_ring_push() function. 849 */ 850 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 851 } 852 853 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 854 { 855 /* 856 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 857 * sees the full content of the ring: 858 * 859 * CPU0 CPU1 CPU2 860 * ------------------------------------------------------------------------------ 861 * fill gfn0 862 * store-rel flags for gfn0 863 * load-acq flags for gfn0 864 * store-rel RESET for gfn0 865 * ioctl(RESET_RINGS) 866 * load-acq flags for gfn0 867 * check if flags have RESET 868 * 869 * The synchronization goes from CPU2 to CPU0 to CPU1. 870 */ 871 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 872 } 873 874 /* 875 * Should be with all slots_lock held for the address spaces. It returns the 876 * dirty page we've collected on this dirty ring. 877 */ 878 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 879 { 880 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 881 uint32_t ring_size = s->kvm_dirty_ring_size; 882 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 883 884 /* 885 * It's possible that we race with vcpu creation code where the vcpu is 886 * put onto the vcpus list but not yet initialized the dirty ring 887 * structures. If so, skip it. 888 */ 889 if (!cpu->created) { 890 return 0; 891 } 892 893 assert(dirty_gfns && ring_size); 894 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 895 896 while (true) { 897 cur = &dirty_gfns[fetch % ring_size]; 898 if (!dirty_gfn_is_dirtied(cur)) { 899 break; 900 } 901 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 902 cur->offset); 903 dirty_gfn_set_collected(cur); 904 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 905 fetch++; 906 count++; 907 } 908 cpu->kvm_fetch_index = fetch; 909 cpu->dirty_pages += count; 910 911 return count; 912 } 913 914 /* Must be with slots_lock held */ 915 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 916 { 917 int ret; 918 uint64_t total = 0; 919 int64_t stamp; 920 921 stamp = get_clock(); 922 923 if (cpu) { 924 total = kvm_dirty_ring_reap_one(s, cpu); 925 } else { 926 CPU_FOREACH(cpu) { 927 total += kvm_dirty_ring_reap_one(s, cpu); 928 } 929 } 930 931 if (total) { 932 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 933 assert(ret == total); 934 } 935 936 stamp = get_clock() - stamp; 937 938 if (total) { 939 trace_kvm_dirty_ring_reap(total, stamp / 1000); 940 } 941 942 return total; 943 } 944 945 /* 946 * Currently for simplicity, we must hold BQL before calling this. We can 947 * consider to drop the BQL if we're clear with all the race conditions. 948 */ 949 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 950 { 951 uint64_t total; 952 953 /* 954 * We need to lock all kvm slots for all address spaces here, 955 * because: 956 * 957 * (1) We need to mark dirty for dirty bitmaps in multiple slots 958 * and for tons of pages, so it's better to take the lock here 959 * once rather than once per page. And more importantly, 960 * 961 * (2) We must _NOT_ publish dirty bits to the other threads 962 * (e.g., the migration thread) via the kvm memory slot dirty 963 * bitmaps before correctly re-protect those dirtied pages. 964 * Otherwise we can have potential risk of data corruption if 965 * the page data is read in the other thread before we do 966 * reset below. 967 */ 968 kvm_slots_lock(); 969 total = kvm_dirty_ring_reap_locked(s, cpu); 970 kvm_slots_unlock(); 971 972 return total; 973 } 974 975 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 976 { 977 /* No need to do anything */ 978 } 979 980 /* 981 * Kick all vcpus out in a synchronized way. When returned, we 982 * guarantee that every vcpu has been kicked and at least returned to 983 * userspace once. 984 */ 985 static void kvm_cpu_synchronize_kick_all(void) 986 { 987 CPUState *cpu; 988 989 CPU_FOREACH(cpu) { 990 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 991 } 992 } 993 994 /* 995 * Flush all the existing dirty pages to the KVM slot buffers. When 996 * this call returns, we guarantee that all the touched dirty pages 997 * before calling this function have been put into the per-kvmslot 998 * dirty bitmap. 999 * 1000 * This function must be called with BQL held. 1001 */ 1002 static void kvm_dirty_ring_flush(void) 1003 { 1004 trace_kvm_dirty_ring_flush(0); 1005 /* 1006 * The function needs to be serialized. Since this function 1007 * should always be with BQL held, serialization is guaranteed. 1008 * However, let's be sure of it. 1009 */ 1010 assert(bql_locked()); 1011 /* 1012 * First make sure to flush the hardware buffers by kicking all 1013 * vcpus out in a synchronous way. 1014 */ 1015 kvm_cpu_synchronize_kick_all(); 1016 kvm_dirty_ring_reap(kvm_state, NULL); 1017 trace_kvm_dirty_ring_flush(1); 1018 } 1019 1020 /** 1021 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 1022 * 1023 * This function will first try to fetch dirty bitmap from the kernel, 1024 * and then updates qemu's dirty bitmap. 1025 * 1026 * NOTE: caller must be with kml->slots_lock held. 1027 * 1028 * @kml: the KVM memory listener object 1029 * @section: the memory section to sync the dirty bitmap with 1030 */ 1031 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 1032 MemoryRegionSection *section) 1033 { 1034 KVMState *s = kvm_state; 1035 KVMSlot *mem; 1036 hwaddr start_addr, size; 1037 hwaddr slot_size; 1038 1039 size = kvm_align_section(section, &start_addr); 1040 while (size) { 1041 slot_size = MIN(kvm_max_slot_size, size); 1042 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1043 if (!mem) { 1044 /* We don't have a slot if we want to trap every access. */ 1045 return; 1046 } 1047 if (kvm_slot_get_dirty_log(s, mem)) { 1048 kvm_slot_sync_dirty_pages(mem); 1049 } 1050 start_addr += slot_size; 1051 size -= slot_size; 1052 } 1053 } 1054 1055 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 1056 #define KVM_CLEAR_LOG_SHIFT 6 1057 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 1058 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 1059 1060 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 1061 uint64_t size) 1062 { 1063 KVMState *s = kvm_state; 1064 uint64_t end, bmap_start, start_delta, bmap_npages; 1065 struct kvm_clear_dirty_log d; 1066 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1067 int ret; 1068 1069 /* 1070 * We need to extend either the start or the size or both to 1071 * satisfy the KVM interface requirement. Firstly, do the start 1072 * page alignment on 64 host pages 1073 */ 1074 bmap_start = start & KVM_CLEAR_LOG_MASK; 1075 start_delta = start - bmap_start; 1076 bmap_start /= psize; 1077 1078 /* 1079 * The kernel interface has restriction on the size too, that either: 1080 * 1081 * (1) the size is 64 host pages aligned (just like the start), or 1082 * (2) the size fills up until the end of the KVM memslot. 1083 */ 1084 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1085 << KVM_CLEAR_LOG_SHIFT; 1086 end = mem->memory_size / psize; 1087 if (bmap_npages > end - bmap_start) { 1088 bmap_npages = end - bmap_start; 1089 } 1090 start_delta /= psize; 1091 1092 /* 1093 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1094 * that we won't clear any unknown dirty bits otherwise we might 1095 * accidentally clear some set bits which are not yet synced from 1096 * the kernel into QEMU's bitmap, then we'll lose track of the 1097 * guest modifications upon those pages (which can directly lead 1098 * to guest data loss or panic after migration). 1099 * 1100 * Layout of the KVMSlot.dirty_bmap: 1101 * 1102 * |<-------- bmap_npages -----------..>| 1103 * [1] 1104 * start_delta size 1105 * |----------------|-------------|------------------|------------| 1106 * ^ ^ ^ ^ 1107 * | | | | 1108 * start bmap_start (start) end 1109 * of memslot of memslot 1110 * 1111 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1112 */ 1113 1114 assert(bmap_start % BITS_PER_LONG == 0); 1115 /* We should never do log_clear before log_sync */ 1116 assert(mem->dirty_bmap); 1117 if (start_delta || bmap_npages - size / psize) { 1118 /* Slow path - we need to manipulate a temp bitmap */ 1119 bmap_clear = bitmap_new(bmap_npages); 1120 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1121 bmap_start, start_delta + size / psize); 1122 /* 1123 * We need to fill the holes at start because that was not 1124 * specified by the caller and we extended the bitmap only for 1125 * 64 pages alignment 1126 */ 1127 bitmap_clear(bmap_clear, 0, start_delta); 1128 d.dirty_bitmap = bmap_clear; 1129 } else { 1130 /* 1131 * Fast path - both start and size align well with BITS_PER_LONG 1132 * (or the end of memory slot) 1133 */ 1134 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1135 } 1136 1137 d.first_page = bmap_start; 1138 /* It should never overflow. If it happens, say something */ 1139 assert(bmap_npages <= UINT32_MAX); 1140 d.num_pages = bmap_npages; 1141 d.slot = mem->slot | (as_id << 16); 1142 1143 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1144 if (ret < 0 && ret != -ENOENT) { 1145 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1146 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1147 __func__, d.slot, (uint64_t)d.first_page, 1148 (uint32_t)d.num_pages, ret); 1149 } else { 1150 ret = 0; 1151 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1152 } 1153 1154 /* 1155 * After we have updated the remote dirty bitmap, we update the 1156 * cached bitmap as well for the memslot, then if another user 1157 * clears the same region we know we shouldn't clear it again on 1158 * the remote otherwise it's data loss as well. 1159 */ 1160 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1161 size / psize); 1162 /* This handles the NULL case well */ 1163 g_free(bmap_clear); 1164 return ret; 1165 } 1166 1167 1168 /** 1169 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1170 * 1171 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1172 * protection in the host kernel because in that case this operation 1173 * will be done within log_sync(). 1174 * 1175 * @kml: the kvm memory listener 1176 * @section: the memory range to clear dirty bitmap 1177 */ 1178 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1179 MemoryRegionSection *section) 1180 { 1181 KVMState *s = kvm_state; 1182 uint64_t start, size, offset, count; 1183 KVMSlot *mem; 1184 int ret = 0, i; 1185 1186 if (!s->manual_dirty_log_protect) { 1187 /* No need to do explicit clear */ 1188 return ret; 1189 } 1190 1191 start = section->offset_within_address_space; 1192 size = int128_get64(section->size); 1193 1194 if (!size) { 1195 /* Nothing more we can do... */ 1196 return ret; 1197 } 1198 1199 kvm_slots_lock(); 1200 1201 for (i = 0; i < kml->nr_slots_allocated; i++) { 1202 mem = &kml->slots[i]; 1203 /* Discard slots that are empty or do not overlap the section */ 1204 if (!mem->memory_size || 1205 mem->start_addr > start + size - 1 || 1206 start > mem->start_addr + mem->memory_size - 1) { 1207 continue; 1208 } 1209 1210 if (start >= mem->start_addr) { 1211 /* The slot starts before section or is aligned to it. */ 1212 offset = start - mem->start_addr; 1213 count = MIN(mem->memory_size - offset, size); 1214 } else { 1215 /* The slot starts after section. */ 1216 offset = 0; 1217 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1218 } 1219 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1220 if (ret < 0) { 1221 break; 1222 } 1223 } 1224 1225 kvm_slots_unlock(); 1226 1227 return ret; 1228 } 1229 1230 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1231 MemoryRegionSection *secion, 1232 hwaddr start, hwaddr size) 1233 { 1234 KVMState *s = kvm_state; 1235 1236 if (s->coalesced_mmio) { 1237 struct kvm_coalesced_mmio_zone zone; 1238 1239 zone.addr = start; 1240 zone.size = size; 1241 zone.pad = 0; 1242 1243 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1244 } 1245 } 1246 1247 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1248 MemoryRegionSection *secion, 1249 hwaddr start, hwaddr size) 1250 { 1251 KVMState *s = kvm_state; 1252 1253 if (s->coalesced_mmio) { 1254 struct kvm_coalesced_mmio_zone zone; 1255 1256 zone.addr = start; 1257 zone.size = size; 1258 zone.pad = 0; 1259 1260 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1261 } 1262 } 1263 1264 static void kvm_coalesce_pio_add(MemoryListener *listener, 1265 MemoryRegionSection *section, 1266 hwaddr start, hwaddr size) 1267 { 1268 KVMState *s = kvm_state; 