1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 //#define DEBUG_KVM 73 74 #ifdef DEBUG_KVM 75 #define DPRINTF(fmt, ...) \ 76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 77 #else 78 #define DPRINTF(fmt, ...) \ 79 do { } while (0) 80 #endif 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 KVMState *kvm_state; 89 bool kvm_kernel_irqchip; 90 bool kvm_split_irqchip; 91 bool kvm_async_interrupts_allowed; 92 bool kvm_halt_in_kernel_allowed; 93 bool kvm_eventfds_allowed; 94 bool kvm_irqfds_allowed; 95 bool kvm_resamplefds_allowed; 96 bool kvm_msi_via_irqfd_allowed; 97 bool kvm_gsi_routing_allowed; 98 bool kvm_gsi_direct_mapping; 99 bool kvm_allowed; 100 bool kvm_readonly_mem_allowed; 101 bool kvm_vm_attributes_allowed; 102 bool kvm_direct_msi_allowed; 103 bool kvm_ioeventfd_any_length_allowed; 104 bool kvm_msi_use_devid; 105 bool kvm_has_guest_debug; 106 static int kvm_sstep_flags; 107 static bool kvm_immediate_exit; 108 static hwaddr kvm_max_slot_size = ~0; 109 110 static const KVMCapabilityInfo kvm_required_capabilites[] = { 111 KVM_CAP_INFO(USER_MEMORY), 112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 114 KVM_CAP_LAST_INFO 115 }; 116 117 static NotifierList kvm_irqchip_change_notifiers = 118 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 119 120 struct KVMResampleFd { 121 int gsi; 122 EventNotifier *resample_event; 123 QLIST_ENTRY(KVMResampleFd) node; 124 }; 125 typedef struct KVMResampleFd KVMResampleFd; 126 127 /* 128 * Only used with split irqchip where we need to do the resample fd 129 * kick for the kernel from userspace. 130 */ 131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 132 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 133 134 static QemuMutex kml_slots_lock; 135 136 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 137 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 138 139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 140 141 static inline void kvm_resample_fd_remove(int gsi) 142 { 143 KVMResampleFd *rfd; 144 145 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 146 if (rfd->gsi == gsi) { 147 QLIST_REMOVE(rfd, node); 148 g_free(rfd); 149 break; 150 } 151 } 152 } 153 154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 155 { 156 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 157 158 rfd->gsi = gsi; 159 rfd->resample_event = event; 160 161 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 162 } 163 164 void kvm_resample_fd_notify(int gsi) 165 { 166 KVMResampleFd *rfd; 167 168 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 169 if (rfd->gsi == gsi) { 170 event_notifier_set(rfd->resample_event); 171 trace_kvm_resample_fd_notify(gsi); 172 return; 173 } 174 } 175 } 176 177 int kvm_get_max_memslots(void) 178 { 179 KVMState *s = KVM_STATE(current_accel()); 180 181 return s->nr_slots; 182 } 183 184 /* Called with KVMMemoryListener.slots_lock held */ 185 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 186 { 187 KVMState *s = kvm_state; 188 int i; 189 190 for (i = 0; i < s->nr_slots; i++) { 191 if (kml->slots[i].memory_size == 0) { 192 return &kml->slots[i]; 193 } 194 } 195 196 return NULL; 197 } 198 199 bool kvm_has_free_slot(MachineState *ms) 200 { 201 KVMState *s = KVM_STATE(ms->accelerator); 202 bool result; 203 KVMMemoryListener *kml = &s->memory_listener; 204 205 kvm_slots_lock(); 206 result = !!kvm_get_free_slot(kml); 207 kvm_slots_unlock(); 208 209 return result; 210 } 211 212 /* Called with KVMMemoryListener.slots_lock held */ 213 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 214 { 215 KVMSlot *slot = kvm_get_free_slot(kml); 216 217 if (slot) { 218 return slot; 219 } 220 221 fprintf(stderr, "%s: no free slot available\n", __func__); 222 abort(); 223 } 224 225 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 226 hwaddr start_addr, 227 hwaddr size) 228 { 229 KVMState *s = kvm_state; 230 int i; 231 232 for (i = 0; i < s->nr_slots; i++) { 233 KVMSlot *mem = &kml->slots[i]; 234 235 if (start_addr == mem->start_addr && size == mem->memory_size) { 236 return mem; 237 } 238 } 239 240 return NULL; 241 } 242 243 /* 244 * Calculate and align the start address and the size of the section. 245 * Return the size. If the size is 0, the aligned section is empty. 246 */ 247 static hwaddr kvm_align_section(MemoryRegionSection *section, 248 hwaddr *start) 249 { 250 hwaddr size = int128_get64(section->size); 251 hwaddr delta, aligned; 252 253 /* kvm works in page size chunks, but the function may be called 254 with sub-page size and unaligned start address. Pad the start 255 address to next and truncate size to previous page boundary. */ 256 aligned = ROUND_UP(section->offset_within_address_space, 257 qemu_real_host_page_size()); 258 delta = aligned - section->offset_within_address_space; 259 *start = aligned; 260 if (delta > size) { 261 return 0; 262 } 263 264 return (size - delta) & qemu_real_host_page_mask(); 265 } 266 267 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 268 hwaddr *phys_addr) 269 { 270 KVMMemoryListener *kml = &s->memory_listener; 271 int i, ret = 0; 272 273 kvm_slots_lock(); 274 for (i = 0; i < s->nr_slots; i++) { 275 KVMSlot *mem = &kml->slots[i]; 276 277 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 278 *phys_addr = mem->start_addr + (ram - mem->ram); 279 ret = 1; 280 break; 281 } 282 } 283 kvm_slots_unlock(); 284 285 return ret; 286 } 287 288 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 289 { 290 KVMState *s = kvm_state; 291 struct kvm_userspace_memory_region mem; 292 int ret; 293 294 mem.slot = slot->slot | (kml->as_id << 16); 295 mem.guest_phys_addr = slot->start_addr; 296 mem.userspace_addr = (unsigned long)slot->ram; 297 mem.flags = slot->flags; 298 299 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 300 /* Set the slot size to 0 before setting the slot to the desired 301 * value. This is needed based on KVM commit 75d61fbc. */ 302 mem.memory_size = 0; 303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 304 if (ret < 0) { 305 goto err; 306 } 307 } 308 mem.memory_size = slot->memory_size; 309 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 310 slot->old_flags = mem.flags; 311 err: 312 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 313 mem.memory_size, mem.userspace_addr, ret); 314 if (ret < 0) { 315 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 316 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 317 __func__, mem.slot, slot->start_addr, 318 (uint64_t)mem.memory_size, strerror(errno)); 319 } 320 return ret; 321 } 322 323 static int do_kvm_destroy_vcpu(CPUState *cpu) 324 { 325 KVMState *s = kvm_state; 326 long mmap_size; 327 struct KVMParkedVcpu *vcpu = NULL; 328 int ret = 0; 329 330 DPRINTF("kvm_destroy_vcpu\n"); 331 332 ret = kvm_arch_destroy_vcpu(cpu); 333 if (ret < 0) { 334 goto err; 335 } 336 337 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 338 if (mmap_size < 0) { 339 ret = mmap_size; 340 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 341 goto err; 342 } 343 344 ret = munmap(cpu->kvm_run, mmap_size); 345 if (ret < 0) { 346 goto err; 347 } 348 349 if (cpu->kvm_dirty_gfns) { 350 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 351 if (ret < 0) { 352 goto err; 353 } 354 } 355 356 vcpu = g_malloc0(sizeof(*vcpu)); 357 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 358 vcpu->kvm_fd = cpu->kvm_fd; 359 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 360 err: 361 return ret; 362 } 363 364 void kvm_destroy_vcpu(CPUState *cpu) 365 { 366 if (do_kvm_destroy_vcpu(cpu) < 0) { 367 error_report("kvm_destroy_vcpu failed"); 368 exit(EXIT_FAILURE); 369 } 370 } 371 372 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 373 { 374 struct KVMParkedVcpu *cpu; 375 376 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 377 if (cpu->vcpu_id == vcpu_id) { 378 int kvm_fd; 379 380 QLIST_REMOVE(cpu, node); 381 kvm_fd = cpu->kvm_fd; 382 g_free(cpu); 383 return kvm_fd; 384 } 385 } 386 387 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 388 } 389 390 int kvm_init_vcpu(CPUState *cpu, Error **errp) 391 { 392 KVMState *s = kvm_state; 393 long mmap_size; 394 int ret; 395 396 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 397 398 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 399 if (ret < 0) { 400 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 401 kvm_arch_vcpu_id(cpu)); 402 goto err; 403 } 404 405 cpu->kvm_fd = ret; 406 cpu->kvm_state = s; 407 cpu->vcpu_dirty = true; 408 cpu->dirty_pages = 0; 409 cpu->throttle_us_per_full = 0; 410 411 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 412 if (mmap_size < 0) { 413 ret = mmap_size; 414 error_setg_errno(errp, -mmap_size, 415 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 416 goto err; 417 } 418 419 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 420 cpu->kvm_fd, 0); 421 if (cpu->kvm_run == MAP_FAILED) { 422 ret = -errno; 423 error_setg_errno(errp, ret, 424 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 425 kvm_arch_vcpu_id(cpu)); 426 goto err; 427 } 428 429 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 430 s->coalesced_mmio_ring = 431 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 432 } 433 434 if (s->kvm_dirty_ring_size) { 435 /* Use MAP_SHARED to share pages with the kernel */ 436 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 437 PROT_READ | PROT_WRITE, MAP_SHARED, 438 cpu->kvm_fd, 439 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 440 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 441 ret = -errno; 442 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 443 goto err; 444 } 445 } 446 447 ret = kvm_arch_init_vcpu(cpu); 448 if (ret < 0) { 449 error_setg_errno(errp, -ret, 450 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 451 kvm_arch_vcpu_id(cpu)); 452 } 453 err: 454 return ret; 455 } 456 457 /* 458 * dirty pages logging control 459 */ 460 461 static int kvm_mem_flags(MemoryRegion *mr) 462 { 463 bool readonly = mr->readonly || memory_region_is_romd(mr); 464 int flags = 0; 465 466 if (memory_region_get_dirty_log_mask(mr) != 0) { 467 flags |= KVM_MEM_LOG_DIRTY_PAGES; 468 } 469 if (readonly && kvm_readonly_mem_allowed) { 470 flags |= KVM_MEM_READONLY; 471 } 472 return flags; 473 } 474 475 /* Called with KVMMemoryListener.slots_lock held */ 476 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 477 MemoryRegion *mr) 478 { 479 mem->flags = kvm_mem_flags(mr); 480 481 /* If nothing changed effectively, no need to issue ioctl */ 482 if (mem->flags == mem->old_flags) { 483 return 0; 484 } 485 486 kvm_slot_init_dirty_bitmap(mem); 487 return kvm_set_user_memory_region(kml, mem, false); 488 } 489 490 static int kvm_section_update_flags(KVMMemoryListener *kml, 491 MemoryRegionSection *section) 492 { 493 hwaddr start_addr, size, slot_size; 494 KVMSlot *mem; 495 int ret = 0; 496 497 size = kvm_align_section(section, &start_addr); 498 if (!size) { 499 return 0; 500 } 501 502 kvm_slots_lock(); 503 504 while (size && !ret) { 505 slot_size = MIN(kvm_max_slot_size, size); 506 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 507 if (!mem) { 508 /* We don't have a slot if we want to trap every access. */ 509 goto out; 510 } 511 512 ret = kvm_slot_update_flags(kml, mem, section->mr); 513 start_addr += slot_size; 514 size -= slot_size; 515 } 516 517 out: 518 kvm_slots_unlock(); 519 return ret; 520 } 521 522 static void kvm_log_start(MemoryListener *listener, 523 MemoryRegionSection *section, 524 int old, int new) 525 { 526 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 527 int r; 528 529 if (old != 0) { 530 return; 531 } 532 533 r = kvm_section_update_flags(kml, section); 534 if (r < 0) { 535 abort(); 536 } 537 } 538 539 static void kvm_log_stop(MemoryListener *listener, 540 MemoryRegionSection *section, 541 int old, int new) 542 { 543 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 544 int r; 545 546 if (new != 0) { 547 return; 548 } 549 550 r = kvm_section_update_flags(kml, section); 551 if (r < 0) { 552 abort(); 553 } 554 } 555 556 /* get kvm's dirty pages bitmap and update qemu's */ 557 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 558 { 559 ram_addr_t start = slot->ram_start_offset; 560 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 561 562 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 563 } 564 565 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 566 { 567 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 568 } 569 570 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 571 572 /* Allocate the dirty bitmap for a slot */ 573 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 574 { 575 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 576 return; 577 } 578 579 /* 580 * XXX bad kernel interface alert 581 * For dirty bitmap, kernel allocates array of size aligned to 582 * bits-per-long. But for case when the kernel is 64bits and 583 * the userspace is 32bits, userspace can't align to the same 584 * bits-per-long, since sizeof(long) is different between kernel 585 * and user space. This way, userspace will provide buffer which 586 * may be 4 bytes less than the kernel will use, resulting in 587 * userspace memory corruption (which is not detectable by valgrind 588 * too, in most cases). 589 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 590 * a hope that sizeof(long) won't become >8 any time soon. 591 * 592 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 593 * And mem->memory_size is aligned to it (otherwise this mem can't 594 * be registered to KVM). 