1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/hw.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/cpus.h" 33 #include "qemu/bswap.h" 34 #include "exec/memory.h" 35 #include "exec/ram_addr.h" 36 #include "exec/address-spaces.h" 37 #include "qemu/event_notifier.h" 38 #include "trace.h" 39 #include "hw/irq.h" 40 #include "sysemu/sev.h" 41 #include "sysemu/balloon.h" 42 43 #include "hw/boards.h" 44 45 /* This check must be after config-host.h is included */ 46 #ifdef CONFIG_EVENTFD 47 #include <sys/eventfd.h> 48 #endif 49 50 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 51 * need to use the real host PAGE_SIZE, as that's what KVM will use. 52 */ 53 #define PAGE_SIZE getpagesize() 54 55 //#define DEBUG_KVM 56 57 #ifdef DEBUG_KVM 58 #define DPRINTF(fmt, ...) \ 59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 60 #else 61 #define DPRINTF(fmt, ...) \ 62 do { } while (0) 63 #endif 64 65 #define KVM_MSI_HASHTAB_SIZE 256 66 67 struct KVMParkedVcpu { 68 unsigned long vcpu_id; 69 int kvm_fd; 70 QLIST_ENTRY(KVMParkedVcpu) node; 71 }; 72 73 struct KVMState 74 { 75 AccelState parent_obj; 76 77 int nr_slots; 78 int fd; 79 int vmfd; 80 int coalesced_mmio; 81 int coalesced_pio; 82 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 83 bool coalesced_flush_in_progress; 84 int vcpu_events; 85 int robust_singlestep; 86 int debugregs; 87 #ifdef KVM_CAP_SET_GUEST_DEBUG 88 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 89 #endif 90 int many_ioeventfds; 91 int intx_set_mask; 92 bool sync_mmu; 93 /* The man page (and posix) say ioctl numbers are signed int, but 94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 95 * unsigned, and treating them as signed here can break things */ 96 unsigned irq_set_ioctl; 97 unsigned int sigmask_len; 98 GHashTable *gsimap; 99 #ifdef KVM_CAP_IRQ_ROUTING 100 struct kvm_irq_routing *irq_routes; 101 int nr_allocated_irq_routes; 102 unsigned long *used_gsi_bitmap; 103 unsigned int gsi_count; 104 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 105 #endif 106 KVMMemoryListener memory_listener; 107 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 108 109 /* memory encryption */ 110 void *memcrypt_handle; 111 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 112 }; 113 114 KVMState *kvm_state; 115 bool kvm_kernel_irqchip; 116 bool kvm_split_irqchip; 117 bool kvm_async_interrupts_allowed; 118 bool kvm_halt_in_kernel_allowed; 119 bool kvm_eventfds_allowed; 120 bool kvm_irqfds_allowed; 121 bool kvm_resamplefds_allowed; 122 bool kvm_msi_via_irqfd_allowed; 123 bool kvm_gsi_routing_allowed; 124 bool kvm_gsi_direct_mapping; 125 bool kvm_allowed; 126 bool kvm_readonly_mem_allowed; 127 bool kvm_vm_attributes_allowed; 128 bool kvm_direct_msi_allowed; 129 bool kvm_ioeventfd_any_length_allowed; 130 bool kvm_msi_use_devid; 131 static bool kvm_immediate_exit; 132 133 static const KVMCapabilityInfo kvm_required_capabilites[] = { 134 KVM_CAP_INFO(USER_MEMORY), 135 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 136 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 137 KVM_CAP_LAST_INFO 138 }; 139 140 int kvm_get_max_memslots(void) 141 { 142 KVMState *s = KVM_STATE(current_machine->accelerator); 143 144 return s->nr_slots; 145 } 146 147 bool kvm_memcrypt_enabled(void) 148 { 149 if (kvm_state && kvm_state->memcrypt_handle) { 150 return true; 151 } 152 153 return false; 154 } 155 156 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 157 { 158 if (kvm_state->memcrypt_handle && 159 kvm_state->memcrypt_encrypt_data) { 160 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 161 ptr, len); 162 } 163 164 return 1; 165 } 166 167 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 168 { 169 KVMState *s = kvm_state; 170 int i; 171 172 for (i = 0; i < s->nr_slots; i++) { 173 if (kml->slots[i].memory_size == 0) { 174 return &kml->slots[i]; 175 } 176 } 177 178 return NULL; 179 } 180 181 bool kvm_has_free_slot(MachineState *ms) 182 { 183 KVMState *s = KVM_STATE(ms->accelerator); 184 185 return kvm_get_free_slot(&s->memory_listener); 186 } 187 188 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 189 { 190 KVMSlot *slot = kvm_get_free_slot(kml); 191 192 if (slot) { 193 return slot; 194 } 195 196 fprintf(stderr, "%s: no free slot available\n", __func__); 197 abort(); 198 } 199 200 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 201 hwaddr start_addr, 202 hwaddr size) 203 { 204 KVMState *s = kvm_state; 205 int i; 206 207 for (i = 0; i < s->nr_slots; i++) { 208 KVMSlot *mem = &kml->slots[i]; 209 210 if (start_addr == mem->start_addr && size == mem->memory_size) { 211 return mem; 212 } 213 } 214 215 return NULL; 216 } 217 218 /* 219 * Calculate and align the start address and the size of the section. 220 * Return the size. If the size is 0, the aligned section is empty. 221 */ 222 static hwaddr kvm_align_section(MemoryRegionSection *section, 223 hwaddr *start) 224 { 225 hwaddr size = int128_get64(section->size); 226 hwaddr delta, aligned; 227 228 /* kvm works in page size chunks, but the function may be called 229 with sub-page size and unaligned start address. Pad the start 230 address to next and truncate size to previous page boundary. */ 231 aligned = ROUND_UP(section->offset_within_address_space, 232 qemu_real_host_page_size); 233 delta = aligned - section->offset_within_address_space; 234 *start = aligned; 235 if (delta > size) { 236 return 0; 237 } 238 239 return (size - delta) & qemu_real_host_page_mask; 240 } 241 242 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 243 hwaddr *phys_addr) 244 { 245 KVMMemoryListener *kml = &s->memory_listener; 246 int i; 247 248 for (i = 0; i < s->nr_slots; i++) { 249 KVMSlot *mem = &kml->slots[i]; 250 251 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 252 *phys_addr = mem->start_addr + (ram - mem->ram); 253 return 1; 254 } 255 } 256 257 return 0; 258 } 259 260 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 261 { 262 KVMState *s = kvm_state; 263 struct kvm_userspace_memory_region mem; 264 int ret; 265 266 mem.slot = slot->slot | (kml->as_id << 16); 267 mem.guest_phys_addr = slot->start_addr; 268 mem.userspace_addr = (unsigned long)slot->ram; 269 mem.flags = slot->flags; 270 271 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 272 /* Set the slot size to 0 before setting the slot to the desired 273 * value. This is needed based on KVM commit 75d61fbc. */ 274 mem.memory_size = 0; 275 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 276 } 277 mem.memory_size = slot->memory_size; 278 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 279 slot->old_flags = mem.flags; 280 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 281 mem.memory_size, mem.userspace_addr, ret); 282 return ret; 283 } 284 285 int kvm_destroy_vcpu(CPUState *cpu) 286 { 287 KVMState *s = kvm_state; 288 long mmap_size; 289 struct KVMParkedVcpu *vcpu = NULL; 290 int ret = 0; 291 292 DPRINTF("kvm_destroy_vcpu\n"); 293 294 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 295 if (mmap_size < 0) { 296 ret = mmap_size; 297 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 298 goto err; 299 } 300 301 ret = munmap(cpu->kvm_run, mmap_size); 302 if (ret < 0) { 303 goto err; 304 } 305 306 vcpu = g_malloc0(sizeof(*vcpu)); 307 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 308 vcpu->kvm_fd = cpu->kvm_fd; 309 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 310 err: 311 return ret; 312 } 313 314 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 315 { 316 struct KVMParkedVcpu *cpu; 317 318 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 319 if (cpu->vcpu_id == vcpu_id) { 320 int kvm_fd; 321 322 QLIST_REMOVE(cpu, node); 323 kvm_fd = cpu->kvm_fd; 324 g_free(cpu); 325 return kvm_fd; 326 } 327 } 328 329 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 330 } 331 332 int kvm_init_vcpu(CPUState *cpu) 333 { 334 KVMState *s = kvm_state; 335 long mmap_size; 336 int ret; 337 338 DPRINTF("kvm_init_vcpu\n"); 339 340 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 341 if (ret < 0) { 342 DPRINTF("kvm_create_vcpu failed\n"); 343 goto err; 344 } 345 346 cpu->kvm_fd = ret; 347 cpu->kvm_state = s; 348 