1269 1270 if (s->coalesced_pio) { 1271 struct kvm_coalesced_mmio_zone zone; 1272 1273 zone.addr = start; 1274 zone.size = size; 1275 zone.pio = 1; 1276 1277 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1278 } 1279 } 1280 1281 static void kvm_coalesce_pio_del(MemoryListener *listener, 1282 MemoryRegionSection *section, 1283 hwaddr start, hwaddr size) 1284 { 1285 KVMState *s = kvm_state; 1286 1287 if (s->coalesced_pio) { 1288 struct kvm_coalesced_mmio_zone zone; 1289 1290 zone.addr = start; 1291 zone.size = size; 1292 zone.pio = 1; 1293 1294 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1295 } 1296 } 1297 1298 int kvm_check_extension(KVMState *s, unsigned int extension) 1299 { 1300 int ret; 1301 1302 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1303 if (ret < 0) { 1304 ret = 0; 1305 } 1306 1307 return ret; 1308 } 1309 1310 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1311 { 1312 int ret; 1313 1314 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1315 if (ret < 0) { 1316 /* VM wide version not implemented, use global one instead */ 1317 ret = kvm_check_extension(s, extension); 1318 } 1319 1320 return ret; 1321 } 1322 1323 /* 1324 * We track the poisoned pages to be able to: 1325 * - replace them on VM reset 1326 * - block a migration for a VM with a poisoned page 1327 */ 1328 typedef struct HWPoisonPage { 1329 ram_addr_t ram_addr; 1330 QLIST_ENTRY(HWPoisonPage) list; 1331 } HWPoisonPage; 1332 1333 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1334 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1335 1336 static void kvm_unpoison_all(void *param) 1337 { 1338 HWPoisonPage *page, *next_page; 1339 1340 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1341 QLIST_REMOVE(page, list); 1342 qemu_ram_remap(page->ram_addr); 1343 g_free(page); 1344 } 1345 } 1346 1347 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1348 { 1349 HWPoisonPage *page; 1350 1351 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1352 if (page->ram_addr == ram_addr) { 1353 return; 1354 } 1355 } 1356 page = g_new(HWPoisonPage, 1); 1357 page->ram_addr = ram_addr; 1358 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1359 } 1360 1361 bool kvm_hwpoisoned_mem(void) 1362 { 1363 return !QLIST_EMPTY(&hwpoison_page_list); 1364 } 1365 1366 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1367 { 1368 if (target_needs_bswap()) { 1369 /* 1370 * The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1371 * endianness, but the memory core hands them in target endianness. 1372 * For example, PPC is always treated as big-endian even if running 1373 * on KVM and on PPC64LE. Correct here, swapping back. 1374 */ 1375 switch (size) { 1376 case 2: 1377 val = bswap16(val); 1378 break; 1379 case 4: 1380 val = bswap32(val); 1381 break; 1382 } 1383 } 1384 return val; 1385 } 1386 1387 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1388 bool assign, uint32_t size, bool datamatch) 1389 { 1390 int ret; 1391 struct kvm_ioeventfd iofd = { 1392 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1393 .addr = addr, 1394 .len = size, 1395 .flags = 0, 1396 .fd = fd, 1397 }; 1398 1399 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1400 datamatch); 1401 if (!kvm_enabled()) { 1402 return -ENOSYS; 1403 } 1404 1405 if (datamatch) { 1406 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1407 } 1408 if (!assign) { 1409 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1410 } 1411 1412 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1413 1414 if (ret < 0) { 1415 return -errno; 1416 } 1417 1418 return 0; 1419 } 1420 1421 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1422 bool assign, uint32_t size, bool datamatch) 1423 { 1424 struct kvm_ioeventfd kick = { 1425 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1426 .addr = addr, 1427 .flags = KVM_IOEVENTFD_FLAG_PIO, 1428 .len = size, 1429 .fd = fd, 1430 }; 1431 int r; 1432 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1433 if (!kvm_enabled()) { 1434 return -ENOSYS; 1435 } 1436 if (datamatch) { 1437 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1438 } 1439 if (!assign) { 1440 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1441 } 1442 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1443 if (r < 0) { 1444 return r; 1445 } 1446 return 0; 1447 } 1448 1449 1450 static const KVMCapabilityInfo * 1451 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1452 { 1453 while (list->name) { 1454 if (!kvm_check_extension(s, list->value)) { 1455 return list; 1456 } 1457 list++; 1458 } 1459 return NULL; 1460 } 1461 1462 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1463 { 1464 g_assert( 1465 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1466 ); 1467 kvm_max_slot_size = max_slot_size; 1468 } 1469 1470 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1471 { 1472 struct kvm_memory_attributes attrs; 1473 int r; 1474 1475 assert((attr & kvm_supported_memory_attributes) == attr); 1476 attrs.attributes = attr; 1477 attrs.address = start; 1478 attrs.size = size; 1479 attrs.flags = 0; 1480 1481 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1482 if (r) { 1483 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1484 "with attr 0x%" PRIx64 " error '%s'", 1485 start, size, attr, strerror(errno)); 1486 } 1487 return r; 1488 } 1489 1490 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1491 { 1492 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1493 } 1494 1495 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1496 { 1497 return kvm_set_memory_attributes(start, size, 0); 1498 } 1499 1500 /* Called with KVMMemoryListener.slots_lock held */ 1501 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1502 MemoryRegionSection *section, bool add) 1503 { 1504 KVMSlot *mem; 1505 int err; 1506 MemoryRegion *mr = section->mr; 1507 bool writable = !mr->readonly && !mr->rom_device; 1508 hwaddr start_addr, size, slot_size, mr_offset; 1509 ram_addr_t ram_start_offset; 1510 void *ram; 1511 1512 if (!memory_region_is_ram(mr)) { 1513 if (writable || !kvm_readonly_mem_allowed) { 1514 return; 1515 } else if (!mr->romd_mode) { 1516 /* If the memory device is not in romd_mode, then we actually want 1517 * to remove the kvm memory slot so all accesses will trap. */ 1518 add = false; 1519 } 1520 } 1521 1522 size = kvm_align_section(section, &start_addr); 1523 if (!size) { 1524 return; 1525 } 1526 1527 /* The offset of the kvmslot within the memory region */ 1528 mr_offset = section->offset_within_region + start_addr - 1529 section->offset_within_address_space; 1530 1531 /* use aligned delta to align the ram address and offset */ 1532 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1533 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1534 1535 if (!add) { 1536 do { 1537 slot_size = MIN(kvm_max_slot_size, size); 1538 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1539 if (!mem) { 1540 return; 1541 } 1542 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1543 /* 1544 * NOTE: We should be aware of the fact that here we're only 1545 * doing a best effort to sync dirty bits. No matter whether 1546 * we're using dirty log or dirty ring, we ignored two facts: 1547 * 1548 * (1) dirty bits can reside in hardware buffers (PML) 1549 * 1550 * (2) after we collected dirty bits here, pages can be dirtied 1551 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1552 * remove the slot. 1553 * 1554 * Not easy. Let's cross the fingers until it's fixed. 1555 */ 1556 if (kvm_state->kvm_dirty_ring_size) { 1557 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1558 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1559 kvm_slot_sync_dirty_pages(mem); 1560 kvm_slot_get_dirty_log(kvm_state, mem); 1561 } 1562 } else { 1563 kvm_slot_get_dirty_log(kvm_state, mem); 1564 } 1565 kvm_slot_sync_dirty_pages(mem); 1566 } 1567 1568 /* unregister the slot */ 1569 g_free(mem->dirty_bmap); 1570 mem->dirty_bmap = NULL; 1571 mem->memory_size = 0; 1572 mem->flags = 0; 1573 err = kvm_set_user_memory_region(kml, mem, false); 1574 if (err) { 1575 fprintf(stderr, "%s: error unregistering slot: %s\n", 1576 __func__, strerror(-err)); 1577 abort(); 1578 } 1579 start_addr += slot_size; 1580 size -= slot_size; 1581 kml->nr_slots_used--; 1582 } while (size); 1583 return; 1584 } 1585 1586 /* register the new slot */ 1587 do { 1588 slot_size = MIN(kvm_max_slot_size, size); 1589 mem = kvm_alloc_slot(kml); 1590 mem->as_id = kml->as_id; 1591 mem->memory_size = slot_size; 1592 mem->start_addr = start_addr; 1593 mem->ram_start_offset = ram_start_offset; 1594 mem->ram = ram; 1595 mem->flags = kvm_mem_flags(mr); 1596 mem->guest_memfd = mr->ram_block->guest_memfd; 1597 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1598 1599 kvm_slot_init_dirty_bitmap(mem); 1600 err = kvm_set_user_memory_region(kml, mem, true); 1601 if (err) { 1602 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1603 strerror(-err)); 1604 abort(); 1605 } 1606 1607 if (memory_region_has_guest_memfd(mr)) { 1608 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1609 if (err) { 1610 error_report("%s: failed to set memory attribute private: %s", 1611 __func__, strerror(-err)); 1612 exit(1); 1613 } 1614 } 1615 1616 start_addr += slot_size; 1617 ram_start_offset += slot_size; 1618 ram += slot_size; 1619 size -= slot_size; 1620 kml->nr_slots_used++; 1621 } while (size); 1622 } 1623 1624 static void *kvm_dirty_ring_reaper_thread(void *data) 1625 { 1626 KVMState *s = data; 1627 struct KVMDirtyRingReaper *r = &s->reaper; 1628 1629 rcu_register_thread(); 1630 1631 trace_kvm_dirty_ring_reaper("init"); 1632 1633 while (true) { 1634 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1635 trace_kvm_dirty_ring_reaper("wait"); 1636 /* 1637 * TODO: provide a smarter timeout rather than a constant? 1638 */ 1639 sleep(1); 1640 1641 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1642 if (dirtylimit_in_service()) { 1643 continue; 1644 } 1645 1646 trace_kvm_dirty_ring_reaper("wakeup"); 1647 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1648 1649 bql_lock(); 1650 kvm_dirty_ring_reap(s, NULL); 1651 bql_unlock(); 1652 1653 r->reaper_iteration++; 1654 } 1655 1656 g_assert_not_reached(); 1657 } 1658 1659 static void kvm_dirty_ring_reaper_init(KVMState *s) 1660 { 1661 struct KVMDirtyRingReaper *r = &s->reaper; 1662 1663 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1664 kvm_dirty_ring_reaper_thread, 1665 s, QEMU_THREAD_JOINABLE); 1666 } 1667 1668 static int kvm_dirty_ring_init(KVMState *s) 1669 { 1670 uint32_t ring_size = s->kvm_dirty_ring_size; 1671 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1672 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1673 int ret; 1674 1675 s->kvm_dirty_ring_size = 0; 1676 s->kvm_dirty_ring_bytes = 0; 1677 1678 /* Bail if the dirty ring size isn't specified */ 1679 if (!ring_size) { 1680 return 0; 1681 } 1682 1683 /* 1684 * Read the max supported pages. Fall back to dirty logging mode 1685 * if the dirty ring isn't supported. 1686 */ 1687 ret = kvm_vm_check_extension(s, capability); 1688 if (ret <= 0) { 1689 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1690 ret = kvm_vm_check_extension(s, capability); 1691 } 1692 1693 if (ret <= 0) { 1694 warn_report("KVM dirty ring not available, using bitmap method"); 1695 return 0; 1696 } 1697 1698 if (ring_bytes > ret) { 1699 error_report("KVM dirty ring size %" PRIu32 " too big " 1700 "(maximum is %ld). Please use a smaller value.", 1701 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1702 return -EINVAL; 1703 } 1704 1705 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1706 if (ret) { 1707 error_report("Enabling of KVM dirty ring failed: %s. " 1708 "Suggested minimum value is 1024.", strerror(-ret)); 1709 return -EIO; 1710 } 1711 1712 /* Enable the backup bitmap if it is supported */ 1713 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1714 if (ret > 0) { 1715 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1716 if (ret) { 1717 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1718 "%s. ", strerror(-ret)); 1719 return -EIO; 1720 } 1721 1722 s->kvm_dirty_ring_with_bitmap = true; 1723 } 1724 1725 s->kvm_dirty_ring_size = ring_size; 1726 s->kvm_dirty_ring_bytes = ring_bytes; 1727 1728 return 0; 1729 } 1730 1731 static void kvm_region_add(MemoryListener *listener, 1732 MemoryRegionSection *section) 1733 { 1734 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1735 KVMMemoryUpdate *update; 1736 1737 update = g_new0(KVMMemoryUpdate, 1); 1738 update->section = *section; 1739 1740 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1741 } 1742 1743 static void kvm_region_del(MemoryListener *listener, 1744 MemoryRegionSection *section) 1745 { 1746 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1747 KVMMemoryUpdate *update; 1748 1749 update = g_new0(KVMMemoryUpdate, 1); 1750 update->section = *section; 1751 1752 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1753 } 1754 1755 static void kvm_region_commit(MemoryListener *listener) 1756 { 1757 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1758 listener); 1759 KVMMemoryUpdate *u1, *u2; 1760 bool need_inhibit = false; 1761 1762 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1763 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1764 return; 1765 } 1766 1767 /* 1768 * We have to be careful when regions to add overlap with ranges to remove. 