595 */ 596 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 597 /*HOST_LONG_BITS*/ 64) / 8; 598 mem->dirty_bmap = g_malloc0(bitmap_size); 599 mem->dirty_bmap_size = bitmap_size; 600 } 601 602 /* 603 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 604 * succeeded, false otherwise 605 */ 606 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 607 { 608 struct kvm_dirty_log d = {}; 609 int ret; 610 611 d.dirty_bitmap = slot->dirty_bmap; 612 d.slot = slot->slot | (slot->as_id << 16); 613 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 614 615 if (ret == -ENOENT) { 616 /* kernel does not have dirty bitmap in this slot */ 617 ret = 0; 618 } 619 if (ret) { 620 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 621 __func__, ret); 622 } 623 return ret == 0; 624 } 625 626 /* Should be with all slots_lock held for the address spaces. */ 627 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 628 uint32_t slot_id, uint64_t offset) 629 { 630 KVMMemoryListener *kml; 631 KVMSlot *mem; 632 633 if (as_id >= s->nr_as) { 634 return; 635 } 636 637 kml = s->as[as_id].ml; 638 mem = &kml->slots[slot_id]; 639 640 if (!mem->memory_size || offset >= 641 (mem->memory_size / qemu_real_host_page_size())) { 642 return; 643 } 644 645 set_bit(offset, mem->dirty_bmap); 646 } 647 648 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 649 { 650 /* 651 * Read the flags before the value. Pairs with barrier in 652 * KVM's kvm_dirty_ring_push() function. 653 */ 654 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 655 } 656 657 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 658 { 659 /* 660 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 661 * sees the full content of the ring: 662 * 663 * CPU0 CPU1 CPU2 664 * ------------------------------------------------------------------------------ 665 * fill gfn0 666 * store-rel flags for gfn0 667 * load-acq flags for gfn0 668 * store-rel RESET for gfn0 669 * ioctl(RESET_RINGS) 670 * load-acq flags for gfn0 671 * check if flags have RESET 672 * 673 * The synchronization goes from CPU2 to CPU0 to CPU1. 674 */ 675 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 676 } 677 678 /* 679 * Should be with all slots_lock held for the address spaces. It returns the 680 * dirty page we've collected on this dirty ring. 681 */ 682 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 683 { 684 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 685 uint32_t ring_size = s->kvm_dirty_ring_size; 686 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 687 688 /* 689 * It's possible that we race with vcpu creation code where the vcpu is 690 * put onto the vcpus list but not yet initialized the dirty ring 691 * structures. If so, skip it. 692 */ 693 if (!cpu->created) { 694 return 0; 695 } 696 697 assert(dirty_gfns && ring_size); 698 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 699 700 while (true) { 701 cur = &dirty_gfns[fetch % ring_size]; 702 if (!dirty_gfn_is_dirtied(cur)) { 703 break; 704 } 705 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 706 cur->offset); 707 dirty_gfn_set_collected(cur); 708 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 709 fetch++; 710 count++; 711 } 712 cpu->kvm_fetch_index = fetch; 713 cpu->dirty_pages += count; 714 715 return count; 716 } 717 718 /* Must be with slots_lock held */ 719 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 720 { 721 int ret; 722 uint64_t total = 0; 723 int64_t stamp; 724 725 stamp = get_clock(); 726 727 if (cpu) { 728 total = kvm_dirty_ring_reap_one(s, cpu); 729 } else { 730 CPU_FOREACH(cpu) { 731 total += kvm_dirty_ring_reap_one(s, cpu); 732 } 733 } 734 735 if (total) { 736 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 737 assert(ret == total); 738 } 739 740 stamp = get_clock() - stamp; 741 742 if (total) { 743 trace_kvm_dirty_ring_reap(total, stamp / 1000); 744 } 745 746 return total; 747 } 748 749 /* 750 * Currently for simplicity, we must hold BQL before calling this. We can 751 * consider to drop the BQL if we're clear with all the race conditions. 752 */ 753 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 754 { 755 uint64_t total; 756 757 /* 758 * We need to lock all kvm slots for all address spaces here, 759 * because: 760 * 761 * (1) We need to mark dirty for dirty bitmaps in multiple slots 762 * and for tons of pages, so it's better to take the lock here 763 * once rather than once per page. And more importantly, 764 * 765 * (2) We must _NOT_ publish dirty bits to the other threads 766 * (e.g., the migration thread) via the kvm memory slot dirty 767 * bitmaps before correctly re-protect those dirtied pages. 768 * Otherwise we can have potential risk of data corruption if 769 * the page data is read in the other thread before we do 770 * reset below. 771 */ 772 kvm_slots_lock(); 773 total = kvm_dirty_ring_reap_locked(s, cpu); 774 kvm_slots_unlock(); 775 776 return total; 777 } 778 779 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 780 { 781 /* No need to do anything */ 782 } 783 784 /* 785 * Kick all vcpus out in a synchronized way. When returned, we 786 * guarantee that every vcpu has been kicked and at least returned to 787 * userspace once. 788 */ 789 static void kvm_cpu_synchronize_kick_all(void) 790 { 791 CPUState *cpu; 792 793 CPU_FOREACH(cpu) { 794 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 795 } 796 } 797 798 /* 799 * Flush all the existing dirty pages to the KVM slot buffers. When 800 * this call returns, we guarantee that all the touched dirty pages 801 * before calling this function have been put into the per-kvmslot 802 * dirty bitmap. 803 * 804 * This function must be called with BQL held. 805 */ 806 static void kvm_dirty_ring_flush(void) 807 { 808 trace_kvm_dirty_ring_flush(0); 809 /* 810 * The function needs to be serialized. Since this function 811 * should always be with BQL held, serialization is guaranteed. 812 * However, let's be sure of it. 813 */ 814 assert(qemu_mutex_iothread_locked()); 815 /* 816 * First make sure to flush the hardware buffers by kicking all 817 * vcpus out in a synchronous way. 818 */ 819 kvm_cpu_synchronize_kick_all(); 820 kvm_dirty_ring_reap(kvm_state, NULL); 821 trace_kvm_dirty_ring_flush(1); 822 } 823 824 /** 825 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 826 * 827 * This function will first try to fetch dirty bitmap from the kernel, 828 * and then updates qemu's dirty bitmap. 829 * 830 * NOTE: caller must be with kml->slots_lock held. 831 * 832 * @kml: the KVM memory listener object 833 * @section: the memory section to sync the dirty bitmap with 834 */ 835 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 836 MemoryRegionSection *section) 837 { 838 KVMState *s = kvm_state; 839 KVMSlot *mem; 840 hwaddr start_addr, size; 841 hwaddr slot_size; 842 843 size = kvm_align_section(section, &start_addr); 844 while (size) { 845 slot_size = MIN(kvm_max_slot_size, size); 846 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 847 if (!mem) { 848 /* We don't have a slot if we want to trap every access. */ 849 return; 850 } 851 if (kvm_slot_get_dirty_log(s, mem)) { 852 kvm_slot_sync_dirty_pages(mem); 853 } 854 start_addr += slot_size; 855 size -= slot_size; 856 } 857 } 858 859 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 860 #define KVM_CLEAR_LOG_SHIFT 6 861 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 862 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 863 864 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 865 uint64_t size) 866 { 867 KVMState *s = kvm_state; 868 uint64_t end, bmap_start, start_delta, bmap_npages; 869 struct kvm_clear_dirty_log d; 870 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 871 int ret; 872 873 /* 874 * We need to extend either the start or the size or both to 875 * satisfy the KVM interface requirement. Firstly, do the start 876 * page alignment on 64 host pages 877 */ 878 bmap_start = start & KVM_CLEAR_LOG_MASK; 879 start_delta = start - bmap_start; 880 bmap_start /= psize; 881 882 /* 883 * The kernel interface has restriction on the size too, that either: 884 * 885 * (1) the size is 64 host pages aligned (just like the start), or 886 * (2) the size fills up until the end of the KVM memslot. 887 */ 888 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 889 << KVM_CLEAR_LOG_SHIFT; 890 end = mem->memory_size / psize; 891 if (bmap_npages > end - bmap_start) { 892 bmap_npages = end - bmap_start; 893 } 894 start_delta /= psize; 895 896 /* 897 * Prepare the bitmap to clear dirty bits. Here we must guarantee 898 * that we won't clear any unknown dirty bits otherwise we might 899 * accidentally clear some set bits which are not yet synced from 900 * the kernel into QEMU's bitmap, then we'll lose track of the 901 * guest modifications upon those pages (which can directly lead 902 * to guest data loss or panic after migration). 903 * 904 * Layout of the KVMSlot.dirty_bmap: 905 * 906 * |<-------- bmap_npages -----------..>| 907 * [1] 908 * start_delta size 909 * |----------------|-------------|------------------|------------| 910 * ^ ^ ^ ^ 911 * | | | | 912 * start bmap_start (start) end 913 * of memslot of memslot 914 * 915 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 916 */ 917 918 assert(bmap_start % BITS_PER_LONG == 0); 919 /* We should never do log_clear before log_sync */ 920 assert(mem->dirty_bmap); 921 if (start_delta || bmap_npages - size / psize) { 922 /* Slow path - we need to manipulate a temp bitmap */ 923 bmap_clear = bitmap_new(bmap_npages); 924 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 925 bmap_start, start_delta + size / psize); 926 /* 927 * We need to fill the holes at start because that was not 928 * specified by the caller and we extended the bitmap only for 929 * 64 pages alignment 930 */ 931 bitmap_clear(bmap_clear, 0, start_delta); 932 d.dirty_bitmap = bmap_clear; 933 } else { 934 /* 935 * Fast path - both start and size align well with BITS_PER_LONG 936 * (or the end of memory slot) 937 */ 938 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 939 } 940 941 d.first_page = bmap_start; 942 /* It should never overflow. If it happens, say something */ 943 assert(bmap_npages <= UINT32_MAX); 944 d.num_pages = bmap_npages; 945 d.slot = mem->slot | (as_id << 16); 946 947 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 948 if (ret < 0 && ret != -ENOENT) { 949 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 950 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 951 __func__, d.slot, (uint64_t)d.first_page, 952 (uint32_t)d.num_pages, ret); 953 } else { 954 ret = 0; 955 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 956 } 957 958 /* 959 * After we have updated the remote dirty bitmap, we update the 960 * cached bitmap as well for the memslot, then if another user 961 * clears the same region we know we shouldn't clear it again on 962 * the remote otherwise it's data loss as well. 963 */ 964 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 965 size / psize); 966 /* This handles the NULL case well */ 967 g_free(bmap_clear); 968 return ret; 969 } 970 971 972 /** 973 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 974 * 975 * NOTE: this will be a no-op if we haven't enabled manual dirty log 976 * protection in the host kernel because in that case this operation 977 * will be done within log_sync(). 978 * 979 * @kml: the kvm memory listener 980 * @section: the memory range to clear dirty bitmap 981 */ 982 static int kvm_physical_log_clear(KVMMemoryListener *kml, 983 MemoryRegionSection *section) 984 { 985 KVMState *s = kvm_state; 986 uint64_t start, size, offset, count; 987 KVMSlot *mem; 988 int ret = 0, i; 989 990 if (!s->manual_dirty_log_protect) { 991 /* No need to do explicit clear */ 992 return ret; 993 } 994 995 start = section->offset_within_address_space; 996 size = int128_get64(section->size); 997 998 if (!size) { 999 /* Nothing more we can do... */ 1000 return ret; 1001 } 1002 1003 kvm_slots_lock(); 1004 1005 for (i = 0; i < s->nr_slots; i++) { 1006 mem = &kml->slots[i]; 1007 /* Discard slots that are empty or do not overlap the section */ 1008 if (!mem->memory_size || 1009 mem->start_addr > start + size - 1 || 1010 start > mem->start_addr + mem->memory_size - 1) { 1011 continue; 1012 } 1013 1014 if (start >= mem->start_addr) { 1015 /* The slot starts before section or is aligned to it. */ 1016 offset = start - mem->start_addr; 1017 count = MIN(mem->memory_size - offset, size); 1018 } else { 1019 /* The slot starts after section. */ 1020 offset = 0; 1021 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1022 } 1023 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1024 if (ret < 0) { 1025 break; 1026 } 1027 } 1028 1029 kvm_slots_unlock(); 1030 1031 return ret; 1032 } 1033 1034 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1035 MemoryRegionSection *secion, 1036 hwaddr start, hwaddr size) 1037 { 1038 KVMState *s = kvm_state; 1039 1040 if (s->coalesced_mmio) { 1041 struct kvm_coalesced_mmio_zone zone; 1042 1043 zone.addr = start; 1044 zone.size = size; 1045 zone.pad = 0; 1046 1047 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1048 } 1049 } 1050 1051 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1052 MemoryRegionSection *secion, 1053 hwaddr start, hwaddr size) 1054 { 1055 KVMState *s = kvm_state; 1056 1057 if (s->coalesced_mmio) { 1058 struct kvm_coalesced_mmio_zone zone; 1059 1060 zone.addr = start; 1061 zone.size = size; 1062 zone.pad = 0; 1063 1064 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1065 } 1066 } 1067 1068 static void kvm_coalesce_pio_add(MemoryListener *listener, 1069 MemoryRegionSection *section, 1070 hwaddr start, hwaddr size) 1071 { 1072 KVMState *s = kvm_state; 1073 1074 if (s->coalesced_pio) { 1075 struct kvm_coalesced_mmio_zone zone; 1076 1077 zone.addr = start; 1078 zone.size = size; 1079 zone.pio = 1; 1080 1081 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1082 } 1083 } 1084 1085 static void kvm_coalesce_pio_del(MemoryListener *listener, 1086 MemoryRegionSection *section, 1087 hwaddr start, hwaddr