1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "sysemu/sev.h" 43 #include "sysemu/balloon.h" 44 #include "qapi/visitor.h" 45 #include "qapi/qapi-types-common.h" 46 #include "qapi/qapi-visit-common.h" 47 48 #include "hw/boards.h" 49 50 /* This check must be after config-host.h is included */ 51 #ifdef CONFIG_EVENTFD 52 #include <sys/eventfd.h> 53 #endif 54 55 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 56 * need to use the real host PAGE_SIZE, as that's what KVM will use. 57 */ 58 #define PAGE_SIZE qemu_real_host_page_size 59 60 //#define DEBUG_KVM 61 62 #ifdef DEBUG_KVM 63 #define DPRINTF(fmt, ...) \ 64 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 65 #else 66 #define DPRINTF(fmt, ...) \ 67 do { } while (0) 68 #endif 69 70 #define KVM_MSI_HASHTAB_SIZE 256 71 72 struct KVMParkedVcpu { 73 unsigned long vcpu_id; 74 int kvm_fd; 75 QLIST_ENTRY(KVMParkedVcpu) node; 76 }; 77 78 struct KVMState 79 { 80 AccelState parent_obj; 81 82 int nr_slots; 83 int fd; 84 int vmfd; 85 int coalesced_mmio; 86 int coalesced_pio; 87 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 88 bool coalesced_flush_in_progress; 89 int vcpu_events; 90 int robust_singlestep; 91 int debugregs; 92 #ifdef KVM_CAP_SET_GUEST_DEBUG 93 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 94 #endif 95 int max_nested_state_len; 96 int many_ioeventfds; 97 int intx_set_mask; 98 int kvm_shadow_mem; 99 bool kernel_irqchip_allowed; 100 bool kernel_irqchip_required; 101 OnOffAuto kernel_irqchip_split; 102 bool sync_mmu; 103 bool manual_dirty_log_protect; 104 /* The man page (and posix) say ioctl numbers are signed int, but 105 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 106 * unsigned, and treating them as signed here can break things */ 107 unsigned irq_set_ioctl; 108 unsigned int sigmask_len; 109 GHashTable *gsimap; 110 #ifdef KVM_CAP_IRQ_ROUTING 111 struct kvm_irq_routing *irq_routes; 112 int nr_allocated_irq_routes; 113 unsigned long *used_gsi_bitmap; 114 unsigned int gsi_count; 115 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 116 #endif 117 KVMMemoryListener memory_listener; 118 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 119 120 /* memory encryption */ 121 void *memcrypt_handle; 122 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 123 124 /* For "info mtree -f" to tell if an MR is registered in KVM */ 125 int nr_as; 126 struct KVMAs { 127 KVMMemoryListener *ml; 128 AddressSpace *as; 129 } *as; 130 }; 131 132 KVMState *kvm_state; 133 bool kvm_kernel_irqchip; 134 bool kvm_split_irqchip; 135 bool kvm_async_interrupts_allowed; 136 bool kvm_halt_in_kernel_allowed; 137 bool kvm_eventfds_allowed; 138 bool kvm_irqfds_allowed; 139 bool kvm_resamplefds_allowed; 140 bool kvm_msi_via_irqfd_allowed; 141 bool kvm_gsi_routing_allowed; 142 bool kvm_gsi_direct_mapping; 143 bool kvm_allowed; 144 bool kvm_readonly_mem_allowed; 145 bool kvm_vm_attributes_allowed; 146 bool kvm_direct_msi_allowed; 147 bool kvm_ioeventfd_any_length_allowed; 148 bool kvm_msi_use_devid; 149 static bool kvm_immediate_exit; 150 static hwaddr kvm_max_slot_size = ~0; 151 152 static const KVMCapabilityInfo kvm_required_capabilites[] = { 153 KVM_CAP_INFO(USER_MEMORY), 154 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 155 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 156 KVM_CAP_LAST_INFO 157 }; 158 159 static NotifierList kvm_irqchip_change_notifiers = 160 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 161 162 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 163 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 164 165 int kvm_get_max_memslots(void) 166 { 167 KVMState *s = KVM_STATE(current_accel()); 168 169 return s->nr_slots; 170 } 171 172 bool kvm_memcrypt_enabled(void) 173 { 174 if (kvm_state && kvm_state->memcrypt_handle) { 175 return true; 176 } 177 178 return false; 179 } 180 181 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 182 { 183 if (kvm_state->memcrypt_handle && 184 kvm_state->memcrypt_encrypt_data) { 185 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 186 ptr, len); 187 } 188 189 return 1; 190 } 191 192 /* Called with KVMMemoryListener.slots_lock held */ 193 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 194 { 195 KVMState *s = kvm_state; 196 int i; 197 198 for (i = 0; i < s->nr_slots; i++) { 199 if (kml->slots[i].memory_size == 0) { 200 return &kml->slots[i]; 201 } 202 } 203 204 return NULL; 205 } 206 207 bool kvm_has_free_slot(MachineState *ms) 208 { 209 KVMState *s = KVM_STATE(ms->accelerator); 210 bool result; 211 KVMMemoryListener *kml = &s->memory_listener; 212 213 kvm_slots_lock(kml); 214 result = !!kvm_get_free_slot(kml); 215 kvm_slots_unlock(kml); 216 217 return result; 218 } 219 220 /* Called with KVMMemoryListener.slots_lock held */ 221 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 222 { 223 KVMSlot *slot = kvm_get_free_slot(kml); 224 225 if (slot) { 226 return slot; 227 } 228 229 fprintf(stderr, "%s: no free slot available\n", __func__); 230 abort(); 231 } 232 233 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 234 hwaddr start_addr, 235 hwaddr size) 236 { 237 KVMState *s = kvm_state; 238 int i; 239 240 for (i = 0; i < s->nr_slots; i++) { 241 KVMSlot *mem = &kml->slots[i]; 242 243 if (start_addr == mem->start_addr && size == mem->memory_size) { 244 return mem; 245 } 246 } 247 248 return NULL; 249 } 250 251 /* 252 * Calculate and align the start address and the size of the section. 253 * Return the size. If the size is 0, the aligned section is empty. 254 */ 255 static hwaddr kvm_align_section(MemoryRegionSection *section, 256 hwaddr *start) 257 { 258 hwaddr size = int128_get64(section->size); 259 hwaddr delta, aligned; 260 261 /* kvm works in page size chunks, but the function may be called 262 with sub-page size and unaligned start address. Pad the start 263 address to next and truncate size to previous page boundary. */ 264 aligned = ROUND_UP(section->offset_within_address_space, 265 qemu_real_host_page_size); 266 delta = aligned - section->offset_within_address_space; 267 *start = aligned; 268 if (delta > size) { 269 return 0; 270 } 271 272 return (size - delta) & qemu_real_host_page_mask; 273 } 274 275 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 276 hwaddr *phys_addr) 277 { 278 KVMMemoryListener *kml = &s->memory_listener; 279 int i, ret = 0; 280 281 kvm_slots_lock(kml); 282 for (i = 0; i < s->nr_slots; i++) { 283 KVMSlot *mem = &kml->slots[i]; 284 285 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 286 *phys_addr = mem->start_addr + (ram - mem->ram); 287 ret = 1; 288 break; 289 } 290 } 291 kvm_slots_unlock(kml); 292 293 return ret; 294 } 295 296 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 297 { 298 KVMState *s = kvm_state; 299 struct kvm_userspace_memory_region mem; 300 int ret; 301 302 mem.slot = slot->slot | (kml->as_id << 16); 303 mem.guest_phys_addr = slot->start_addr; 304 mem.userspace_addr = (unsigned long)slot->ram; 305 mem.flags = slot->flags; 306 307 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 308 /* Set the slot size to 0 before setting the slot to the desired 309 * value. This is needed based on KVM commit 75d61fbc. */ 310 mem.memory_size = 0; 311 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 312 } 313 mem.memory_size = slot->memory_size; 314 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 315 slot->old_flags = mem.flags; 316 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 317 mem.memory_size, mem.userspace_addr, ret); 318 return ret; 319 } 320 321 int kvm_destroy_vcpu(CPUState *cpu) 322 { 323 KVMState *s = kvm_state; 324 long mmap_size; 325 struct KVMParkedVcpu *vcpu = NULL; 326 int ret = 0; 327 328 DPRINTF("kvm_destroy_vcpu\n"); 329 330 ret = kvm_arch_destroy_vcpu(cpu); 331 if (ret < 0) { 332 goto err; 333 } 334 335 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 336 if (mmap_size < 0) { 337 ret = mmap_size; 338 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 339 goto err; 340 } 341 342 ret = munmap(cpu->kvm_run, mmap_size); 343 if (ret < 0) { 344 goto err; 345 } 346 347 vcpu = g_malloc0(sizeof(*vcpu)); 348 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 349 vcpu->kvm_fd = cpu->kvm_fd; 350 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 351 err: 352 return ret; 353 } 354 355 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 356 { 357 struct KVMParkedVcpu *cpu; 358 359 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 360 if (cpu->vcpu_id == vcpu_id) { 361 int kvm_fd; 362 363 QLIST_REMOVE(cpu, node); 364 kvm_fd = cpu->kvm_fd; 365 g_free(cpu); 366 return kvm_fd; 367 } 368 } 369 370 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 371 } 372 373 int kvm_init_vcpu(CPUState *cpu) 374 { 375 KVMState *s = kvm_state; 376 long mmap_size; 377 int ret; 378 379 DPRINTF("kvm_init_vcpu\n"); 380 381 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 382 if (ret < 0) { 383 DPRINTF("kvm_create_vcpu failed\n"); 384 goto err; 385 } 386 387 cpu->kvm_fd = ret; 388 cpu->kvm_state = s; 389 cpu->vcpu_dirty = true; 390 391 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 392 if (mmap_size < 0) { 393 ret = mmap_size; 394 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 395 goto err; 396 } 397 398 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 399 cpu->kvm_fd, 0); 400 if (cpu->kvm_run == MAP_FAILED) { 401 ret = -errno; 402 DPRINTF("mmap'ing vcpu state failed\n"); 403 goto err; 404 } 405 406 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 407 s->coalesced_mmio_ring = 408 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 409 } 410 411 ret = kvm_arch_init_vcpu(cpu); 412 err: 413 return ret; 414 } 415 416 /* 417 * dirty pages logging control 418 */ 419 420 static int kvm_mem_flags(MemoryRegion *mr) 421 { 422 bool readonly = mr->readonly || memory_region_is_romd(mr); 423 int flags = 0; 424 425 if (memory_region_get_dirty_log_mask(mr) != 