cpu->vcpu_dirty = true; 349 350 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 351 if (mmap_size < 0) { 352 ret = mmap_size; 353 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 354 goto err; 355 } 356 357 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 358 cpu->kvm_fd, 0); 359 if (cpu->kvm_run == MAP_FAILED) { 360 ret = -errno; 361 DPRINTF("mmap'ing vcpu state failed\n"); 362 goto err; 363 } 364 365 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 366 s->coalesced_mmio_ring = 367 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 368 } 369 370 ret = kvm_arch_init_vcpu(cpu); 371 err: 372 return ret; 373 } 374 375 /* 376 * dirty pages logging control 377 */ 378 379 static int kvm_mem_flags(MemoryRegion *mr) 380 { 381 bool readonly = mr->readonly || memory_region_is_romd(mr); 382 int flags = 0; 383 384 if (memory_region_get_dirty_log_mask(mr) != 0) { 385 flags |= KVM_MEM_LOG_DIRTY_PAGES; 386 } 387 if (readonly && kvm_readonly_mem_allowed) { 388 flags |= KVM_MEM_READONLY; 389 } 390 return flags; 391 } 392 393 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 394 MemoryRegion *mr) 395 { 396 mem->flags = kvm_mem_flags(mr); 397 398 /* If nothing changed effectively, no need to issue ioctl */ 399 if (mem->flags == mem->old_flags) { 400 return 0; 401 } 402 403 return kvm_set_user_memory_region(kml, mem, false); 404 } 405 406 static int kvm_section_update_flags(KVMMemoryListener *kml, 407 MemoryRegionSection *section) 408 { 409 hwaddr start_addr, size; 410 KVMSlot *mem; 411 412 size = kvm_align_section(section, &start_addr); 413 if (!size) { 414 return 0; 415 } 416 417 mem = kvm_lookup_matching_slot(kml, start_addr, size); 418 if (!mem) { 419 /* We don't have a slot if we want to trap every access. */ 420 return 0; 421 } 422 423 return kvm_slot_update_flags(kml, mem, section->mr); 424 } 425 426 static void kvm_log_start(MemoryListener *listener, 427 MemoryRegionSection *section, 428 int old, int new) 429 { 430 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 431 int r; 432 433 if (old != 0) { 434 return; 435 } 436 437 r = kvm_section_update_flags(kml, section); 438 if (r < 0) { 439 abort(); 440 } 441 } 442 443 static void kvm_log_stop(MemoryListener *listener, 444 MemoryRegionSection *section, 445 int old, int new) 446 { 447 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 448 int r; 449 450 if (new != 0) { 451 return; 452 } 453 454 r = kvm_section_update_flags(kml, section); 455 if (r < 0) { 456 abort(); 457 } 458 } 459 460 /* get kvm's dirty pages bitmap and update qemu's */ 461 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 462 unsigned long *bitmap) 463 { 464 ram_addr_t start = section->offset_within_region + 465 memory_region_get_ram_addr(section->mr); 466 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 467 468 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 469 return 0; 470 } 471 472 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 473 474 /** 475 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space 476 * This function updates qemu's dirty bitmap using 477 * memory_region_set_dirty(). This means all bits are set 478 * to dirty. 479 * 480 * @start_add: start of logged region. 481 * @end_addr: end of logged region. 482 */ 483 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 484 MemoryRegionSection *section) 485 { 486 KVMState *s = kvm_state; 487 struct kvm_dirty_log d = {}; 488 KVMSlot *mem; 489 hwaddr start_addr, size; 490 491 size = kvm_align_section(section, &start_addr); 492 if (size) { 493 mem = kvm_lookup_matching_slot(kml, start_addr, size); 494 if (!mem) { 495 /* We don't have a slot if we want to trap every access. */ 496 return 0; 497 } 498 499 /* XXX bad kernel interface alert 500 * For dirty bitmap, kernel allocates array of size aligned to 501 * bits-per-long. But for case when the kernel is 64bits and 502 * the userspace is 32bits, userspace can't align to the same 503 * bits-per-long, since sizeof(long) is different between kernel 504 * and user space. This way, userspace will provide buffer which 505 * may be 4 bytes less than the kernel will use, resulting in 506 * userspace memory corruption (which is not detectable by valgrind 507 * too, in most cases). 508 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 509 * a hope that sizeof(long) won't become >8 any time soon. 510 */ 511 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 512 /*HOST_LONG_BITS*/ 64) / 8; 513 d.dirty_bitmap = g_malloc0(size); 514 515 d.slot = mem->slot | (kml->as_id << 16); 516 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 517 DPRINTF("ioctl failed %d\n", errno); 518 g_free(d.dirty_bitmap); 519 return -1; 520 } 521 522 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 523 g_free(d.dirty_bitmap); 524 } 525 526 return 0; 527 } 528 529 static void kvm_coalesce_mmio_region(MemoryListener *listener, 530 MemoryRegionSection *secion, 531 hwaddr start, hwaddr size) 532 { 533 KVMState *s = kvm_state; 534 535 if (s->coalesced_mmio) { 536 struct kvm_coalesced_mmio_zone zone; 537 538 zone.addr = start; 539 zone.size = size; 540 zone.pad = 0; 541 542 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 543 } 544 } 545 546 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 547 MemoryRegionSection *secion, 548 hwaddr start, hwaddr size) 549 { 550 KVMState *s = kvm_state; 551 552 if (s->coalesced_mmio) { 553 struct kvm_coalesced_mmio_zone zone; 554 555 zone.addr = start; 556 zone.size = size; 557 zone.pad = 0; 558 559 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 560 } 561 } 562 563 static void kvm_coalesce_pio_add(MemoryListener *listener, 564 MemoryRegionSection *section, 565 hwaddr start, hwaddr size) 566 { 567 KVMState *s = kvm_state; 568 569 if (s->coalesced_pio) { 570 struct kvm_coalesced_mmio_zone zone; 571 572 zone.addr = start; 573 zone.size = size; 574 zone.pio = 1; 575 576 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 577 } 578 } 579 580 static void kvm_coalesce_pio_del(MemoryListener *listener, 581 MemoryRegionSection *section, 582 hwaddr start, hwaddr size) 583 { 584 KVMState *s = kvm_state; 585 586 if (s->coalesced_pio) { 587 struct kvm_coalesced_mmio_zone zone; 588 589 zone.addr = start; 590 zone.size = size; 591 zone.pio = 1; 592 593 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 594 } 595 } 596 597 static MemoryListener kvm_coalesced_pio_listener = { 598 .coalesced_io_add = kvm_coalesce_pio_add, 599 .coalesced_io_del = kvm_coalesce_pio_del, 600 }; 601 602 int kvm_check_extension(KVMState *s, unsigned int extension) 603 { 604 int ret; 605 606 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 607 if (ret < 0) { 608 ret = 0; 609 } 610 611 return ret; 612 } 613 614 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 615 { 616 int ret; 617 618 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 619 if (ret < 0) { 620 /* VM wide version not implemented, use global one instead */ 621 ret = kvm_check_extension(s, extension); 622 } 623 624 return ret; 625 } 626 627 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 628 { 629 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 630 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 631 * endianness, but the memory core hands them in target endianness. 