size) 1088 { 1089 KVMState *s = kvm_state; 1090 1091 if (s->coalesced_pio) { 1092 struct kvm_coalesced_mmio_zone zone; 1093 1094 zone.addr = start; 1095 zone.size = size; 1096 zone.pio = 1; 1097 1098 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1099 } 1100 } 1101 1102 static MemoryListener kvm_coalesced_pio_listener = { 1103 .name = "kvm-coalesced-pio", 1104 .coalesced_io_add = kvm_coalesce_pio_add, 1105 .coalesced_io_del = kvm_coalesce_pio_del, 1106 }; 1107 1108 int kvm_check_extension(KVMState *s, unsigned int extension) 1109 { 1110 int ret; 1111 1112 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1113 if (ret < 0) { 1114 ret = 0; 1115 } 1116 1117 return ret; 1118 } 1119 1120 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1121 { 1122 int ret; 1123 1124 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1125 if (ret < 0) { 1126 /* VM wide version not implemented, use global one instead */ 1127 ret = kvm_check_extension(s, extension); 1128 } 1129 1130 return ret; 1131 } 1132 1133 typedef struct HWPoisonPage { 1134 ram_addr_t ram_addr; 1135 QLIST_ENTRY(HWPoisonPage) list; 1136 } HWPoisonPage; 1137 1138 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1139 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1140 1141 static void kvm_unpoison_all(void *param) 1142 { 1143 HWPoisonPage *page, *next_page; 1144 1145 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1146 QLIST_REMOVE(page, list); 1147 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1148 g_free(page); 1149 } 1150 } 1151 1152 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1153 { 1154 HWPoisonPage *page; 1155 1156 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1157 if (page->ram_addr == ram_addr) { 1158 return; 1159 } 1160 } 1161 page = g_new(HWPoisonPage, 1); 1162 page->ram_addr = ram_addr; 1163 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1164 } 1165 1166 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1167 { 1168 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1169 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1170 * endianness, but the memory core hands them in target endianness. 1171 * For example, PPC is always treated as big-endian even if running 1172 * on KVM and on PPC64LE. Correct here. 1173 */ 1174 switch (size) { 1175 case 2: 1176 val = bswap16(val); 1177 break; 1178 case 4: 1179 val = bswap32(val); 1180 break; 1181 } 1182 #endif 1183 return val; 1184 } 1185 1186 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1187 bool assign, uint32_t size, bool datamatch) 1188 { 1189 int ret; 1190 struct kvm_ioeventfd iofd = { 1191 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1192 .addr = addr, 1193 .len = size, 1194 .flags = 0, 1195 .fd = fd, 1196 }; 1197 1198 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1199 datamatch); 1200 if (!kvm_enabled()) { 1201 return -ENOSYS; 1202 } 1203 1204 if (datamatch) { 1205 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1206 } 1207 if (!assign) { 1208 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1209 } 1210 1211 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1212 1213 if (ret < 0) { 1214 return -errno; 1215 } 1216 1217 return 0; 1218 } 1219 1220 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1221 bool assign, uint32_t size, bool datamatch) 1222 { 1223 struct kvm_ioeventfd kick = { 1224 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1225 .addr = addr, 1226 .flags = KVM_IOEVENTFD_FLAG_PIO, 1227 .len = size, 1228 .fd = fd, 1229 }; 1230 int r; 1231 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1232 if (!kvm_enabled()) { 1233 return -ENOSYS; 1234 } 1235 if (datamatch) { 1236 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1237 } 1238 if (!assign) { 1239 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1240 } 1241 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1242 if (r < 0) { 1243 return r; 1244 } 1245 return 0; 1246 } 1247 1248 1249 static int kvm_check_many_ioeventfds(void) 1250 { 1251 /* Userspace can use ioeventfd for io notification. This requires a host 1252 * that supports eventfd(2) and an I/O thread; since eventfd does not 1253 * support SIGIO it cannot interrupt the vcpu. 1254 * 1255 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1256 * can avoid creating too many ioeventfds. 1257 */ 1258 #if defined(CONFIG_EVENTFD) 1259 int ioeventfds[7]; 1260 int i, ret = 0; 1261 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1262 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1263 if (ioeventfds[i] < 0) { 1264 break; 1265 } 1266 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1267 if (ret < 0) { 1268 close(ioeventfds[i]); 1269 break; 1270 } 1271 } 1272 1273 /* Decide whether many devices are supported or not */ 1274 ret = i == ARRAY_SIZE(ioeventfds); 1275 1276 while (i-- > 0) { 1277 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1278 close(ioeventfds[i]); 1279 } 1280 return ret; 1281 #else 1282 return 0; 1283 #endif 1284 } 1285 1286 static const KVMCapabilityInfo * 1287 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1288 { 1289 while (list->name) { 1290 if (!kvm_check_extension(s, list->value)) { 1291 return list; 1292 } 1293 list++; 1294 } 1295 return NULL; 1296 } 1297 1298 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1299 { 1300 g_assert( 1301 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1302 ); 1303 kvm_max_slot_size = max_slot_size; 1304 } 1305 1306 /* Called with KVMMemoryListener.slots_lock held */ 1307 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1308 MemoryRegionSection *section, bool add) 1309 { 1310 KVMSlot *mem; 1311 int err; 1312 MemoryRegion *mr = section->mr; 1313 bool writable = !mr->readonly && !mr->rom_device; 1314 hwaddr start_addr, size, slot_size, mr_offset; 1315 ram_addr_t ram_start_offset; 1316 void *ram; 1317 1318 if (!memory_region_is_ram(mr)) { 1319 if (writable || !kvm_readonly_mem_allowed) { 1320 return; 1321 } else if (!mr->romd_mode) { 1322 /* If the memory device is not in romd_mode, then we actually want 1323 * to remove the kvm memory slot so all accesses will trap. */ 1324 add = false; 1325 } 1326 } 1327 1328 size = kvm_align_section(section, &start_addr); 1329 if (!size) { 1330 return; 1331 } 1332 1333 /* The offset of the kvmslot within the memory region */ 1334 mr_offset = section->offset_within_region + start_addr - 1335 section->offset_within_address_space; 1336 1337 /* use aligned delta to align the ram address and offset */ 1338 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1339 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1340 1341 if (!add) { 1342 do { 1343 slot_size = MIN(kvm_max_slot_size, size); 1344 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1345 if (!mem) { 1346 return; 1347 } 1348 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1349 /* 1350 * NOTE: We should be aware of the fact that here we're only 1351 * doing a best effort to sync dirty bits. No matter whether 1352 * we're using dirty log or dirty ring, we ignored two facts: 1353 * 1354 * (1) dirty bits can reside in hardware buffers (PML) 1355 * 1356 * (2) after we collected dirty bits here, pages can be dirtied 1357 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1358 * remove the slot. 1359 * 1360 * Not easy. Let's cross the fingers until it's fixed. 1361 */ 1362 if (kvm_state->kvm_dirty_ring_size) { 1363 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1364 } else { 1365 kvm_slot_get_dirty_log(kvm_state, mem); 1366 } 1367 kvm_slot_sync_dirty_pages(mem); 1368 } 1369 1370 /* unregister the slot */ 1371 g_free(mem->dirty_bmap); 1372 mem->dirty_bmap = NULL; 1373 mem->memory_size = 0; 1374 mem->flags = 0; 1375 err = kvm_set_user_memory_region(kml, mem, false); 1376 if (err) { 1377 fprintf(stderr, "%s: error unregistering slot: %s\n", 1378 __func__, strerror(-err)); 1379 abort(); 1380 } 1381 start_addr += slot_size; 1382 size -= slot_size; 1383 } while (size); 1384 return; 1385 } 1386 1387 /* register the new slot */ 1388 do { 1389 slot_size = MIN(kvm_max_slot_size, size); 1390 mem = kvm_alloc_slot(kml); 1391 mem->as_id = kml->as_id; 1392 mem->memory_size = slot_size; 1393 mem->start_addr = start_addr; 1394 mem->ram_start_offset = ram_start_offset; 1395 mem->ram = ram; 1396 mem->flags = kvm_mem_flags(mr); 1397 kvm_slot_init_dirty_bitmap(mem); 1398 err = kvm_set_user_memory_region(kml, mem, true); 1399 if (err) { 1400 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1401 strerror(-err)); 1402 abort(); 1403 } 1404 start_addr += slot_size; 1405 ram_start_offset += slot_size; 1406 ram += slot_size; 1407 size -= slot_size; 1408 } while (size); 1409 } 1410 1411 static void *kvm_dirty_ring_reaper_thread(void *data) 1412 { 1413 KVMState *s = data; 1414 struct KVMDirtyRingReaper *r = &s->reaper; 1415 1416 rcu_register_thread(); 1417 1418 trace_kvm_dirty_ring_reaper("init"); 1419 1420 while (true) { 1421 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1422 trace_kvm_dirty_ring_reaper("wait"); 1423 /* 1424 * TODO: provide a smarter timeout rather than a constant? 1425 */ 1426 sleep(1); 1427 1428 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1429 if (dirtylimit_in_service()) { 1430 continue; 1431 } 1432 1433 trace_kvm_dirty_ring_reaper("wakeup"); 1434 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1435 1436 qemu_mutex_lock_iothread(); 1437 kvm_dirty_ring_reap(s, NULL); 1438 qemu_mutex_unlock_iothread(); 1439 1440 r->reaper_iteration++; 1441 } 1442 1443 trace_kvm_dirty_ring_reaper("exit"); 1444 1445 rcu_unregister_thread(); 1446 1447 return NULL; 1448 } 1449 1450 static int kvm_dirty_ring_reaper_init(KVMState *s) 1451 { 1452 struct KVMDirtyRingReaper *r = &s->reaper; 1453 1454 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1455 kvm_dirty_ring_reaper_thread, 1456 s, QEMU_THREAD_JOINABLE); 1457 1458 return 0; 1459 } 1460 1461 static void kvm_region_add(MemoryListener *listener, 1462 MemoryRegionSection *section) 1463 { 1464 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1465 KVMMemoryUpdate *update; 1466 1467 update = g_new0(KVMMemoryUpdate, 1); 1468 update->section = *section; 1469 1470 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1471 } 1472 1473 static void kvm_region_del(MemoryListener *listener, 1474 MemoryRegionSection *section) 1475 { 1476 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1477 KVMMemoryUpdate *update; 1478 1479 update = g_new0(KVMMemoryUpdate, 1); 1480 update->section = *section; 1481 1482 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1483 } 1484 1485 static void kvm_region_commit(MemoryListener *listener) 1486 { 1487 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1488 listener); 1489 KVMMemoryUpdate *u1, *u2; 1490 bool need_inhibit = false; 1491 1492 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1493 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1494 return; 1495 } 1496 1497 /* 1498 * We have to be careful when regions to add overlap with ranges to remove. 1499 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1500 * is currently active. 1501 * 1502 * The lists are order by addresses, so it's easy to find overlaps. 1503 */ 1504 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1505 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1506 while (u1 && u2) { 1507 Range r1, r2; 1508 1509 range_init_nofail(&r1, u1->section.offset_within_address_space, 1510 int128_get64(u1->section.size)); 1511 range_init_nofail(&r2, u2->section.offset_within_address_space, 1512 int128_get64(u2->section.size)); 1513 1514 if (range_overlaps_range(&r1, &r2)) { 1515 need_inhibit = true; 1516 break; 1517 } 1518 if (range_lob(&r1) < range_lob(&r2)) { 1519 u1 = QSIMPLEQ_NEXT(u1, next); 1520 } else { 1521 u2 = QSIMPLEQ_NEXT(u2, next); 1522 } 1523 } 1524 1525 kvm_slots_lock(); 1526 if (need_inhibit) { 1527 accel_ioctl_inhibit_begin(); 1528 } 1529 1530 /* Remove all memslots before adding the new ones. */ 1531 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1532 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1533 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1534 1535 kvm_set_phys_mem(kml, &u1->section, false); 1536 memory_region_unref(u1->section.mr); 1537 1538 g_free(u1); 1539 } 1540 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1541 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1542 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1543 1544 memory_region_ref(u1->section.mr); 1545 kvm_set_phys_mem(kml, &u1->section, true); 1546 1547 g_free(u1); 1548 } 1549 1550 if (need_inhibit) { 1551 accel_ioctl_inhibit_end(); 1552 } 1553 kvm_slots_unlock(); 1554 } 1555 1556 static void kvm_log_sync(MemoryListener *listener, 1557 MemoryRegionSection *section) 1558 { 1559 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1560 1561 kvm_slots_lock(); 1562 kvm_physical_sync_dirty_bitmap(kml, section); 1563 kvm_slots_unlock(); 1564 } 1565 1566 static void kvm_log_sync_global(MemoryListener *l) 1567 { 1568 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1569 KVMState *s = kvm_state; 1570 KVMSlot *mem; 1571 int i; 1572 1573 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1574 kvm_dirty_ring_flush(); 1575 1576 /* 1577 * TODO: make this faster when nr_slots is big while there are 1578 * only a few used slots (small VMs). 1579 */ 1580 kvm_slots_lock(); 1581 for (i = 0; i < s->nr_slots; i++) { 1582 mem = &kml->slots[i]; 1583 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1584 kvm_slot_sync_dirty_pages(mem); 1585 /* 1586 * This is not needed by KVM_GET_DIRTY_LOG because the 1587 * ioctl will unconditionally overwrite the whole region. 1588 * However kvm dirty ring has no such side effect. 