0) { 426 flags |= KVM_MEM_LOG_DIRTY_PAGES; 427 } 428 if (readonly && kvm_readonly_mem_allowed) { 429 flags |= KVM_MEM_READONLY; 430 } 431 return flags; 432 } 433 434 /* Called with KVMMemoryListener.slots_lock held */ 435 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 436 MemoryRegion *mr) 437 { 438 mem->flags = kvm_mem_flags(mr); 439 440 /* If nothing changed effectively, no need to issue ioctl */ 441 if (mem->flags == mem->old_flags) { 442 return 0; 443 } 444 445 return kvm_set_user_memory_region(kml, mem, false); 446 } 447 448 static int kvm_section_update_flags(KVMMemoryListener *kml, 449 MemoryRegionSection *section) 450 { 451 hwaddr start_addr, size, slot_size; 452 KVMSlot *mem; 453 int ret = 0; 454 455 size = kvm_align_section(section, &start_addr); 456 if (!size) { 457 return 0; 458 } 459 460 kvm_slots_lock(kml); 461 462 while (size && !ret) { 463 slot_size = MIN(kvm_max_slot_size, size); 464 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 465 if (!mem) { 466 /* We don't have a slot if we want to trap every access. */ 467 goto out; 468 } 469 470 ret = kvm_slot_update_flags(kml, mem, section->mr); 471 start_addr += slot_size; 472 size -= slot_size; 473 } 474 475 out: 476 kvm_slots_unlock(kml); 477 return ret; 478 } 479 480 static void kvm_log_start(MemoryListener *listener, 481 MemoryRegionSection *section, 482 int old, int new) 483 { 484 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 485 int r; 486 487 if (old != 0) { 488 return; 489 } 490 491 r = kvm_section_update_flags(kml, section); 492 if (r < 0) { 493 abort(); 494 } 495 } 496 497 static void kvm_log_stop(MemoryListener *listener, 498 MemoryRegionSection *section, 499 int old, int new) 500 { 501 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 502 int r; 503 504 if (new != 0) { 505 return; 506 } 507 508 r = kvm_section_update_flags(kml, section); 509 if (r < 0) { 510 abort(); 511 } 512 } 513 514 /* get kvm's dirty pages bitmap and update qemu's */ 515 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 516 unsigned long *bitmap) 517 { 518 ram_addr_t start = section->offset_within_region + 519 memory_region_get_ram_addr(section->mr); 520 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 521 522 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 523 return 0; 524 } 525 526 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 527 528 /* Allocate the dirty bitmap for a slot */ 529 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 530 { 531 /* 532 * XXX bad kernel interface alert 533 * For dirty bitmap, kernel allocates array of size aligned to 534 * bits-per-long. But for case when the kernel is 64bits and 535 * the userspace is 32bits, userspace can't align to the same 536 * bits-per-long, since sizeof(long) is different between kernel 537 * and user space. This way, userspace will provide buffer which 538 * may be 4 bytes less than the kernel will use, resulting in 539 * userspace memory corruption (which is not detectable by valgrind 540 * too, in most cases). 541 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 542 * a hope that sizeof(long) won't become >8 any time soon. 543 */ 544 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 545 /*HOST_LONG_BITS*/ 64) / 8; 546 mem->dirty_bmap = g_malloc0(bitmap_size); 547 } 548 549 /** 550 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 551 * 552 * This function will first try to fetch dirty bitmap from the kernel, 553 * and then updates qemu's dirty bitmap. 554 * 555 * NOTE: caller must be with kml->slots_lock held. 556 * 557 * @kml: the KVM memory listener object 558 * @section: the memory section to sync the dirty bitmap with 559 */ 560 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 561 MemoryRegionSection *section) 562 { 563 KVMState *s = kvm_state; 564 struct kvm_dirty_log d = {}; 565 KVMSlot *mem; 566 hwaddr start_addr, size; 567 hwaddr slot_size, slot_offset = 0; 568 int ret = 0; 569 570 size = kvm_align_section(section, &start_addr); 571 while (size) { 572 MemoryRegionSection subsection = *section; 573 574 slot_size = MIN(kvm_max_slot_size, size); 575 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 576 if (!mem) { 577 /* We don't have a slot if we want to trap every access. */ 578 goto out; 579 } 580 581 if (!mem->dirty_bmap) { 582 /* Allocate on the first log_sync, once and for all */ 583 kvm_memslot_init_dirty_bitmap(mem); 584 } 585 586 d.dirty_bitmap = mem->dirty_bmap; 587 d.slot = mem->slot | (kml->as_id << 16); 588 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 589 DPRINTF("ioctl failed %d\n", errno); 590 ret = -1; 591 goto out; 592 } 593 594 subsection.offset_within_region += slot_offset; 595 subsection.size = int128_make64(slot_size); 596 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 597 598 slot_offset += slot_size; 599 start_addr += slot_size; 600 size -= slot_size; 601 } 602 out: 603 return ret; 604 } 605 606 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 607 #define KVM_CLEAR_LOG_SHIFT 6 608 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 609 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 610 611 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 612 uint64_t size) 613 { 614 KVMState *s = kvm_state; 615 uint64_t end, bmap_start, start_delta, bmap_npages; 616 struct kvm_clear_dirty_log d; 617 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 618 int ret; 619 620 /* 621 * We need to extend either the start or the size or both to 622 * satisfy the KVM interface requirement. Firstly, do the start 623 * page alignment on 64 host pages 624 */ 625 bmap_start = start & KVM_CLEAR_LOG_MASK; 626 start_delta = start - bmap_start; 627 bmap_start /= psize; 628 629 /* 630 * The kernel interface has restriction on the size too, that either: 631 * 632 * (1) the size is 64 host pages aligned (just like the start), or 633 * (2) the size fills up until the end of the KVM memslot. 634 */ 635 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 636 << KVM_CLEAR_LOG_SHIFT; 637 end = mem->memory_size / psize; 638 if (bmap_npages > end - bmap_start) { 639 bmap_npages = end - bmap_start; 640 } 641 start_delta /= psize; 642 643 /* 644 * Prepare the bitmap to clear dirty bits. Here we must guarantee 645 * that we won't clear any unknown dirty bits otherwise we might 646 * accidentally clear some set bits which are not yet synced from 647 * the kernel into QEMU's bitmap, then we'll lose track of the 648 * guest modifications upon those pages (which can directly lead 649 * to guest data loss or panic after migration). 650 * 651 * Layout of the KVMSlot.dirty_bmap: 652 * 653 * |<-------- bmap_npages -----------..>| 654 * [1] 655 * start_delta size 656 * |----------------|-------------|------------------|------------| 657 * ^ ^ ^ ^ 658 * | | | | 659 * start bmap_start (start) end 660 * of memslot of memslot 661 * 662 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 663 */ 664 665 assert(bmap_start % BITS_PER_LONG == 0); 666 /* We should never do log_clear before log_sync */ 667 assert(mem->dirty_bmap); 668 if (start_delta) { 669 /* Slow path - we need to manipulate a temp bitmap */ 670 bmap_clear = bitmap_new(bmap_npages); 671 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 672 bmap_start, start_delta + size / psize); 673 /* 674 * We need to fill the holes at start because that was not 675 * specified by the caller and we extended the bitmap only for 676 * 64 pages alignment 677 */ 678 bitmap_clear(bmap_clear, 0, start_delta); 679 d.dirty_bitmap = bmap_clear; 680 } else { 681 /* Fast path - start address aligns well with BITS_PER_LONG */ 682 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 683 } 684 685 d.first_page = bmap_start; 686 /* It should never overflow. If it happens, say something */ 687 assert(bmap_npages <= UINT32_MAX); 688 d.num_pages = bmap_npages; 689 d.slot = mem->slot | (as_id << 16); 690 691 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 692 ret = -errno; 693 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 694 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 695 __func__, d.slot, (uint64_t)d.first_page, 696 (uint32_t)d.num_pages, ret); 697 } else { 698 ret = 0; 699 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 700 } 701 702 /* 703 * After we have updated the remote dirty bitmap, we update the 704 * cached bitmap as well for the memslot, then if another user 705 * clears the same region we know we shouldn't clear it again on 706 * the remote otherwise it's data loss as well. 707 */ 708 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 709 size / psize); 710 /* This handles the NULL case well */ 711 g_free(bmap_clear); 712 return ret; 713 } 714 715 716 /** 717 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 718 * 719 * NOTE: this will be a no-op if we haven't enabled manual dirty log 720 * protection in the host kernel because in that case this operation 721 * will be done within log_sync(). 