1769 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1770 * is currently active. 1771 * 1772 * The lists are order by addresses, so it's easy to find overlaps. 1773 */ 1774 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1775 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1776 while (u1 && u2) { 1777 Range r1, r2; 1778 1779 range_init_nofail(&r1, u1->section.offset_within_address_space, 1780 int128_get64(u1->section.size)); 1781 range_init_nofail(&r2, u2->section.offset_within_address_space, 1782 int128_get64(u2->section.size)); 1783 1784 if (range_overlaps_range(&r1, &r2)) { 1785 need_inhibit = true; 1786 break; 1787 } 1788 if (range_lob(&r1) < range_lob(&r2)) { 1789 u1 = QSIMPLEQ_NEXT(u1, next); 1790 } else { 1791 u2 = QSIMPLEQ_NEXT(u2, next); 1792 } 1793 } 1794 1795 kvm_slots_lock(); 1796 if (need_inhibit) { 1797 accel_ioctl_inhibit_begin(); 1798 } 1799 1800 /* Remove all memslots before adding the new ones. */ 1801 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1802 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1803 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1804 1805 kvm_set_phys_mem(kml, &u1->section, false); 1806 memory_region_unref(u1->section.mr); 1807 1808 g_free(u1); 1809 } 1810 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1811 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1812 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1813 1814 memory_region_ref(u1->section.mr); 1815 kvm_set_phys_mem(kml, &u1->section, true); 1816 1817 g_free(u1); 1818 } 1819 1820 if (need_inhibit) { 1821 accel_ioctl_inhibit_end(); 1822 } 1823 kvm_slots_unlock(); 1824 } 1825 1826 static void kvm_log_sync(MemoryListener *listener, 1827 MemoryRegionSection *section) 1828 { 1829 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1830 1831 kvm_slots_lock(); 1832 kvm_physical_sync_dirty_bitmap(kml, section); 1833 kvm_slots_unlock(); 1834 } 1835 1836 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1837 { 1838 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1839 KVMState *s = kvm_state; 1840 KVMSlot *mem; 1841 int i; 1842 1843 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1844 kvm_dirty_ring_flush(); 1845 1846 kvm_slots_lock(); 1847 for (i = 0; i < kml->nr_slots_allocated; i++) { 1848 mem = &kml->slots[i]; 1849 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1850 kvm_slot_sync_dirty_pages(mem); 1851 1852 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1853 kvm_slot_get_dirty_log(s, mem)) { 1854 kvm_slot_sync_dirty_pages(mem); 1855 } 1856 1857 /* 1858 * This is not needed by KVM_GET_DIRTY_LOG because the 1859 * ioctl will unconditionally overwrite the whole region. 1860 * However kvm dirty ring has no such side effect. 1861 */ 1862 kvm_slot_reset_dirty_pages(mem); 1863 } 1864 } 1865 kvm_slots_unlock(); 1866 } 1867 1868 static void kvm_log_clear(MemoryListener *listener, 1869 MemoryRegionSection *section) 1870 { 1871 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1872 int r; 1873 1874 r = kvm_physical_log_clear(kml, section); 1875 if (r < 0) { 1876 error_report_once("%s: kvm log clear failed: mr=%s " 1877 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1878 section->mr->name, section->offset_within_region, 1879 int128_get64(section->size)); 1880 abort(); 1881 } 1882 } 1883 1884 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1885 MemoryRegionSection *section, 1886 bool match_data, uint64_t data, 1887 EventNotifier *e) 1888 { 1889 int fd = event_notifier_get_fd(e); 1890 int r; 1891 1892 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1893 data, true, int128_get64(section->size), 1894 match_data); 1895 if (r < 0) { 1896 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1897 __func__, strerror(-r), -r); 1898 abort(); 1899 } 1900 } 1901 1902 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1903 MemoryRegionSection *section, 1904 bool match_data, uint64_t data, 1905 EventNotifier *e) 1906 { 1907 int fd = event_notifier_get_fd(e); 1908 int r; 1909 1910 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1911 data, false, int128_get64(section->size), 1912 match_data); 1913 if (r < 0) { 1914 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1915 __func__, strerror(-r), -r); 1916 abort(); 1917 } 1918 } 1919 1920 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1921 MemoryRegionSection *section, 1922 bool match_data, uint64_t data, 1923 EventNotifier *e) 1924 { 1925 int fd = event_notifier_get_fd(e); 1926 int r; 1927 1928 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1929 data, true, int128_get64(section->size), 1930 match_data); 1931 if (r < 0) { 1932 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1933 __func__, strerror(-r), -r); 1934 abort(); 1935 } 1936 } 1937 1938 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1939 MemoryRegionSection *section, 1940 bool match_data, uint64_t data, 1941 EventNotifier *e) 1942 1943 { 1944 int fd = event_notifier_get_fd(e); 1945 int r; 1946 1947 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1948 data, false, int128_get64(section->size), 1949 match_data); 1950 if (r < 0) { 1951 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1952 __func__, strerror(-r), -r); 1953 abort(); 1954 } 1955 } 1956 1957 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1958 AddressSpace *as, int as_id, const char *name) 1959 { 1960 int i; 1961 1962 kml->as_id = as_id; 1963 1964 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1965 1966 QSIMPLEQ_INIT(&kml->transaction_add); 1967 QSIMPLEQ_INIT(&kml->transaction_del); 1968 1969 kml->listener.region_add = kvm_region_add; 1970 kml->listener.region_del = kvm_region_del; 1971 kml->listener.commit = kvm_region_commit; 1972 kml->listener.log_start = kvm_log_start; 1973 kml->listener.log_stop = kvm_log_stop; 1974 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1975 kml->listener.name = name; 1976 1977 if (s->kvm_dirty_ring_size) { 1978 kml->listener.log_sync_global = kvm_log_sync_global; 1979 } else { 1980 kml->listener.log_sync = kvm_log_sync; 1981 kml->listener.log_clear = kvm_log_clear; 1982 } 1983 1984 memory_listener_register(&kml->listener, as); 1985 1986 for (i = 0; i < s->nr_as; ++i) { 1987 if (!s->as[i].as) { 1988 s->as[i].as = as; 1989 s->as[i].ml = kml; 1990 break; 1991 } 1992 } 1993 } 1994 1995 static MemoryListener kvm_io_listener = { 1996 .name = "kvm-io", 1997 .coalesced_io_add = kvm_coalesce_pio_add, 1998 .coalesced_io_del = kvm_coalesce_pio_del, 1999 .eventfd_add = kvm_io_ioeventfd_add, 2000 .eventfd_del = kvm_io_ioeventfd_del, 2001 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 2002 }; 2003 2004 int kvm_set_irq(KVMState *s, int irq, int level) 2005 { 2006 struct kvm_irq_level event; 2007 int ret; 2008 2009 assert(kvm_async_interrupts_enabled()); 2010 2011 event.level = level; 2012 event.irq = irq; 2013 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 2014 if (ret < 0) { 2015 perror("kvm_set_irq"); 2016 abort(); 2017 } 2018 2019 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 2020 } 2021 2022 #ifdef KVM_CAP_IRQ_ROUTING 2023 typedef struct KVMMSIRoute { 2024 struct kvm_irq_routing_entry kroute; 2025 QTAILQ_ENTRY(KVMMSIRoute) entry; 2026 } KVMMSIRoute; 2027 2028 static void set_gsi(KVMState *s, unsigned int gsi) 2029 { 2030 set_bit(gsi, s->used_gsi_bitmap); 2031 } 2032 2033 static void clear_gsi(KVMState *s, unsigned int gsi) 2034 { 2035 clear_bit(gsi, s->used_gsi_bitmap); 2036 } 2037 2038 void kvm_init_irq_routing(KVMState *s) 2039 { 2040 int gsi_count; 2041 2042 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 2043 if (gsi_count > 0) { 2044 /* Round up so we can search ints using ffs */ 2045 s->used_gsi_bitmap = bitmap_new(gsi_count); 2046 s->gsi_count = gsi_count; 2047 } 2048 2049 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 2050 s->nr_allocated_irq_routes = 0; 2051 2052 kvm_arch_init_irq_routing(s); 2053 } 2054 2055 void kvm_irqchip_commit_routes(KVMState *s) 2056 { 2057 int ret; 2058 2059 if (kvm_gsi_direct_mapping()) { 2060 return; 2061 } 2062 2063 if (!kvm_gsi_routing_enabled()) { 2064 return; 2065 } 2066 2067 s->irq_routes->flags = 0; 2068 trace_kvm_irqchip_commit_routes(); 2069 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2070 assert(ret == 0); 2071 } 2072 2073 void kvm_add_routing_entry(KVMState *s, 2074 struct kvm_irq_routing_entry *entry) 2075 { 2076 struct kvm_irq_routing_entry *new; 2077 int n, size; 2078 2079 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2080 n = s->nr_allocated_irq_routes * 2; 2081 if (n < 64) { 2082 n = 64; 2083 } 2084 size = sizeof(struct kvm_irq_routing); 2085 size += n * sizeof(*new); 2086 s->irq_routes = g_realloc(s->irq_routes, size); 2087 s->nr_allocated_irq_routes = n; 2088 } 2089 n = s->irq_routes->nr++; 2090 new = &s->irq_routes->entries[n]; 2091 2092 *new = *entry; 2093 2094 set_gsi(s, entry->gsi); 2095 } 2096 2097 static int kvm_update_routing_entry(KVMState *s, 2098 struct kvm_irq_routing_entry *new_entry) 2099 { 2100 struct kvm_irq_routing_entry *entry; 2101 int n; 2102 2103 for (n = 0; n < s->irq_routes->nr; n++) { 2104 entry = &s->irq_routes->entries[n]; 2105 if (entry->gsi != new_entry->gsi) { 2106 continue; 2107 } 2108 2109 if(!memcmp(entry, new_entry, sizeof *entry)) { 2110 return 0; 2111 } 2112 2113 *entry = *new_entry; 2114 2115 return 0; 2116 } 2117 2118 return -ESRCH; 2119 } 2120 2121 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2122 { 2123 struct kvm_irq_routing_entry e = {}; 2124 2125 assert(pin < s->gsi_count); 2126 2127 e.gsi = irq; 2128 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2129 e.flags = 0; 2130 e.u.irqchip.irqchip = irqchip; 2131 e.u.irqchip.pin = pin; 2132 kvm_add_routing_entry(s, &e); 2133 } 2134 2135 void kvm_irqchip_release_virq(KVMState *s, int virq) 2136 { 2137 struct kvm_irq_routing_entry *e; 2138 int i; 2139 2140 if (kvm_gsi_direct_mapping()) { 2141 return; 2142 } 2143 2144 for (i = 0; i < s->irq_routes->nr; i++) { 2145 e = &s->irq_routes->entries[i]; 2146 if (e->gsi == virq) { 2147 s->irq_routes->nr--; 2148 *e = s->irq_routes->entries[s->irq_routes->nr]; 2149 } 2150 } 2151 clear_gsi(s, virq); 2152 kvm_arch_release_virq_post(virq); 2153 trace_kvm_irqchip_release_virq(virq); 2154 } 2155 2156 void kvm_irqchip_add_change_notifier(Notifier *n) 2157 { 2158 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2159 } 2160 2161 void kvm_irqchip_remove_change_notifier(Notifier *n) 2162 { 2163 notifier_remove(n); 2164 } 2165 2166 void kvm_irqchip_change_notify(void) 2167 { 2168 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2169 } 2170 2171 int kvm_irqchip_get_virq(KVMState *s) 2172 { 2173 int next_virq; 2174 2175 /* Return the lowest unused GSI in the bitmap */ 2176 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2177 if (next_virq >= s->gsi_count) { 2178 return -ENOSPC; 2179 } else { 2180 return next_virq; 2181 } 2182 } 2183 2184 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2185 { 2186 struct kvm_msi msi; 2187 2188 msi.address_lo = (uint32_t)msg.address; 2189 msi.address_hi = msg.address >> 32; 2190 msi.data = le32_to_cpu(msg.data); 2191 msi.flags = 0; 2192 memset(msi.pad, 0, sizeof(msi.pad)); 2193 2194 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2195 } 2196 2197 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2198 { 2199 struct kvm_irq_routing_entry kroute = {}; 2200 int virq; 2201 KVMState *s = c->s; 2202 MSIMessage msg = {0, 0}; 2203 2204 if (pci_available && dev) { 