1589 */ 1590 kvm_slot_reset_dirty_pages(mem); 1591 } 1592 } 1593 kvm_slots_unlock(); 1594 } 1595 1596 static void kvm_log_clear(MemoryListener *listener, 1597 MemoryRegionSection *section) 1598 { 1599 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1600 int r; 1601 1602 r = kvm_physical_log_clear(kml, section); 1603 if (r < 0) { 1604 error_report_once("%s: kvm log clear failed: mr=%s " 1605 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1606 section->mr->name, section->offset_within_region, 1607 int128_get64(section->size)); 1608 abort(); 1609 } 1610 } 1611 1612 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1613 MemoryRegionSection *section, 1614 bool match_data, uint64_t data, 1615 EventNotifier *e) 1616 { 1617 int fd = event_notifier_get_fd(e); 1618 int r; 1619 1620 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1621 data, true, int128_get64(section->size), 1622 match_data); 1623 if (r < 0) { 1624 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1625 __func__, strerror(-r), -r); 1626 abort(); 1627 } 1628 } 1629 1630 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1631 MemoryRegionSection *section, 1632 bool match_data, uint64_t data, 1633 EventNotifier *e) 1634 { 1635 int fd = event_notifier_get_fd(e); 1636 int r; 1637 1638 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1639 data, false, int128_get64(section->size), 1640 match_data); 1641 if (r < 0) { 1642 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1643 __func__, strerror(-r), -r); 1644 abort(); 1645 } 1646 } 1647 1648 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1649 MemoryRegionSection *section, 1650 bool match_data, uint64_t data, 1651 EventNotifier *e) 1652 { 1653 int fd = event_notifier_get_fd(e); 1654 int r; 1655 1656 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1657 data, true, int128_get64(section->size), 1658 match_data); 1659 if (r < 0) { 1660 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1661 __func__, strerror(-r), -r); 1662 abort(); 1663 } 1664 } 1665 1666 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1667 MemoryRegionSection *section, 1668 bool match_data, uint64_t data, 1669 EventNotifier *e) 1670 1671 { 1672 int fd = event_notifier_get_fd(e); 1673 int r; 1674 1675 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1676 data, false, int128_get64(section->size), 1677 match_data); 1678 if (r < 0) { 1679 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1680 __func__, strerror(-r), -r); 1681 abort(); 1682 } 1683 } 1684 1685 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1686 AddressSpace *as, int as_id, const char *name) 1687 { 1688 int i; 1689 1690 kml->slots = g_new0(KVMSlot, s->nr_slots); 1691 kml->as_id = as_id; 1692 1693 for (i = 0; i < s->nr_slots; i++) { 1694 kml->slots[i].slot = i; 1695 } 1696 1697 QSIMPLEQ_INIT(&kml->transaction_add); 1698 QSIMPLEQ_INIT(&kml->transaction_del); 1699 1700 kml->listener.region_add = kvm_region_add; 1701 kml->listener.region_del = kvm_region_del; 1702 kml->listener.commit = kvm_region_commit; 1703 kml->listener.log_start = kvm_log_start; 1704 kml->listener.log_stop = kvm_log_stop; 1705 kml->listener.priority = 10; 1706 kml->listener.name = name; 1707 1708 if (s->kvm_dirty_ring_size) { 1709 kml->listener.log_sync_global = kvm_log_sync_global; 1710 } else { 1711 kml->listener.log_sync = kvm_log_sync; 1712 kml->listener.log_clear = kvm_log_clear; 1713 } 1714 1715 memory_listener_register(&kml->listener, as); 1716 1717 for (i = 0; i < s->nr_as; ++i) { 1718 if (!s->as[i].as) { 1719 s->as[i].as = as; 1720 s->as[i].ml = kml; 1721 break; 1722 } 1723 } 1724 } 1725 1726 static MemoryListener kvm_io_listener = { 1727 .name = "kvm-io", 1728 .eventfd_add = kvm_io_ioeventfd_add, 1729 .eventfd_del = kvm_io_ioeventfd_del, 1730 .priority = 10, 1731 }; 1732 1733 int kvm_set_irq(KVMState *s, int irq, int level) 1734 { 1735 struct kvm_irq_level event; 1736 int ret; 1737 1738 assert(kvm_async_interrupts_enabled()); 1739 1740 event.level = level; 1741 event.irq = irq; 1742 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1743 if (ret < 0) { 1744 perror("kvm_set_irq"); 1745 abort(); 1746 } 1747 1748 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1749 } 1750 1751 #ifdef KVM_CAP_IRQ_ROUTING 1752 typedef struct KVMMSIRoute { 1753 struct kvm_irq_routing_entry kroute; 1754 QTAILQ_ENTRY(KVMMSIRoute) entry; 1755 } KVMMSIRoute; 1756 1757 static void set_gsi(KVMState *s, unsigned int gsi) 1758 { 1759 set_bit(gsi, s->used_gsi_bitmap); 1760 } 1761 1762 static void clear_gsi(KVMState *s, unsigned int gsi) 1763 { 1764 clear_bit(gsi, s->used_gsi_bitmap); 1765 } 1766 1767 void kvm_init_irq_routing(KVMState *s) 1768 { 1769 int gsi_count, i; 1770 1771 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1772 if (gsi_count > 0) { 1773 /* Round up so we can search ints using ffs */ 1774 s->used_gsi_bitmap = bitmap_new(gsi_count); 1775 s->gsi_count = gsi_count; 1776 } 1777 1778 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1779 s->nr_allocated_irq_routes = 0; 1780 1781 if (!kvm_direct_msi_allowed) { 1782 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1783 QTAILQ_INIT(&s->msi_hashtab[i]); 1784 } 1785 } 1786 1787 kvm_arch_init_irq_routing(s); 1788 } 1789 1790 void kvm_irqchip_commit_routes(KVMState *s) 1791 { 1792 int ret; 1793 1794 if (kvm_gsi_direct_mapping()) { 1795 return; 1796 } 1797 1798 if (!kvm_gsi_routing_enabled()) { 1799 return; 1800 } 1801 1802 s->irq_routes->flags = 0; 1803 trace_kvm_irqchip_commit_routes(); 1804 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1805 assert(ret == 0); 1806 } 1807 1808 static void kvm_add_routing_entry(KVMState *s, 1809 struct kvm_irq_routing_entry *entry) 1810 { 1811 struct kvm_irq_routing_entry *new; 1812 int n, size; 1813 1814 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1815 n = s->nr_allocated_irq_routes * 2; 1816 if (n < 64) { 1817 n = 64; 1818 } 1819 size = sizeof(struct kvm_irq_routing); 1820 size += n * sizeof(*new); 1821 s->irq_routes = g_realloc(s->irq_routes, size); 1822 s->nr_allocated_irq_routes = n; 1823 } 1824 n = s->irq_routes->nr++; 1825 new = &s->irq_routes->entries[n]; 1826 1827 *new = *entry; 1828 1829 set_gsi(s, entry->gsi); 1830 } 1831 1832 static int kvm_update_routing_entry(KVMState *s, 1833 struct kvm_irq_routing_entry *new_entry) 1834 { 1835 struct kvm_irq_routing_entry *entry; 1836 int n; 1837 1838 for (n = 0; n < s->irq_routes->nr; n++) { 1839 entry = &s->irq_routes->entries[n]; 1840 if (entry->gsi != new_entry->gsi) { 1841 continue; 1842 } 1843 1844 if(!memcmp(entry, new_entry, sizeof *entry)) { 1845 return 0; 1846 } 1847 1848 *entry = *new_entry; 1849 1850 return 0; 1851 } 1852 1853 return -ESRCH; 1854 } 1855 1856 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1857 { 1858 struct kvm_irq_routing_entry e = {}; 1859 1860 assert(pin < s->gsi_count); 1861 1862 e.gsi = irq; 1863 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1864 e.flags = 0; 1865 e.u.irqchip.irqchip = irqchip; 1866 e.u.irqchip.pin = pin; 1867 kvm_add_routing_entry(s, &e); 1868 } 1869 1870 void kvm_irqchip_release_virq(KVMState *s, int virq) 1871 { 1872 struct kvm_irq_routing_entry *e; 1873 int i; 1874 1875 if (kvm_gsi_direct_mapping()) { 1876 return; 1877 } 1878 1879 for (i = 0; i < s->irq_routes->nr; i++) { 1880 e = &s->irq_routes->entries[i]; 1881 if (e->gsi == virq) { 1882 s->irq_routes->nr--; 1883 *e = s->irq_routes->entries[s->irq_routes->nr]; 1884 } 1885 } 1886 clear_gsi(s, virq); 1887 kvm_arch_release_virq_post(virq); 1888 trace_kvm_irqchip_release_virq(virq); 1889 } 1890 1891 void kvm_irqchip_add_change_notifier(Notifier *n) 1892 { 1893 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1894 } 1895 1896 void kvm_irqchip_remove_change_notifier(Notifier *n) 1897 { 1898 notifier_remove(n); 1899 } 1900 1901 void kvm_irqchip_change_notify(void) 1902 { 1903 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1904 } 1905 1906 static unsigned int kvm_hash_msi(uint32_t data) 1907 { 1908 /* This is optimized for IA32 MSI layout. However, no other arch shall 1909 * repeat the mistake of not providing a direct MSI injection API. */ 1910 return data & 0xff; 1911 } 1912 1913 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1914 { 1915 KVMMSIRoute *route, *next; 1916 unsigned int hash; 1917 1918 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1919 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1920 kvm_irqchip_release_virq(s, route->kroute.gsi); 1921 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1922 g_free(route); 1923 } 1924 } 1925 } 1926 1927 static int kvm_irqchip_get_virq(KVMState *s) 1928 { 1929 int next_virq; 1930 1931 /* 1932 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1933 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1934 * number can succeed even though a new route entry cannot be added. 1935 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1936 */ 1937 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1938 kvm_flush_dynamic_msi_routes(s); 1939 } 1940 1941 /* Return the lowest unused GSI in the bitmap */ 1942 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1943 if (next_virq >= s->gsi_count) { 1944 return -ENOSPC; 1945 } else { 1946 return next_virq; 1947 } 1948 } 1949 1950 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1951 { 1952 unsigned int hash = kvm_hash_msi(msg.data); 1953 KVMMSIRoute *route; 1954 1955 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1956 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1957 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1958 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1959 return route; 1960 } 1961 } 1962 return NULL; 1963 } 1964 1965 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1966 { 1967 struct kvm_msi msi; 1968 KVMMSIRoute *route; 1969 1970 if (kvm_direct_msi_allowed) { 1971 msi.address_lo = (uint32_t)msg.address; 1972 msi.address_hi = msg.address >> 32; 1973 msi.data = le32_to_cpu(msg.data); 1974 msi.flags = 0; 1975 memset(msi.pad, 0, sizeof(msi.pad)); 1976 1977 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1978 } 1979 1980 route = kvm_lookup_msi_route(s, msg); 1981 if (!route) { 1982 int virq; 1983 1984 virq = kvm_irqchip_get_virq(s); 1985 if (virq < 0) { 1986 return virq; 1987 } 1988 1989 route = g_new0(KVMMSIRoute, 1); 1990 route->kroute.gsi = virq; 1991 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1992 route->kroute.flags = 0; 1993 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1994 route->kroute.u.msi.address_hi = msg.address >> 32; 1995 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1996 1997 kvm_add_routing_entry(s, &route->kroute); 1998 kvm_irqchip_commit_routes(s); 1999 2000 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 2001 entry); 2002 } 2003 2004 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 2005 2006 return kvm_set_irq(s, route->kroute.gsi, 1); 2007 } 2008 2009 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2010 { 2011 struct kvm_irq_routing_entry kroute = {}; 2012 int virq; 2013 KVMState *s = c->s; 2014 MSIMessage msg = {0, 0}; 2015 2016 if (pci_available && dev) { 2017 msg = pci_get_msi_message(dev, vector); 2018 } 2019 2020 if (kvm_gsi_direct_mapping()) { 2021 return kvm_arch_msi_data_to_gsi(msg.data); 2022 } 2023 2024 if (!kvm_gsi_routing_enabled()) { 2025 return -ENOSYS; 2026 } 2027 2028 virq = kvm_irqchip_get_virq(s); 2029 if (virq < 0) { 2030 return virq; 2031 } 2032 2033 kroute.gsi = virq; 2034 kroute.type = KVM_IRQ_ROUTING_MSI; 2035 kroute.flags = 0; 2036 kroute.u.msi.address_lo = (uint32_t)msg.address; 2037 kroute.u.msi.address_hi = msg.address >> 32; 2038 kroute.u.msi.data = le32_to_cpu(msg.data); 2039 if (pci_available && kvm_msi_devid_required()) { 2040 kroute.flags = KVM_MSI_VALID_DEVID; 2041 kroute.u.msi.devid = pci_requester_id(dev); 2042 } 2043 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2044 kvm_irqchip_release_virq(s, virq); 2045 return -EINVAL; 2046 } 2047 2048 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2049 vector, virq); 2050 2051 kvm_add_routing_entry(s, &kroute); 2052 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2053 c->changes++; 2054 2055 return virq; 2056 } 2057 2058 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2059 PCIDevice *dev) 2060 { 2061 struct kvm_irq_routing_entry kroute = {}; 2062 2063 if (kvm_gsi_direct_mapping()) { 2064 return 0; 2065 } 2066 2067 if (!kvm_irqchip_in_kernel()) { 2068 return -ENOSYS; 2069 } 2070 2071 kroute.gsi = virq; 2072 kroute.type = KVM_IRQ_ROUTING_MSI; 2073 kroute.flags = 0; 2074 kroute.u.msi.address_lo = (uint32_t)msg.address; 2075 kroute.u.msi.address_hi = msg.address >> 32; 2076 kroute.u.msi.data = le32_to_cpu(msg.data); 2077 if (pci_available && kvm_msi_devid_required()) { 2078 kroute.flags = KVM_MSI_VALID_DEVID; 2079 kroute.u.msi.devid = pci_requester_id(dev); 2080 } 2081 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2082 return -EINVAL; 2083 } 2084 2085 trace_kvm_irqchip_update_msi_route(virq); 2086 2087 return kvm_update_routing_entry(s, &kroute); 2088 } 2089 2090 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2091 EventNotifier *resample, int virq, 2092 bool assign) 2093 { 2094 int fd = event_notifier_get_fd(event); 2095 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2096 2097 struct kvm_irqfd irqfd = { 2098 .fd = fd, 2099 .gsi = virq, 2100 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2101 }; 2102 2103 if (rfd != -1) { 2104 assert(assign); 2105 if (kvm_irqchip_is_split()) { 2106 /* 2107 * When the slow irqchip (e.g. IOAPIC) is in the 2108 * userspace, KVM kernel resamplefd will not work because 2109 * the EOI of the interrupt will be delivered to userspace 2110 * instead, so the KVM kernel resamplefd kick will be 2111 * skipped. The userspace here mimics what the kernel 2112 * provides with resamplefd, remember the resamplefd and 2113 * kick it when we receive EOI of this IRQ. 2114 * 2115 * This is hackery because IOAPIC is mostly bypassed 2116 * (except EOI broadcasts) when irqfd is used. However 2117 * this can bring much performance back for split irqchip 2118 * with INTx IRQs (for VFIO, this gives 93% perf of the 2119 * full fast path, which is 46% perf boost comparing to 2120 * the INTx slow path). 