632 * For example, PPC is always treated as big-endian even if running 633 * on KVM and on PPC64LE. Correct here. 634 */ 635 switch (size) { 636 case 2: 637 val = bswap16(val); 638 break; 639 case 4: 640 val = bswap32(val); 641 break; 642 } 643 #endif 644 return val; 645 } 646 647 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 648 bool assign, uint32_t size, bool datamatch) 649 { 650 int ret; 651 struct kvm_ioeventfd iofd = { 652 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 653 .addr = addr, 654 .len = size, 655 .flags = 0, 656 .fd = fd, 657 }; 658 659 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 660 datamatch); 661 if (!kvm_enabled()) { 662 return -ENOSYS; 663 } 664 665 if (datamatch) { 666 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 667 } 668 if (!assign) { 669 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 670 } 671 672 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 673 674 if (ret < 0) { 675 return -errno; 676 } 677 678 return 0; 679 } 680 681 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 682 bool assign, uint32_t size, bool datamatch) 683 { 684 struct kvm_ioeventfd kick = { 685 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 686 .addr = addr, 687 .flags = KVM_IOEVENTFD_FLAG_PIO, 688 .len = size, 689 .fd = fd, 690 }; 691 int r; 692 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 693 if (!kvm_enabled()) { 694 return -ENOSYS; 695 } 696 if (datamatch) { 697 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 698 } 699 if (!assign) { 700 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 701 } 702 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 703 if (r < 0) { 704 return r; 705 } 706 return 0; 707 } 708 709 710 static int kvm_check_many_ioeventfds(void) 711 { 712 /* Userspace can use ioeventfd for io notification. This requires a host 713 * that supports eventfd(2) and an I/O thread; since eventfd does not 714 * support SIGIO it cannot interrupt the vcpu. 715 * 716 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 717 * can avoid creating too many ioeventfds. 718 */ 719 #if defined(CONFIG_EVENTFD) 720 int ioeventfds[7]; 721 int i, ret = 0; 722 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 723 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 724 if (ioeventfds[i] < 0) { 725 break; 726 } 727 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 728 if (ret < 0) { 729 close(ioeventfds[i]); 730 break; 731 } 732 } 733 734 /* Decide whether many devices are supported or not */ 735 ret = i == ARRAY_SIZE(ioeventfds); 736 737 while (i-- > 0) { 738 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 739 close(ioeventfds[i]); 740 } 741 return ret; 742 #else 743 return 0; 744 #endif 745 } 746 747 static const KVMCapabilityInfo * 748 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 749 { 750 while (list->name) { 751 if (!kvm_check_extension(s, list->value)) { 752 return list; 753 } 754 list++; 755 } 756 return NULL; 757 } 758 759 static void kvm_set_phys_mem(KVMMemoryListener *kml, 760 MemoryRegionSection *section, bool add) 761 { 762 KVMSlot *mem; 763 int err; 764 MemoryRegion *mr = section->mr; 765 bool writeable = !mr->readonly && !mr->rom_device; 766 hwaddr start_addr, size; 767 void *ram; 768 769 if (!memory_region_is_ram(mr)) { 770 if (writeable || !kvm_readonly_mem_allowed) { 771 return; 772 } else if (!mr->romd_mode) { 773 /* If the memory device is not in romd_mode, then we actually want 774 * to remove the kvm memory slot so all accesses will trap. */ 775 add = false; 776 } 777 } 778 779 size = kvm_align_section(section, &start_addr); 780 if (!size) { 781 return; 782 } 783 784 /* use aligned delta to align the ram address */ 785 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 786 (start_addr - section->offset_within_address_space); 787 788 if (!add) { 789 mem = kvm_lookup_matching_slot(kml, start_addr, size); 790 if (!mem) { 791 return; 792 } 793 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 794 kvm_physical_sync_dirty_bitmap(kml, section); 795 } 796 797 /* unregister the slot */ 798 mem->memory_size = 0; 799 mem->flags = 0; 800 err = kvm_set_user_memory_region(kml, mem, false); 801 if (err) { 802 fprintf(stderr, "%s: error unregistering slot: %s\n", 803 __func__, strerror(-err)); 804 abort(); 805 } 806 return; 807 } 808 809 /* register the new slot */ 810 mem = kvm_alloc_slot(kml); 811 mem->memory_size = size; 812 mem->start_addr = start_addr; 813 mem->ram = ram; 814 mem->flags = kvm_mem_flags(mr); 815 816 err = kvm_set_user_memory_region(kml, mem, true); 817 if (err) { 818 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 819 strerror(-err)); 820 abort(); 821 } 822 } 823 824 static void kvm_region_add(MemoryListener *listener, 825 MemoryRegionSection *section) 826 { 827 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 828 829 memory_region_ref(section->mr); 830 kvm_set_phys_mem(kml, section, true); 831 } 832 833 static void kvm_region_del(MemoryListener *listener, 834 MemoryRegionSection *section) 835 { 836 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 837 838 kvm_set_phys_mem(kml, section, false); 839 memory_region_unref(section->mr); 840 } 841 842 static void kvm_log_sync(MemoryListener *listener, 843 MemoryRegionSection *section) 844 { 845 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 846 int r; 847 848 r = kvm_physical_sync_dirty_bitmap(kml, section); 849 if (r < 0) { 850 abort(); 851 } 852 } 853 854 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 855 MemoryRegionSection *section, 856 bool match_data, uint64_t data, 857 EventNotifier *e) 858 { 859 int fd = event_notifier_get_fd(e); 860 int r; 861 862 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 863 data, true, int128_get64(section->size), 864 match_data); 865 if (r < 0) { 866 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 867 __func__, strerror(-r)); 868 abort(); 869 } 870 } 871 872 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 873 MemoryRegionSection *section, 874 bool match_data, uint64_t data, 875 EventNotifier *e) 876 { 877 int fd = event_notifier_get_fd(e); 878 int r; 879 880 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 881 data, false, int128_get64(section->size), 882 match_data); 883 if (r < 0) { 884 abort(); 885 } 886 } 887 888 static void kvm_io_ioeventfd_add(MemoryListener *listener, 889 MemoryRegionSection *section, 890 bool match_data, uint64_t data, 891 EventNotifier *e) 892 { 893 int fd = event_notifier_get_fd(e); 894 int r; 895 896 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 897 data, true, int128_get64(section->size), 898 match_data); 899 if (r < 0) { 900 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 901 __func__, strerror(-r)); 902 abort(); 903 } 904 } 905 906 static void kvm_io_ioeventfd_del(MemoryListener *listener, 907 MemoryRegionSection *section, 908 bool match_data, uint64_t data, 909 EventNotifier *e) 910 911 { 912 int fd = event_notifier_get_fd(e); 913 int r; 914 915 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 916 data, false, int128_get64(section->size), 917 match_data); 918 if (r < 0) { 919 abort(); 920 } 921 } 922 923 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 924 AddressSpace *as, int as_id) 925 { 926 int i; 927 928 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 929 kml->as_id = as_id; 930 931 for (i = 0; i < s->nr_slots; i++) { 932 kml->slots[i].slot = i; 933 } 934 935 kml->listener.region_add = kvm_region_add; 936 kml->listener.region_del = kvm_region_del; 937 kml->listener.log_start = kvm_log_start; 938 kml->listener.log_stop = kvm_log_stop; 939 kml->listener.log_sync = kvm_log_sync; 940 kml->listener.priority = 10; 941 942 memory_listener_register(&kml->listener, as); 943 } 944 945 static MemoryListener kvm_io_listener = { 946 .eventfd_add = kvm_io_ioeventfd_add, 947 .eventfd_del = kvm_io_ioeventfd_del, 948 .priority = 10, 949 }; 950 951 int kvm_set_irq(KVMState *s, int irq, int level) 952 { 953 struct kvm_irq_level event; 954 int ret; 955 956 assert(kvm_async_interrupts_enabled()); 957 958 event.level = level; 959 event.irq = irq; 960 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 961 if (ret < 0) { 962 perror("kvm_set_irq"); 963 abort(); 964 } 965 966 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 967 } 968 969 #ifdef KVM_CAP_IRQ_ROUTING 970 typedef struct KVMMSIRoute { 971 struct kvm_irq_routing_entry kroute; 972 QTAILQ_ENTRY(KVMMSIRoute) entry; 973 } KVMMSIRoute; 974 975 static void set_gsi(KVMState *s, unsigned int gsi) 976 { 977 set_bit(gsi, s->used_gsi_bitmap); 978 } 979 980 static void clear_gsi(KVMState *s, unsigned int gsi) 981 { 982 clear_bit(gsi, s->used_gsi_bitmap); 983 } 984 985 void kvm_init_irq_routing(KVMState *s) 986 { 987 int gsi_count, i; 988 989 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 990 if (gsi_count > 0) { 991 /* Round up so we can search ints using ffs */ 992 s->used_gsi_bitmap = bitmap_new(gsi_count); 993 s->gsi_count = gsi_count; 994 } 995 996 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 997 s->nr_allocated_irq_routes = 0; 998 999 if (!kvm_direct_msi_allowed) { 1000 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1001 QTAILQ_INIT(&s->msi_hashtab[i]); 1002 } 1003 } 1004 1005 kvm_arch_init_irq_routing(s); 1006 } 1007 1008 void kvm_irqchip_commit_routes(KVMState *s) 1009 { 1010 int ret; 1011 1012 if (kvm_gsi_direct_mapping()) { 1013 return; 1014 } 1015 1016 if (!kvm_gsi_routing_enabled()) { 1017 return; 1018 } 1019 1020 s->irq_routes->flags = 0; 1021 trace_kvm_irqchip_commit_routes(); 1022 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1023 assert(ret == 0); 1024 } 1025 1026 static void kvm_add_routing_entry(KVMState *s, 1027 struct kvm_irq_routing_entry *entry) 1028 { 1029 struct kvm_irq_routing_entry *new; 1030 int n, size; 1031 1032 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1033 n = s->nr_allocated_irq_routes * 2; 1034 if (n < 64) { 1035 n = 64; 1036 } 1037 size = sizeof(struct kvm_irq_routing); 1038 size += n * sizeof(*new); 1039 s->irq_routes = g_realloc(s->irq_routes, size); 1040 s->nr_allocated_irq_routes = n; 1041 } 1042 n = s->irq_routes->nr++; 1043 new = &s->irq_routes->entries[n]; 1044 1045 *new = *entry; 1046 1047 set_gsi(s, entry->gsi); 1048 } 1049 1050 static int kvm_update_routing_entry(KVMState *s, 1051 struct kvm_irq_routing_entry *new_entry) 1052 { 1053 struct kvm_irq_routing_entry *entry; 1054 int n; 1055 1056 for (n = 0; n < s->irq_routes->nr; n++) { 1057 entry = &s->irq_routes->entries[n]; 1058 if (entry->gsi != new_entry->gsi) { 1059 continue; 1060 } 1061 1062 if(!memcmp(entry, new_entry, sizeof *entry)) { 1063 return 0; 1064 } 1065 1066 *entry = *new_entry; 1067 1068 return 0; 1069 } 1070 1071 return -ESRCH; 1072 } 1073 1074 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1075 { 1076 struct kvm_irq_routing_entry e = {}; 1077 1078 assert(pin < s->gsi_count); 1079 1080 e.gsi = irq; 1081 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1082 e.flags = 0; 1083 e.u.irqchip.irqchip = irqchip; 1084 e.u.irqchip.pin = pin; 1085 kvm_add_routing_entry(s, &e); 1086 } 1087 1088 void kvm_irqchip_release_virq(KVMState *s, int virq) 1089 { 1090 struct kvm_irq_routing_entry *e; 1091 int i; 1092 1093 if (kvm_gsi_direct_mapping()) { 1094 return; 1095 } 1096 1097 for (i = 0; i < s->irq_routes->nr; i++) { 1098 e = &s->irq_routes->entries[i]; 1099 if (e->gsi == virq) { 1100 s->irq_routes->nr--; 1101 *e = s->irq_routes->entries[s->irq_routes->nr]; 1102 } 1103 } 1104 clear_gsi(s, virq); 1105 kvm_arch_release_virq_post(virq); 1106 trace_kvm_irqchip_release_virq(virq); 1107 } 1108 1109 static unsigned int kvm_hash_msi(uint32_t data) 1110 { 1111 /* This is optimized for IA32 MSI layout. However, no other arch shall 1112 * repeat the mistake of not providing a direct MSI injection API. */ 1113 return data & 0xff; 1114 } 1115 1116 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1117 { 1118 KVMMSIRoute *route, *next; 1119 unsigned int hash; 1120 1121 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1122 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1123 kvm_irqchip_release_virq(s, route->kroute.gsi); 1124 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1125 g_free(route); 1126 } 1127 } 1128 } 1129 1130 static int kvm_irqchip_get_virq(KVMState *s) 1131 { 1132 int next_virq; 1133 1134 /* 1135 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1136 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1137 * number can succeed even though a new route entry cannot be added. 1138 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1139 */ 1140 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1141 kvm_flush_dynamic_msi_routes(s); 1142 } 1143 1144 /* Return the lowest unused GSI in the bitmap */ 1145 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1146 if (next_virq >= s->gsi_count) { 1147 return -ENOSPC; 1148 } else { 1149 return next_virq; 1150 } 1151 } 1152 1153 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1154 { 1155 unsigned int hash = kvm_hash_msi(msg.data); 1156 KVMMSIRoute *route; 1157 1158 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1159 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1160 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1161 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1162 return route; 1163 } 1164 } 1165 return NULL; 1166 } 1167 1168 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1169 { 1170 struct kvm_msi msi; 1171 KVMMSIRoute *route; 1172 1173 if (kvm_direct_msi_allowed) { 1174 msi.address_lo = (uint32_t)msg.address; 1175 msi.address_hi = msg.address >> 32; 1176 msi.data = le32_to_cpu(msg.data); 1177 msi.flags = 0; 1178 memset(msi.pad, 0, sizeof(msi.pad)); 1179 1180 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1181 } 1182 1183 route = kvm_lookup_msi_route(s, msg); 1184 if (!route) { 1185 int virq; 1186 1187 virq = kvm_irqchip_get_virq(s); 1188 if (virq < 0) { 1189 return virq; 1190 } 1191 1192 route = g_malloc0(sizeof(KVMMSIRoute)); 1193 route->kroute.gsi = virq; 1194 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1195 route->kroute.flags = 0; 1196 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1197 route->kroute.u.msi.address_hi = msg.address >> 32; 1198 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1199 1200 kvm_add_routing_entry(s, &route->kroute); 1201 kvm_irqchip_commit_routes(s); 1202 1203 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1204 entry); 1205 } 1206 1207 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1208 1209 return kvm_set_irq(s, route->kroute.gsi, 1); 1210 } 1211 1212 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1213 { 1214 struct kvm_irq_routing_entry kroute = {}; 1215 int virq; 1216 MSIMessage msg = {0, 0}; 1217 1218 if (pci_available && dev) { 1219 msg = pci_get_msi_message(dev, vector); 1220 } 1221 1222 if (kvm_gsi_direct_mapping()) { 1223 return kvm_arch_msi_data_to_gsi(msg.data); 1224 } 1225 1226 if (!kvm_gsi_routing_enabled()) { 1227 return -ENOSYS; 1228 } 1229 1230 virq = kvm_irqchip_get_virq(s); 1231 if (virq < 0) { 1232 return virq; 1233 } 1234 1235 kroute.gsi = virq; 1236 kroute.type = KVM_IRQ_ROUTING_MSI; 1237 kroute.flags = 0; 1238 kroute.u.msi.address_lo = (uint32_t)msg.address; 1239 kroute.u.msi.address_hi = msg.address >> 32; 1240 kroute.u.msi.data = le32_to_cpu(msg.data); 1241 if (pci_available && kvm_msi_devid_required()) { 1242 kroute.flags = KVM_MSI_VALID_DEVID; 1243 kroute.u.msi.devid = pci_requester_id(dev); 1244 } 1245 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1246 kvm_irqchip_release_virq(s, virq); 1247 return -EINVAL; 1248 } 1249 1250 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1251 vector, virq); 1252 1253 kvm_add_routing_entry(s, &kroute); 1254 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1255 kvm_irqchip_commit_routes(s); 1256 1257 return virq; 1258 } 1259 1260 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1261 PCIDevice *dev) 1262 { 1263 struct kvm_irq_routing_entry kroute = {}; 1264 1265 if (kvm_gsi_direct_mapping()) { 1266 return 0; 1267 } 1268 1269 if (!kvm_irqchip_in_kernel()) { 1270 return -ENOSYS; 1271 } 1272 1273 kroute.gsi = virq; 1274 kroute.type = KVM_IRQ_ROUTING_MSI; 1275 kroute.flags = 0; 1276 kroute.u.msi.address_lo = (uint32_t)msg.address; 1277 kroute.u.msi.address_hi = msg.address >> 32; 1278 kroute.u.msi.data = le32_to_cpu(msg.data); 1279 if (pci_available && kvm_msi_devid_required()) { 1280 kroute.flags = KVM_MSI_VALID_DEVID; 1281 kroute.u.msi.devid = pci_requester_id(dev); 1282 } 1283 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1284 return -EINVAL; 1285 } 1286 1287 trace_kvm_irqchip_update_msi_route(virq); 1288 1289 return kvm_update_routing_entry(s, &kroute); 1290 } 1291 1292 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1293 bool assign) 1294 { 1295 struct kvm_irqfd irqfd = { 1296 .fd = fd, 1297 .gsi = virq, 1298 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1299 }; 1300 1301 if (rfd != -1) { 1302 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1303 irqfd.resamplefd = rfd; 1304 } 1305 1306 if (!kvm_irqfds_enabled()) { 1307 return -ENOSYS; 1308 } 1309 1310 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1311 } 