2205 msg = pci_get_msi_message(dev, vector); 2206 } 2207 2208 if (kvm_gsi_direct_mapping()) { 2209 return kvm_arch_msi_data_to_gsi(msg.data); 2210 } 2211 2212 if (!kvm_gsi_routing_enabled()) { 2213 return -ENOSYS; 2214 } 2215 2216 virq = kvm_irqchip_get_virq(s); 2217 if (virq < 0) { 2218 return virq; 2219 } 2220 2221 kroute.gsi = virq; 2222 kroute.type = KVM_IRQ_ROUTING_MSI; 2223 kroute.flags = 0; 2224 kroute.u.msi.address_lo = (uint32_t)msg.address; 2225 kroute.u.msi.address_hi = msg.address >> 32; 2226 kroute.u.msi.data = le32_to_cpu(msg.data); 2227 if (pci_available && kvm_msi_devid_required()) { 2228 kroute.flags = KVM_MSI_VALID_DEVID; 2229 kroute.u.msi.devid = pci_requester_id(dev); 2230 } 2231 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2232 kvm_irqchip_release_virq(s, virq); 2233 return -EINVAL; 2234 } 2235 2236 if (s->irq_routes->nr < s->gsi_count) { 2237 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2238 vector, virq); 2239 2240 kvm_add_routing_entry(s, &kroute); 2241 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2242 c->changes++; 2243 } else { 2244 kvm_irqchip_release_virq(s, virq); 2245 return -ENOSPC; 2246 } 2247 2248 return virq; 2249 } 2250 2251 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2252 PCIDevice *dev) 2253 { 2254 struct kvm_irq_routing_entry kroute = {}; 2255 2256 if (kvm_gsi_direct_mapping()) { 2257 return 0; 2258 } 2259 2260 if (!kvm_irqchip_in_kernel()) { 2261 return -ENOSYS; 2262 } 2263 2264 kroute.gsi = virq; 2265 kroute.type = KVM_IRQ_ROUTING_MSI; 2266 kroute.flags = 0; 2267 kroute.u.msi.address_lo = (uint32_t)msg.address; 2268 kroute.u.msi.address_hi = msg.address >> 32; 2269 kroute.u.msi.data = le32_to_cpu(msg.data); 2270 if (pci_available && kvm_msi_devid_required()) { 2271 kroute.flags = KVM_MSI_VALID_DEVID; 2272 kroute.u.msi.devid = pci_requester_id(dev); 2273 } 2274 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2275 return -EINVAL; 2276 } 2277 2278 trace_kvm_irqchip_update_msi_route(virq); 2279 2280 return kvm_update_routing_entry(s, &kroute); 2281 } 2282 2283 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2284 EventNotifier *resample, int virq, 2285 bool assign) 2286 { 2287 int fd = event_notifier_get_fd(event); 2288 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2289 2290 struct kvm_irqfd irqfd = { 2291 .fd = fd, 2292 .gsi = virq, 2293 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2294 }; 2295 2296 if (rfd != -1) { 2297 assert(assign); 2298 if (kvm_irqchip_is_split()) { 2299 /* 2300 * When the slow irqchip (e.g. IOAPIC) is in the 2301 * userspace, KVM kernel resamplefd will not work because 2302 * the EOI of the interrupt will be delivered to userspace 2303 * instead, so the KVM kernel resamplefd kick will be 2304 * skipped. The userspace here mimics what the kernel 2305 * provides with resamplefd, remember the resamplefd and 2306 * kick it when we receive EOI of this IRQ. 2307 * 2308 * This is hackery because IOAPIC is mostly bypassed 2309 * (except EOI broadcasts) when irqfd is used. However 2310 * this can bring much performance back for split irqchip 2311 * with INTx IRQs (for VFIO, this gives 93% perf of the 2312 * full fast path, which is 46% perf boost comparing to 2313 * the INTx slow path). 2314 */ 2315 kvm_resample_fd_insert(virq, resample); 2316 } else { 2317 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2318 irqfd.resamplefd = rfd; 2319 } 2320 } else if (!assign) { 2321 if (kvm_irqchip_is_split()) { 2322 kvm_resample_fd_remove(virq); 2323 } 2324 } 2325 2326 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2327 } 2328 2329 #else /* !KVM_CAP_IRQ_ROUTING */ 2330 2331 void kvm_init_irq_routing(KVMState *s) 2332 { 2333 } 2334 2335 void kvm_irqchip_release_virq(KVMState *s, int virq) 2336 { 2337 } 2338 2339 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2340 { 2341 abort(); 2342 } 2343 2344 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2345 { 2346 return -ENOSYS; 2347 } 2348 2349 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2350 { 2351 return -ENOSYS; 2352 } 2353 2354 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2355 { 2356 return -ENOSYS; 2357 } 2358 2359 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2360 EventNotifier *resample, int virq, 2361 bool assign) 2362 { 2363 abort(); 2364 } 2365 2366 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2367 { 2368 return -ENOSYS; 2369 } 2370 #endif /* !KVM_CAP_IRQ_ROUTING */ 2371 2372 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2373 EventNotifier *rn, int virq) 2374 { 2375 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2376 } 2377 2378 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2379 int virq) 2380 { 2381 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2382 } 2383 2384 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2385 EventNotifier *rn, qemu_irq irq) 2386 { 2387 gpointer key, gsi; 2388 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2389 2390 if (!found) { 2391 return -ENXIO; 2392 } 2393 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2394 } 2395 2396 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2397 qemu_irq irq) 2398 { 2399 gpointer key, gsi; 2400 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2401 2402 if (!found) { 2403 return -ENXIO; 2404 } 2405 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2406 } 2407 2408 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2409 { 2410 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2411 } 2412 2413 static void kvm_irqchip_create(KVMState *s) 2414 { 2415 int ret; 2416 2417 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2418 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2419 ; 2420 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2421 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2422 if (ret < 0) { 2423 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2424 exit(1); 2425 } 2426 } else { 2427 return; 2428 } 2429 2430 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2431 fprintf(stderr, "kvm: irqfd not implemented\n"); 2432 exit(1); 2433 } 2434 2435 /* First probe and see if there's a arch-specific hook to create the 2436 * in-kernel irqchip for us */ 2437 ret = kvm_arch_irqchip_create(s); 2438 if (ret == 0) { 2439 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2440 error_report("Split IRQ chip mode not supported."); 2441 exit(1); 2442 } else { 2443 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2444 } 2445 } 2446 if (ret < 0) { 2447 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2448 exit(1); 2449 } 2450 2451 kvm_kernel_irqchip = true; 2452 /* If we have an in-kernel IRQ chip then we must have asynchronous 2453 * interrupt delivery (though the reverse is not necessarily true) 2454 */ 2455 kvm_async_interrupts_allowed = true; 2456 kvm_halt_in_kernel_allowed = true; 2457 2458 kvm_init_irq_routing(s); 2459 2460 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2461 } 2462 2463 /* Find number of supported CPUs using the recommended 2464 * procedure from the kernel API documentation to cope with 2465 * older kernels that may be missing capabilities. 2466 */ 2467 static int kvm_recommended_vcpus(KVMState *s) 2468 { 2469 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2470 return (ret) ? ret : 4; 2471 } 2472 2473 static int kvm_max_vcpus(KVMState *s) 2474 { 2475 int ret = kvm_vm_check_extension(s, KVM_CAP_MAX_VCPUS); 2476 return (ret) ? ret : kvm_recommended_vcpus(s); 2477 } 2478 2479 static int kvm_max_vcpu_id(KVMState *s) 2480 { 2481 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2482 return (ret) ? ret : kvm_max_vcpus(s); 2483 } 2484 2485 bool kvm_vcpu_id_is_valid(int vcpu_id) 2486 { 2487 KVMState *s = KVM_STATE(current_accel()); 2488 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2489 } 2490 2491 bool kvm_dirty_ring_enabled(void) 2492 { 2493 return kvm_state && kvm_state->kvm_dirty_ring_size; 2494 } 2495 2496 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2497 strList *names, strList *targets, Error **errp); 2498 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2499 2500 uint32_t kvm_dirty_ring_size(void) 2501 { 2502 return kvm_state->kvm_dirty_ring_size; 2503 } 2504 2505 static int do_kvm_create_vm(KVMState *s, int type) 2506 { 2507 int ret; 2508 2509 do { 2510 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2511 } while (ret == -EINTR); 2512 2513 if (ret < 0) { 2514 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret)); 2515 2516 #ifdef TARGET_S390X 2517 if (ret == -EINVAL) { 2518 error_printf("Host kernel setup problem detected." 2519 " Please verify:\n"); 2520 error_printf("- for kernels supporting the" 2521 " switch_amode or user_mode parameters, whether"); 2522 error_printf(" user space is running in primary address space\n"); 2523 error_printf("- for kernels supporting the vm.allocate_pgste" 2524 " sysctl, whether it is enabled\n"); 2525 } 2526 #elif defined(TARGET_PPC) 2527 if (ret == -EINVAL) { 2528 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2529 (type == 2) ? "pr" : "hv"); 2530 } 2531 #endif 2532 } 2533 2534 return ret; 2535 } 2536 2537 static int find_kvm_machine_type(MachineState *ms) 2538 { 2539 MachineClass *mc = MACHINE_GET_CLASS(ms); 2540 int type; 2541 2542 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2543 g_autofree char *kvm_type; 2544 kvm_type = object_property_get_str(OBJECT(current_machine), 2545 "kvm-type", 2546 &error_abort); 2547 type = mc->kvm_type(ms, kvm_type); 2548 } else if (mc->kvm_type) { 2549 type = mc->kvm_type(ms, NULL); 2550 } else { 2551 type = kvm_arch_get_default_type(ms); 2552 } 2553 return type; 2554 } 2555 2556 static int kvm_setup_dirty_ring(KVMState *s) 2557 { 2558 uint64_t dirty_log_manual_caps; 2559 int ret; 2560 2561 /* 2562 * Enable KVM dirty ring if supported, otherwise fall back to 2563 * dirty logging mode 2564 */ 2565 ret = kvm_dirty_ring_init(s); 2566 if (ret < 0) { 2567 return ret; 2568 } 2569 2570 /* 2571 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2572 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2573 * page is wr-protected initially, which is against how kvm dirty ring is 2574 * usage - kvm dirty ring requires all pages are wr-protected at the very 2575 * beginning. Enabling this feature for dirty ring causes data corruption. 2576 * 2577 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2578 * we may expect a higher stall time when starting the migration. In the 2579 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2580 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2581 * guest pages. 2582 */ 2583 if (!s->kvm_dirty_ring_size) { 2584 dirty_log_manual_caps = 2585 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2586 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2587 KVM_DIRTY_LOG_INITIALLY_SET); 2588 s->manual_dirty_log_protect = dirty_log_manual_caps; 2589 if (dirty_log_manual_caps) { 2590 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2591 dirty_log_manual_caps); 2592 if (ret) { 2593 warn_report("Trying to enable capability %"PRIu64" of " 2594 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2595 "Falling back to the legacy mode. ", 2596 dirty_log_manual_caps); 2597 s->manual_dirty_log_protect = 0; 2598 } 2599 } 2600 } 2601 2602 return 0; 2603 } 2604 2605 static int kvm_init(AccelState *as, MachineState *ms) 2606 { 2607 MachineClass *mc = MACHINE_GET_CLASS(ms); 2608 static const char upgrade_note[] = 2609 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2610 "(see http://sourceforge.net/projects/kvm).\n"; 2611 const struct { 2612 const char *name; 2613 int num; 2614 } num_cpus[] = { 2615 { "SMP", ms->smp.cpus }, 2616 { "hotpluggable", ms->smp.max_cpus }, 2617 { /* end of list */ } 2618 }, *nc = num_cpus; 2619 int soft_vcpus_limit, hard_vcpus_limit; 2620 KVMState *s = KVM_STATE(as); 2621 const KVMCapabilityInfo *missing_cap; 2622 int ret; 2623 int type; 2624 2625 qemu_mutex_init(&kml_slots_lock); 2626 2627 /* 2628 * On systems where the kernel can support different base page 2629 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2630 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2631 * page size for the system though. 