722 * 723 * @kml: the kvm memory listener 724 * @section: the memory range to clear dirty bitmap 725 */ 726 static int kvm_physical_log_clear(KVMMemoryListener *kml, 727 MemoryRegionSection *section) 728 { 729 KVMState *s = kvm_state; 730 uint64_t start, size, offset, count; 731 KVMSlot *mem; 732 int ret = 0, i; 733 734 if (!s->manual_dirty_log_protect) { 735 /* No need to do explicit clear */ 736 return ret; 737 } 738 739 start = section->offset_within_address_space; 740 size = int128_get64(section->size); 741 742 if (!size) { 743 /* Nothing more we can do... */ 744 return ret; 745 } 746 747 kvm_slots_lock(kml); 748 749 for (i = 0; i < s->nr_slots; i++) { 750 mem = &kml->slots[i]; 751 /* Discard slots that are empty or do not overlap the section */ 752 if (!mem->memory_size || 753 mem->start_addr > start + size - 1 || 754 start > mem->start_addr + mem->memory_size - 1) { 755 continue; 756 } 757 758 if (start >= mem->start_addr) { 759 /* The slot starts before section or is aligned to it. */ 760 offset = start - mem->start_addr; 761 count = MIN(mem->memory_size - offset, size); 762 } else { 763 /* The slot starts after section. */ 764 offset = 0; 765 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 766 } 767 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 768 if (ret < 0) { 769 break; 770 } 771 } 772 773 kvm_slots_unlock(kml); 774 775 return ret; 776 } 777 778 static void kvm_coalesce_mmio_region(MemoryListener *listener, 779 MemoryRegionSection *secion, 780 hwaddr start, hwaddr size) 781 { 782 KVMState *s = kvm_state; 783 784 if (s->coalesced_mmio) { 785 struct kvm_coalesced_mmio_zone zone; 786 787 zone.addr = start; 788 zone.size = size; 789 zone.pad = 0; 790 791 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 792 } 793 } 794 795 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 796 MemoryRegionSection *secion, 797 hwaddr start, hwaddr size) 798 { 799 KVMState *s = kvm_state; 800 801 if (s->coalesced_mmio) { 802 struct kvm_coalesced_mmio_zone zone; 803 804 zone.addr = start; 805 zone.size = size; 806 zone.pad = 0; 807 808 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 809 } 810 } 811 812 static void kvm_coalesce_pio_add(MemoryListener *listener, 813 MemoryRegionSection *section, 814 hwaddr start, hwaddr size) 815 { 816 KVMState *s = kvm_state; 817 818 if (s->coalesced_pio) { 819 struct kvm_coalesced_mmio_zone zone; 820 821 zone.addr = start; 822 zone.size = size; 823 zone.pio = 1; 824 825 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 826 } 827 } 828 829 static void kvm_coalesce_pio_del(MemoryListener *listener, 830 MemoryRegionSection *section, 831 hwaddr start, hwaddr size) 832 { 833 KVMState *s = kvm_state; 834 835 if (s->coalesced_pio) { 836 struct kvm_coalesced_mmio_zone zone; 837 838 zone.addr = start; 839 zone.size = size; 840 zone.pio = 1; 841 842 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 843 } 844 } 845 846 static MemoryListener kvm_coalesced_pio_listener = { 847 .coalesced_io_add = kvm_coalesce_pio_add, 848 .coalesced_io_del = kvm_coalesce_pio_del, 849 }; 850 851 int kvm_check_extension(KVMState *s, unsigned int extension) 852 { 853 int ret; 854 855 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 856 if (ret < 0) { 857 ret = 0; 858 } 859 860 return ret; 861 } 862 863 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 864 { 865 int ret; 866 867 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 868 if (ret < 0) { 869 /* VM wide version not implemented, use global one instead */ 870 ret = kvm_check_extension(s, extension); 871 } 872 873 return ret; 874 } 875 876 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 877 { 878 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 879 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 880 * endianness, but the memory core hands them in target endianness. 881 * For example, PPC is always treated as big-endian even if running 882 * on KVM and on PPC64LE. Correct here. 883 */ 884 switch (size) { 885 case 2: 886 val = bswap16(val); 887 break; 888 case 4: 889 val = bswap32(val); 890 break; 891 } 892 #endif 893 return val; 894 } 895 896 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 897 bool assign, uint32_t size, bool datamatch) 898 { 899 int ret; 900 struct kvm_ioeventfd iofd = { 901 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 902 .addr = addr, 903 .len = size, 904 .flags = 0, 905 .fd = fd, 906 }; 907 908 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 909 datamatch); 910 if (!kvm_enabled()) { 911 return -ENOSYS; 912 } 913 914 if (datamatch) { 915 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 916 } 917 if (!assign) { 918 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 919 } 920 921 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 922 923 if (ret < 0) { 924 return -errno; 925 } 926 927 return 0; 928 } 929 930 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 931 bool assign, uint32_t size, bool datamatch) 932 { 933 struct kvm_ioeventfd kick = { 934 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 935 .addr = addr, 936 .flags = KVM_IOEVENTFD_FLAG_PIO, 937 .len = size, 938 .fd = fd, 939 }; 940 int r; 941 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 942 if (!kvm_enabled()) { 943 return -ENOSYS; 944 } 945 if (datamatch) { 946 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 947 } 948 if (!assign) { 949 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 950 } 951 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 952 if (r < 0) { 953 return r; 954 } 955 return 0; 956 } 957 958 959 static int kvm_check_many_ioeventfds(void) 960 { 961 /* Userspace can use ioeventfd for io notification. This requires a host 962 * that supports eventfd(2) and an I/O thread; since eventfd does not 963 * support SIGIO it cannot interrupt the vcpu. 964 * 965 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 966 * can avoid creating too many ioeventfds. 967 */ 968 #if defined(CONFIG_EVENTFD) 969 int ioeventfds[7]; 970 int i, ret = 0; 971 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 972 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 973 if (ioeventfds[i] < 0) { 974 break; 975 } 976 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 977 if (ret < 0) { 978 close(ioeventfds[i]); 979 break; 980 } 981 } 982 983 /* Decide whether many devices are supported or not */ 984 ret = i == ARRAY_SIZE(ioeventfds); 985 986 while (i-- > 0) { 987 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 988 close(ioeventfds[i]); 989 } 990 return ret; 991 #else 992 return 0; 993 #endif 994 } 995 996 static const KVMCapabilityInfo * 997 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 998 { 999 while (list->name) { 1000 if (!kvm_check_extension(s, list->value)) { 1001 return list; 1002 } 1003 list++; 1004 } 1005 return NULL; 1006 } 1007 1008 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1009 { 1010 g_assert( 1011 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1012 ); 1013 kvm_max_slot_size = max_slot_size; 1014 } 1015 1016 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1017 MemoryRegionSection *section, bool add) 1018 { 1019 KVMSlot *mem; 1020 int err; 1021 MemoryRegion *mr = section->mr; 1022 bool writeable = !mr->readonly && !mr->rom_device; 1023 hwaddr start_addr, size, slot_size; 1024 void *ram; 1025 1026 if (!memory_region_is_ram(mr)) { 1027 if (writeable || !kvm_readonly_mem_allowed) { 1028 return; 1029 } else if (!mr->romd_mode) { 1030 /* If the memory device is not in romd_mode, then we actually want 1031 * to remove the kvm memory slot so all accesses will trap. */ 1032 add = false; 1033 } 1034 } 1035 1036 size = kvm_align_section(section, &start_addr); 1037 if (!size) { 1038 return; 1039 } 1040 1041 /* use aligned delta to align the ram address */ 1042 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1043 (start_addr - section->offset_within_address_space); 1044 1045 kvm_slots_lock(kml); 1046 1047 if (!add) { 1048 do { 1049 slot_size = MIN(kvm_max_slot_size, size); 1050 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1051 if (!mem) { 1052 goto out; 1053 } 1054 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1055 kvm_physical_sync_dirty_bitmap(kml, section); 1056 } 1057 1058 /* unregister the slot */ 1059 g_free(mem->dirty_bmap); 1060 mem->dirty_bmap = NULL; 1061 mem->memory_size = 0; 1062 mem->flags = 0; 1063 err = kvm_set_user_memory_region(kml, mem, false); 1064 if (err) { 1065 fprintf(stderr, "%s: error unregistering slot: %s\n", 1066 __func__, strerror(-err)); 1067 abort(); 1068 } 1069 start_addr += slot_size; 1070 size -= slot_size; 1071 } while (size); 1072 goto out; 1073 } 1074 1075 /* register the new slot */ 1076 do { 1077 slot_size = MIN(kvm_max_slot_size, size); 1078 mem = kvm_alloc_slot(kml); 1079 mem->memory_size = slot_size; 1080 mem->start_addr = start_addr; 1081 mem->ram = ram; 1082 mem->flags = kvm_mem_flags(mr); 1083 1084 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1085 /* 1086 * Reallocate the bmap; it means it doesn't disappear in 1087 * middle of a migrate. 1088 */ 1089 kvm_memslot_init_dirty_bitmap(mem); 1090 } 1091 err = kvm_set_user_memory_region(kml, mem, true); 1092 if (err) { 1093 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1094 strerror(-err)); 1095 abort(); 1096 } 1097 start_addr += slot_size; 1098 ram += slot_size; 1099 size -= slot_size; 1100 } while (size); 1101 1102 out: 1103 kvm_slots_unlock(kml); 1104 } 1105 1106 static void kvm_region_add(MemoryListener *listener, 1107 MemoryRegionSection *section) 1108 { 1109 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1110 1111 memory_region_ref(section->mr); 1112 kvm_set_phys_mem(kml, section, true); 1113 } 1114 1115 static void kvm_region_del(MemoryListener *listener, 1116 MemoryRegionSection *section) 1117 { 1118 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1119 1120 kvm_set_phys_mem(kml, section, false); 1121 memory_region_unref(section->mr); 1122 } 1123 1124 static void kvm_log_sync(MemoryListener *listener, 1125 MemoryRegionSection *section) 1126 { 1127 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1128 int r; 1129 1130 kvm_slots_lock(kml); 1131 r = kvm_physical_sync_dirty_bitmap(kml, section); 1132 kvm_slots_unlock(kml); 1133 if (r < 0) { 1134 abort(); 1135 } 1136 } 1137 1138 static void kvm_log_clear(MemoryListener *listener, 1139 MemoryRegionSection *section) 1140 { 1141 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1142 int r; 1143 1144 r = kvm_physical_log_clear(kml, section); 1145 if (r < 0) { 1146 error_report_once("%s: kvm log clear failed: mr=%s " 1147 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1148 section->mr->name, section->offset_within_region, 1149 int128_get64(section->size)); 1150 abort(); 1151 } 1152 } 1153 1154 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1155 