1312 1313 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1314 { 1315 struct kvm_irq_routing_entry kroute = {}; 1316 int virq; 1317 1318 if (!kvm_gsi_routing_enabled()) { 1319 return -ENOSYS; 1320 } 1321 1322 virq = kvm_irqchip_get_virq(s); 1323 if (virq < 0) { 1324 return virq; 1325 } 1326 1327 kroute.gsi = virq; 1328 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1329 kroute.flags = 0; 1330 kroute.u.adapter.summary_addr = adapter->summary_addr; 1331 kroute.u.adapter.ind_addr = adapter->ind_addr; 1332 kroute.u.adapter.summary_offset = adapter->summary_offset; 1333 kroute.u.adapter.ind_offset = adapter->ind_offset; 1334 kroute.u.adapter.adapter_id = adapter->adapter_id; 1335 1336 kvm_add_routing_entry(s, &kroute); 1337 1338 return virq; 1339 } 1340 1341 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1342 { 1343 struct kvm_irq_routing_entry kroute = {}; 1344 int virq; 1345 1346 if (!kvm_gsi_routing_enabled()) { 1347 return -ENOSYS; 1348 } 1349 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1350 return -ENOSYS; 1351 } 1352 virq = kvm_irqchip_get_virq(s); 1353 if (virq < 0) { 1354 return virq; 1355 } 1356 1357 kroute.gsi = virq; 1358 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1359 kroute.flags = 0; 1360 kroute.u.hv_sint.vcpu = vcpu; 1361 kroute.u.hv_sint.sint = sint; 1362 1363 kvm_add_routing_entry(s, &kroute); 1364 kvm_irqchip_commit_routes(s); 1365 1366 return virq; 1367 } 1368 1369 #else /* !KVM_CAP_IRQ_ROUTING */ 1370 1371 void kvm_init_irq_routing(KVMState *s) 1372 { 1373 } 1374 1375 void kvm_irqchip_release_virq(KVMState *s, int virq) 1376 { 1377 } 1378 1379 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1380 { 1381 abort(); 1382 } 1383 1384 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1385 { 1386 return -ENOSYS; 1387 } 1388 1389 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1390 { 1391 return -ENOSYS; 1392 } 1393 1394 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1395 { 1396 return -ENOSYS; 1397 } 1398 1399 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1400 { 1401 abort(); 1402 } 1403 1404 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1405 { 1406 return -ENOSYS; 1407 } 1408 #endif /* !KVM_CAP_IRQ_ROUTING */ 1409 1410 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1411 EventNotifier *rn, int virq) 1412 { 1413 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1414 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1415 } 1416 1417 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1418 int virq) 1419 { 1420 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1421 false); 1422 } 1423 1424 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1425 EventNotifier *rn, qemu_irq irq) 1426 { 1427 gpointer key, gsi; 1428 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1429 1430 if (!found) { 1431 return -ENXIO; 1432 } 1433 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1434 } 1435 1436 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1437 qemu_irq irq) 1438 { 1439 gpointer key, gsi; 1440 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1441 1442 if (!found) { 1443 return -ENXIO; 1444 } 1445 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1446 } 1447 1448 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1449 { 1450 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1451 } 1452 1453 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1454 { 1455 int ret; 1456 1457 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1458 ; 1459 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1460 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1461 if (ret < 0) { 1462 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1463 exit(1); 1464 } 1465 } else { 1466 return; 1467 } 1468 1469 /* First probe and see if there's a arch-specific hook to create the 1470 * in-kernel irqchip for us */ 1471 ret = kvm_arch_irqchip_create(machine, s); 1472 if (ret == 0) { 1473 if (machine_kernel_irqchip_split(machine)) { 1474 perror("Split IRQ chip mode not supported."); 1475 exit(1); 1476 } else { 1477 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1478 } 1479 } 1480 if (ret < 0) { 1481 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1482 exit(1); 1483 } 1484 1485 kvm_kernel_irqchip = true; 1486 /* If we have an in-kernel IRQ chip then we must have asynchronous 1487 * interrupt delivery (though the reverse is not necessarily true) 1488 */ 1489 kvm_async_interrupts_allowed = true; 1490 kvm_halt_in_kernel_allowed = true; 1491 1492 kvm_init_irq_routing(s); 1493 1494 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1495 } 1496 1497 /* Find number of supported CPUs using the recommended 1498 * procedure from the kernel API documentation to cope with 1499 * older kernels that may be missing capabilities. 1500 */ 1501 static int kvm_recommended_vcpus(KVMState *s) 1502 { 1503 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1504 return (ret) ? ret : 4; 1505 } 1506 1507 static int kvm_max_vcpus(KVMState *s) 1508 { 1509 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1510 return (ret) ? ret : kvm_recommended_vcpus(s); 1511 } 1512 1513 static int kvm_max_vcpu_id(KVMState *s) 1514 { 1515 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1516 return (ret) ? ret : kvm_max_vcpus(s); 1517 } 1518 1519 bool kvm_vcpu_id_is_valid(int vcpu_id) 1520 { 1521 KVMState *s = KVM_STATE(current_machine->accelerator); 1522 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1523 } 1524 1525 static int kvm_init(MachineState *ms) 1526 { 1527 MachineClass *mc = MACHINE_GET_CLASS(ms); 1528 static const char upgrade_note[] = 1529 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1530 "(see http://sourceforge.net/projects/kvm).\n"; 1531 struct { 1532 const char *name; 1533 int num; 1534 } num_cpus[] = { 1535 { "SMP", smp_cpus }, 1536 { "hotpluggable", max_cpus }, 1537 { NULL, } 1538 }, *nc = num_cpus; 1539 int soft_vcpus_limit, hard_vcpus_limit; 1540 KVMState *s; 1541 const KVMCapabilityInfo *missing_cap; 1542 int ret; 1543 int type = 0; 1544 const char *kvm_type; 1545 1546 s = KVM_STATE(ms->accelerator); 1547 1548 /* 1549 * On systems where the kernel can support different base page 1550 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1551 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1552 * page size for the system though. 1553 */ 1554 assert(TARGET_PAGE_SIZE <= getpagesize()); 1555 1556 s->sigmask_len = 8; 1557 1558 #ifdef KVM_CAP_SET_GUEST_DEBUG 1559 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1560 #endif 1561 QLIST_INIT(&s->kvm_parked_vcpus); 1562 s->vmfd = -1; 1563 s->fd = qemu_open("/dev/kvm", O_RDWR); 1564 if (s->fd == -1) { 1565 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1566 ret = -errno; 1567 goto err; 1568 } 1569 1570 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1571 if (ret < KVM_API_VERSION) { 1572 if (ret >= 0) { 1573 ret = -EINVAL; 1574 } 1575 fprintf(stderr, "kvm version too old\n"); 1576 goto err; 1577 } 1578 1579 if (ret > KVM_API_VERSION) { 1580 ret = -EINVAL; 1581 fprintf(stderr, "kvm version not supported\n"); 1582 goto err; 1583 } 1584 1585 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1586 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1587 1588 /* If unspecified, use the default value */ 1589 if (!s->nr_slots) { 1590 s->nr_slots = 32; 1591 } 1592 1593 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1594 if (mc->kvm_type) { 1595 type = mc->kvm_type(ms, kvm_type); 1596 } else if (kvm_type) { 1597 ret = -EINVAL; 1598 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1599 goto err; 1600 } 1601 1602 do { 1603 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1604 } while (ret == -EINTR); 1605 1606 if (ret < 0) { 1607 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1608 strerror(-ret)); 1609 1610 #ifdef TARGET_S390X 1611 if (ret == -EINVAL) { 1612 fprintf(stderr, 1613 "Host kernel setup problem detected. Please verify:\n"); 1614 fprintf(stderr, "- for kernels supporting the switch_amode or" 1615 " user_mode parameters, whether\n"); 1616 fprintf(stderr, 1617 " user space is running in primary address space\n"); 1618 fprintf(stderr, 