2121 */ 2122 kvm_resample_fd_insert(virq, resample); 2123 } else { 2124 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2125 irqfd.resamplefd = rfd; 2126 } 2127 } else if (!assign) { 2128 if (kvm_irqchip_is_split()) { 2129 kvm_resample_fd_remove(virq); 2130 } 2131 } 2132 2133 if (!kvm_irqfds_enabled()) { 2134 return -ENOSYS; 2135 } 2136 2137 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2138 } 2139 2140 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2141 { 2142 struct kvm_irq_routing_entry kroute = {}; 2143 int virq; 2144 2145 if (!kvm_gsi_routing_enabled()) { 2146 return -ENOSYS; 2147 } 2148 2149 virq = kvm_irqchip_get_virq(s); 2150 if (virq < 0) { 2151 return virq; 2152 } 2153 2154 kroute.gsi = virq; 2155 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2156 kroute.flags = 0; 2157 kroute.u.adapter.summary_addr = adapter->summary_addr; 2158 kroute.u.adapter.ind_addr = adapter->ind_addr; 2159 kroute.u.adapter.summary_offset = adapter->summary_offset; 2160 kroute.u.adapter.ind_offset = adapter->ind_offset; 2161 kroute.u.adapter.adapter_id = adapter->adapter_id; 2162 2163 kvm_add_routing_entry(s, &kroute); 2164 2165 return virq; 2166 } 2167 2168 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2169 { 2170 struct kvm_irq_routing_entry kroute = {}; 2171 int virq; 2172 2173 if (!kvm_gsi_routing_enabled()) { 2174 return -ENOSYS; 2175 } 2176 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2177 return -ENOSYS; 2178 } 2179 virq = kvm_irqchip_get_virq(s); 2180 if (virq < 0) { 2181 return virq; 2182 } 2183 2184 kroute.gsi = virq; 2185 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2186 kroute.flags = 0; 2187 kroute.u.hv_sint.vcpu = vcpu; 2188 kroute.u.hv_sint.sint = sint; 2189 2190 kvm_add_routing_entry(s, &kroute); 2191 kvm_irqchip_commit_routes(s); 2192 2193 return virq; 2194 } 2195 2196 #else /* !KVM_CAP_IRQ_ROUTING */ 2197 2198 void kvm_init_irq_routing(KVMState *s) 2199 { 2200 } 2201 2202 void kvm_irqchip_release_virq(KVMState *s, int virq) 2203 { 2204 } 2205 2206 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2207 { 2208 abort(); 2209 } 2210 2211 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2212 { 2213 return -ENOSYS; 2214 } 2215 2216 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2217 { 2218 return -ENOSYS; 2219 } 2220 2221 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2222 { 2223 return -ENOSYS; 2224 } 2225 2226 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2227 EventNotifier *resample, int virq, 2228 bool assign) 2229 { 2230 abort(); 2231 } 2232 2233 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2234 { 2235 return -ENOSYS; 2236 } 2237 #endif /* !KVM_CAP_IRQ_ROUTING */ 2238 2239 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2240 EventNotifier *rn, int virq) 2241 { 2242 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2243 } 2244 2245 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2246 int virq) 2247 { 2248 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2249 } 2250 2251 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2252 EventNotifier *rn, qemu_irq irq) 2253 { 2254 gpointer key, gsi; 2255 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2256 2257 if (!found) { 2258 return -ENXIO; 2259 } 2260 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2261 } 2262 2263 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2264 qemu_irq irq) 2265 { 2266 gpointer key, gsi; 2267 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2268 2269 if (!found) { 2270 return -ENXIO; 2271 } 2272 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2273 } 2274 2275 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2276 { 2277 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2278 } 2279 2280 static void kvm_irqchip_create(KVMState *s) 2281 { 2282 int ret; 2283 2284 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2285 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2286 ; 2287 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2288 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2289 if (ret < 0) { 2290 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2291 exit(1); 2292 } 2293 } else { 2294 return; 2295 } 2296 2297 /* First probe and see if there's a arch-specific hook to create the 2298 * in-kernel irqchip for us */ 2299 ret = kvm_arch_irqchip_create(s); 2300 if (ret == 0) { 2301 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2302 error_report("Split IRQ chip mode not supported."); 2303 exit(1); 2304 } else { 2305 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2306 } 2307 } 2308 if (ret < 0) { 2309 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2310 exit(1); 2311 } 2312 2313 kvm_kernel_irqchip = true; 2314 /* If we have an in-kernel IRQ chip then we must have asynchronous 2315 * interrupt delivery (though the reverse is not necessarily true) 2316 */ 2317 kvm_async_interrupts_allowed = true; 2318 kvm_halt_in_kernel_allowed = true; 2319 2320 kvm_init_irq_routing(s); 2321 2322 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2323 } 2324 2325 /* Find number of supported CPUs using the recommended 2326 * procedure from the kernel API documentation to cope with 2327 * older kernels that may be missing capabilities. 2328 */ 2329 static int kvm_recommended_vcpus(KVMState *s) 2330 { 2331 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2332 return (ret) ? ret : 4; 2333 } 2334 2335 static int kvm_max_vcpus(KVMState *s) 2336 { 2337 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2338 return (ret) ? ret : kvm_recommended_vcpus(s); 2339 } 2340 2341 static int kvm_max_vcpu_id(KVMState *s) 2342 { 2343 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2344 return (ret) ? ret : kvm_max_vcpus(s); 2345 } 2346 2347 bool kvm_vcpu_id_is_valid(int vcpu_id) 2348 { 2349 KVMState *s = KVM_STATE(current_accel()); 2350 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2351 } 2352 2353 bool kvm_dirty_ring_enabled(void) 2354 { 2355 return kvm_state->kvm_dirty_ring_size ? true : false; 2356 } 2357 2358 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2359 strList *names, strList *targets, Error **errp); 2360 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2361 2362 uint32_t kvm_dirty_ring_size(void) 2363 { 2364 return kvm_state->kvm_dirty_ring_size; 2365 } 2366 2367 static int kvm_init(MachineState *ms) 2368 { 2369 MachineClass *mc = MACHINE_GET_CLASS(ms); 2370 static const char upgrade_note[] = 2371 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2372 "(see http://sourceforge.net/projects/kvm).\n"; 2373 const struct { 2374 const char *name; 2375 int num; 2376 } num_cpus[] = { 2377 { "SMP", ms->smp.cpus }, 2378 { "hotpluggable", ms->smp.max_cpus }, 2379 { /* end of list */ } 2380 }, *nc = num_cpus; 2381 int soft_vcpus_limit, hard_vcpus_limit; 2382 KVMState *s; 2383 const KVMCapabilityInfo *missing_cap; 2384 int ret; 2385 int type = 0; 2386 uint64_t dirty_log_manual_caps; 2387 2388 qemu_mutex_init(&kml_slots_lock); 2389 2390 s = KVM_STATE(ms->accelerator); 2391 2392 /* 2393 * On systems where the kernel can support different base page 2394 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2395 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2396 * page size for the system though. 2397 */ 2398 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2399 2400 s->sigmask_len = 8; 2401 accel_blocker_init(); 2402 2403 #ifdef KVM_CAP_SET_GUEST_DEBUG 2404 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2405 #endif 2406 QLIST_INIT(&s->kvm_parked_vcpus); 2407 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2408 if (s->fd == -1) { 2409 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2410 ret = -errno; 2411 goto err; 2412 } 2413 2414 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2415 if (ret < KVM_API_VERSION) { 2416 if (ret >= 0) { 2417 ret = -EINVAL; 2418 } 2419 fprintf(stderr, "kvm version too old\n"); 2420 goto err; 2421 } 2422 2423 if (ret > KVM_API_VERSION) { 2424 ret = -EINVAL; 2425 fprintf(stderr, "kvm version not supported\n"); 2426 goto err; 2427 } 2428 2429 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2430 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2431 2432 /* If unspecified, use the default value */ 2433 if (!s->nr_slots) { 2434 s->nr_slots = 32; 2435 } 2436 2437 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2438 if (s->nr_as <= 1) { 2439 s->nr_as = 1; 2440 } 2441 s->as = g_new0(struct KVMAs, s->nr_as); 2442 2443 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2444 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2445 "kvm-type", 2446 &error_abort); 2447 type = mc->kvm_type(ms, kvm_type); 2448 } else if (mc->kvm_type) { 2449 type = mc->kvm_type(ms, NULL); 2450 } 2451 2452 do { 2453 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2454 } while (ret == -EINTR); 2455 2456 if (ret < 0) { 2457 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2458 strerror(-ret)); 2459 2460 #ifdef TARGET_S390X 2461 if (ret == -EINVAL) { 2462 fprintf(stderr, 2463 "Host kernel setup problem detected. Please verify:\n"); 2464 fprintf(stderr, "- for kernels supporting the switch_amode or" 2465 " user_mode parameters, whether\n"); 2466 fprintf(stderr, 2467 " user space is running in primary address space\n"); 2468 fprintf(stderr, 2469 "- for kernels supporting the vm.allocate_pgste sysctl, " 2470 "whether it is enabled\n"); 2471 } 2472 #elif defined(TARGET_PPC) 2473 if (ret == -EINVAL) { 2474 fprintf(stderr, 2475 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2476 (type == 2) ? "pr" : "hv"); 2477 } 2478 #endif 2479 goto err; 2480 } 2481 2482 s->vmfd = ret; 2483 2484 /* check the vcpu limits */ 2485 soft_vcpus_limit = kvm_recommended_vcpus(s); 2486 hard_vcpus_limit = kvm_max_vcpus(s); 2487 2488 while (nc->name) { 2489 if (nc->num > soft_vcpus_limit) { 2490 warn_report("Number of %s cpus requested (%d) exceeds " 2491 "the recommended cpus supported by KVM (%d)", 2492 nc->name, nc->num, soft_vcpus_limit); 2493 2494 if (nc->num > hard_vcpus_limit) { 2495 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2496 "the maximum cpus supported by KVM (%d)\n", 2497 nc->name, nc->num, hard_vcpus_limit); 2498 exit(1); 2499 } 2500 } 2501 nc++; 2502 } 2503 2504 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2505 if (!missing_cap) { 2506 missing_cap = 2507 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2508 } 2509 if (missing_cap) { 2510 ret = -EINVAL; 2511 fprintf(stderr, "kvm does not support %s\n%s", 2512 missing_cap->name, upgrade_note); 2513 goto err; 2514 } 2515 2516 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2517 s->coalesced_pio = s->coalesced_mmio && 2518 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2519 2520 /* 2521 * Enable KVM dirty ring if supported, otherwise fall back to 2522 * dirty logging mode 2523 */ 2524 if (s->kvm_dirty_ring_size > 0) { 2525 uint64_t ring_bytes; 2526 2527 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn); 2528 2529 /* Read the max supported pages */ 2530 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING); 2531 if (ret > 0) { 2532 if (ring_bytes > ret) { 2533 error_report("KVM dirty ring size %" PRIu32 " too big " 2534 "(maximum is %ld). Please use a smaller value.", 2535 s->kvm_dirty_ring_size, 2536 (long)ret / sizeof(struct kvm_dirty_gfn)); 2537 ret = -EINVAL; 2538 goto err; 2539 } 2540 2541 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes); 2542 if (ret) { 2543 error_report("Enabling of KVM dirty ring failed: %s. " 2544 "Suggested minimum value is 1024.", strerror(-ret)); 2545 goto err; 2546 } 2547 2548 s->kvm_dirty_ring_bytes = ring_bytes; 2549 } else { 2550 warn_report("KVM dirty ring not available, using bitmap method"); 2551 s->kvm_dirty_ring_size = 0; 2552 } 2553 } 2554 2555 /* 2556 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2557 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2558 * page is wr-protected initially, which is against how kvm dirty ring is 2559 * usage - kvm dirty ring requires all pages are wr-protected at the very 2560 * beginning. Enabling this feature for dirty ring causes data corruption. 2561 * 2562 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2563 * we may expect a higher stall time when starting the migration. In the 2564 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2565 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2566 * guest pages. 