MemoryRegionSection *section, 1156 bool match_data, uint64_t data, 1157 EventNotifier *e) 1158 { 1159 int fd = event_notifier_get_fd(e); 1160 int r; 1161 1162 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1163 data, true, int128_get64(section->size), 1164 match_data); 1165 if (r < 0) { 1166 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1167 __func__, strerror(-r), -r); 1168 abort(); 1169 } 1170 } 1171 1172 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1173 MemoryRegionSection *section, 1174 bool match_data, uint64_t data, 1175 EventNotifier *e) 1176 { 1177 int fd = event_notifier_get_fd(e); 1178 int r; 1179 1180 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1181 data, false, int128_get64(section->size), 1182 match_data); 1183 if (r < 0) { 1184 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1185 __func__, strerror(-r), -r); 1186 abort(); 1187 } 1188 } 1189 1190 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1191 MemoryRegionSection *section, 1192 bool match_data, uint64_t data, 1193 EventNotifier *e) 1194 { 1195 int fd = event_notifier_get_fd(e); 1196 int r; 1197 1198 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1199 data, true, int128_get64(section->size), 1200 match_data); 1201 if (r < 0) { 1202 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1203 __func__, strerror(-r), -r); 1204 abort(); 1205 } 1206 } 1207 1208 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1209 MemoryRegionSection *section, 1210 bool match_data, uint64_t data, 1211 EventNotifier *e) 1212 1213 { 1214 int fd = event_notifier_get_fd(e); 1215 int r; 1216 1217 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1218 data, false, int128_get64(section->size), 1219 match_data); 1220 if (r < 0) { 1221 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1222 __func__, strerror(-r), -r); 1223 abort(); 1224 } 1225 } 1226 1227 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1228 AddressSpace *as, int as_id) 1229 { 1230 int i; 1231 1232 qemu_mutex_init(&kml->slots_lock); 1233 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1234 kml->as_id = as_id; 1235 1236 for (i = 0; i < s->nr_slots; i++) { 1237 kml->slots[i].slot = i; 1238 } 1239 1240 kml->listener.region_add = kvm_region_add; 1241 kml->listener.region_del = kvm_region_del; 1242 kml->listener.log_start = kvm_log_start; 1243 kml->listener.log_stop = kvm_log_stop; 1244 kml->listener.log_sync = kvm_log_sync; 1245 kml->listener.log_clear = kvm_log_clear; 1246 kml->listener.priority = 10; 1247 1248 memory_listener_register(&kml->listener, as); 1249 1250 for (i = 0; i < s->nr_as; ++i) { 1251 if (!s->as[i].as) { 1252 s->as[i].as = as; 1253 s->as[i].ml = kml; 1254 break; 1255 } 1256 } 1257 } 1258 1259 static MemoryListener kvm_io_listener = { 1260 .eventfd_add = kvm_io_ioeventfd_add, 1261 .eventfd_del = kvm_io_ioeventfd_del, 1262 .priority = 10, 1263 }; 1264 1265 int kvm_set_irq(KVMState *s, int irq, int level) 1266 { 1267 struct kvm_irq_level event; 1268 int ret; 1269 1270 assert(kvm_async_interrupts_enabled()); 1271 1272 event.level = level; 1273 event.irq = irq; 1274 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1275 if (ret < 0) { 1276 perror("kvm_set_irq"); 1277 abort(); 1278 } 1279 1280 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1281 } 1282 1283 #ifdef KVM_CAP_IRQ_ROUTING 1284 typedef struct KVMMSIRoute { 1285 struct kvm_irq_routing_entry kroute; 1286 QTAILQ_ENTRY(KVMMSIRoute) entry; 1287 } KVMMSIRoute; 1288 1289 static void set_gsi(KVMState *s, unsigned int gsi) 1290 { 1291 set_bit(gsi, s->used_gsi_bitmap); 1292 } 1293 1294 static void clear_gsi(KVMState *s, unsigned int gsi) 1295 { 1296 clear_bit(gsi, s->used_gsi_bitmap); 1297 } 1298 1299 void kvm_init_irq_routing(KVMState *s) 1300 { 1301 int gsi_count, i; 1302 1303 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1304 if (gsi_count > 0) { 1305 /* Round up so we can search ints using ffs */ 1306 s->used_gsi_bitmap = bitmap_new(gsi_count); 1307 s->gsi_count = gsi_count; 1308 } 1309 1310 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1311 s->nr_allocated_irq_routes = 0; 1312 1313 if (!kvm_direct_msi_allowed) { 1314 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1315 QTAILQ_INIT(&s->msi_hashtab[i]); 1316 } 1317 } 1318 1319 kvm_arch_init_irq_routing(s); 1320 } 1321 1322 void kvm_irqchip_commit_routes(KVMState *s) 1323 { 1324 int ret; 1325 1326 if (kvm_gsi_direct_mapping()) { 1327 return; 1328 } 1329 1330 if (!kvm_gsi_routing_enabled()) { 1331 return; 1332 } 1333 1334 s->irq_routes->flags = 0; 1335 trace_kvm_irqchip_commit_routes(); 1336 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1337 assert(ret == 0); 1338 } 1339 1340 static void kvm_add_routing_entry(KVMState *s, 1341 struct kvm_irq_routing_entry *entry) 1342 { 1343 struct kvm_irq_routing_entry *new; 1344 int n, size; 1345 1346 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1347 n = s->nr_allocated_irq_routes * 2; 1348 if (n < 64) { 1349 n = 64; 1350 } 1351 size = sizeof(struct kvm_irq_routing); 1352 size += n * sizeof(*new); 1353 s->irq_routes = g_realloc(s->irq_routes, size); 1354 s->nr_allocated_irq_routes = n; 1355 } 1356 n = s->irq_routes->nr++; 1357 new = &s->irq_routes->entries[n]; 1358 1359 *new = *entry; 1360 1361 set_gsi(s, entry->gsi); 1362 } 1363 1364 static int kvm_update_routing_entry(KVMState *s, 1365 struct kvm_irq_routing_entry *new_entry) 1366 { 1367 struct kvm_irq_routing_entry *entry; 1368 int n; 1369 1370 for (n = 0; n < s->irq_routes->nr; n++) { 1371 entry = &s->irq_routes->entries[n]; 1372 if (entry->gsi != new_entry->gsi) { 1373 continue; 1374 } 1375 1376 if(!memcmp(entry, new_entry, sizeof *entry)) { 1377 return 0; 1378 } 1379 1380 *entry = *new_entry; 1381 1382 return 0; 1383 } 1384 1385 return -ESRCH; 1386 } 1387 1388 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1389 { 1390 struct kvm_irq_routing_entry e = {}; 1391 1392 assert(pin < s->gsi_count); 1393 1394 e.gsi = irq; 1395 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1396 e.flags = 0; 1397 e.u.irqchip.irqchip = irqchip; 1398 e.u.irqchip.pin = pin; 1399 kvm_add_routing_entry(s, &e); 1400 } 1401 1402 void kvm_irqchip_release_virq(KVMState *s, int virq) 1403 { 1404 struct kvm_irq_routing_entry *e; 1405 int i; 1406 1407 if (kvm_gsi_direct_mapping()) { 1408 return; 1409 } 1410 1411 for (i = 0; i < s->irq_routes->nr; i++) { 1412 e = &s->irq_routes->entries[i]; 1413 if (e->gsi == virq) { 1414 s->irq_routes->nr--; 1415 *e = s->irq_routes->entries[s->irq_routes->nr]; 1416 } 1417 } 1418 clear_gsi(s, virq); 1419 kvm_arch_release_virq_post(virq); 1420 trace_kvm_irqchip_release_virq(virq); 1421 } 1422 1423 void kvm_irqchip_add_change_notifier(Notifier *n) 1424 { 1425 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1426 } 1427 1428 void kvm_irqchip_remove_change_notifier(Notifier *n) 1429 { 1430 notifier_remove(n); 1431 } 1432 1433 void kvm_irqchip_change_notify(void) 1434 { 1435 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1436 } 1437 1438 static unsigned int kvm_hash_msi(uint32_t data) 1439 { 1440 /* This is optimized for IA32 MSI layout. However, no other arch shall 1441 * repeat the mistake of not providing a direct MSI injection API. */ 1442 return data & 0xff; 1443 } 1444 1445 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1446 { 1447 KVMMSIRoute *route, *next; 1448 unsigned int hash; 1449 1450 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1451 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1452 kvm_irqchip_release_virq(s, route->kroute.gsi); 1453 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1454 g_free(route); 1455 } 1456 } 1457 } 1458 1459 static int kvm_irqchip_get_virq(KVMState *s) 1460 { 1461 int next_virq; 1462 1463 /* 1464 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1465 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1466 * number can succeed even though a new route entry cannot be added. 1467 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1468 */ 1469 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1470 kvm_flush_dynamic_msi_routes(s); 1471 } 1472 1473 /* Return the lowest unused GSI in the bitmap */ 1474 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1475 if (next_virq >= s->gsi_count) { 1476 return -ENOSPC; 1477 } else { 1478 return next_virq; 1479 } 1480 } 1481 1482 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1483 { 1484 unsigned int hash = kvm_hash_msi(msg.data); 1485 KVMMSIRoute *route; 1486 1487 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1488 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1489 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1490 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1491 return route; 1492 } 1493 } 1494 return NULL; 1495 } 1496 1497 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1498 { 1499 struct kvm_msi msi; 1500 KVMMSIRoute *route; 1501 1502 if (kvm_direct_msi_allowed) { 1503 msi.address_lo = (uint32_t)msg.address; 1504 msi.address_hi = msg.address >> 32; 1505 msi.data = le32_to_cpu(msg.data); 1506 msi.flags = 0; 1507 memset(msi.pad, 0, sizeof(msi.pad)); 1508 1509 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1510 } 1511 1512 route = kvm_lookup_msi_route(s, msg); 1513 if (!route) { 1514 int virq; 1515 1516 virq = kvm_irqchip_get_virq(s); 1517 if (virq < 0) { 1518 return virq; 1519 } 1520 1521 route = g_malloc0(sizeof(KVMMSIRoute)); 1522 route->kroute.gsi = virq; 1523 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1524 route->kroute.flags = 0; 1525 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1526 route->kroute.u.msi.address_hi = msg.address >> 32; 1527 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1528 1529 kvm_add_routing_entry(s, &route->kroute); 1530 kvm_irqchip_commit_routes(s); 1531 1532 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1533 entry); 1534 } 1535 1536 