2632 */ 2633 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2634 2635 s->sigmask_len = 8; 2636 accel_blocker_init(); 2637 2638 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2639 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2640 #endif 2641 QLIST_INIT(&s->kvm_parked_vcpus); 2642 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2643 if (s->fd == -1) { 2644 error_report("Could not access KVM kernel module: %m"); 2645 ret = -errno; 2646 goto err; 2647 } 2648 2649 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2650 if (ret < KVM_API_VERSION) { 2651 if (ret >= 0) { 2652 ret = -EINVAL; 2653 } 2654 error_report("kvm version too old"); 2655 goto err; 2656 } 2657 2658 if (ret > KVM_API_VERSION) { 2659 ret = -EINVAL; 2660 error_report("kvm version not supported"); 2661 goto err; 2662 } 2663 2664 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2665 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2666 2667 /* If unspecified, use the default value */ 2668 if (!s->nr_slots_max) { 2669 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT; 2670 } 2671 2672 type = find_kvm_machine_type(ms); 2673 if (type < 0) { 2674 ret = -EINVAL; 2675 goto err; 2676 } 2677 2678 ret = do_kvm_create_vm(s, type); 2679 if (ret < 0) { 2680 goto err; 2681 } 2682 2683 s->vmfd = ret; 2684 2685 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2686 if (s->nr_as <= 1) { 2687 s->nr_as = 1; 2688 } 2689 s->as = g_new0(struct KVMAs, s->nr_as); 2690 2691 /* check the vcpu limits */ 2692 soft_vcpus_limit = kvm_recommended_vcpus(s); 2693 hard_vcpus_limit = kvm_max_vcpus(s); 2694 2695 while (nc->name) { 2696 if (nc->num > soft_vcpus_limit) { 2697 warn_report("Number of %s cpus requested (%d) exceeds " 2698 "the recommended cpus supported by KVM (%d)", 2699 nc->name, nc->num, soft_vcpus_limit); 2700 2701 if (nc->num > hard_vcpus_limit) { 2702 error_report("Number of %s cpus requested (%d) exceeds " 2703 "the maximum cpus supported by KVM (%d)", 2704 nc->name, nc->num, hard_vcpus_limit); 2705 exit(1); 2706 } 2707 } 2708 nc++; 2709 } 2710 2711 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2712 if (!missing_cap) { 2713 missing_cap = 2714 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2715 } 2716 if (missing_cap) { 2717 ret = -EINVAL; 2718 error_report("kvm does not support %s", missing_cap->name); 2719 error_printf("%s", upgrade_note); 2720 goto err; 2721 } 2722 2723 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2724 s->coalesced_pio = s->coalesced_mmio && 2725 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2726 2727 ret = kvm_setup_dirty_ring(s); 2728 if (ret < 0) { 2729 goto err; 2730 } 2731 2732 #ifdef KVM_CAP_VCPU_EVENTS 2733 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2734 #endif 2735 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2736 2737 s->irq_set_ioctl = KVM_IRQ_LINE; 2738 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2739 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2740 } 2741 2742 kvm_readonly_mem_allowed = 2743 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2744 2745 kvm_resamplefds_allowed = 2746 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2747 2748 kvm_vm_attributes_allowed = 2749 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2750 2751 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2752 kvm_has_guest_debug = 2753 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2754 #endif 2755 2756 kvm_sstep_flags = 0; 2757 if (kvm_has_guest_debug) { 2758 kvm_sstep_flags = SSTEP_ENABLE; 2759 2760 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2761 int guest_debug_flags = 2762 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2763 2764 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2765 kvm_sstep_flags |= SSTEP_NOIRQ; 2766 } 2767 #endif 2768 } 2769 2770 kvm_state = s; 2771 2772 ret = kvm_arch_init(ms, s); 2773 if (ret < 0) { 2774 goto err; 2775 } 2776 2777 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2778 kvm_guest_memfd_supported = 2779 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2780 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2781 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2782 kvm_pre_fault_memory_supported = kvm_vm_check_extension(s, KVM_CAP_PRE_FAULT_MEMORY); 2783 2784 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2785 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2786 } 2787 2788 qemu_register_reset(kvm_unpoison_all, NULL); 2789 2790 if (s->kernel_irqchip_allowed) { 2791 kvm_irqchip_create(s); 2792 } 2793 2794 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2795 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2796 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2797 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2798 2799 kvm_memory_listener_register(s, &s->memory_listener, 2800 &address_space_memory, 0, "kvm-memory"); 2801 memory_listener_register(&kvm_io_listener, 2802 &address_space_io); 2803 2804 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2805 if (!s->sync_mmu) { 2806 ret = ram_block_discard_disable(true); 2807 assert(!ret); 2808 } 2809 2810 if (s->kvm_dirty_ring_size) { 2811 kvm_dirty_ring_reaper_init(s); 2812 } 2813 2814 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2815 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2816 query_stats_schemas_cb); 2817 } 2818 2819 return 0; 2820 2821 err: 2822 assert(ret < 0); 2823 if (s->vmfd >= 0) { 2824 close(s->vmfd); 2825 } 2826 if (s->fd != -1) { 2827 close(s->fd); 2828 } 2829 g_free(s->as); 2830 g_free(s->memory_listener.slots); 2831 2832 return ret; 2833 } 2834 2835 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2836 { 2837 s->sigmask_len = sigmask_len; 2838 } 2839 2840 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2841 int size, uint32_t count) 2842 { 2843 int i; 2844 uint8_t *ptr = data; 2845 2846 for (i = 0; i < count; i++) { 2847 address_space_rw(&address_space_io, port, attrs, 2848 ptr, size, 2849 direction == KVM_EXIT_IO_OUT); 2850 ptr += size; 2851 } 2852 } 2853 2854 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2855 { 2856 int i; 2857 2858 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2859 run->internal.suberror); 2860 2861 for (i = 0; i < run->internal.ndata; ++i) { 2862 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2863 i, (uint64_t)run->internal.data[i]); 2864 } 2865 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2866 fprintf(stderr, "emulation failure\n"); 2867 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2868 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2869 return EXCP_INTERRUPT; 2870 } 2871 } 2872 /* FIXME: Should trigger a qmp message to let management know 2873 * something went wrong. 2874 */ 2875 return -1; 2876 } 2877 2878 void kvm_flush_coalesced_mmio_buffer(void) 2879 { 2880 KVMState *s = kvm_state; 2881 2882 if (!s || s->coalesced_flush_in_progress) { 2883 return; 2884 } 2885 2886 s->coalesced_flush_in_progress = true; 2887 2888 if (s->coalesced_mmio_ring) { 2889 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2890 while (ring->first != ring->last) { 2891 struct kvm_coalesced_mmio *ent; 2892 2893 ent = &ring->coalesced_mmio[ring->first]; 2894 2895 if (ent->pio == 1) { 2896 address_space_write(&address_space_io, ent->phys_addr, 2897 MEMTXATTRS_UNSPECIFIED, ent->data, 2898 ent->len); 2899 } else { 2900 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2901 } 2902 smp_wmb(); 2903 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2904 } 2905 } 2906 2907 s->coalesced_flush_in_progress = false; 2908 } 2909 2910 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2911 { 2912 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2913 Error *err = NULL; 2914 int ret = kvm_arch_get_registers(cpu, &err); 2915 if (ret) { 2916 if (err) { 2917 error_reportf_err(err, "Failed to synchronize CPU state: "); 2918 } else { 2919 error_report("Failed to get registers: %s", strerror(-ret)); 2920 } 2921 2922 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2923 vm_stop(RUN_STATE_INTERNAL_ERROR); 2924 } 2925 2926 cpu->vcpu_dirty = true; 2927 } 2928 } 2929 2930 void kvm_cpu_synchronize_state(CPUState *cpu) 2931 { 2932 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2933 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2934 } 2935 } 2936 2937 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2938 { 2939 Error *err = NULL; 2940 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err); 2941 if (ret) { 2942 if (err) { 2943 error_reportf_err(err, "Restoring resisters after reset: "); 2944 } else { 2945 error_report("Failed to put registers after reset: %s", 2946 strerror(-ret)); 2947 } 2948 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2949 vm_stop(RUN_STATE_INTERNAL_ERROR); 2950 } 2951 2952 cpu->vcpu_dirty = false; 2953 } 2954 2955 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2956 { 2957 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2958 2959 if (cpu == first_cpu) { 2960 kvm_reset_parked_vcpus(kvm_state); 2961 } 2962 } 2963 2964 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2965 { 2966 Error *err = NULL; 2967 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err); 2968 if (ret) { 2969 if (err) { 2970 error_reportf_err(err, "Putting registers after init: "); 2971 } else { 2972 error_report("Failed to put registers after init: %s", 2973 strerror(-ret)); 2974 } 2975 exit(1); 2976 } 2977 2978 cpu->vcpu_dirty = false; 2979 } 2980 2981 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2982 { 2983 if (!kvm_state->guest_state_protected) { 2984 /* 2985 * This runs before the machine_init_done notifiers, and is the last 2986 * opportunity to synchronize the state of confidential guests. 2987 */ 2988 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2989 } 2990 } 2991 2992 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2993 { 2994 cpu->vcpu_dirty = true; 2995 } 2996 2997 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2998 { 2999 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 3000 } 3001 3002 #ifdef KVM_HAVE_MCE_INJECTION 3003 static __thread void *pending_sigbus_addr; 3004 static __thread int pending_sigbus_code; 3005 static __thread bool have_sigbus_pending; 3006 #endif 3007 3008 static void kvm_cpu_kick(CPUState *cpu) 3009 { 3010 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 3011 } 3012 3013 static void kvm_cpu_kick_self(void) 3014 { 3015 if (kvm_immediate_exit) { 3016 kvm_cpu_kick(current_cpu); 3017 } else { 3018 qemu_cpu_kick_self(); 3019 } 3020 } 3021 3022 static void kvm_eat_signals(CPUState *cpu) 3023 { 3024 struct timespec ts = { 0, 0 }; 3025 siginfo_t siginfo; 3026 sigset_t waitset; 3027 sigset_t chkset; 3028 int r; 3029 3030 if (kvm_immediate_exit) { 3031 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 3032 /* Write kvm_run->immediate_exit before the cpu->exit_request 3033 * write in kvm_cpu_exec. 3034 */ 3035 smp_wmb(); 3036 return; 3037 } 3038 3039 sigemptyset(&waitset); 3040 sigaddset(&waitset, SIG_IPI); 3041 3042 do { 3043 r = sigtimedwait(&waitset, &siginfo, &ts); 3044 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 3045 perror("sigtimedwait"); 3046 exit(1); 3047 } 3048 3049 r = sigpending(&chkset); 3050 if (r == -1) { 3051 perror("sigpending"); 3052 exit(1); 3053 } 3054 } while (sigismember(&chkset, SIG_IPI)); 3055 } 3056 3057 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 3058 { 3059 MemoryRegionSection section; 3060 ram_addr_t offset; 3061 MemoryRegion *mr; 3062 RAMBlock *rb; 3063 void *addr; 3064 int ret = -EINVAL; 3065 3066 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 3067 3068 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 3069 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 3070 return ret; 3071 } 3072 3073 if (!size) { 3074 return ret; 3075 } 3076 3077 section = memory_region_find(get_system_memory(), start, size); 3078 mr = section.mr; 3079 if (!mr) { 3080 /* 3081 * Ignore converting non-assigned region to shared. 3082 * 3083 * TDX requires vMMIO region to be shared to inject #VE to guest. 3084 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 3085 * and vIO-APIC 0xFEC00000 4K page. 3086 * OVMF assigns 32bit PCI MMIO region to 3087 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 3088 */ 3089 if (!to_private) { 3090 return 0; 3091 } 3092 return ret; 3093 } 3094 3095 if (!memory_region_has_guest_memfd(mr)) { 3096 /* 3097 * Because vMMIO region must be shared, guest TD may convert vMMIO 3098 * region to shared explicitly. Don't complain such case. See 3099 * memory_region_type() for checking if the region is MMIO region. 