2567 */ 2568 if (!s->kvm_dirty_ring_size) { 2569 dirty_log_manual_caps = 2570 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2571 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2572 KVM_DIRTY_LOG_INITIALLY_SET); 2573 s->manual_dirty_log_protect = dirty_log_manual_caps; 2574 if (dirty_log_manual_caps) { 2575 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2576 dirty_log_manual_caps); 2577 if (ret) { 2578 warn_report("Trying to enable capability %"PRIu64" of " 2579 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2580 "Falling back to the legacy mode. ", 2581 dirty_log_manual_caps); 2582 s->manual_dirty_log_protect = 0; 2583 } 2584 } 2585 } 2586 2587 #ifdef KVM_CAP_VCPU_EVENTS 2588 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2589 #endif 2590 2591 s->robust_singlestep = 2592 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2593 2594 #ifdef KVM_CAP_DEBUGREGS 2595 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2596 #endif 2597 2598 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2599 2600 #ifdef KVM_CAP_IRQ_ROUTING 2601 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2602 #endif 2603 2604 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2605 2606 s->irq_set_ioctl = KVM_IRQ_LINE; 2607 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2608 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2609 } 2610 2611 kvm_readonly_mem_allowed = 2612 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2613 2614 kvm_eventfds_allowed = 2615 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2616 2617 kvm_irqfds_allowed = 2618 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2619 2620 kvm_resamplefds_allowed = 2621 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2622 2623 kvm_vm_attributes_allowed = 2624 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2625 2626 kvm_ioeventfd_any_length_allowed = 2627 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2628 2629 #ifdef KVM_CAP_SET_GUEST_DEBUG 2630 kvm_has_guest_debug = 2631 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2632 #endif 2633 2634 kvm_sstep_flags = 0; 2635 if (kvm_has_guest_debug) { 2636 kvm_sstep_flags = SSTEP_ENABLE; 2637 2638 #if defined KVM_CAP_SET_GUEST_DEBUG2 2639 int guest_debug_flags = 2640 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2641 2642 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2643 kvm_sstep_flags |= SSTEP_NOIRQ; 2644 } 2645 #endif 2646 } 2647 2648 kvm_state = s; 2649 2650 ret = kvm_arch_init(ms, s); 2651 if (ret < 0) { 2652 goto err; 2653 } 2654 2655 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2656 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2657 } 2658 2659 qemu_register_reset(kvm_unpoison_all, NULL); 2660 2661 if (s->kernel_irqchip_allowed) { 2662 kvm_irqchip_create(s); 2663 } 2664 2665 if (kvm_eventfds_allowed) { 2666 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2667 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2668 } 2669 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2670 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2671 2672 kvm_memory_listener_register(s, &s->memory_listener, 2673 &address_space_memory, 0, "kvm-memory"); 2674 if (kvm_eventfds_allowed) { 2675 memory_listener_register(&kvm_io_listener, 2676 &address_space_io); 2677 } 2678 memory_listener_register(&kvm_coalesced_pio_listener, 2679 &address_space_io); 2680 2681 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2682 2683 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2684 if (!s->sync_mmu) { 2685 ret = ram_block_discard_disable(true); 2686 assert(!ret); 2687 } 2688 2689 if (s->kvm_dirty_ring_size) { 2690 ret = kvm_dirty_ring_reaper_init(s); 2691 if (ret) { 2692 goto err; 2693 } 2694 } 2695 2696 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2697 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2698 query_stats_schemas_cb); 2699 } 2700 2701 return 0; 2702 2703 err: 2704 assert(ret < 0); 2705 if (s->vmfd >= 0) { 2706 close(s->vmfd); 2707 } 2708 if (s->fd != -1) { 2709 close(s->fd); 2710 } 2711 g_free(s->memory_listener.slots); 2712 2713 return ret; 2714 } 2715 2716 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2717 { 2718 s->sigmask_len = sigmask_len; 2719 } 2720 2721 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2722 int size, uint32_t count) 2723 { 2724 int i; 2725 uint8_t *ptr = data; 2726 2727 for (i = 0; i < count; i++) { 2728 address_space_rw(&address_space_io, port, attrs, 2729 ptr, size, 2730 direction == KVM_EXIT_IO_OUT); 2731 ptr += size; 2732 } 2733 } 2734 2735 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2736 { 2737 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2738 run->internal.suberror); 2739 2740 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2741 int i; 2742 2743 for (i = 0; i < run->internal.ndata; ++i) { 2744 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2745 i, (uint64_t)run->internal.data[i]); 2746 } 2747 } 2748 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2749 fprintf(stderr, "emulation failure\n"); 2750 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2751 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2752 return EXCP_INTERRUPT; 2753 } 2754 } 2755 /* FIXME: Should trigger a qmp message to let management know 2756 * something went wrong. 2757 */ 2758 return -1; 2759 } 2760 2761 void kvm_flush_coalesced_mmio_buffer(void) 2762 { 2763 KVMState *s = kvm_state; 2764 2765 if (s->coalesced_flush_in_progress) { 2766 return; 2767 } 2768 2769 s->coalesced_flush_in_progress = true; 2770 2771 if (s->coalesced_mmio_ring) { 2772 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2773 while (ring->first != ring->last) { 2774 struct kvm_coalesced_mmio *ent; 2775 2776 ent = &ring->coalesced_mmio[ring->first]; 2777 2778 if (ent->pio == 1) { 2779 address_space_write(&address_space_io, ent->phys_addr, 2780 MEMTXATTRS_UNSPECIFIED, ent->data, 2781 ent->len); 2782 } else { 2783 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2784 } 2785 smp_wmb(); 2786 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2787 } 2788 } 2789 2790 s->coalesced_flush_in_progress = false; 2791 } 2792 2793 bool kvm_cpu_check_are_resettable(void) 2794 { 2795 return kvm_arch_cpu_check_are_resettable(); 2796 } 2797 2798 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2799 { 2800 if (!cpu->vcpu_dirty) { 2801 kvm_arch_get_registers(cpu); 2802 cpu->vcpu_dirty = true; 2803 } 2804 } 2805 2806 void kvm_cpu_synchronize_state(CPUState *cpu) 2807 { 2808 if (!cpu->vcpu_dirty) { 2809 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2810 } 2811 } 2812 2813 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2814 { 2815 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2816 cpu->vcpu_dirty = false; 2817 } 2818 2819 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2820 { 2821 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2822 } 2823 2824 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2825 { 2826 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2827 cpu->vcpu_dirty = false; 2828 } 2829 2830 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2831 { 2832 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2833 } 2834 2835 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2836 { 2837 cpu->vcpu_dirty = true; 2838 } 2839 2840 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2841 { 2842 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2843 } 2844 2845 #ifdef KVM_HAVE_MCE_INJECTION 2846 static __thread void *pending_sigbus_addr; 2847 static __thread int pending_sigbus_code; 2848 static __thread bool have_sigbus_pending; 2849 #endif 2850 2851 static void kvm_cpu_kick(CPUState *cpu) 2852 { 2853 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2854 } 2855 2856 static void kvm_cpu_kick_self(void) 2857 { 2858 if (kvm_immediate_exit) { 2859 kvm_cpu_kick(current_cpu); 2860 } else { 2861 qemu_cpu_kick_self(); 2862 } 2863 } 2864 2865 static void kvm_eat_signals(CPUState *cpu) 2866 { 2867 struct timespec ts = { 0, 0 }; 2868 siginfo_t siginfo; 2869 sigset_t waitset; 2870 sigset_t chkset; 2871 int r; 2872 2873 if (kvm_immediate_exit) { 2874 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2875 /* Write kvm_run->immediate_exit before the cpu->exit_request 2876 * write in kvm_cpu_exec. 2877 */ 2878 smp_wmb(); 2879 return; 2880 } 2881 2882 sigemptyset(&waitset); 2883 sigaddset(&waitset, SIG_IPI); 2884 2885 do { 2886 r = sigtimedwait(&waitset, &siginfo, &ts); 2887 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2888 perror("sigtimedwait"); 2889 exit(1); 2890 } 2891 2892 r = sigpending(&chkset); 2893 if (r == -1) { 2894 perror("sigpending"); 2895 exit(1); 2896 } 2897 } while (sigismember(&chkset, SIG_IPI)); 2898 } 2899 2900 int kvm_cpu_exec(CPUState *cpu) 2901 { 2902 struct kvm_run *run = cpu->kvm_run; 2903 int ret, run_ret; 2904 2905 DPRINTF("kvm_cpu_exec()\n"); 2906 2907 if (kvm_arch_process_async_events(cpu)) { 2908 qatomic_set(&cpu->exit_request, 0); 2909 return EXCP_HLT; 2910 } 2911 2912 qemu_mutex_unlock_iothread(); 2913 cpu_exec_start(cpu); 2914 2915 do { 2916 MemTxAttrs attrs; 2917 2918 if (cpu->vcpu_dirty) { 2919 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2920 cpu->vcpu_dirty = false; 2921 } 2922 2923 kvm_arch_pre_run(cpu, run); 2924 if (qatomic_read(&cpu->exit_request)) { 2925 DPRINTF("interrupt exit requested\n"); 2926 /* 2927 * KVM requires us to reenter the kernel after IO exits to complete 2928 * instruction emulation. This self-signal will ensure that we 2929 * leave ASAP again. 2930 */ 2931 kvm_cpu_kick_self(); 2932 } 2933 2934 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2935 * Matching barrier in kvm_eat_signals. 2936 */ 2937 smp_rmb(); 2938 2939 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2940 2941 attrs = kvm_arch_post_run(cpu, run); 2942 2943 #ifdef KVM_HAVE_MCE_INJECTION 2944 if (unlikely(have_sigbus_pending)) { 2945 qemu_mutex_lock_iothread(); 2946 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2947 pending_sigbus_addr); 2948 have_sigbus_pending = false; 2949 qemu_mutex_unlock_iothread(); 2950 } 2951 #endif 2952 2953 if (run_ret < 0) { 2954 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2955 DPRINTF("io window exit\n"); 2956 kvm_eat_signals(cpu); 2957 ret = EXCP_INTERRUPT; 2958 break; 2959 } 2960 fprintf(stderr, "error: kvm run failed %s\n", 2961 strerror(-run_ret)); 2962 #ifdef TARGET_PPC 2963 if (run_ret == -EBUSY) { 2964 fprintf(stderr, 2965 "This is probably because your SMT is enabled.\n" 2966 "VCPU can only run on primary threads with all " 2967 "secondary threads offline.\n"); 2968 } 2969 #endif 2970 ret = -1; 2971 break; 2972 } 2973 2974 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2975 switch (run->exit_reason) { 2976 case KVM_EXIT_IO: 2977 DPRINTF("handle_io\n"); 2978 /* Called outside BQL */ 2979 kvm_handle_io(run->io.port, attrs, 2980 (uint8_t *)run + run->io.data_offset, 2981 run->io.direction, 2982 run->io.size, 2983 run->io.count); 2984 ret = 0; 2985 break; 2986 case KVM_EXIT_MMIO: 2987 DPRINTF("handle_mmio\n"); 2988 /* Called outside BQL */ 2989 address_space_rw(&address_space_memory, 2990 run->mmio.phys_addr, attrs, 2991 run->mmio.data, 2992 run->mmio.len, 2993 run->mmio.is_write); 2994 ret = 0; 2995 break; 2996 case KVM_EXIT_IRQ_WINDOW_OPEN: 2997 DPRINTF("irq_window_open\n"); 2998 ret = EXCP_INTERRUPT; 2999 break; 3000 case KVM_EXIT_SHUTDOWN: 3001 DPRINTF("shutdown\n"); 3002 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3003 ret = EXCP_INTERRUPT; 3004 break; 3005 case KVM_EXIT_UNKNOWN: 3006 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3007 (uint64_t)run->hw.hardware_exit_reason); 3008 ret = -1; 3009 break; 3010 case KVM_EXIT_INTERNAL_ERROR: 3011 ret = kvm_handle_internal_error(cpu, run); 3012 break; 3013 case KVM_EXIT_DIRTY_RING_FULL: 3014 /* 3015 * We shouldn't continue if the dirty ring of this vcpu is 3016 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3017 */ 3018 trace_kvm_dirty_ring_full(cpu->cpu_index); 3019 qemu_mutex_lock_iothread(); 3020 /* 3021 * We throttle vCPU by making it sleep once it exit from kernel 3022 * due to dirty ring full. In the dirtylimit scenario, reaping 3023 * all vCPUs after a single vCPU dirty ring get full result in 3024 * the miss of sleep, so just reap the ring-fulled vCPU. 3025 */ 3026 if (dirtylimit_in_service()) { 3027 kvm_dirty_ring_reap(kvm_state, cpu); 3028 } else { 3029 kvm_dirty_ring_reap(kvm_state, NULL); 3030 } 3031 qemu_mutex_unlock_iothread(); 3032 dirtylimit_vcpu_execute(cpu); 3033 ret = 0; 3034 break; 3035 case KVM_EXIT_SYSTEM_EVENT: 3036 switch (run->system_event.type) { 3037 case KVM_SYSTEM_EVENT_SHUTDOWN: 3038 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3039 ret = EXCP_INTERRUPT; 3040 break; 3041 case KVM_SYSTEM_EVENT_RESET: 3042 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3043 ret = EXCP_INTERRUPT; 3044 break; 3045 case KVM_SYSTEM_EVENT_CRASH: 3046 kvm_cpu_synchronize_state(cpu); 3047 qemu_mutex_lock_iothread(); 3048 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3049 qemu_mutex_unlock_iothread(); 3050 ret = 0; 3051 break; 3052 default: 3053 DPRINTF("kvm_arch_handle_exit\n"); 3054 ret = kvm_arch_handle_exit(cpu, run); 3055 break; 3056 } 3057 break; 3058 default: 3059 DPRINTF("kvm_arch_handle_exit\n"); 3060 ret = kvm_arch_handle_exit(cpu, run); 3061 break; 3062 } 3063 } while (ret == 0); 3064 3065 cpu_exec_end(cpu); 3066 qemu_mutex_lock_iothread(); 3067 3068 if (ret < 0) { 3069 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3070 vm_stop(RUN_STATE_INTERNAL_ERROR); 3071 } 3072 3073 qatomic_set(&cpu->exit_request, 0); 3074 return ret; 3075 } 3076 3077 int kvm_ioctl(KVMState *s, int type, ...) 3078 { 3079 int ret; 3080 void *arg; 3081 va_list ap; 3082 3083 va_start(ap, type); 3084 arg = va_arg(ap, void *); 3085 va_end(ap); 3086 3087 trace_kvm_ioctl(type, arg); 3088 ret = ioctl(s->fd, type, arg); 3089 if (ret == -1) { 3090 ret = -errno; 3091 } 3092 return ret; 3093 } 3094 3095 int kvm_vm_ioctl(KVMState *s, int type, ...) 3096 { 3097 int ret; 3098 void *arg; 3099 va_list ap; 3100 3101 va_start(ap, type); 3102 arg = va_arg(ap, void *); 3103 va_end(ap); 3104 3105 trace_kvm_vm_ioctl(type, arg); 3106 accel_ioctl_begin(); 3107 ret = ioctl(s->vmfd, type, arg); 3108 accel_ioctl_end(); 3109 if (ret == -1) { 3110 ret = -errno; 3111 } 3112 return ret; 3113 } 3114 3115 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3116 { 3117 int ret; 3118 void *arg; 3119 va_list ap; 3120 3121 va_start(ap, type); 3122 arg = va_arg(ap, void *); 3123 va_end(ap); 3124 3125 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3126 accel_cpu_ioctl_begin(cpu); 3127 ret = ioctl(cpu->kvm_fd, type, arg); 3128 accel_cpu_ioctl_end(cpu); 3129 if (ret == -1) { 3130 ret = -errno; 3131 } 3132 return ret; 3133 } 3134 3135 int kvm_device_ioctl(int fd, int type, ...) 