1619 "- for kernels supporting the vm.allocate_pgste sysctl, " 1620 "whether it is enabled\n"); 1621 } 1622 #endif 1623 goto err; 1624 } 1625 1626 s->vmfd = ret; 1627 1628 /* check the vcpu limits */ 1629 soft_vcpus_limit = kvm_recommended_vcpus(s); 1630 hard_vcpus_limit = kvm_max_vcpus(s); 1631 1632 while (nc->name) { 1633 if (nc->num > soft_vcpus_limit) { 1634 warn_report("Number of %s cpus requested (%d) exceeds " 1635 "the recommended cpus supported by KVM (%d)", 1636 nc->name, nc->num, soft_vcpus_limit); 1637 1638 if (nc->num > hard_vcpus_limit) { 1639 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1640 "the maximum cpus supported by KVM (%d)\n", 1641 nc->name, nc->num, hard_vcpus_limit); 1642 exit(1); 1643 } 1644 } 1645 nc++; 1646 } 1647 1648 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1649 if (!missing_cap) { 1650 missing_cap = 1651 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1652 } 1653 if (missing_cap) { 1654 ret = -EINVAL; 1655 fprintf(stderr, "kvm does not support %s\n%s", 1656 missing_cap->name, upgrade_note); 1657 goto err; 1658 } 1659 1660 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1661 s->coalesced_pio = s->coalesced_mmio && 1662 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1663 1664 #ifdef KVM_CAP_VCPU_EVENTS 1665 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1666 #endif 1667 1668 s->robust_singlestep = 1669 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1670 1671 #ifdef KVM_CAP_DEBUGREGS 1672 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1673 #endif 1674 1675 #ifdef KVM_CAP_IRQ_ROUTING 1676 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1677 #endif 1678 1679 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1680 1681 s->irq_set_ioctl = KVM_IRQ_LINE; 1682 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1683 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1684 } 1685 1686 kvm_readonly_mem_allowed = 1687 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1688 1689 kvm_eventfds_allowed = 1690 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1691 1692 kvm_irqfds_allowed = 1693 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1694 1695 kvm_resamplefds_allowed = 1696 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1697 1698 kvm_vm_attributes_allowed = 1699 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1700 1701 kvm_ioeventfd_any_length_allowed = 1702 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1703 1704 kvm_state = s; 1705 1706 /* 1707 * if memory encryption object is specified then initialize the memory 1708 * encryption context. 1709 */ 1710 if (ms->memory_encryption) { 1711 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 1712 if (!kvm_state->memcrypt_handle) { 1713 ret = -1; 1714 goto err; 1715 } 1716 1717 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 1718 } 1719 1720 ret = kvm_arch_init(ms, s); 1721 if (ret < 0) { 1722 goto err; 1723 } 1724 1725 if (machine_kernel_irqchip_allowed(ms)) { 1726 kvm_irqchip_create(ms, s); 1727 } 1728 1729 if (kvm_eventfds_allowed) { 1730 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1731 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1732 } 1733 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 1734 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 1735 1736 kvm_memory_listener_register(s, &s->memory_listener, 1737 &address_space_memory, 0); 1738 memory_listener_register(&kvm_io_listener, 1739 &address_space_io); 1740 memory_listener_register(&kvm_coalesced_pio_listener, 1741 &address_space_io); 1742 1743 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1744 1745 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 1746 if (!s->sync_mmu) { 1747 qemu_balloon_inhibit(true); 1748 } 1749 1750 return 0; 1751 1752 err: 1753 assert(ret < 0); 1754 if (s->vmfd >= 0) { 1755 close(s->vmfd); 1756 } 1757 if (s->fd != -1) { 1758 close(s->fd); 1759 } 1760 g_free(s->memory_listener.slots); 1761 1762 return ret; 1763 } 1764 1765 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1766 { 1767 s->sigmask_len = sigmask_len; 1768 } 1769 1770 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1771 int size, uint32_t count) 1772 { 1773 int i; 1774 uint8_t *ptr = data; 1775 1776 for (i = 0; i < count; i++) { 1777 address_space_rw(&address_space_io, port, attrs, 1778 ptr, size, 1779 direction == KVM_EXIT_IO_OUT); 1780 ptr += size; 1781 } 1782 } 1783 1784 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1785 { 1786 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1787 run->internal.suberror); 1788 1789 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1790 int i; 1791 1792 for (i = 0; i < run->internal.ndata; ++i) { 1793 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1794 i, (uint64_t)run->internal.data[i]); 1795 } 1796 } 1797 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1798 fprintf(stderr, "emulation failure\n"); 1799 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1800 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 1801 return EXCP_INTERRUPT; 1802 } 1803 } 1804 /* FIXME: Should trigger a qmp message to let management know 1805 * something went wrong. 1806 */ 1807 return -1; 1808 } 1809 1810 void kvm_flush_coalesced_mmio_buffer(void) 1811 { 1812 KVMState *s = kvm_state; 1813 1814 if (s->coalesced_flush_in_progress) { 1815 return; 1816 } 1817 1818 s->coalesced_flush_in_progress = true; 1819 1820 if (s->coalesced_mmio_ring) { 1821 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1822 while (ring->first != ring->last) { 1823 struct kvm_coalesced_mmio *ent; 1824 1825 ent = &ring->coalesced_mmio[ring->first]; 1826 1827 if (ent->pio == 1) { 1828 address_space_rw(&address_space_io, ent->phys_addr, 1829 MEMTXATTRS_UNSPECIFIED, ent->data, 1830 ent->len, true); 1831 } else { 1832 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1833 } 1834 smp_wmb(); 1835 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1836 } 1837 } 1838 1839 s->coalesced_flush_in_progress = false; 1840 } 1841 1842 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1843 { 1844 if (!cpu->vcpu_dirty) { 1845 kvm_arch_get_registers(cpu); 1846 cpu->vcpu_dirty = true; 1847 } 1848 } 1849 1850 void kvm_cpu_synchronize_state(CPUState *cpu) 1851 { 1852 if (!cpu->vcpu_dirty) { 1853 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1854 } 1855 } 1856 1857 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1858 { 1859 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1860 cpu->vcpu_dirty = false; 1861 } 1862 1863 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1864 { 1865 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1866 } 1867 1868 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1869 { 1870 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1871 cpu->vcpu_dirty = false; 1872 } 1873 1874 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1875 { 1876 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1877 } 1878 1879 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1880 { 1881 cpu->vcpu_dirty = true; 1882 } 1883 1884 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1885 { 1886 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1887 } 1888 1889 #ifdef KVM_HAVE_MCE_INJECTION 1890 static __thread void *pending_sigbus_addr; 1891 static __thread int pending_sigbus_code; 1892 static __thread bool have_sigbus_pending; 1893 #endif 1894 1895 static void kvm_cpu_kick(CPUState *cpu) 1896 { 1897 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1898 } 1899 1900 static void kvm_cpu_kick_self(void) 1901 { 1902 if (kvm_immediate_exit) { 1903 kvm_cpu_kick(current_cpu); 1904 } else { 1905 qemu_cpu_kick_self(); 1906 } 1907 } 1908 1909 static void kvm_eat_signals(CPUState *cpu) 1910 { 1911 struct timespec ts = { 0, 0 }; 1912 siginfo_t siginfo; 1913 sigset_t waitset; 1914 sigset_t chkset; 1915 int r; 1916 1917 if (kvm_immediate_exit) { 1918 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1919 /* Write kvm_run->immediate_exit before the cpu->exit_request 1920 * write in kvm_cpu_exec. 1921 */ 1922 smp_wmb(); 1923 return; 1924 } 1925 1926 sigemptyset(&waitset); 1927 sigaddset(&waitset, SIG_IPI); 1928 1929 do { 1930 r = sigtimedwait(&waitset, &siginfo, &ts); 1931 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1932 perror("sigtimedwait"); 1933 exit(1); 1934 } 1935 1936 r = sigpending(&chkset); 1937 if (r == -1) { 1938 perror("sigpending"); 1939 exit(1); 1940 } 1941 } while (sigismember(&chkset, SIG_IPI)); 1942 } 1943 1944 int kvm_cpu_exec(CPUState *cpu) 1945 { 1946 struct kvm_run *run = cpu->kvm_run; 1947 int ret, run_ret; 1948 1949 DPRINTF("kvm_cpu_exec()\n"); 1950 1951 if (kvm_arch_process_async_events(cpu)) { 1952 atomic_set(&cpu->exit_request, 0); 1953 return EXCP_HLT; 1954 } 1955 1956 qemu_mutex_unlock_iothread(); 1957 cpu_exec_start(cpu); 1958 1959 do { 1960 MemTxAttrs attrs; 1961 1962 if (cpu->vcpu_dirty) { 1963 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 1964 cpu->vcpu_dirty = false; 1965 } 1966 1967 kvm_arch_pre_run(cpu, run); 1968 if (atomic_read(&cpu->exit_request)) { 1969 DPRINTF("interrupt exit requested\n"); 1970 /* 1971 * KVM requires us to reenter the kernel after IO exits to complete 1972 * instruction emulation. This self-signal will ensure that we 1973 * leave ASAP again. 