3100 */ 3101 if (!to_private && 3102 !memory_region_is_ram(mr) && 3103 !memory_region_is_ram_device(mr) && 3104 !memory_region_is_rom(mr) && 3105 !memory_region_is_romd(mr)) { 3106 ret = 0; 3107 } else { 3108 error_report("Convert non guest_memfd backed memory region " 3109 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3110 start, size, to_private ? "private" : "shared"); 3111 } 3112 goto out_unref; 3113 } 3114 3115 if (to_private) { 3116 ret = kvm_set_memory_attributes_private(start, size); 3117 } else { 3118 ret = kvm_set_memory_attributes_shared(start, size); 3119 } 3120 if (ret) { 3121 goto out_unref; 3122 } 3123 3124 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3125 rb = qemu_ram_block_from_host(addr, false, &offset); 3126 3127 ret = ram_block_attributes_state_change(RAM_BLOCK_ATTRIBUTES(mr->rdm), 3128 offset, size, to_private); 3129 if (ret) { 3130 error_report("Failed to notify the listener the state change of " 3131 "(0x%"HWADDR_PRIx" + 0x%"HWADDR_PRIx") to %s", 3132 start, size, to_private ? "private" : "shared"); 3133 goto out_unref; 3134 } 3135 3136 if (to_private) { 3137 if (rb->page_size != qemu_real_host_page_size()) { 3138 /* 3139 * shared memory is backed by hugetlb, which is supposed to be 3140 * pre-allocated and doesn't need to be discarded 3141 */ 3142 goto out_unref; 3143 } 3144 ret = ram_block_discard_range(rb, offset, size); 3145 } else { 3146 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3147 } 3148 3149 out_unref: 3150 memory_region_unref(mr); 3151 return ret; 3152 } 3153 3154 int kvm_cpu_exec(CPUState *cpu) 3155 { 3156 struct kvm_run *run = cpu->kvm_run; 3157 int ret, run_ret; 3158 3159 trace_kvm_cpu_exec(); 3160 3161 if (kvm_arch_process_async_events(cpu)) { 3162 qatomic_set(&cpu->exit_request, 0); 3163 return EXCP_HLT; 3164 } 3165 3166 bql_unlock(); 3167 cpu_exec_start(cpu); 3168 3169 do { 3170 MemTxAttrs attrs; 3171 3172 if (cpu->vcpu_dirty) { 3173 Error *err = NULL; 3174 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err); 3175 if (ret) { 3176 if (err) { 3177 error_reportf_err(err, "Putting registers after init: "); 3178 } else { 3179 error_report("Failed to put registers after init: %s", 3180 strerror(-ret)); 3181 } 3182 ret = -1; 3183 break; 3184 } 3185 3186 cpu->vcpu_dirty = false; 3187 } 3188 3189 kvm_arch_pre_run(cpu, run); 3190 if (qatomic_read(&cpu->exit_request)) { 3191 trace_kvm_interrupt_exit_request(); 3192 /* 3193 * KVM requires us to reenter the kernel after IO exits to complete 3194 * instruction emulation. This self-signal will ensure that we 3195 * leave ASAP again. 3196 */ 3197 kvm_cpu_kick_self(); 3198 } 3199 3200 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3201 * Matching barrier in kvm_eat_signals. 3202 */ 3203 smp_rmb(); 3204 3205 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3206 3207 attrs = kvm_arch_post_run(cpu, run); 3208 3209 #ifdef KVM_HAVE_MCE_INJECTION 3210 if (unlikely(have_sigbus_pending)) { 3211 bql_lock(); 3212 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3213 pending_sigbus_addr); 3214 have_sigbus_pending = false; 3215 bql_unlock(); 3216 } 3217 #endif 3218 3219 if (run_ret < 0) { 3220 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3221 trace_kvm_io_window_exit(); 3222 kvm_eat_signals(cpu); 3223 ret = EXCP_INTERRUPT; 3224 break; 3225 } 3226 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3227 fprintf(stderr, "error: kvm run failed %s\n", 3228 strerror(-run_ret)); 3229 #ifdef TARGET_PPC 3230 if (run_ret == -EBUSY) { 3231 fprintf(stderr, 3232 "This is probably because your SMT is enabled.\n" 3233 "VCPU can only run on primary threads with all " 3234 "secondary threads offline.\n"); 3235 } 3236 #endif 3237 ret = -1; 3238 break; 3239 } 3240 } 3241 3242 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3243 switch (run->exit_reason) { 3244 case KVM_EXIT_IO: 3245 /* Called outside BQL */ 3246 kvm_handle_io(run->io.port, attrs, 3247 (uint8_t *)run + run->io.data_offset, 3248 run->io.direction, 3249 run->io.size, 3250 run->io.count); 3251 ret = 0; 3252 break; 3253 case KVM_EXIT_MMIO: 3254 /* Called outside BQL */ 3255 address_space_rw(&address_space_memory, 3256 run->mmio.phys_addr, attrs, 3257 run->mmio.data, 3258 run->mmio.len, 3259 run->mmio.is_write); 3260 ret = 0; 3261 break; 3262 case KVM_EXIT_IRQ_WINDOW_OPEN: 3263 ret = EXCP_INTERRUPT; 3264 break; 3265 case KVM_EXIT_SHUTDOWN: 3266 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3267 ret = EXCP_INTERRUPT; 3268 break; 3269 case KVM_EXIT_UNKNOWN: 3270 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3271 (uint64_t)run->hw.hardware_exit_reason); 3272 ret = -1; 3273 break; 3274 case KVM_EXIT_INTERNAL_ERROR: 3275 ret = kvm_handle_internal_error(cpu, run); 3276 break; 3277 case KVM_EXIT_DIRTY_RING_FULL: 3278 /* 3279 * We shouldn't continue if the dirty ring of this vcpu is 3280 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3281 */ 3282 trace_kvm_dirty_ring_full(cpu->cpu_index); 3283 bql_lock(); 3284 /* 3285 * We throttle vCPU by making it sleep once it exit from kernel 3286 * due to dirty ring full. In the dirtylimit scenario, reaping 3287 * all vCPUs after a single vCPU dirty ring get full result in 3288 * the miss of sleep, so just reap the ring-fulled vCPU. 3289 */ 3290 if (dirtylimit_in_service()) { 3291 kvm_dirty_ring_reap(kvm_state, cpu); 3292 } else { 3293 kvm_dirty_ring_reap(kvm_state, NULL); 3294 } 3295 bql_unlock(); 3296 dirtylimit_vcpu_execute(cpu); 3297 ret = 0; 3298 break; 3299 case KVM_EXIT_SYSTEM_EVENT: 3300 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3301 switch (run->system_event.type) { 3302 case KVM_SYSTEM_EVENT_SHUTDOWN: 3303 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3304 ret = EXCP_INTERRUPT; 3305 break; 3306 case KVM_SYSTEM_EVENT_RESET: 3307 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3308 ret = EXCP_INTERRUPT; 3309 break; 3310 case KVM_SYSTEM_EVENT_CRASH: 3311 kvm_cpu_synchronize_state(cpu); 3312 bql_lock(); 3313 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3314 bql_unlock(); 3315 ret = 0; 3316 break; 3317 default: 3318 ret = kvm_arch_handle_exit(cpu, run); 3319 break; 3320 } 3321 break; 3322 case KVM_EXIT_MEMORY_FAULT: 3323 trace_kvm_memory_fault(run->memory_fault.gpa, 3324 run->memory_fault.size, 3325 run->memory_fault.flags); 3326 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3327 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3328 (uint64_t)run->memory_fault.flags); 3329 ret = -1; 3330 break; 3331 } 3332 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3333 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3334 break; 3335 default: 3336 ret = kvm_arch_handle_exit(cpu, run); 3337 break; 3338 } 3339 } while (ret == 0); 3340 3341 cpu_exec_end(cpu); 3342 bql_lock(); 3343 3344 if (ret < 0) { 3345 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3346 vm_stop(RUN_STATE_INTERNAL_ERROR); 3347 } 3348 3349 qatomic_set(&cpu->exit_request, 0); 3350 return ret; 3351 } 3352 3353 int kvm_ioctl(KVMState *s, unsigned long type, ...) 3354 { 3355 int ret; 3356 void *arg; 3357 va_list ap; 3358 3359 va_start(ap, type); 3360 arg = va_arg(ap, void *); 3361 va_end(ap); 3362 3363 trace_kvm_ioctl(type, arg); 3364 ret = ioctl(s->fd, type, arg); 3365 if (ret == -1) { 3366 ret = -errno; 3367 } 3368 return ret; 3369 } 3370 3371 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...) 3372 { 3373 int ret; 3374 void *arg; 3375 va_list ap; 3376 3377 va_start(ap, type); 3378 arg = va_arg(ap, void *); 3379 va_end(ap); 3380 3381 trace_kvm_vm_ioctl(type, arg); 3382 accel_ioctl_begin(); 3383 ret = ioctl(s->vmfd, type, arg); 3384 accel_ioctl_end(); 3385 if (ret == -1) { 3386 ret = -errno; 3387 } 3388 return ret; 3389 } 3390 3391 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...) 3392 { 3393 int ret; 3394 void *arg; 3395 va_list ap; 3396 3397 va_start(ap, type); 3398 arg = va_arg(ap, void *); 3399 va_end(ap); 3400 3401 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3402 accel_cpu_ioctl_begin(cpu); 3403 ret = ioctl(cpu->kvm_fd, type, arg); 3404 accel_cpu_ioctl_end(cpu); 3405 if (ret == -1) { 3406 ret = -errno; 3407 } 3408 return ret; 3409 } 3410 3411 int kvm_device_ioctl(int fd, unsigned long type, ...) 3412 { 3413 int ret; 3414 void *arg; 3415 va_list ap; 3416 3417 va_start(ap, type); 3418 arg = va_arg(ap, void *); 3419 va_end(ap); 3420 3421 trace_kvm_device_ioctl(fd, type, arg); 3422 accel_ioctl_begin(); 3423 ret = ioctl(fd, type, arg); 3424 accel_ioctl_end(); 3425 if (ret == -1) { 3426 ret = -errno; 3427 } 3428 return ret; 3429 } 3430 3431 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3432 { 3433 int ret; 3434 struct kvm_device_attr attribute = { 3435 .group = group, 3436 .attr = attr, 3437 }; 3438 3439 if (!kvm_vm_attributes_allowed) { 3440 return 0; 3441 } 3442 3443 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3444 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3445 return ret ? 0 : 1; 3446 } 3447 3448 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3449 { 3450 struct kvm_device_attr attribute = { 3451 .group = group, 3452 .attr = attr, 3453 .flags = 0, 3454 }; 3455 3456 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3457 } 3458 3459 int kvm_device_access(int fd, int group, uint64_t attr, 3460 void *val, bool write, Error **errp) 3461 { 3462 struct kvm_device_attr kvmattr; 3463 int err; 3464 3465 kvmattr.flags = 0; 3466 kvmattr.group = group; 3467 kvmattr.attr = attr; 3468 kvmattr.addr = (uintptr_t)val; 3469 3470 err = kvm_device_ioctl(fd, 3471 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3472 &kvmattr); 3473 if (err < 0) { 3474 error_setg_errno(errp, -err, 3475 "KVM_%s_DEVICE_ATTR failed: Group %d " 3476 "attr 0x%016" PRIx64, 3477 write ? "SET" : "GET", group, attr); 3478 } 3479 return err; 3480 } 3481 3482 bool kvm_has_sync_mmu(void) 3483 { 3484 return kvm_state->sync_mmu; 3485 } 3486 3487 int kvm_has_vcpu_events(void) 3488 { 3489 return kvm_state->vcpu_events; 3490 } 3491 3492 int kvm_max_nested_state_length(void) 3493 { 3494 return kvm_state->max_nested_state_len; 3495 } 3496 3497 int kvm_has_gsi_routing(void) 3498 { 3499 #ifdef KVM_CAP_IRQ_ROUTING 3500 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3501 #else 3502 return false; 3503 #endif 3504 } 3505 3506 bool kvm_arm_supports_user_irq(void) 3507 { 3508 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3509 } 3510 3511 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3512 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3513 { 3514 struct kvm_sw_breakpoint *bp; 3515 3516 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3517 if (bp->pc == pc) { 3518 return bp; 3519 } 3520 } 3521 return NULL; 3522 } 3523 3524 int kvm_sw_breakpoints_active(CPUState *cpu) 3525 { 3526 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3527 } 3528 3529 struct kvm_set_guest_debug_data { 3530 struct kvm_guest_debug dbg; 3531 int err; 3532 }; 3533 3534 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3535 { 3536 struct kvm_set_guest_debug_data *dbg_data = 3537 (struct kvm_set_guest_debug_data *) data.host_ptr; 3538 3539 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3540 &dbg_data->dbg); 3541 } 3542 3543 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3544 { 3545 struct kvm_set_guest_debug_data data; 3546 3547 data.dbg.control = reinject_trap; 3548 3549 if (cpu->singlestep_enabled) { 3550 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3551 3552 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3553 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3554 } 3555 } 3556 kvm_arch_update_guest_debug(cpu, &data.dbg); 3557 3558 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3559 RUN_ON_CPU_HOST_PTR(&data)); 3560 return data.err; 3561 } 3562 3563 bool kvm_supports_guest_debug(void) 3564 { 3565 /* probed during kvm_init() */ 3566 return kvm_has_guest_debug; 3567 } 3568 3569 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3570 { 3571 struct kvm_sw_breakpoint *bp; 3572 int err; 3573 3574 if (type == GDB_BREAKPOINT_SW) { 3575 bp = kvm_find_sw_breakpoint(cpu, addr); 3576 if (bp) { 3577 bp->use_count++; 3578 return 0; 3579 } 3580 3581 bp = g_new(struct kvm_sw_breakpoint, 1); 3582 bp->pc = addr; 3583 bp->use_count = 1; 3584 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3585 if (err) { 3586 g_free(bp); 3587 return err; 3588 } 3589 3590 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3591 } else { 3592 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3593 