3136 { 3137 int ret; 3138 void *arg; 3139 va_list ap; 3140 3141 va_start(ap, type); 3142 arg = va_arg(ap, void *); 3143 va_end(ap); 3144 3145 trace_kvm_device_ioctl(fd, type, arg); 3146 accel_ioctl_begin(); 3147 ret = ioctl(fd, type, arg); 3148 accel_ioctl_end(); 3149 if (ret == -1) { 3150 ret = -errno; 3151 } 3152 return ret; 3153 } 3154 3155 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3156 { 3157 int ret; 3158 struct kvm_device_attr attribute = { 3159 .group = group, 3160 .attr = attr, 3161 }; 3162 3163 if (!kvm_vm_attributes_allowed) { 3164 return 0; 3165 } 3166 3167 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3168 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3169 return ret ? 0 : 1; 3170 } 3171 3172 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3173 { 3174 struct kvm_device_attr attribute = { 3175 .group = group, 3176 .attr = attr, 3177 .flags = 0, 3178 }; 3179 3180 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3181 } 3182 3183 int kvm_device_access(int fd, int group, uint64_t attr, 3184 void *val, bool write, Error **errp) 3185 { 3186 struct kvm_device_attr kvmattr; 3187 int err; 3188 3189 kvmattr.flags = 0; 3190 kvmattr.group = group; 3191 kvmattr.attr = attr; 3192 kvmattr.addr = (uintptr_t)val; 3193 3194 err = kvm_device_ioctl(fd, 3195 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3196 &kvmattr); 3197 if (err < 0) { 3198 error_setg_errno(errp, -err, 3199 "KVM_%s_DEVICE_ATTR failed: Group %d " 3200 "attr 0x%016" PRIx64, 3201 write ? "SET" : "GET", group, attr); 3202 } 3203 return err; 3204 } 3205 3206 bool kvm_has_sync_mmu(void) 3207 { 3208 return kvm_state->sync_mmu; 3209 } 3210 3211 int kvm_has_vcpu_events(void) 3212 { 3213 return kvm_state->vcpu_events; 3214 } 3215 3216 int kvm_has_robust_singlestep(void) 3217 { 3218 return kvm_state->robust_singlestep; 3219 } 3220 3221 int kvm_has_debugregs(void) 3222 { 3223 return kvm_state->debugregs; 3224 } 3225 3226 int kvm_max_nested_state_length(void) 3227 { 3228 return kvm_state->max_nested_state_len; 3229 } 3230 3231 int kvm_has_many_ioeventfds(void) 3232 { 3233 if (!kvm_enabled()) { 3234 return 0; 3235 } 3236 return kvm_state->many_ioeventfds; 3237 } 3238 3239 int kvm_has_gsi_routing(void) 3240 { 3241 #ifdef KVM_CAP_IRQ_ROUTING 3242 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3243 #else 3244 return false; 3245 #endif 3246 } 3247 3248 int kvm_has_intx_set_mask(void) 3249 { 3250 return kvm_state->intx_set_mask; 3251 } 3252 3253 bool kvm_arm_supports_user_irq(void) 3254 { 3255 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3256 } 3257 3258 #ifdef KVM_CAP_SET_GUEST_DEBUG 3259 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3260 target_ulong pc) 3261 { 3262 struct kvm_sw_breakpoint *bp; 3263 3264 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3265 if (bp->pc == pc) { 3266 return bp; 3267 } 3268 } 3269 return NULL; 3270 } 3271 3272 int kvm_sw_breakpoints_active(CPUState *cpu) 3273 { 3274 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3275 } 3276 3277 struct kvm_set_guest_debug_data { 3278 struct kvm_guest_debug dbg; 3279 int err; 3280 }; 3281 3282 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3283 { 3284 struct kvm_set_guest_debug_data *dbg_data = 3285 (struct kvm_set_guest_debug_data *) data.host_ptr; 3286 3287 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3288 &dbg_data->dbg); 3289 } 3290 3291 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3292 { 3293 struct kvm_set_guest_debug_data data; 3294 3295 data.dbg.control = reinject_trap; 3296 3297 if (cpu->singlestep_enabled) { 3298 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3299 3300 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3301 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3302 } 3303 } 3304 kvm_arch_update_guest_debug(cpu, &data.dbg); 3305 3306 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3307 RUN_ON_CPU_HOST_PTR(&data)); 3308 return data.err; 3309 } 3310 3311 bool kvm_supports_guest_debug(void) 3312 { 3313 /* probed during kvm_init() */ 3314 return kvm_has_guest_debug; 3315 } 3316 3317 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3318 { 3319 struct kvm_sw_breakpoint *bp; 3320 int err; 3321 3322 if (type == GDB_BREAKPOINT_SW) { 3323 bp = kvm_find_sw_breakpoint(cpu, addr); 3324 if (bp) { 3325 bp->use_count++; 3326 return 0; 3327 } 3328 3329 bp = g_new(struct kvm_sw_breakpoint, 1); 3330 bp->pc = addr; 3331 bp->use_count = 1; 3332 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3333 if (err) { 3334 g_free(bp); 3335 return err; 3336 } 3337 3338 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3339 } else { 3340 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3341 if (err) { 3342 return err; 3343 } 3344 } 3345 3346 CPU_FOREACH(cpu) { 3347 err = kvm_update_guest_debug(cpu, 0); 3348 if (err) { 3349 return err; 3350 } 3351 } 3352 return 0; 3353 } 3354 3355 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3356 { 3357 struct kvm_sw_breakpoint *bp; 3358 int err; 3359 3360 if (type == GDB_BREAKPOINT_SW) { 3361 bp = kvm_find_sw_breakpoint(cpu, addr); 3362 if (!bp) { 3363 return -ENOENT; 3364 } 3365 3366 if (bp->use_count > 1) { 3367 bp->use_count--; 3368 return 0; 3369 } 3370 3371 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3372 if (err) { 3373 return err; 3374 } 3375 3376 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3377 g_free(bp); 3378 } else { 3379 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3380 if (err) { 3381 return err; 3382 } 3383 } 3384 3385 CPU_FOREACH(cpu) { 3386 err = kvm_update_guest_debug(cpu, 0); 3387 if (err) { 3388 return err; 3389 } 3390 } 3391 return 0; 3392 } 3393 3394 void kvm_remove_all_breakpoints(CPUState *cpu) 3395 { 3396 struct kvm_sw_breakpoint *bp, *next; 3397 KVMState *s = cpu->kvm_state; 3398 CPUState *tmpcpu; 3399 3400 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3401 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3402 /* Try harder to find a CPU that currently sees the breakpoint. */ 3403 CPU_FOREACH(tmpcpu) { 3404 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3405 break; 3406 } 3407 } 3408 } 3409 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3410 g_free(bp); 3411 } 3412 kvm_arch_remove_all_hw_breakpoints(); 3413 3414 CPU_FOREACH(cpu) { 3415 kvm_update_guest_debug(cpu, 0); 3416 } 3417 } 3418 3419 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3420 3421 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3422 { 3423 KVMState *s = kvm_state; 3424 struct kvm_signal_mask *sigmask; 3425 int r; 3426 3427 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3428 3429 sigmask->len = s->sigmask_len; 3430 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3431 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3432 g_free(sigmask); 3433 3434 return r; 3435 } 3436 3437 static void kvm_ipi_signal(int sig) 3438 { 3439 if (current_cpu) { 3440 assert(kvm_immediate_exit); 3441 kvm_cpu_kick(current_cpu); 3442 } 3443 } 3444 3445 void kvm_init_cpu_signals(CPUState *cpu) 3446 { 3447 int r; 3448 sigset_t set; 3449 struct sigaction sigact; 3450 3451 memset(&sigact, 0, sizeof(sigact)); 3452 sigact.sa_handler = kvm_ipi_signal; 3453 sigaction(SIG_IPI, &sigact, NULL); 3454 3455 pthread_sigmask(SIG_BLOCK, NULL, &set); 3456 #if defined KVM_HAVE_MCE_INJECTION 3457 sigdelset(&set, SIGBUS); 3458 pthread_sigmask(SIG_SETMASK, &set, NULL); 3459 #endif 3460 sigdelset(&set, SIG_IPI); 3461 if (kvm_immediate_exit) { 3462 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3463 } else { 3464 r = kvm_set_signal_mask(cpu, &set); 3465 } 3466 if (r) { 3467 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3468 exit(1); 3469 } 3470 } 3471 3472 /* Called asynchronously in VCPU thread. */ 3473 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3474 { 3475 #ifdef KVM_HAVE_MCE_INJECTION 3476 if (have_sigbus_pending) { 3477 return 1; 3478 } 3479 have_sigbus_pending = true; 3480 pending_sigbus_addr = addr; 3481 pending_sigbus_code = code; 3482 qatomic_set(&cpu->exit_request, 1); 3483 return 0; 3484 #else 3485 return 1; 3486 #endif 3487 } 3488 3489 /* Called synchronously (via signalfd) in main thread. */ 3490 int kvm_on_sigbus(int code, void *addr) 3491 { 3492 #ifdef KVM_HAVE_MCE_INJECTION 3493 /* Action required MCE kills the process if SIGBUS is blocked. Because 3494 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3495 * we can only get action optional here. 3496 */ 3497 assert(code != BUS_MCEERR_AR); 3498 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3499 return 0; 3500 #else 3501 return 1; 3502 #endif 3503 } 3504 3505 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3506 { 3507 int ret; 3508 struct kvm_create_device create_dev; 3509 3510 create_dev.type = type; 3511 create_dev.fd = -1; 3512 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3513 3514 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3515 return -ENOTSUP; 3516 } 3517 3518 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3519 if (ret) { 3520 return ret; 3521 } 3522 3523 return test ? 0 : create_dev.fd; 3524 } 3525 3526 bool kvm_device_supported(int vmfd, uint64_t type) 3527 { 3528 struct kvm_create_device create_dev = { 3529 .type = type, 3530 .fd = -1, 3531 .flags = KVM_CREATE_DEVICE_TEST, 3532 }; 3533 3534 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3535 return false; 3536 } 3537 3538 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3539 } 3540 3541 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3542 { 3543 struct kvm_one_reg reg; 3544 int r; 3545 3546 reg.id = id; 3547 reg.addr = (uintptr_t) source; 3548 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3549 if (r) { 3550 trace_kvm_failed_reg_set(id, strerror(-r)); 3551 } 3552 return r; 3553 } 3554 3555 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3556 { 3557 struct kvm_one_reg reg; 3558 int r; 3559 3560 reg.id = id; 3561 reg.addr = (uintptr_t) target; 3562 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3563 if (r) { 3564 trace_kvm_failed_reg_get(id, strerror(-r)); 3565 } 3566 return r; 3567 } 3568 3569 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3570 hwaddr start_addr, hwaddr size) 3571 { 3572 KVMState *kvm = KVM_STATE(ms->accelerator); 3573 int i; 3574 3575 for (i = 0; i < kvm->nr_as; ++i) { 3576 if (kvm->as[i].as == as && kvm->as[i].ml) { 3577 size = MIN(kvm_max_slot_size, size); 3578 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3579 start_addr, size); 3580 } 3581 } 3582 3583 return false; 3584 } 3585 3586 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3587 const char *name, void *opaque, 3588 Error **errp) 3589 { 3590 KVMState *s = KVM_STATE(obj); 3591 int64_t value = s->kvm_shadow_mem; 3592 3593 visit_type_int(v, name, &value, errp); 3594 } 3595 3596 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3597 const char *name, void *opaque, 3598 Error **errp) 3599 { 3600 KVMState *s = KVM_STATE(obj); 3601 int64_t value; 3602 3603 if (s->fd != -1) { 3604 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3605 return; 3606 } 3607 3608 if (!visit_type_int(v, name, &value, errp)) { 3609 return; 3610 } 3611 3612 s->kvm_shadow_mem = value; 3613 } 3614 3615 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3616 const char *name, void *opaque, 3617 Error **errp) 3618 { 3619 KVMState *s = KVM_STATE(obj); 3620 OnOffSplit mode; 3621 3622 if (s->fd != -1) { 3623 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3624 return; 3625 } 3626 3627 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3628 return; 3629 } 3630 switch (mode) { 3631 case ON_OFF_SPLIT_ON: 3632 s->kernel_irqchip_allowed = true; 3633 s->kernel_irqchip_required = true; 3634 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3635 break; 3636 case ON_OFF_SPLIT_OFF: 3637 s->kernel_irqchip_allowed = false; 3638 s->kernel_irqchip_required = false; 3639 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3640 break; 3641 case ON_OFF_SPLIT_SPLIT: 3642 s->kernel_irqchip_allowed = true; 3643 s->kernel_irqchip_required = true; 3644 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3645 break; 3646 default: 3647 /* The value was checked in visit_type_OnOffSplit() above. If 3648 * we get here, then something is wrong in QEMU. 3649 */ 3650 abort(); 3651 } 3652 } 3653 3654 bool kvm_kernel_irqchip_allowed(void) 3655 { 3656 return kvm_state->kernel_irqchip_allowed; 3657 } 3658 3659 bool kvm_kernel_irqchip_required(void) 3660 { 3661 return kvm_state->kernel_irqchip_required; 3662 } 3663 3664 bool kvm_kernel_irqchip_split(void) 3665 { 3666 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3667 } 3668 3669 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3670 const char *name, void *opaque, 3671 Error **errp) 3672 { 3673 KVMState *s = KVM_STATE(obj); 3674 uint32_t value = s->kvm_dirty_ring_size; 3675 3676 visit_type_uint32(v, name, &value, errp); 3677 } 3678 3679 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3680 const char *name, void *opaque, 3681 Error **errp) 3682 { 3683 KVMState *s = KVM_STATE(obj); 3684 uint32_t value; 3685 3686 if (s->fd != -1) { 3687 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3688 return; 3689 } 3690 3691 if (!visit_type_uint32(v, name, &value, errp)) { 3692 return; 3693 } 3694 if (value & (value - 1)) { 3695 error_setg(errp, "dirty-ring-size must be a power of two."); 3696 return; 3697 } 3698 3699 s->kvm_dirty_ring_size = value; 3700 } 3701 3702 static void kvm_accel_instance_init(Object *obj) 3703 { 3704 KVMState *s = KVM_STATE(obj); 3705 3706 s->fd = -1; 3707 s->vmfd = -1; 3708 s->kvm_shadow_mem = -1; 3709 s->kernel_irqchip_allowed = true; 3710 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3711 /* KVM dirty ring is by default off */ 3712 s->kvm_dirty_ring_size = 0; 3713 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3714 