1974 */ 1975 kvm_cpu_kick_self(); 1976 } 1977 1978 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 1979 * Matching barrier in kvm_eat_signals. 1980 */ 1981 smp_rmb(); 1982 1983 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 1984 1985 attrs = kvm_arch_post_run(cpu, run); 1986 1987 #ifdef KVM_HAVE_MCE_INJECTION 1988 if (unlikely(have_sigbus_pending)) { 1989 qemu_mutex_lock_iothread(); 1990 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 1991 pending_sigbus_addr); 1992 have_sigbus_pending = false; 1993 qemu_mutex_unlock_iothread(); 1994 } 1995 #endif 1996 1997 if (run_ret < 0) { 1998 if (run_ret == -EINTR || run_ret == -EAGAIN) { 1999 DPRINTF("io window exit\n"); 2000 kvm_eat_signals(cpu); 2001 ret = EXCP_INTERRUPT; 2002 break; 2003 } 2004 fprintf(stderr, "error: kvm run failed %s\n", 2005 strerror(-run_ret)); 2006 #ifdef TARGET_PPC 2007 if (run_ret == -EBUSY) { 2008 fprintf(stderr, 2009 "This is probably because your SMT is enabled.\n" 2010 "VCPU can only run on primary threads with all " 2011 "secondary threads offline.\n"); 2012 } 2013 #endif 2014 ret = -1; 2015 break; 2016 } 2017 2018 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2019 switch (run->exit_reason) { 2020 case KVM_EXIT_IO: 2021 DPRINTF("handle_io\n"); 2022 /* Called outside BQL */ 2023 kvm_handle_io(run->io.port, attrs, 2024 (uint8_t *)run + run->io.data_offset, 2025 run->io.direction, 2026 run->io.size, 2027 run->io.count); 2028 ret = 0; 2029 break; 2030 case KVM_EXIT_MMIO: 2031 DPRINTF("handle_mmio\n"); 2032 /* Called outside BQL */ 2033 address_space_rw(&address_space_memory, 2034 run->mmio.phys_addr, attrs, 2035 run->mmio.data, 2036 run->mmio.len, 2037 run->mmio.is_write); 2038 ret = 0; 2039 break; 2040 case KVM_EXIT_IRQ_WINDOW_OPEN: 2041 DPRINTF("irq_window_open\n"); 2042 ret = EXCP_INTERRUPT; 2043 break; 2044 case KVM_EXIT_SHUTDOWN: 2045 DPRINTF("shutdown\n"); 2046 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2047 ret = EXCP_INTERRUPT; 2048 break; 2049 case KVM_EXIT_UNKNOWN: 2050 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2051 (uint64_t)run->hw.hardware_exit_reason); 2052 ret = -1; 2053 break; 2054 case KVM_EXIT_INTERNAL_ERROR: 2055 ret = kvm_handle_internal_error(cpu, run); 2056 break; 2057 case KVM_EXIT_SYSTEM_EVENT: 2058 switch (run->system_event.type) { 2059 case KVM_SYSTEM_EVENT_SHUTDOWN: 2060 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2061 ret = EXCP_INTERRUPT; 2062 break; 2063 case KVM_SYSTEM_EVENT_RESET: 2064 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2065 ret = EXCP_INTERRUPT; 2066 break; 2067 case KVM_SYSTEM_EVENT_CRASH: 2068 kvm_cpu_synchronize_state(cpu); 2069 qemu_mutex_lock_iothread(); 2070 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2071 qemu_mutex_unlock_iothread(); 2072 ret = 0; 2073 break; 2074 default: 2075 DPRINTF("kvm_arch_handle_exit\n"); 2076 ret = kvm_arch_handle_exit(cpu, run); 2077 break; 2078 } 2079 break; 2080 default: 2081 DPRINTF("kvm_arch_handle_exit\n"); 2082 ret = kvm_arch_handle_exit(cpu, run); 2083 break; 2084 } 2085 } while (ret == 0); 2086 2087 cpu_exec_end(cpu); 2088 qemu_mutex_lock_iothread(); 2089 2090 if (ret < 0) { 2091 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2092 vm_stop(RUN_STATE_INTERNAL_ERROR); 2093 } 2094 2095 atomic_set(&cpu->exit_request, 0); 2096 return ret; 2097 } 2098 2099 int kvm_ioctl(KVMState *s, int type, ...) 2100 { 2101 int ret; 2102 void *arg; 2103 va_list ap; 2104 2105 va_start(ap, type); 2106 arg = va_arg(ap, void *); 2107 va_end(ap); 2108 2109 trace_kvm_ioctl(type, arg); 2110 ret = ioctl(s->fd, type, arg); 2111 if (ret == -1) { 2112 ret = -errno; 2113 } 2114 return ret; 2115 } 2116 2117 int kvm_vm_ioctl(KVMState *s, int type, ...) 2118 { 2119 int ret; 2120 void *arg; 2121 va_list ap; 2122 2123 va_start(ap, type); 2124 arg = va_arg(ap, void *); 2125 va_end(ap); 2126 2127 trace_kvm_vm_ioctl(type, arg); 2128 ret = ioctl(s->vmfd, type, arg); 2129 if (ret == -1) { 2130 ret = -errno; 2131 } 2132 return ret; 2133 } 2134 2135 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2136 { 2137 int ret; 2138 void *arg; 2139 va_list ap; 2140 2141 va_start(ap, type); 2142 arg = va_arg(ap, void *); 2143 va_end(ap); 2144 2145 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2146 ret = ioctl(cpu->kvm_fd, type, arg); 2147 if (ret == -1) { 2148 ret = -errno; 2149 } 2150 return ret; 2151 } 2152 2153 int kvm_device_ioctl(int fd, int type, ...) 2154 { 2155 int ret; 2156 void *arg; 2157 va_list ap; 2158 2159 va_start(ap, type); 2160 arg = va_arg(ap, void *); 2161 va_end(ap); 2162 2163 trace_kvm_device_ioctl(fd, type, arg); 2164 ret = ioctl(fd, type, arg); 2165 if (ret == -1) { 2166 ret = -errno; 2167 } 2168 return ret; 2169 } 2170 2171 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2172 { 2173 int ret; 2174 struct kvm_device_attr attribute = { 2175 .group = group, 2176 .attr = attr, 2177 }; 2178 2179 if (!kvm_vm_attributes_allowed) { 2180 return 0; 2181 } 2182 2183 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2184 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2185 return ret ? 0 : 1; 2186 } 2187 2188 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2189 { 2190 struct kvm_device_attr attribute = { 2191 .group = group, 2192 .attr = attr, 2193 .flags = 0, 2194 }; 2195 2196 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2197 } 2198 2199 int kvm_device_access(int fd, int group, uint64_t attr, 2200 void *val, bool write, Error **errp) 2201 { 2202 struct kvm_device_attr kvmattr; 2203 int err; 2204 2205 kvmattr.flags = 0; 2206 kvmattr.group = group; 2207 kvmattr.attr = attr; 2208 kvmattr.addr = (uintptr_t)val; 2209 2210 err = kvm_device_ioctl(fd, 2211 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2212 &kvmattr); 2213 if (err < 0) { 2214 error_setg_errno(errp, -err, 2215 "KVM_%s_DEVICE_ATTR failed: Group %d " 2216 "attr 0x%016" PRIx64, 2217 write ? "SET" : "GET", group, attr); 2218 } 2219 return err; 2220 } 2221 2222 bool kvm_has_sync_mmu(void) 2223 { 2224 return kvm_state->sync_mmu; 2225 } 2226 2227 int kvm_has_vcpu_events(void) 2228 { 2229 return kvm_state->vcpu_events; 2230 } 2231 2232 int kvm_has_robust_singlestep(void) 2233 { 2234 return kvm_state->robust_singlestep; 2235 } 2236 2237 int kvm_has_debugregs(void) 2238 { 2239 return kvm_state->debugregs; 2240 } 2241 2242 int kvm_has_many_ioeventfds(void) 2243 { 2244 if (!kvm_enabled()) { 2245 return 0; 2246 } 2247 return kvm_state->many_ioeventfds; 2248 } 2249 2250 int kvm_has_gsi_routing(void) 2251 { 2252 #ifdef KVM_CAP_IRQ_ROUTING 2253 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2254 #else 2255 return false; 2256 #endif 2257 } 2258 2259 int kvm_has_intx_set_mask(void) 2260 { 2261 return kvm_state->intx_set_mask; 2262 } 2263 2264 bool kvm_arm_supports_user_irq(void) 2265 { 2266 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2267 } 2268 2269 #ifdef KVM_CAP_SET_GUEST_DEBUG 2270 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2271 target_ulong pc) 2272 { 2273 struct kvm_sw_breakpoint *bp; 2274 2275 