if (err) { 3594 return err; 3595 } 3596 } 3597 3598 CPU_FOREACH(cpu) { 3599 err = kvm_update_guest_debug(cpu, 0); 3600 if (err) { 3601 return err; 3602 } 3603 } 3604 return 0; 3605 } 3606 3607 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3608 { 3609 struct kvm_sw_breakpoint *bp; 3610 int err; 3611 3612 if (type == GDB_BREAKPOINT_SW) { 3613 bp = kvm_find_sw_breakpoint(cpu, addr); 3614 if (!bp) { 3615 return -ENOENT; 3616 } 3617 3618 if (bp->use_count > 1) { 3619 bp->use_count--; 3620 return 0; 3621 } 3622 3623 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3624 if (err) { 3625 return err; 3626 } 3627 3628 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3629 g_free(bp); 3630 } else { 3631 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3632 if (err) { 3633 return err; 3634 } 3635 } 3636 3637 CPU_FOREACH(cpu) { 3638 err = kvm_update_guest_debug(cpu, 0); 3639 if (err) { 3640 return err; 3641 } 3642 } 3643 return 0; 3644 } 3645 3646 void kvm_remove_all_breakpoints(CPUState *cpu) 3647 { 3648 struct kvm_sw_breakpoint *bp, *next; 3649 KVMState *s = cpu->kvm_state; 3650 CPUState *tmpcpu; 3651 3652 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3653 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3654 /* Try harder to find a CPU that currently sees the breakpoint. */ 3655 CPU_FOREACH(tmpcpu) { 3656 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3657 break; 3658 } 3659 } 3660 } 3661 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3662 g_free(bp); 3663 } 3664 kvm_arch_remove_all_hw_breakpoints(); 3665 3666 CPU_FOREACH(cpu) { 3667 kvm_update_guest_debug(cpu, 0); 3668 } 3669 } 3670 3671 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3672 3673 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3674 { 3675 KVMState *s = kvm_state; 3676 struct kvm_signal_mask *sigmask; 3677 int r; 3678 3679 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3680 3681 sigmask->len = s->sigmask_len; 3682 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3683 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3684 g_free(sigmask); 3685 3686 return r; 3687 } 3688 3689 static void kvm_ipi_signal(int sig) 3690 { 3691 if (current_cpu) { 3692 assert(kvm_immediate_exit); 3693 kvm_cpu_kick(current_cpu); 3694 } 3695 } 3696 3697 void kvm_init_cpu_signals(CPUState *cpu) 3698 { 3699 int r; 3700 sigset_t set; 3701 struct sigaction sigact; 3702 3703 memset(&sigact, 0, sizeof(sigact)); 3704 sigact.sa_handler = kvm_ipi_signal; 3705 sigaction(SIG_IPI, &sigact, NULL); 3706 3707 pthread_sigmask(SIG_BLOCK, NULL, &set); 3708 #if defined KVM_HAVE_MCE_INJECTION 3709 sigdelset(&set, SIGBUS); 3710 pthread_sigmask(SIG_SETMASK, &set, NULL); 3711 #endif 3712 sigdelset(&set, SIG_IPI); 3713 if (kvm_immediate_exit) { 3714 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3715 } else { 3716 r = kvm_set_signal_mask(cpu, &set); 3717 } 3718 if (r) { 3719 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3720 exit(1); 3721 } 3722 } 3723 3724 /* Called asynchronously in VCPU thread. */ 3725 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3726 { 3727 #ifdef KVM_HAVE_MCE_INJECTION 3728 if (have_sigbus_pending) { 3729 return 1; 3730 } 3731 have_sigbus_pending = true; 3732 pending_sigbus_addr = addr; 3733 pending_sigbus_code = code; 3734 qatomic_set(&cpu->exit_request, 1); 3735 return 0; 3736 #else 3737 return 1; 3738 #endif 3739 } 3740 3741 /* Called synchronously (via signalfd) in main thread. */ 3742 int kvm_on_sigbus(int code, void *addr) 3743 { 3744 #ifdef KVM_HAVE_MCE_INJECTION 3745 /* Action required MCE kills the process if SIGBUS is blocked. Because 3746 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3747 * we can only get action optional here. 3748 */ 3749 assert(code != BUS_MCEERR_AR); 3750 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3751 return 0; 3752 #else 3753 return 1; 3754 #endif 3755 } 3756 3757 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3758 { 3759 int ret; 3760 struct kvm_create_device create_dev; 3761 3762 create_dev.type = type; 3763 create_dev.fd = -1; 3764 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3765 3766 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3767 return -ENOTSUP; 3768 } 3769 3770 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3771 if (ret) { 3772 return ret; 3773 } 3774 3775 return test ? 0 : create_dev.fd; 3776 } 3777 3778 bool kvm_device_supported(int vmfd, uint64_t type) 3779 { 3780 struct kvm_create_device create_dev = { 3781 .type = type, 3782 .fd = -1, 3783 .flags = KVM_CREATE_DEVICE_TEST, 3784 }; 3785 3786 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3787 return false; 3788 } 3789 3790 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3791 } 3792 3793 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3794 { 3795 struct kvm_one_reg reg; 3796 int r; 3797 3798 reg.id = id; 3799 reg.addr = (uintptr_t) source; 3800 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3801 if (r) { 3802 trace_kvm_failed_reg_set(id, strerror(-r)); 3803 } 3804 return r; 3805 } 3806 3807 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3808 { 3809 struct kvm_one_reg reg; 3810 int r; 3811 3812 reg.id = id; 3813 reg.addr = (uintptr_t) target; 3814 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3815 if (r) { 3816 trace_kvm_failed_reg_get(id, strerror(-r)); 3817 } 3818 return r; 3819 } 3820 3821 static bool kvm_accel_has_memory(AccelState *accel, AddressSpace *as, 3822 hwaddr start_addr, hwaddr size) 3823 { 3824 KVMState *kvm = KVM_STATE(accel); 3825 int i; 3826 3827 for (i = 0; i < kvm->nr_as; ++i) { 3828 if (kvm->as[i].as == as && kvm->as[i].ml) { 3829 size = MIN(kvm_max_slot_size, size); 3830 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3831 start_addr, size); 3832 } 3833 } 3834 3835 return false; 3836 } 3837 3838 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3839 const char *name, void *opaque, 3840 Error **errp) 3841 { 3842 KVMState *s = KVM_STATE(obj); 3843 int64_t value = s->kvm_shadow_mem; 3844 3845 visit_type_int(v, name, &value, errp); 3846 } 3847 3848 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3849 const char *name, void *opaque, 3850 Error **errp) 3851 { 3852 KVMState *s = KVM_STATE(obj); 3853 int64_t value; 3854 3855 if (s->fd != -1) { 3856 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3857 return; 3858 } 3859 3860 if (!visit_type_int(v, name, &value, errp)) { 3861 return; 3862 } 3863 3864 s->kvm_shadow_mem = value; 3865 } 3866 3867 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3868 const char *name, void *opaque, 3869 Error **errp) 3870 { 3871 KVMState *s = KVM_STATE(obj); 3872 OnOffSplit mode; 3873 3874 if (s->fd != -1) { 3875 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3876 return; 3877 } 3878 3879 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3880 return; 3881 } 3882 switch (mode) { 3883 case ON_OFF_SPLIT_ON: 3884 s->kernel_irqchip_allowed = true; 3885 s->kernel_irqchip_required = true; 3886 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3887 break; 3888 case ON_OFF_SPLIT_OFF: 3889 s->kernel_irqchip_allowed = false; 3890 s->kernel_irqchip_required = false; 3891 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3892 break; 3893 case ON_OFF_SPLIT_SPLIT: 3894 s->kernel_irqchip_allowed = true; 3895 s->kernel_irqchip_required = true; 3896 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3897 break; 3898 default: 3899 /* The value was checked in visit_type_OnOffSplit() above. If 3900 * we get here, then something is wrong in QEMU. 3901 */ 3902 abort(); 3903 } 3904 } 3905 3906 bool kvm_kernel_irqchip_allowed(void) 3907 { 3908 return kvm_state->kernel_irqchip_allowed; 3909 } 3910 3911 bool kvm_kernel_irqchip_required(void) 3912 { 3913 return kvm_state->kernel_irqchip_required; 3914 } 3915 3916 bool kvm_kernel_irqchip_split(void) 3917 { 3918 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3919 } 3920 3921 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3922 const char *name, void *opaque, 3923 Error **errp) 3924 { 3925 KVMState *s = KVM_STATE(obj); 3926 uint32_t value = s->kvm_dirty_ring_size; 3927 3928 visit_type_uint32(v, name, &value, errp); 3929 } 3930 3931 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3932 const char *name, void *opaque, 3933 Error **errp) 3934 { 3935 KVMState *s = KVM_STATE(obj); 3936 uint32_t value; 3937 3938 if (s->fd != -1) { 3939 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3940 return; 3941 } 3942 3943 if (!visit_type_uint32(v, name, &value, errp)) { 3944 return; 3945 } 3946 if (value & (value - 1)) { 3947 error_setg(errp, "dirty-ring-size must be a power of two."); 3948 return; 3949 } 3950 3951 s->kvm_dirty_ring_size = value; 3952 } 3953 3954 static char *kvm_get_device(Object *obj, 3955 Error **errp G_GNUC_UNUSED) 3956 { 3957 KVMState *s = KVM_STATE(obj); 3958 3959 return g_strdup(s->device); 3960 } 3961 3962 static void kvm_set_device(Object *obj, 3963 const char *value, 3964 Error **errp G_GNUC_UNUSED) 3965 { 3966 KVMState *s = KVM_STATE(obj); 3967 3968 g_free(s->device); 3969 s->device = g_strdup(value); 3970 } 3971 3972 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3973 { 3974 KVMState *s = KVM_STATE(obj); 3975 s->msr_energy.enable = value; 3976 } 3977 3978 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3979 const char *str, 3980 Error **errp) 3981 { 3982 KVMState *s = KVM_STATE(obj); 3983 g_free(s->msr_energy.socket_path); 3984 s->msr_energy.socket_path = g_strdup(str); 3985 } 3986 3987 static void kvm_accel_instance_init(Object *obj) 3988 { 3989 KVMState *s = KVM_STATE(obj); 3990 3991 s->fd = -1; 3992 s->vmfd = -1; 3993 s->kvm_shadow_mem = -1; 3994 s->kernel_irqchip_allowed = true; 3995 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3996 /* KVM dirty ring is by default off */ 3997 s->kvm_dirty_ring_size = 0; 3998 s->kvm_dirty_ring_with_bitmap = false; 3999 s->kvm_eager_split_size = 0; 4000 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 4001 s->notify_window = 0; 4002 s->xen_version = 0; 4003 s->xen_gnttab_max_frames = 64; 4004 s->xen_evtchn_max_pirq = 256; 4005 s->device = NULL; 4006 s->msr_energy.enable = false; 4007 } 4008 4009 /** 4010 * kvm_gdbstub_sstep_flags(): 4011 * 4012 * Returns: SSTEP_* flags that KVM supports for guest debug. The 4013 * support is probed during kvm_init() 4014 */ 4015 static int kvm_gdbstub_sstep_flags(AccelState *as) 4016 { 4017 return kvm_sstep_flags; 4018 } 4019 4020 static void kvm_accel_class_init(ObjectClass *oc, const void *data) 4021 { 4022 AccelClass *ac = ACCEL_CLASS(oc); 4023 ac->name = "KVM"; 4024 ac->init_machine = kvm_init; 4025 ac->has_memory = kvm_accel_has_memory; 4026 ac->allowed = &kvm_allowed; 4027 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 4028 4029 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 4030 NULL, kvm_set_kernel_irqchip, 4031 NULL, NULL); 4032 object_class_property_set_description(oc, "kernel-irqchip", 4033 "Configure KVM in-kernel irqchip"); 4034 4035 object_class_property_add(oc, "kvm-shadow-mem", "int", 4036 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 4037 NULL, NULL); 4038 object_class_property_set_description(oc, "kvm-shadow-mem", 4039 "KVM shadow MMU size"); 4040 4041 object_class_property_add(oc, "dirty-ring-size", "uint32", 4042 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 4043 NULL, NULL); 4044 object_class_property_set_description(oc, "dirty-ring-size", 4045 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 4046 4047 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 4048 object_class_property_set_description(oc, "device", 4049 "Path to the device node to use (default: /dev/kvm)"); 4050 4051 object_class_property_add_bool(oc, "rapl", 4052 NULL, 4053 kvm_set_kvm_rapl); 4054 object_class_property_set_description(oc, "rapl", 4055 "Allow energy related MSRs for RAPL interface in Guest"); 4056 4057 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 4058 kvm_set_kvm_rapl_socket_path); 4059 object_class_property_set_description(oc, "rapl-helper-socket", 4060 "Socket Path for comminucating with the Virtual MSR helper daemon"); 4061 4062 kvm_arch_accel_class_init(oc); 4063 } 4064 4065 static const TypeInfo kvm_accel_type = { 4066 .name = TYPE_KVM_ACCEL, 4067 .parent = TYPE_ACCEL, 4068 .instance_init = kvm_accel_instance_init, 4069 .class_init = kvm_accel_class_init, 4070 .instance_size = sizeof(KVMState), 4071 }; 4072 4073 static void