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1537 1538 return kvm_set_irq(s, route->kroute.gsi, 1); 1539 } 1540 1541 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1542 { 1543 struct kvm_irq_routing_entry kroute = {}; 1544 int virq; 1545 MSIMessage msg = {0, 0}; 1546 1547 if (pci_available && dev) { 1548 msg = pci_get_msi_message(dev, vector); 1549 } 1550 1551 if (kvm_gsi_direct_mapping()) { 1552 return kvm_arch_msi_data_to_gsi(msg.data); 1553 } 1554 1555 if (!kvm_gsi_routing_enabled()) { 1556 return -ENOSYS; 1557 } 1558 1559 virq = kvm_irqchip_get_virq(s); 1560 if (virq < 0) { 1561 return virq; 1562 } 1563 1564 kroute.gsi = virq; 1565 kroute.type = KVM_IRQ_ROUTING_MSI; 1566 kroute.flags = 0; 1567 kroute.u.msi.address_lo = (uint32_t)msg.address; 1568 kroute.u.msi.address_hi = msg.address >> 32; 1569 kroute.u.msi.data = le32_to_cpu(msg.data); 1570 if (pci_available && kvm_msi_devid_required()) { 1571 kroute.flags = KVM_MSI_VALID_DEVID; 1572 kroute.u.msi.devid = pci_requester_id(dev); 1573 } 1574 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1575 kvm_irqchip_release_virq(s, virq); 1576 return -EINVAL; 1577 } 1578 1579 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1580 vector, virq); 1581 1582 kvm_add_routing_entry(s, &kroute); 1583 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1584 kvm_irqchip_commit_routes(s); 1585 1586 return virq; 1587 } 1588 1589 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1590 PCIDevice *dev) 1591 { 1592 struct kvm_irq_routing_entry kroute = {}; 1593 1594 if (kvm_gsi_direct_mapping()) { 1595 return 0; 1596 } 1597 1598 if (!kvm_irqchip_in_kernel()) { 1599 return -ENOSYS; 1600 } 1601 1602 kroute.gsi = virq; 1603 kroute.type = KVM_IRQ_ROUTING_MSI; 1604 kroute.flags = 0; 1605 kroute.u.msi.address_lo = (uint32_t)msg.address; 1606 kroute.u.msi.address_hi = msg.address >> 32; 1607 kroute.u.msi.data = le32_to_cpu(msg.data); 1608 if (pci_available && kvm_msi_devid_required()) { 1609 kroute.flags = KVM_MSI_VALID_DEVID; 1610 kroute.u.msi.devid = pci_requester_id(dev); 1611 } 1612 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1613 return -EINVAL; 1614 } 1615 1616 trace_kvm_irqchip_update_msi_route(virq); 1617 1618 return kvm_update_routing_entry(s, &kroute); 1619 } 1620 1621 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1622 bool assign) 1623 { 1624 struct kvm_irqfd irqfd = { 1625 .fd = fd, 1626 .gsi = virq, 1627 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1628 }; 1629 1630 if (rfd != -1) { 1631 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1632 irqfd.resamplefd = rfd; 1633 } 1634 1635 if (!kvm_irqfds_enabled()) { 1636 return -ENOSYS; 1637 } 1638 1639 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1640 } 1641 1642 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1643 { 1644 struct kvm_irq_routing_entry kroute = {}; 1645 int virq; 1646 1647 if (!kvm_gsi_routing_enabled()) { 1648 return -ENOSYS; 1649 } 1650 1651 virq = kvm_irqchip_get_virq(s); 1652 if (virq < 0) { 1653 return virq; 1654 } 1655 1656 kroute.gsi = virq; 1657 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1658 kroute.flags = 0; 1659 kroute.u.adapter.summary_addr = adapter->summary_addr; 1660 kroute.u.adapter.ind_addr = adapter->ind_addr; 1661 kroute.u.adapter.summary_offset = adapter->summary_offset; 1662 kroute.u.adapter.ind_offset = adapter->ind_offset; 1663 kroute.u.adapter.adapter_id = adapter->adapter_id; 1664 1665 kvm_add_routing_entry(s, &kroute); 1666 1667 return virq; 1668 } 1669 1670 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1671 { 1672 struct kvm_irq_routing_entry kroute = {}; 1673 int virq; 1674 1675 if (!kvm_gsi_routing_enabled()) { 1676 return -ENOSYS; 1677 } 1678 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1679 return -ENOSYS; 1680 } 1681 virq = kvm_irqchip_get_virq(s); 1682 if (virq < 0) { 1683 return virq; 1684 } 1685 1686 kroute.gsi = virq; 1687 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1688 kroute.flags = 0; 1689 kroute.u.hv_sint.vcpu = vcpu; 1690 kroute.u.hv_sint.sint = sint; 1691 1692 kvm_add_routing_entry(s, &kroute); 1693 kvm_irqchip_commit_routes(s); 1694 1695 return virq; 1696 } 1697 1698 #else /* !KVM_CAP_IRQ_ROUTING */ 1699 1700 void kvm_init_irq_routing(KVMState *s) 1701 { 1702 } 1703 1704 void kvm_irqchip_release_virq(KVMState *s, int virq) 1705 { 1706 } 1707 1708 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1709 { 1710 abort(); 1711 } 1712 1713 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1714 { 1715 return -ENOSYS; 1716 } 1717 1718 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1719 { 1720 return -ENOSYS; 1721 } 1722 1723 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1724 { 1725 return -ENOSYS; 1726 } 1727 1728 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1729 { 1730 abort(); 1731 } 1732 1733 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1734 { 1735 return -ENOSYS; 1736 } 1737 #endif /* !KVM_CAP_IRQ_ROUTING */ 1738 1739 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1740 EventNotifier *rn, int virq) 1741 { 1742 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1743 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1744 } 1745 1746 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1747 int virq) 1748 { 1749 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1750 false); 1751 } 1752 1753 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1754 EventNotifier *rn, qemu_irq irq) 1755 { 1756 gpointer key, gsi; 1757 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1758 1759 if (!found) { 1760 return -ENXIO; 1761 } 1762 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1763 } 1764 1765 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1766 qemu_irq irq) 1767 { 1768 gpointer key, gsi; 1769 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1770 1771 if (!found) { 1772 return -ENXIO; 1773 } 1774 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1775 } 1776 1777 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1778 { 1779 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1780 } 1781 1782 static void kvm_irqchip_create(KVMState *s) 1783 { 1784 int ret; 1785 1786 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 1787 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1788 ; 1789 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1790 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1791 if (ret < 0) { 1792 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1793 exit(1); 1794 } 1795 } else { 1796 return; 1797 } 1798 1799 /* First probe and see if there's a arch-specific hook to create the 1800 * in-kernel irqchip for us */ 1801 ret = kvm_arch_irqchip_create(s); 1802 if (ret == 0) { 1803 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 1804 perror("Split IRQ chip mode not supported."); 1805 exit(1); 1806 } else { 1807 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1808 } 1809 } 1810 if (ret < 0) { 1811 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1812 exit(1); 1813 } 1814 1815 kvm_kernel_irqchip = true; 1816 /* If we have an in-kernel IRQ chip then we must have asynchronous 1817 * interrupt delivery (though the reverse is not necessarily true) 1818 */ 1819 kvm_async_interrupts_allowed = true; 1820 kvm_halt_in_kernel_allowed = true; 1821 1822 kvm_init_irq_routing(s); 1823 1824 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1825 } 1826 1827 /* Find number of supported CPUs using the recommended 1828 * procedure from the kernel API documentation to cope with 1829 * older kernels that may be missing capabilities. 1830 */ 1831 static int kvm_recommended_vcpus(KVMState *s) 1832 { 1833 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1834 return (ret) ? ret : 4; 1835 } 1836 1837 static int kvm_max_vcpus(KVMState *s) 1838 { 1839 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1840 return (ret) ? ret : kvm_recommended_vcpus(s); 1841 } 1842 1843 static int kvm_max_vcpu_id(KVMState *s) 1844 { 1845 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1846 return (ret) ? ret : kvm_max_vcpus(s); 1847 } 1848 1849 bool kvm_vcpu_id_is_valid(int vcpu_id) 1850 { 1851 KVMState *s = KVM_STATE(current_accel()); 1852 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1853 } 1854 1855 static int kvm_init(MachineState *ms) 1856 { 1857 MachineClass *mc = MACHINE_GET_CLASS(ms); 1858 static const char upgrade_note[] = 1859 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1860 "(see http://sourceforge.net/projects/kvm).\n"; 1861 struct { 1862 const char *name; 1863 int num; 1864 } num_cpus[] = { 1865 { "SMP", ms->smp.cpus }, 1866 { "hotpluggable", ms->smp.max_cpus }, 1867 { NULL, } 1868 }, *nc = num_cpus; 1869 int soft_vcpus_limit, hard_vcpus_limit; 1870 KVMState *s; 1871 const KVMCapabilityInfo *missing_cap; 1872 int ret; 1873 int type = 0; 1874 const char *kvm_type; 1875 1876 s = KVM_STATE(ms->accelerator); 1877 1878 /* 1879 * On systems where the kernel can support different base page 1880 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1881 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1882 * page size for the system though. 