s->notify_window = 0; 3715 s->xen_version = 0; 3716 s->xen_gnttab_max_frames = 64; 3717 s->xen_evtchn_max_pirq = 256; 3718 } 3719 3720 /** 3721 * kvm_gdbstub_sstep_flags(): 3722 * 3723 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3724 * support is probed during kvm_init() 3725 */ 3726 static int kvm_gdbstub_sstep_flags(void) 3727 { 3728 return kvm_sstep_flags; 3729 } 3730 3731 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3732 { 3733 AccelClass *ac = ACCEL_CLASS(oc); 3734 ac->name = "KVM"; 3735 ac->init_machine = kvm_init; 3736 ac->has_memory = kvm_accel_has_memory; 3737 ac->allowed = &kvm_allowed; 3738 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3739 3740 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3741 NULL, kvm_set_kernel_irqchip, 3742 NULL, NULL); 3743 object_class_property_set_description(oc, "kernel-irqchip", 3744 "Configure KVM in-kernel irqchip"); 3745 3746 object_class_property_add(oc, "kvm-shadow-mem", "int", 3747 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3748 NULL, NULL); 3749 object_class_property_set_description(oc, "kvm-shadow-mem", 3750 "KVM shadow MMU size"); 3751 3752 object_class_property_add(oc, "dirty-ring-size", "uint32", 3753 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3754 NULL, NULL); 3755 object_class_property_set_description(oc, "dirty-ring-size", 3756 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3757 3758 kvm_arch_accel_class_init(oc); 3759 } 3760 3761 static const TypeInfo kvm_accel_type = { 3762 .name = TYPE_KVM_ACCEL, 3763 .parent = TYPE_ACCEL, 3764 .instance_init = kvm_accel_instance_init, 3765 .class_init = kvm_accel_class_init, 3766 .instance_size = sizeof(KVMState), 3767 }; 3768 3769 static void kvm_type_init(void) 3770 { 3771 type_register_static(&kvm_accel_type); 3772 } 3773 3774 type_init(kvm_type_init); 3775 3776 typedef struct StatsArgs { 3777 union StatsResultsType { 3778 StatsResultList **stats; 3779 StatsSchemaList **schema; 3780 } result; 3781 strList *names; 3782 Error **errp; 3783 } StatsArgs; 3784 3785 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3786 uint64_t *stats_data, 3787 StatsList *stats_list, 3788 Error **errp) 3789 { 3790 3791 Stats *stats; 3792 uint64List *val_list = NULL; 3793 3794 /* Only add stats that we understand. */ 3795 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3796 case KVM_STATS_TYPE_CUMULATIVE: 3797 case KVM_STATS_TYPE_INSTANT: 3798 case KVM_STATS_TYPE_PEAK: 3799 case KVM_STATS_TYPE_LINEAR_HIST: 3800 case KVM_STATS_TYPE_LOG_HIST: 3801 break; 3802 default: 3803 return stats_list; 3804 } 3805 3806 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3807 case KVM_STATS_UNIT_NONE: 3808 case KVM_STATS_UNIT_BYTES: 3809 case KVM_STATS_UNIT_CYCLES: 3810 case KVM_STATS_UNIT_SECONDS: 3811 case KVM_STATS_UNIT_BOOLEAN: 3812 break; 3813 default: 3814 return stats_list; 3815 } 3816 3817 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3818 case KVM_STATS_BASE_POW10: 3819 case KVM_STATS_BASE_POW2: 3820 break; 3821 default: 3822 return stats_list; 3823 } 3824 3825 /* Alloc and populate data list */ 3826 stats = g_new0(Stats, 1); 3827 stats->name = g_strdup(pdesc->name); 3828 stats->value = g_new0(StatsValue, 1);; 3829 3830 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3831 stats->value->u.boolean = *stats_data; 3832 stats->value->type = QTYPE_QBOOL; 3833 } else if (pdesc->size == 1) { 3834 stats->value->u.scalar = *stats_data; 3835 stats->value->type = QTYPE_QNUM; 3836 } else { 3837 int i; 3838 for (i = 0; i < pdesc->size; i++) { 3839 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3840 } 3841 stats->value->u.list = val_list; 3842 stats->value->type = QTYPE_QLIST; 3843 } 3844 3845 QAPI_LIST_PREPEND(stats_list, stats); 3846 return stats_list; 3847 } 3848 3849 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3850 StatsSchemaValueList *list, 3851 Error **errp) 3852 { 3853 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3854 schema_entry->value = g_new0(StatsSchemaValue, 1); 3855 3856 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3857 case KVM_STATS_TYPE_CUMULATIVE: 3858 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3859 break; 3860 case KVM_STATS_TYPE_INSTANT: 3861 schema_entry->value->type = STATS_TYPE_INSTANT; 3862 break; 3863 case KVM_STATS_TYPE_PEAK: 3864 schema_entry->value->type = STATS_TYPE_PEAK; 3865 break; 3866 case KVM_STATS_TYPE_LINEAR_HIST: 3867 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3868 schema_entry->value->bucket_size = pdesc->bucket_size; 3869 schema_entry->value->has_bucket_size = true; 3870 break; 3871 case KVM_STATS_TYPE_LOG_HIST: 3872 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3873 break; 3874 default: 3875 goto exit; 3876 } 3877 3878 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3879 case KVM_STATS_UNIT_NONE: 3880 break; 3881 case KVM_STATS_UNIT_BOOLEAN: 3882 schema_entry->value->has_unit = true; 3883 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3884 break; 3885 case KVM_STATS_UNIT_BYTES: 3886 schema_entry->value->has_unit = true; 3887 schema_entry->value->unit = STATS_UNIT_BYTES; 3888 break; 3889 case KVM_STATS_UNIT_CYCLES: 3890 schema_entry->value->has_unit = true; 3891 schema_entry->value->unit = STATS_UNIT_CYCLES; 3892 break; 3893 case KVM_STATS_UNIT_SECONDS: 3894 schema_entry->value->has_unit = true; 3895 schema_entry->value->unit = STATS_UNIT_SECONDS; 3896 break; 3897 default: 3898 goto exit; 3899 } 3900 3901 schema_entry->value->exponent = pdesc->exponent; 3902 if (pdesc->exponent) { 3903 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3904 case KVM_STATS_BASE_POW10: 3905 schema_entry->value->has_base = true; 3906 schema_entry->value->base = 10; 3907 break; 3908 case KVM_STATS_BASE_POW2: 3909 schema_entry->value->has_base = true; 3910 schema_entry->value->base = 2; 3911 break; 3912 default: 3913 goto exit; 3914 } 3915 } 3916 3917 schema_entry->value->name = g_strdup(pdesc->name); 3918 schema_entry->next = list; 3919 return schema_entry; 3920 exit: 3921 g_free(schema_entry->value); 3922 g_free(schema_entry); 3923 return list; 3924 } 3925 3926 /* Cached stats descriptors */ 3927 typedef struct StatsDescriptors { 3928 const char *ident; /* cache key, currently the StatsTarget */ 3929 struct kvm_stats_desc *kvm_stats_desc; 3930 struct kvm_stats_header kvm_stats_header; 3931 QTAILQ_ENTRY(StatsDescriptors) next; 3932 } StatsDescriptors; 3933 3934 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3935 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3936 3937 /* 3938 * Return the descriptors for 'target', that either have already been read 3939 * or are retrieved from 'stats_fd'. 3940 */ 3941 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3942 Error **errp) 3943 { 3944 StatsDescriptors *descriptors; 3945 const char *ident; 3946 struct kvm_stats_desc *kvm_stats_desc; 3947 struct kvm_stats_header *kvm_stats_header; 3948 size_t size_desc; 3949 ssize_t ret; 3950 3951 ident = StatsTarget_str(target); 3952 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 3953 if (g_str_equal(descriptors->ident, ident)) { 3954 return descriptors; 3955 } 3956 } 3957 3958 descriptors = g_new0(StatsDescriptors, 1); 3959 3960 /* Read stats header */ 3961 kvm_stats_header = &descriptors->kvm_stats_header; 3962 ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header)); 3963 if (ret != sizeof(*kvm_stats_header)) { 3964 error_setg(errp, "KVM stats: failed to read stats header: " 3965 "expected %zu actual %zu", 3966 sizeof(*kvm_stats_header), ret); 3967 g_free(descriptors); 3968 return NULL; 3969 } 3970 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3971 3972 /* Read stats descriptors */ 3973 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 3974 ret = pread(stats_fd, kvm_stats_desc, 3975 size_desc * kvm_stats_header->num_desc, 3976 kvm_stats_header->desc_offset); 3977 3978 if (ret != size_desc * kvm_stats_header->num_desc) { 3979 error_setg(errp, "KVM stats: failed to read stats descriptors: " 3980 "expected %zu actual %zu", 3981 size_desc * kvm_stats_header->num_desc, ret); 3982 g_free(descriptors); 3983 g_free(kvm_stats_desc); 3984 return NULL; 3985 } 3986 descriptors->kvm_stats_desc = kvm_stats_desc; 3987 descriptors->ident = ident; 3988 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 3989 return descriptors; 3990 } 3991 3992 static void query_stats(StatsResultList **result, StatsTarget target, 3993 strList *names, int stats_fd, Error **errp) 3994 { 3995 struct kvm_stats_desc *kvm_stats_desc; 3996 struct kvm_stats_header *kvm_stats_header; 3997 StatsDescriptors *descriptors; 3998 g_autofree uint64_t *stats_data = NULL; 3999 struct kvm_stats_desc *pdesc; 4000 StatsList *stats_list = NULL; 4001 size_t size_desc, size_data = 0; 4002 ssize_t ret; 4003 int i; 4004 4005 descriptors = find_stats_descriptors(target, stats_fd, errp); 4006 if (!descriptors) { 4007 return; 4008 } 4009 4010 kvm_stats_header = &descriptors->kvm_stats_header; 4011 kvm_stats_desc = descriptors->kvm_stats_desc; 4012 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4013 4014 /* Tally the total data size; read schema data */ 4015 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4016 pdesc = (void *)kvm_stats_desc + i * size_desc; 4017 size_data += pdesc->size * sizeof(*stats_data); 4018 } 4019 4020 stats_data = g_malloc0(size_data); 4021 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4022 4023 if (ret != size_data) { 4024 error_setg(errp, "KVM stats: failed to read data: " 4025 "expected %zu actual %zu", size_data, ret); 4026 return; 4027 } 4028 4029 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4030 uint64_t *stats; 4031 pdesc = (void *)kvm_stats_desc + i * size_desc; 4032 4033 /* Add entry to the list */ 4034 stats = (void *)stats_data + pdesc->offset; 4035 if (!apply_str_list_filter(pdesc->name, names)) { 4036 continue; 4037 } 4038 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4039 } 4040 4041 if (!stats_list) { 4042 return; 4043 } 4044 4045 switch (target) { 4046 case STATS_TARGET_VM: 4047 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4048 break; 4049 case STATS_TARGET_VCPU: 4050 add_stats_entry(result, STATS_PROVIDER_KVM, 4051 current_cpu->parent_obj.canonical_path, 4052 stats_list); 4053 break; 4054 default: 4055 g_assert_not_reached(); 4056 } 4057 } 4058 4059 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4060 int stats_fd, Error **errp) 4061 { 4062 struct kvm_stats_desc *kvm_stats_desc; 4063 struct kvm_stats_header *kvm_stats_header; 4064 StatsDescriptors *descriptors; 4065 struct kvm_stats_desc *pdesc; 4066 StatsSchemaValueList *stats_list = NULL; 4067 size_t size_desc; 4068 int i; 4069 4070 descriptors = find_stats_descriptors(target, stats_fd, errp); 4071 if (!descriptors) { 4072 return; 4073 } 4074 4075 kvm_stats_header = &descriptors->kvm_stats_header; 4076 kvm_stats_desc = descriptors->kvm_stats_desc; 4077 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4078 4079 /* Tally the total data size; read schema data */ 4080 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4081 pdesc = (void *)kvm_stats_desc + i * size_desc; 4082 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4083 } 4084 4085 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4086 } 4087 4088 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data) 4089 { 4090 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; 4091 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 4092 Error *local_err = NULL; 4093 4094 if (stats_fd == -1) { 4095 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4096 error_propagate(kvm_stats_args->errp, local_err); 4097 return; 4098 } 4099 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4100 kvm_stats_args->names, stats_fd, kvm_stats_args->errp); 4101 close(stats_fd); 4102 } 4103 4104 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data) 4105 { 4106 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; 4107 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 4108 Error *local_err = NULL; 4109 4110 if (stats_fd == -1) { 4111 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4112 error_propagate(kvm_stats_args->errp, local_err); 4113 return; 4114 } 4115 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4116 kvm_stats_args->errp); 4117 close(stats_fd); 4118 } 4119 4120 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4121 strList *names, strList *targets, Error **errp) 4122 { 4123 KVMState *s = kvm_state; 4124 CPUState *cpu; 4125 int stats_fd; 4126 4127 switch (target) { 4128 case STATS_TARGET_VM: 4129 { 4130 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4131 if (stats_fd == -1) { 4132 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4133 return; 4134 } 4135 query_stats(result, target, names, stats_fd, errp); 4136 close(stats_fd); 4137 break; 4138 } 4139 case STATS_TARGET_VCPU: 4140 { 4141 StatsArgs stats_args; 4142 stats_args.result.stats = result; 4143 stats_args.names = names; 4144 stats_args.errp = errp; 4145 CPU_FOREACH(cpu) { 4146 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4147 continue; 4148 } 4149 run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); 4150 } 4151 break; 4152 } 4153 default: 4154 break; 4155 } 4156 } 4157 4158 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4159 { 4160 StatsArgs stats_args; 4161 KVMState *s = kvm_state; 4162 int stats_fd; 4163 4164 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4165 if (stats_fd == -1) { 4166 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4167 return; 4168 } 4169 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4170 close(stats_fd); 4171 4172 if (first_cpu) { 4173 stats_args.result.schema = result; 4174 stats_args.errp = errp; 4175 run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); 4176 } 4177 } 4178