kvm_type_init(void) 4074 { 4075 type_register_static(&kvm_accel_type); 4076 } 4077 4078 type_init(kvm_type_init); 4079 4080 typedef struct StatsArgs { 4081 union StatsResultsType { 4082 StatsResultList **stats; 4083 StatsSchemaList **schema; 4084 } result; 4085 strList *names; 4086 Error **errp; 4087 } StatsArgs; 4088 4089 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 4090 uint64_t *stats_data, 4091 StatsList *stats_list, 4092 Error **errp) 4093 { 4094 4095 Stats *stats; 4096 uint64List *val_list = NULL; 4097 4098 /* Only add stats that we understand. */ 4099 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4100 case KVM_STATS_TYPE_CUMULATIVE: 4101 case KVM_STATS_TYPE_INSTANT: 4102 case KVM_STATS_TYPE_PEAK: 4103 case KVM_STATS_TYPE_LINEAR_HIST: 4104 case KVM_STATS_TYPE_LOG_HIST: 4105 break; 4106 default: 4107 return stats_list; 4108 } 4109 4110 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4111 case KVM_STATS_UNIT_NONE: 4112 case KVM_STATS_UNIT_BYTES: 4113 case KVM_STATS_UNIT_CYCLES: 4114 case KVM_STATS_UNIT_SECONDS: 4115 case KVM_STATS_UNIT_BOOLEAN: 4116 break; 4117 default: 4118 return stats_list; 4119 } 4120 4121 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4122 case KVM_STATS_BASE_POW10: 4123 case KVM_STATS_BASE_POW2: 4124 break; 4125 default: 4126 return stats_list; 4127 } 4128 4129 /* Alloc and populate data list */ 4130 stats = g_new0(Stats, 1); 4131 stats->name = g_strdup(pdesc->name); 4132 stats->value = g_new0(StatsValue, 1); 4133 4134 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4135 stats->value->u.boolean = *stats_data; 4136 stats->value->type = QTYPE_QBOOL; 4137 } else if (pdesc->size == 1) { 4138 stats->value->u.scalar = *stats_data; 4139 stats->value->type = QTYPE_QNUM; 4140 } else { 4141 int i; 4142 for (i = 0; i < pdesc->size; i++) { 4143 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4144 } 4145 stats->value->u.list = val_list; 4146 stats->value->type = QTYPE_QLIST; 4147 } 4148 4149 QAPI_LIST_PREPEND(stats_list, stats); 4150 return stats_list; 4151 } 4152 4153 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4154 StatsSchemaValueList *list, 4155 Error **errp) 4156 { 4157 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4158 schema_entry->value = g_new0(StatsSchemaValue, 1); 4159 4160 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4161 case KVM_STATS_TYPE_CUMULATIVE: 4162 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4163 break; 4164 case KVM_STATS_TYPE_INSTANT: 4165 schema_entry->value->type = STATS_TYPE_INSTANT; 4166 break; 4167 case KVM_STATS_TYPE_PEAK: 4168 schema_entry->value->type = STATS_TYPE_PEAK; 4169 break; 4170 case KVM_STATS_TYPE_LINEAR_HIST: 4171 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4172 schema_entry->value->bucket_size = pdesc->bucket_size; 4173 schema_entry->value->has_bucket_size = true; 4174 break; 4175 case KVM_STATS_TYPE_LOG_HIST: 4176 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4177 break; 4178 default: 4179 goto exit; 4180 } 4181 4182 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4183 case KVM_STATS_UNIT_NONE: 4184 break; 4185 case KVM_STATS_UNIT_BOOLEAN: 4186 schema_entry->value->has_unit = true; 4187 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4188 break; 4189 case KVM_STATS_UNIT_BYTES: 4190 schema_entry->value->has_unit = true; 4191 schema_entry->value->unit = STATS_UNIT_BYTES; 4192 break; 4193 case KVM_STATS_UNIT_CYCLES: 4194 schema_entry->value->has_unit = true; 4195 schema_entry->value->unit = STATS_UNIT_CYCLES; 4196 break; 4197 case KVM_STATS_UNIT_SECONDS: 4198 schema_entry->value->has_unit = true; 4199 schema_entry->value->unit = STATS_UNIT_SECONDS; 4200 break; 4201 default: 4202 goto exit; 4203 } 4204 4205 schema_entry->value->exponent = pdesc->exponent; 4206 if (pdesc->exponent) { 4207 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4208 case KVM_STATS_BASE_POW10: 4209 schema_entry->value->has_base = true; 4210 schema_entry->value->base = 10; 4211 break; 4212 case KVM_STATS_BASE_POW2: 4213 schema_entry->value->has_base = true; 4214 schema_entry->value->base = 2; 4215 break; 4216 default: 4217 goto exit; 4218 } 4219 } 4220 4221 schema_entry->value->name = g_strdup(pdesc->name); 4222 schema_entry->next = list; 4223 return schema_entry; 4224 exit: 4225 g_free(schema_entry->value); 4226 g_free(schema_entry); 4227 return list; 4228 } 4229 4230 /* Cached stats descriptors */ 4231 typedef struct StatsDescriptors { 4232 const char *ident; /* cache key, currently the StatsTarget */ 4233 struct kvm_stats_desc *kvm_stats_desc; 4234 struct kvm_stats_header kvm_stats_header; 4235 QTAILQ_ENTRY(StatsDescriptors) next; 4236 } StatsDescriptors; 4237 4238 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4239 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4240 4241 /* 4242 * Return the descriptors for 'target', that either have already been read 4243 * or are retrieved from 'stats_fd'. 4244 */ 4245 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4246 Error **errp) 4247 { 4248 StatsDescriptors *descriptors; 4249 const char *ident; 4250 struct kvm_stats_desc *kvm_stats_desc; 4251 struct kvm_stats_header *kvm_stats_header; 4252 size_t size_desc; 4253 ssize_t ret; 4254 4255 ident = StatsTarget_str(target); 4256 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4257 if (g_str_equal(descriptors->ident, ident)) { 4258 return descriptors; 4259 } 4260 } 4261 4262 descriptors = g_new0(StatsDescriptors, 1); 4263 4264 /* Read stats header */ 4265 kvm_stats_header = &descriptors->kvm_stats_header; 4266 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4267 if (ret != sizeof(*kvm_stats_header)) { 4268 error_setg(errp, "KVM stats: failed to read stats header: " 4269 "expected %zu actual %zu", 4270 sizeof(*kvm_stats_header), ret); 4271 g_free(descriptors); 4272 return NULL; 4273 } 4274 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4275 4276 /* Read stats descriptors */ 4277 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4278 ret = pread(stats_fd, kvm_stats_desc, 4279 size_desc * kvm_stats_header->num_desc, 4280 kvm_stats_header->desc_offset); 4281 4282 if (ret != size_desc * kvm_stats_header->num_desc) { 4283 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4284 "expected %zu actual %zu", 4285 size_desc * kvm_stats_header->num_desc, ret); 4286 g_free(descriptors); 4287 g_free(kvm_stats_desc); 4288 return NULL; 4289 } 4290 descriptors->kvm_stats_desc = kvm_stats_desc; 4291 descriptors->ident = ident; 4292 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4293 return descriptors; 4294 } 4295 4296 static void query_stats(StatsResultList **result, StatsTarget target, 4297 strList *names, int stats_fd, CPUState *cpu, 4298 Error **errp) 4299 { 4300 struct kvm_stats_desc *kvm_stats_desc; 4301 struct kvm_stats_header *kvm_stats_header; 4302 StatsDescriptors *descriptors; 4303 g_autofree uint64_t *stats_data = NULL; 4304 struct kvm_stats_desc *pdesc; 4305 StatsList *stats_list = NULL; 4306 size_t size_desc, size_data = 0; 4307 ssize_t ret; 4308 int i; 4309 4310 descriptors = find_stats_descriptors(target, stats_fd, errp); 4311 if (!descriptors) { 4312 return; 4313 } 4314 4315 kvm_stats_header = &descriptors->kvm_stats_header; 4316 kvm_stats_desc = descriptors->kvm_stats_desc; 4317 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4318 4319 /* Tally the total data size; read schema data */ 4320 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4321 pdesc = (void *)kvm_stats_desc + i * size_desc; 4322 size_data += pdesc->size * sizeof(*stats_data); 4323 } 4324 4325 stats_data = g_malloc0(size_data); 4326 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4327 4328 if (ret != size_data) { 4329 error_setg(errp, "KVM stats: failed to read data: " 4330 "expected %zu actual %zu", size_data, ret); 4331 return; 4332 } 4333 4334 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4335 uint64_t *stats; 4336 pdesc = (void *)kvm_stats_desc + i * size_desc; 4337 4338 /* Add entry to the list */ 4339 stats = (void *)stats_data + pdesc->offset; 4340 if (!apply_str_list_filter(pdesc->name, names)) { 4341 continue; 4342 } 4343 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4344 } 4345 4346 if (!stats_list) { 4347 return; 4348 } 4349 4350 switch (target) { 4351 case STATS_TARGET_VM: 4352 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4353 break; 4354 case STATS_TARGET_VCPU: 4355 add_stats_entry(result, STATS_PROVIDER_KVM, 4356 cpu->parent_obj.canonical_path, 4357 stats_list); 4358 break; 4359 default: 4360 g_assert_not_reached(); 4361 } 4362 } 4363 4364 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4365 int stats_fd, Error **errp) 4366 { 4367 struct kvm_stats_desc *kvm_stats_desc; 4368 struct kvm_stats_header *kvm_stats_header; 4369 StatsDescriptors *descriptors; 4370 struct kvm_stats_desc *pdesc; 4371 StatsSchemaValueList *stats_list = NULL; 4372 size_t size_desc; 4373 int i; 4374 4375 descriptors = find_stats_descriptors(target, stats_fd, errp); 4376 if (!descriptors) { 4377 return; 4378 } 4379 4380 kvm_stats_header = &descriptors->kvm_stats_header; 4381 kvm_stats_desc = descriptors->kvm_stats_desc; 4382 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4383 4384 /* Tally the total data size; read schema data */ 4385 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4386 pdesc = (void *)kvm_stats_desc + i * size_desc; 4387 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4388 } 4389 4390 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4391 } 4392 4393 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4394 { 4395 int stats_fd = cpu->kvm_vcpu_stats_fd; 4396 Error *local_err = NULL; 4397 4398 if (stats_fd == -1) { 4399 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4400 error_propagate(kvm_stats_args->errp, local_err); 4401 return; 4402 } 4403 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4404 kvm_stats_args->names, stats_fd, cpu, 4405 kvm_stats_args->errp); 4406 } 4407 4408 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4409 { 4410 int stats_fd = cpu->kvm_vcpu_stats_fd; 4411 Error *local_err = NULL; 4412 4413 if (stats_fd == -1) { 4414 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4415 error_propagate(kvm_stats_args->errp, local_err); 4416 return; 4417 } 4418 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4419 kvm_stats_args->errp); 4420 } 4421 4422 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4423 strList *names, strList *targets, Error **errp) 4424 { 4425 KVMState *s = kvm_state; 4426 CPUState *cpu; 4427 int stats_fd; 4428 4429 switch (target) { 4430 case STATS_TARGET_VM: 4431 { 4432 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4433 if (stats_fd == -1) { 4434 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4435 return; 4436 } 4437 query_stats(result, target, names, stats_fd, NULL, errp); 4438 close(stats_fd); 4439 break; 4440 } 4441 case STATS_TARGET_VCPU: 4442 { 4443 StatsArgs stats_args; 4444 stats_args.result.stats = result; 4445 stats_args.names = names; 4446 stats_args.errp = errp; 4447 CPU_FOREACH(cpu) { 4448 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4449 continue; 4450 } 4451 query_stats_vcpu(cpu, &stats_args); 4452 } 4453 break; 4454 } 4455 default: 4456 break; 4457 } 4458 } 4459 4460 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4461 { 4462 StatsArgs stats_args; 4463 KVMState *s = kvm_state; 4464 int stats_fd; 4465 4466 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4467 if (stats_fd == -1) { 4468 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4469 return; 4470 } 4471 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4472 close(stats_fd); 4473 4474 if (first_cpu) { 4475 stats_args.result.schema = result; 4476 stats_args.errp = errp; 4477 query_stats_schema_vcpu(first_cpu, &stats_args); 4478 } 4479 } 4480 4481 void kvm_mark_guest_state_protected(void) 4482 { 4483 kvm_state->guest_state_protected = true; 4484 } 4485 4486 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4487 { 4488 int fd; 4489 struct kvm_create_guest_memfd guest_memfd = { 4490 .size = size, 4491 .flags = flags, 4492 }; 4493 4494 if (!kvm_guest_memfd_supported) { 4495 error_setg(errp, "KVM does not support guest_memfd"); 4496 return -1; 4497 } 4498 4499 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4500 if (fd < 0) { 4501 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4502 return -1; 4503 } 4504 4505 return fd; 4506 } 4507