1883 */ 1884 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 1885 1886 s->sigmask_len = 8; 1887 1888 #ifdef KVM_CAP_SET_GUEST_DEBUG 1889 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1890 #endif 1891 QLIST_INIT(&s->kvm_parked_vcpus); 1892 s->vmfd = -1; 1893 s->fd = qemu_open("/dev/kvm", O_RDWR); 1894 if (s->fd == -1) { 1895 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1896 ret = -errno; 1897 goto err; 1898 } 1899 1900 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1901 if (ret < KVM_API_VERSION) { 1902 if (ret >= 0) { 1903 ret = -EINVAL; 1904 } 1905 fprintf(stderr, "kvm version too old\n"); 1906 goto err; 1907 } 1908 1909 if (ret > KVM_API_VERSION) { 1910 ret = -EINVAL; 1911 fprintf(stderr, "kvm version not supported\n"); 1912 goto err; 1913 } 1914 1915 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1916 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1917 1918 /* If unspecified, use the default value */ 1919 if (!s->nr_slots) { 1920 s->nr_slots = 32; 1921 } 1922 1923 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 1924 if (s->nr_as <= 1) { 1925 s->nr_as = 1; 1926 } 1927 s->as = g_new0(struct KVMAs, s->nr_as); 1928 1929 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1930 if (mc->kvm_type) { 1931 type = mc->kvm_type(ms, kvm_type); 1932 } else if (kvm_type) { 1933 ret = -EINVAL; 1934 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1935 goto err; 1936 } 1937 1938 do { 1939 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1940 } while (ret == -EINTR); 1941 1942 if (ret < 0) { 1943 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1944 strerror(-ret)); 1945 1946 #ifdef TARGET_S390X 1947 if (ret == -EINVAL) { 1948 fprintf(stderr, 1949 "Host kernel setup problem detected. Please verify:\n"); 1950 fprintf(stderr, "- for kernels supporting the switch_amode or" 1951 " user_mode parameters, whether\n"); 1952 fprintf(stderr, 1953 " user space is running in primary address space\n"); 1954 fprintf(stderr, 1955 "- for kernels supporting the vm.allocate_pgste sysctl, " 1956 "whether it is enabled\n"); 1957 } 1958 #endif 1959 goto err; 1960 } 1961 1962 s->vmfd = ret; 1963 1964 /* check the vcpu limits */ 1965 soft_vcpus_limit = kvm_recommended_vcpus(s); 1966 hard_vcpus_limit = kvm_max_vcpus(s); 1967 1968 while (nc->name) { 1969 if (nc->num > soft_vcpus_limit) { 1970 warn_report("Number of %s cpus requested (%d) exceeds " 1971 "the recommended cpus supported by KVM (%d)", 1972 nc->name, nc->num, soft_vcpus_limit); 1973 1974 if (nc->num > hard_vcpus_limit) { 1975 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1976 "the maximum cpus supported by KVM (%d)\n", 1977 nc->name, nc->num, hard_vcpus_limit); 1978 exit(1); 1979 } 1980 } 1981 nc++; 1982 } 1983 1984 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1985 if (!missing_cap) { 1986 missing_cap = 1987 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1988 } 1989 if (missing_cap) { 1990 ret = -EINVAL; 1991 fprintf(stderr, "kvm does not support %s\n%s", 1992 missing_cap->name, upgrade_note); 1993 goto err; 1994 } 1995 1996 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1997 s->coalesced_pio = s->coalesced_mmio && 1998 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1999 2000 s->manual_dirty_log_protect = 2001 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2002 if (s->manual_dirty_log_protect) { 2003 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1); 2004 if (ret) { 2005 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 " 2006 "but failed. Falling back to the legacy mode. "); 2007 s->manual_dirty_log_protect = false; 2008 } 2009 } 2010 2011 #ifdef KVM_CAP_VCPU_EVENTS 2012 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2013 #endif 2014 2015 s->robust_singlestep = 2016 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2017 2018 #ifdef KVM_CAP_DEBUGREGS 2019 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2020 #endif 2021 2022 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2023 2024 #ifdef KVM_CAP_IRQ_ROUTING 2025 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2026 #endif 2027 2028 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2029 2030 s->irq_set_ioctl = KVM_IRQ_LINE; 2031 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2032 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2033 } 2034 2035 kvm_readonly_mem_allowed = 2036 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2037 2038 kvm_eventfds_allowed = 2039 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2040 2041 kvm_irqfds_allowed = 2042 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2043 2044 kvm_resamplefds_allowed = 2045 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2046 2047 kvm_vm_attributes_allowed = 2048 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2049 2050 kvm_ioeventfd_any_length_allowed = 2051 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2052 2053 kvm_state = s; 2054 2055 /* 2056 * if memory encryption object is specified then initialize the memory 2057 * encryption context. 2058 */ 2059 if (ms->memory_encryption) { 2060 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 2061 if (!kvm_state->memcrypt_handle) { 2062 ret = -1; 2063 goto err; 2064 } 2065 2066 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 2067 } 2068 2069 ret = kvm_arch_init(ms, s); 2070 if (ret < 0) { 2071 goto err; 2072 } 2073 2074 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2075 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2076 } 2077 2078 if (s->kernel_irqchip_allowed) { 2079 kvm_irqchip_create(s); 2080 } 2081 2082 if (kvm_eventfds_allowed) { 2083 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2084 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2085 } 2086 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2087 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2088 2089 kvm_memory_listener_register(s, &s->memory_listener, 2090 &address_space_memory, 0); 2091 memory_listener_register(&kvm_io_listener, 2092 &address_space_io); 2093 memory_listener_register(&kvm_coalesced_pio_listener, 2094 &address_space_io); 2095 2096 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2097 2098 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2099 if (!s->sync_mmu) { 2100 qemu_balloon_inhibit(true); 2101 } 2102 2103 return 0; 2104 2105 err: 2106 assert(ret < 0); 2107 if (s->vmfd >= 0) { 2108 close(s->vmfd); 2109 } 2110 if (s->fd != -1) { 2111 close(s->fd); 2112 } 2113 g_free(s->memory_listener.slots); 2114 2115 return ret; 2116 } 2117 2118 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2119 { 2120 s->sigmask_len = sigmask_len; 2121 } 2122 2123 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2124 int size, uint32_t count) 2125 { 2126 int i; 2127 uint8_t *ptr = data; 2128 2129 for (i = 0; i < count; i++) { 2130 address_space_rw(&address_space_io, port, attrs, 2131 ptr, size, 2132 direction == KVM_EXIT_IO_OUT); 2133 ptr += size; 2134 } 2135 } 2136 2137 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2138 { 2139 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2140 run->internal.suberror); 2141 2142 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2143 int i; 2144 2145 for (i = 0; i < run->internal.ndata; ++i) { 2146 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2147 i, (uint64_t)run->internal.data[i]); 2148 } 2149 } 2150 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2151 fprintf(stderr, "emulation failure\n"); 2152 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2153 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2154 return EXCP_INTERRUPT; 2155 } 2156 } 2157 /* FIXME: Should trigger a qmp message to let management know 2158 * something went wrong. 2159 */ 2160 return -1; 2161 } 2162 2163 void kvm_flush_coalesced_mmio_buffer(void) 2164 { 2165 KVMState *s = kvm_state; 2166 2167 if (s->coalesced_flush_in_progress) { 2168 return; 2169 } 2170 2171 s->coalesced_flush_in_progress = true; 2172 2173 if (s->coalesced_mmio_ring) { 2174 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2175 while (ring->first != ring->last) { 2176 struct kvm_coalesced_mmio *ent; 2177 2178 ent = &ring->coalesced_mmio[ring->first]; 2179 2180 if (ent->pio == 1) { 2181 address_space_rw(&address_space_io, ent->phys_addr, 2182 MEMTXATTRS_UNSPECIFIED, ent->data, 2183 ent->len, true); 2184 } else { 2185 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2186 } 2187 smp_wmb(); 2188 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2189 } 2190 } 2191 2192 s->coalesced_flush_in_progress = false; 2193 } 2194 2195 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2196 { 2197 if (!cpu->vcpu_dirty) { 2198 kvm_arch_get_registers(cpu); 2199 cpu->vcpu_dirty = true; 2200 } 2201 } 2202 2203 void kvm_cpu_synchronize_state(CPUState *cpu) 2204 { 2205 if (!cpu->vcpu_dirty) { 2206 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2207 } 2208 } 2209 2210 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2211 { 2212 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2213 cpu->vcpu_dirty = false; 2214 } 2215 2216 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2217 { 2218 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2219 } 2220 2221 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2222 { 2223 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2224 cpu->vcpu_dirty = false; 2225 } 2226 2227 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2228 { 2229 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2230 } 2231 2232 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2233 { 2234 cpu->vcpu_dirty = true; 2235 } 2236 2237 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2238 { 2239 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2240 } 2241 2242 #ifdef KVM_HAVE_MCE_INJECTION 2243 static __thread void *pending_sigbus_addr; 2244 static __thread int pending_sigbus_code; 2245 static __thread bool have_sigbus_pending; 2246 #endif 2247 2248 static void kvm_cpu_kick(CPUState *cpu) 2249 { 2250 atomic_set(&cpu->kvm_run->immediate_exit, 1); 2251 } 2252 2253 static void kvm_cpu_kick_self(void) 2254 { 2255 if (kvm_immediate_exit) { 2256 kvm_cpu_kick(current_cpu); 2257 } else { 2258 qemu_cpu_kick_self(); 2259 } 2260 } 2261 2262 static void kvm_eat_signals(CPUState *cpu) 2263 { 2264 struct timespec ts = { 0, 0 }; 2265 siginfo_t siginfo; 2266 sigset_t waitset; 2267 sigset_t chkset; 2268 int r; 2269 2270 if (kvm_immediate_exit) { 2271 atomic_set(&cpu->kvm_run->immediate_exit, 0); 2272 /* Write kvm_run->immediate_exit before the cpu->exit_request 2273 * write in kvm_cpu_exec. 2274 */ 2275 smp_wmb(); 2276 return; 2277 } 2278 2279 sigemptyset(&waitset); 2280 sigaddset(&waitset, SIG_IPI); 2281 2282 do { 2283 r = sigtimedwait(&waitset, &siginfo, &ts); 2284 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2285 perror("sigtimedwait"); 2286 exit(1); 2287 } 2288 2289 r = sigpending(&chkset); 2290 if (r == -1) { 2291 perror("sigpending"); 2292 exit(1); 2293 } 2294 } while (sigismember(&chkset, SIG_IPI)); 2295 } 2296 2297 int kvm_cpu_exec(CPUState *cpu) 2298 { 2299 struct kvm_run *run = cpu->kvm_run; 2300 int ret, run_ret; 2301 2302 DPRINTF("kvm_cpu_exec()\n"); 2303 2304 if (kvm_arch_process_async_events(cpu)) { 2305 atomic_set(&cpu->exit_request, 0); 2306 return EXCP_HLT; 2307 } 2308 2309 qemu_mutex_unlock_iothread(); 2310 cpu_exec_start(cpu); 2311 2312 do { 2313 MemTxAttrs attrs; 2314 2315 if (cpu->vcpu_dirty) { 2316 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2317 cpu->vcpu_dirty = false; 2318 } 2319 2320 kvm_arch_pre_run(cpu, run); 2321 if (atomic_read(&cpu->exit_request)) { 2322 DPRINTF("interrupt exit requested\n"); 2323 /* 2324 * KVM requires us to reenter the kernel after IO exits to complete 2325 * instruction emulation. This self-signal will ensure that we 2326 * leave ASAP again. 