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2276 if (bp->pc == pc) { 2277 return bp; 2278 } 2279 } 2280 return NULL; 2281 } 2282 2283 int kvm_sw_breakpoints_active(CPUState *cpu) 2284 { 2285 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2286 } 2287 2288 struct kvm_set_guest_debug_data { 2289 struct kvm_guest_debug dbg; 2290 int err; 2291 }; 2292 2293 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2294 { 2295 struct kvm_set_guest_debug_data *dbg_data = 2296 (struct kvm_set_guest_debug_data *) data.host_ptr; 2297 2298 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2299 &dbg_data->dbg); 2300 } 2301 2302 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2303 { 2304 struct kvm_set_guest_debug_data data; 2305 2306 data.dbg.control = reinject_trap; 2307 2308 if (cpu->singlestep_enabled) { 2309 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2310 } 2311 kvm_arch_update_guest_debug(cpu, &data.dbg); 2312 2313 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2314 RUN_ON_CPU_HOST_PTR(&data)); 2315 return data.err; 2316 } 2317 2318 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2319 target_ulong len, int type) 2320 { 2321 struct kvm_sw_breakpoint *bp; 2322 int err; 2323 2324 if (type == GDB_BREAKPOINT_SW) { 2325 bp = kvm_find_sw_breakpoint(cpu, addr); 2326 if (bp) { 2327 bp->use_count++; 2328 return 0; 2329 } 2330 2331 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2332 bp->pc = addr; 2333 bp->use_count = 1; 2334 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2335 if (err) { 2336 g_free(bp); 2337 return err; 2338 } 2339 2340 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2341 } else { 2342 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2343 if (err) { 2344 return err; 2345 } 2346 } 2347 2348 CPU_FOREACH(cpu) { 2349 err = kvm_update_guest_debug(cpu, 0); 2350 if (err) { 2351 return err; 2352 } 2353 } 2354 return 0; 2355 } 2356 2357 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2358 target_ulong len, int type) 2359 { 2360 struct kvm_sw_breakpoint *bp; 2361 int err; 2362 2363 if (type == GDB_BREAKPOINT_SW) { 2364 bp = kvm_find_sw_breakpoint(cpu, addr); 2365 if (!bp) { 2366 return -ENOENT; 2367 } 2368 2369 if (bp->use_count > 1) { 2370 bp->use_count--; 2371 return 0; 2372 } 2373 2374 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2375 if (err) { 2376 return err; 2377 } 2378 2379 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2380 g_free(bp); 2381 } else { 2382 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2383 if (err) { 2384 return err; 2385 } 2386 } 2387 2388 CPU_FOREACH(cpu) { 2389 err = kvm_update_guest_debug(cpu, 0); 2390 if (err) { 2391 return err; 2392 } 2393 } 2394 return 0; 2395 } 2396 2397 void kvm_remove_all_breakpoints(CPUState *cpu) 2398 { 2399 struct kvm_sw_breakpoint *bp, *next; 2400 KVMState *s = cpu->kvm_state; 2401 CPUState *tmpcpu; 2402 2403 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2404 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2405 /* Try harder to find a CPU that currently sees the breakpoint. */ 2406 CPU_FOREACH(tmpcpu) { 2407 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2408 break; 2409 } 2410 } 2411 } 2412 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2413 g_free(bp); 2414 } 2415 kvm_arch_remove_all_hw_breakpoints(); 2416 2417 CPU_FOREACH(cpu) { 2418 kvm_update_guest_debug(cpu, 0); 2419 } 2420 } 2421 2422 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2423 2424 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2425 { 2426 return -EINVAL; 2427 } 2428 2429 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2430 target_ulong len, int type) 2431 { 2432 return -EINVAL; 2433 } 2434 2435 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2436 target_ulong len, int type) 2437 { 2438 return -EINVAL; 2439 } 2440 2441 void kvm_remove_all_breakpoints(CPUState *cpu) 2442 { 2443 } 2444 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2445 2446 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2447 { 2448 KVMState *s = kvm_state; 2449 struct kvm_signal_mask *sigmask; 2450 int r; 2451 2452 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2453 2454 sigmask->len = s->sigmask_len; 2455 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2456 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2457 g_free(sigmask); 2458 2459 return r; 2460 } 2461 2462 static void kvm_ipi_signal(int sig) 2463 { 2464 if (current_cpu) { 2465 assert(kvm_immediate_exit); 2466 kvm_cpu_kick(current_cpu); 2467 } 2468 } 2469 2470 void kvm_init_cpu_signals(CPUState *cpu) 2471 { 2472 int r; 2473 sigset_t set; 2474 struct sigaction sigact; 2475 2476 memset(&sigact, 0, sizeof(sigact)); 2477 sigact.sa_handler = kvm_ipi_signal; 2478 sigaction(SIG_IPI, &sigact, NULL); 2479 2480 pthread_sigmask(SIG_BLOCK, NULL, &set); 2481 #if defined KVM_HAVE_MCE_INJECTION 2482 sigdelset(&set, SIGBUS); 2483 pthread_sigmask(SIG_SETMASK, &set, NULL); 2484 #endif 2485 sigdelset(&set, SIG_IPI); 2486 if (kvm_immediate_exit) { 2487 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2488 } else { 2489 r = kvm_set_signal_mask(cpu, &set); 2490 } 2491 if (r) { 2492 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2493 exit(1); 2494 } 2495 } 2496 2497 /* Called asynchronously in VCPU thread. */ 2498 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2499 { 2500 #ifdef KVM_HAVE_MCE_INJECTION 2501 if (have_sigbus_pending) { 2502 return 1; 2503 } 2504 have_sigbus_pending = true; 2505 pending_sigbus_addr = addr; 2506 pending_sigbus_code = code; 2507 atomic_set(&cpu->exit_request, 1); 2508 return 0; 2509 #else 2510 return 1; 2511 #endif 2512 } 2513 2514 /* Called synchronously (via signalfd) in main thread. */ 2515 int kvm_on_sigbus(int code, void *addr) 2516 { 2517 #ifdef KVM_HAVE_MCE_INJECTION 2518 /* Action required MCE kills the process if SIGBUS is blocked. Because 2519 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2520 * we can only get action optional here. 2521 */ 2522 assert(code != BUS_MCEERR_AR); 2523 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2524 return 0; 2525 #else 2526 return 1; 2527 #endif 2528 } 2529 2530 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2531 { 2532 int ret; 2533 struct kvm_create_device create_dev; 2534 2535 create_dev.type = type; 2536 create_dev.fd = -1; 2537 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2538 2539 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2540 return -ENOTSUP; 2541 } 2542 2543 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2544 if (ret) { 2545 return ret; 2546 } 2547 2548 return test ? 0 : create_dev.fd; 2549 } 2550 2551 bool kvm_device_supported(int vmfd, uint64_t type) 2552 { 2553 struct kvm_create_device create_dev = { 2554 .type = type, 2555 .fd = -1, 2556 .flags = KVM_CREATE_DEVICE_TEST, 2557 }; 2558 2559 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2560 return false; 2561 } 2562 2563 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2564 } 2565 2566 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2567 { 2568 struct kvm_one_reg reg; 2569 int r; 2570 2571 reg.id = id; 2572 reg.addr = (uintptr_t) source; 2573 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2574 if (r) { 2575 trace_kvm_failed_reg_set(id, strerror(-r)); 2576 } 2577 return r; 2578 } 2579 2580 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2581 { 2582 struct kvm_one_reg reg; 2583 int r; 2584 2585 reg.id = id; 2586 reg.addr = (uintptr_t) target; 2587 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2588 if (r) { 2589 trace_kvm_failed_reg_get(id, strerror(-r)); 2590 } 2591 return r; 2592 } 2593 2594 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2595 { 2596 AccelClass *ac = ACCEL_CLASS(oc); 2597 ac->name = "KVM"; 2598 ac->init_machine = kvm_init; 2599 ac->allowed = &kvm_allowed; 2600 } 2601 2602 static const TypeInfo kvm_accel_type = { 2603 .name = TYPE_KVM_ACCEL, 2604 .parent = TYPE_ACCEL, 2605 .class_init = kvm_accel_class_init, 2606 .instance_size = sizeof(KVMState), 2607 }; 2608 2609 static void kvm_type_init(void) 2610 { 2611 type_register_static(&kvm_accel_type); 2612 } 2613 2614 type_init(kvm_type_init); 2615