2327 */ 2328 kvm_cpu_kick_self(); 2329 } 2330 2331 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2332 * Matching barrier in kvm_eat_signals. 2333 */ 2334 smp_rmb(); 2335 2336 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2337 2338 attrs = kvm_arch_post_run(cpu, run); 2339 2340 #ifdef KVM_HAVE_MCE_INJECTION 2341 if (unlikely(have_sigbus_pending)) { 2342 qemu_mutex_lock_iothread(); 2343 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2344 pending_sigbus_addr); 2345 have_sigbus_pending = false; 2346 qemu_mutex_unlock_iothread(); 2347 } 2348 #endif 2349 2350 if (run_ret < 0) { 2351 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2352 DPRINTF("io window exit\n"); 2353 kvm_eat_signals(cpu); 2354 ret = EXCP_INTERRUPT; 2355 break; 2356 } 2357 fprintf(stderr, "error: kvm run failed %s\n", 2358 strerror(-run_ret)); 2359 #ifdef TARGET_PPC 2360 if (run_ret == -EBUSY) { 2361 fprintf(stderr, 2362 "This is probably because your SMT is enabled.\n" 2363 "VCPU can only run on primary threads with all " 2364 "secondary threads offline.\n"); 2365 } 2366 #endif 2367 ret = -1; 2368 break; 2369 } 2370 2371 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2372 switch (run->exit_reason) { 2373 case KVM_EXIT_IO: 2374 DPRINTF("handle_io\n"); 2375 /* Called outside BQL */ 2376 kvm_handle_io(run->io.port, attrs, 2377 (uint8_t *)run + run->io.data_offset, 2378 run->io.direction, 2379 run->io.size, 2380 run->io.count); 2381 ret = 0; 2382 break; 2383 case KVM_EXIT_MMIO: 2384 DPRINTF("handle_mmio\n"); 2385 /* Called outside BQL */ 2386 address_space_rw(&address_space_memory, 2387 run->mmio.phys_addr, attrs, 2388 run->mmio.data, 2389 run->mmio.len, 2390 run->mmio.is_write); 2391 ret = 0; 2392 break; 2393 case KVM_EXIT_IRQ_WINDOW_OPEN: 2394 DPRINTF("irq_window_open\n"); 2395 ret = EXCP_INTERRUPT; 2396 break; 2397 case KVM_EXIT_SHUTDOWN: 2398 DPRINTF("shutdown\n"); 2399 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2400 ret = EXCP_INTERRUPT; 2401 break; 2402 case KVM_EXIT_UNKNOWN: 2403 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2404 (uint64_t)run->hw.hardware_exit_reason); 2405 ret = -1; 2406 break; 2407 case KVM_EXIT_INTERNAL_ERROR: 2408 ret = kvm_handle_internal_error(cpu, run); 2409 break; 2410 case KVM_EXIT_SYSTEM_EVENT: 2411 switch (run->system_event.type) { 2412 case KVM_SYSTEM_EVENT_SHUTDOWN: 2413 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2414 ret = EXCP_INTERRUPT; 2415 break; 2416 case KVM_SYSTEM_EVENT_RESET: 2417 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2418 ret = EXCP_INTERRUPT; 2419 break; 2420 case KVM_SYSTEM_EVENT_CRASH: 2421 kvm_cpu_synchronize_state(cpu); 2422 qemu_mutex_lock_iothread(); 2423 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2424 qemu_mutex_unlock_iothread(); 2425 ret = 0; 2426 break; 2427 default: 2428 DPRINTF("kvm_arch_handle_exit\n"); 2429 ret = kvm_arch_handle_exit(cpu, run); 2430 break; 2431 } 2432 break; 2433 default: 2434 DPRINTF("kvm_arch_handle_exit\n"); 2435 ret = kvm_arch_handle_exit(cpu, run); 2436 break; 2437 } 2438 } while (ret == 0); 2439 2440 cpu_exec_end(cpu); 2441 qemu_mutex_lock_iothread(); 2442 2443 if (ret < 0) { 2444 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2445 vm_stop(RUN_STATE_INTERNAL_ERROR); 2446 } 2447 2448 atomic_set(&cpu->exit_request, 0); 2449 return ret; 2450 } 2451 2452 int kvm_ioctl(KVMState *s, int type, ...) 2453 { 2454 int ret; 2455 void *arg; 2456 va_list ap; 2457 2458 va_start(ap, type); 2459 arg = va_arg(ap, void *); 2460 va_end(ap); 2461 2462 trace_kvm_ioctl(type, arg); 2463 ret = ioctl(s->fd, type, arg); 2464 if (ret == -1) { 2465 ret = -errno; 2466 } 2467 return ret; 2468 } 2469 2470 int kvm_vm_ioctl(KVMState *s, int type, ...) 2471 { 2472 int ret; 2473 void *arg; 2474 va_list ap; 2475 2476 va_start(ap, type); 2477 arg = va_arg(ap, void *); 2478 va_end(ap); 2479 2480 trace_kvm_vm_ioctl(type, arg); 2481 ret = ioctl(s->vmfd, type, arg); 2482 if (ret == -1) { 2483 ret = -errno; 2484 } 2485 return ret; 2486 } 2487 2488 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2489 { 2490 int ret; 2491 void *arg; 2492 va_list ap; 2493 2494 va_start(ap, type); 2495 arg = va_arg(ap, void *); 2496 va_end(ap); 2497 2498 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2499 ret = ioctl(cpu->kvm_fd, type, arg); 2500 if (ret == -1) { 2501 ret = -errno; 2502 } 2503 return ret; 2504 } 2505 2506 int kvm_device_ioctl(int fd, int type, ...) 2507 { 2508 int ret; 2509 void *arg; 2510 va_list ap; 2511 2512 va_start(ap, type); 2513 arg = va_arg(ap, void *); 2514 va_end(ap); 2515 2516 trace_kvm_device_ioctl(fd, type, arg); 2517 ret = ioctl(fd, type, arg); 2518 if (ret == -1) { 2519 ret = -errno; 2520 } 2521 return ret; 2522 } 2523 2524 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2525 { 2526 int ret; 2527 struct kvm_device_attr attribute = { 2528 .group = group, 2529 .attr = attr, 2530 }; 2531 2532 if (!kvm_vm_attributes_allowed) { 2533 return 0; 2534 } 2535 2536 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2537 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2538 return ret ? 0 : 1; 2539 } 2540 2541 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2542 { 2543 struct kvm_device_attr attribute = { 2544 .group = group, 2545 .attr = attr, 2546 .flags = 0, 2547 }; 2548 2549 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2550 } 2551 2552 int kvm_device_access(int fd, int group, uint64_t attr, 2553 void *val, bool write, Error **errp) 2554 { 2555 struct kvm_device_attr kvmattr; 2556 int err; 2557 2558 kvmattr.flags = 0; 2559 kvmattr.group = group; 2560 kvmattr.attr = attr; 2561 kvmattr.addr = (uintptr_t)val; 2562 2563 err = kvm_device_ioctl(fd, 2564 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2565 &kvmattr); 2566 if (err < 0) { 2567 error_setg_errno(errp, -err, 2568 "KVM_%s_DEVICE_ATTR failed: Group %d " 2569 "attr 0x%016" PRIx64, 2570 write ? "SET" : "GET", group, attr); 2571 } 2572 return err; 2573 } 2574 2575 bool kvm_has_sync_mmu(void) 2576 { 2577 return kvm_state->sync_mmu; 2578 } 2579 2580 int kvm_has_vcpu_events(void) 2581 { 2582 return kvm_state->vcpu_events; 2583 } 2584 2585 int kvm_has_robust_singlestep(void) 2586 { 2587 return kvm_state->robust_singlestep; 2588 } 2589 2590 int kvm_has_debugregs(void) 2591 { 2592 return kvm_state->debugregs; 2593 } 2594 2595 int kvm_max_nested_state_length(void) 2596 { 2597 return kvm_state->max_nested_state_len; 2598 } 2599 2600 int kvm_has_many_ioeventfds(void) 2601 { 2602 if (!kvm_enabled()) { 2603 return 0; 2604 } 2605 return kvm_state->many_ioeventfds; 2606 } 2607 2608 int kvm_has_gsi_routing(void) 2609 { 2610 #ifdef KVM_CAP_IRQ_ROUTING 2611 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2612 #else 2613 return false; 2614 #endif 2615 } 2616 2617 int kvm_has_intx_set_mask(void) 2618 { 2619 return kvm_state->intx_set_mask; 2620 } 2621 2622 bool kvm_arm_supports_user_irq(void) 2623 { 2624 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2625 } 2626 2627 #ifdef KVM_CAP_SET_GUEST_DEBUG 2628 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2629 target_ulong pc) 2630 { 2631 struct kvm_sw_breakpoint *bp; 2632 2633 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2634 if (bp->pc == pc) { 2635 return bp; 2636 } 2637 } 2638 return NULL; 2639 } 2640 2641 int kvm_sw_breakpoints_active(CPUState *cpu) 2642 { 2643 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2644 } 2645 2646 struct kvm_set_guest_debug_data { 2647 struct kvm_guest_debug dbg; 2648 int err; 2649 }; 2650 2651 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2652 { 2653 struct kvm_set_guest_debug_data *dbg_data = 2654 (struct kvm_set_guest_debug_data *) data.host_ptr; 2655 2656 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2657 &dbg_data->dbg); 2658 } 2659 2660 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2661 { 2662 struct kvm_set_guest_debug_data data; 2663 2664 data.dbg.control = reinject_trap; 2665 2666 if (cpu->singlestep_enabled) { 2667 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2668 } 2669 kvm_arch_update_guest_debug(cpu, &data.dbg); 2670 2671 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2672 RUN_ON_CPU_HOST_PTR(&data)); 2673 return data.err; 2674 } 2675 2676 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2677 target_ulong len, int type) 2678 { 2679 struct kvm_sw_breakpoint *bp; 2680 int err; 2681 2682 if (type == GDB_BREAKPOINT_SW) { 2683 bp = kvm_find_sw_breakpoint(cpu, addr); 2684 if (bp) { 2685 bp->use_count++; 2686 return 0; 2687 } 2688 2689 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2690 bp->pc = addr; 2691 bp->use_count = 1; 2692 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2693 if (err) { 2694 g_free(bp); 2695 return err; 2696 } 2697 2698 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2699 } else { 2700 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2701 if (err) { 2702 return err; 2703 } 2704 } 2705 2706 CPU_FOREACH(cpu) { 2707 err = kvm_update_guest_debug(cpu, 0); 2708 if (err) { 2709 return err; 2710 } 2711 } 2712 return 0; 2713 } 2714 2715 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2716 target_ulong len, int type) 2717 { 2718 struct kvm_sw_breakpoint *bp; 2719 int err; 2720 2721 if (type == GDB_BREAKPOINT_SW) { 2722 bp = kvm_find_sw_breakpoint(cpu, addr); 2723 if (!bp) { 2724 return -ENOENT; 2725 } 2726 2727 if (bp->use_count > 1) { 2728 bp->use_count--; 2729 return 0; 2730 } 2731 2732 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2733 if (err) { 2734 return err; 2735 } 2736 2737 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2738 g_free(bp); 2739 } else { 2740 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2741 if (err) { 2742 return err; 2743 } 2744 } 2745 2746 CPU_FOREACH(cpu) { 2747 err = kvm_update_guest_debug(cpu, 0); 2748 if (err) { 2749 return err; 2750 } 2751 } 2752 return 0; 2753 } 2754 2755 void kvm_remove_all_breakpoints(CPUState *cpu) 2756 { 2757 struct kvm_sw_breakpoint *bp, *next; 2758 KVMState *s = cpu->kvm_state; 2759 CPUState *tmpcpu; 2760 2761 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2762 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2763 /* Try harder to find a CPU that currently sees the breakpoint. */ 2764 CPU_FOREACH(tmpcpu) { 2765 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2766 break; 2767 } 2768 } 2769 } 2770 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2771 g_free(bp); 2772 } 2773 kvm_arch_remove_all_hw_breakpoints(); 2774 2775 CPU_FOREACH(cpu) { 2776 kvm_update_guest_debug(cpu, 0); 2777 } 2778 } 2779 2780 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2781 2782 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2783 { 2784 return -EINVAL; 2785 } 2786 2787 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2788 target_ulong len, int type) 2789 { 2790 return -EINVAL; 2791 } 2792 2793 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2794 target_ulong len, int type) 2795 { 2796 return -EINVAL; 2797 } 2798 2799 void kvm_remove_all_breakpoints(CPUState *cpu) 2800 { 2801 } 2802 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2803 2804 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2805 { 2806 KVMState *s = kvm_state; 2807 struct kvm_signal_mask *sigmask; 2808 int r; 2809 2810 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2811 2812 sigmask->len = s->sigmask_len; 2813 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2814 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2815 g_free(sigmask); 2816 2817 return r; 2818 } 2819 2820 static void kvm_ipi_signal(int sig) 2821 { 2822 if (current_cpu) { 2823 assert(kvm_immediate_exit); 2824 kvm_cpu_kick(current_cpu); 2825 } 2826 } 2827 2828 void kvm_init_cpu_signals(CPUState *cpu) 2829 { 2830 int r; 2831 sigset_t set; 2832 struct sigaction sigact; 2833 2834 memset(&sigact, 0, sizeof(sigact)); 2835 sigact.sa_handler = kvm_ipi_signal; 2836 sigaction(SIG_IPI, &sigact, NULL); 2837 2838 pthread_sigmask(SIG_BLOCK, NULL, &set); 2839 #if defined KVM_HAVE_MCE_INJECTION 2840 sigdelset(&set, SIGBUS); 2841 pthread_sigmask(SIG_SETMASK, &set, NULL); 2842 #endif 2843 sigdelset(&set, SIG_IPI); 2844 if (kvm_immediate_exit) { 2845 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2846 } else { 2847 r = kvm_set_signal_mask(cpu, &set); 2848 } 2849 if (r) { 2850 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2851 exit(1); 2852 } 2853 } 2854 2855 /* Called asynchronously in VCPU thread. */ 2856 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2857 { 2858 #ifdef KVM_HAVE_MCE_INJECTION 2859 if (have_sigbus_pending) { 2860 return 1; 2861 } 2862 have_sigbus_pending = true; 2863 pending_sigbus_addr = addr; 2864 pending_sigbus_code = code; 2865 atomic_set(&cpu->exit_request, 1); 2866 return 0; 2867 #else 2868 return 1; 2869 #endif 2870 } 2871 2872 /* Called synchronously (via signalfd) in main thread. */ 2873 int kvm_on_sigbus(int code, void *addr) 2874 { 2875 #ifdef KVM_HAVE_MCE_INJECTION 2876 /* Action required MCE kills the process if SIGBUS is blocked. Because 2877 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2878 * we can only get action optional here. 2879 */ 2880 assert(code != BUS_MCEERR_AR); 2881 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2882 return 0; 2883 #else 2884 return 1; 2885 #endif 2886 } 2887 2888 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2889 { 2890 int ret; 2891 struct kvm_create_device create_dev; 2892 2893 create_dev.type = type; 2894 create_dev.fd = -1; 2895 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2896 2897 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2898 return -ENOTSUP; 2899 } 2900 2901 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2902 if (ret) { 2903 return ret; 2904 } 2905 2906 return test ? 0 : create_dev.fd; 2907 } 2908 2909 bool kvm_device_supported(int vmfd, uint64_t type) 2910 { 2911 struct kvm_create_device create_dev = { 2912 .type = type, 2913 .fd = -1, 2914 .flags = KVM_CREATE_DEVICE_TEST, 2915 }; 2916 2917 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2918 return false; 2919 } 2920 2921 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2922 } 2923 2924 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2925 { 2926 struct kvm_one_reg reg; 2927 int r; 2928 2929 reg.id = id; 2930 reg.addr = (uintptr_t) source; 2931 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2932 if (r) { 2933 trace_kvm_failed_reg_set(id, strerror(-r)); 2934 } 2935 return r; 2936 } 2937 2938 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2939 { 2940 struct kvm_one_reg reg; 2941 int r; 2942 2943 reg.id = id; 2944 reg.addr = (uintptr_t) target; 2945 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2946 if (r) { 2947 trace_kvm_failed_reg_get(id, strerror(-r)); 2948 } 2949 return r; 2950 } 2951 2952 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 2953 hwaddr start_addr, hwaddr size) 2954 { 2955 KVMState *kvm = KVM_STATE(ms->accelerator); 2956 int i; 2957 2958 for (i = 0; i < kvm->nr_as; ++i) { 2959 if (kvm->as[i].as == as && kvm->as[i].ml) { 2960 size = MIN(kvm_max_slot_size, size); 2961 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 2962 start_addr, size); 2963 } 2964 } 2965 2966 return false; 2967 } 2968 2969 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 2970 const char *name, void *opaque, 2971 Error **errp) 2972 { 2973 KVMState *s = KVM_STATE(obj); 2974 int64_t value = s->kvm_shadow_mem; 2975 2976 visit_type_int(v, name, &value, errp); 2977 } 2978 2979 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 2980 const char *name, void *opaque, 2981 Error **errp) 2982 { 2983 KVMState *s = KVM_STATE(obj); 2984 Error *error = NULL; 2985 int64_t value; 2986 2987 visit_type_int(v, name, &value, &error); 2988 if (error) { 2989 error_propagate(errp, error); 2990 return; 2991 } 2992 2993 s->kvm_shadow_mem = value; 2994 } 2995 2996 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 2997 const char *name, void *opaque, 2998 Error **errp) 2999 { 3000 Error *err = NULL; 3001 KVMState *s = KVM_STATE(obj); 3002 OnOffSplit mode; 3003 3004 visit_type_OnOffSplit(v, name, &mode, &err); 3005 if (err) { 3006 error_propagate(errp, err); 3007 return; 3008 } else { 3009 switch (mode) { 3010 case ON_OFF_SPLIT_ON: 3011 s->kernel_irqchip_allowed = true; 3012 s->kernel_irqchip_required = true; 3013 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3014 break; 3015 case ON_OFF_SPLIT_OFF: 3016 s->kernel_irqchip_allowed = false; 3017 s->kernel_irqchip_required = false; 3018 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3019 break; 3020 case ON_OFF_SPLIT_SPLIT: 3021 s->kernel_irqchip_allowed = true; 3022 s->kernel_irqchip_required = true; 3023 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3024 break; 3025 default: 3026 /* The value was checked in visit_type_OnOffSplit() above. If 3027 * we get here, then something is wrong in QEMU. 3028 */ 3029 abort(); 3030 } 3031 } 3032 } 3033 3034 bool kvm_kernel_irqchip_allowed(void) 3035 { 3036 return kvm_state->kernel_irqchip_allowed; 3037 } 3038 3039 bool kvm_kernel_irqchip_required(void) 3040 { 3041 return kvm_state->kernel_irqchip_required; 3042 } 3043 3044 bool kvm_kernel_irqchip_split(void) 3045 { 3046 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3047 } 3048 3049 static void kvm_accel_instance_init(Object *obj) 3050 { 3051 KVMState *s = KVM_STATE(obj); 3052 3053 s->kvm_shadow_mem = -1; 3054 s->kernel_irqchip_allowed = true; 3055 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3056 } 3057 3058 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3059 { 3060 AccelClass *ac = ACCEL_CLASS(oc); 3061 ac->name = "KVM"; 3062 ac->init_machine = kvm_init; 3063 ac->has_memory = kvm_accel_has_memory; 3064 ac->allowed = &kvm_allowed; 3065 3066 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3067 NULL, kvm_set_kernel_irqchip, 3068 NULL, NULL, &error_abort); 3069 object_class_property_set_description(oc, "kernel-irqchip", 3070 "Configure KVM in-kernel irqchip", &error_abort); 3071 3072 object_class_property_add(oc, "kvm-shadow-mem", "int", 3073 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3074 NULL, NULL, &error_abort); 3075 object_class_property_set_description(oc, "kvm-shadow-mem", 3076 "KVM shadow MMU size", &error_abort); 3077 } 3078 3079 static const TypeInfo kvm_accel_type = { 3080 .name = TYPE_KVM_ACCEL, 3081 .parent = TYPE_ACCEL, 3082 .instance_init = kvm_accel_instance_init, 3083 .class_init = kvm_accel_class_init, 3084 .instance_size = sizeof(KVMState), 3085 }; 3086 3087 static void kvm_type_init(void) 3088 { 3089 type_register_static(&kvm_accel_type); 3090 } 3091 3092 type_init(kvm_type_init); 3093