1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/cpus.h" 32 #include "sysemu/sysemu.h" 33 #include "qemu/bswap.h" 34 #include "exec/memory.h" 35 #include "exec/ram_addr.h" 36 #include "exec/address-spaces.h" 37 #include "qemu/event_notifier.h" 38 #include "qemu/main-loop.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 #include "sysemu/sev.h" 42 #include "sysemu/balloon.h" 43 44 #include "hw/boards.h" 45 46 /* This check must be after config-host.h is included */ 47 #ifdef CONFIG_EVENTFD 48 #include <sys/eventfd.h> 49 #endif 50 51 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 52 * need to use the real host PAGE_SIZE, as that's what KVM will use. 53 */ 54 #define PAGE_SIZE getpagesize() 55 56 //#define DEBUG_KVM 57 58 #ifdef DEBUG_KVM 59 #define DPRINTF(fmt, ...) \ 60 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 61 #else 62 #define DPRINTF(fmt, ...) \ 63 do { } while (0) 64 #endif 65 66 #define KVM_MSI_HASHTAB_SIZE 256 67 68 struct KVMParkedVcpu { 69 unsigned long vcpu_id; 70 int kvm_fd; 71 QLIST_ENTRY(KVMParkedVcpu) node; 72 }; 73 74 struct KVMState 75 { 76 AccelState parent_obj; 77 78 int nr_slots; 79 int fd; 80 int vmfd; 81 int coalesced_mmio; 82 int coalesced_pio; 83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 84 bool coalesced_flush_in_progress; 85 int vcpu_events; 86 int robust_singlestep; 87 int debugregs; 88 #ifdef KVM_CAP_SET_GUEST_DEBUG 89 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 90 #endif 91 int max_nested_state_len; 92 int many_ioeventfds; 93 int intx_set_mask; 94 bool sync_mmu; 95 bool manual_dirty_log_protect; 96 /* The man page (and posix) say ioctl numbers are signed int, but 97 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 98 * unsigned, and treating them as signed here can break things */ 99 unsigned irq_set_ioctl; 100 unsigned int sigmask_len; 101 GHashTable *gsimap; 102 #ifdef KVM_CAP_IRQ_ROUTING 103 struct kvm_irq_routing *irq_routes; 104 int nr_allocated_irq_routes; 105 unsigned long *used_gsi_bitmap; 106 unsigned int gsi_count; 107 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 108 #endif 109 KVMMemoryListener memory_listener; 110 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 111 112 /* memory encryption */ 113 void *memcrypt_handle; 114 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 115 116 /* For "info mtree -f" to tell if an MR is registered in KVM */ 117 int nr_as; 118 struct KVMAs { 119 KVMMemoryListener *ml; 120 AddressSpace *as; 121 } *as; 122 }; 123 124 KVMState *kvm_state; 125 bool kvm_kernel_irqchip; 126 bool kvm_split_irqchip; 127 bool kvm_async_interrupts_allowed; 128 bool kvm_halt_in_kernel_allowed; 129 bool kvm_eventfds_allowed; 130 bool kvm_irqfds_allowed; 131 bool kvm_resamplefds_allowed; 132 bool kvm_msi_via_irqfd_allowed; 133 bool kvm_gsi_routing_allowed; 134 bool kvm_gsi_direct_mapping; 135 bool kvm_allowed; 136 bool kvm_readonly_mem_allowed; 137 bool kvm_vm_attributes_allowed; 138 bool kvm_direct_msi_allowed; 139 bool kvm_ioeventfd_any_length_allowed; 140 bool kvm_msi_use_devid; 141 static bool kvm_immediate_exit; 142 143 static const KVMCapabilityInfo kvm_required_capabilites[] = { 144 KVM_CAP_INFO(USER_MEMORY), 145 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 146 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 147 KVM_CAP_LAST_INFO 148 }; 149 150 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 151 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 152 153 int kvm_get_max_memslots(void) 154 { 155 KVMState *s = KVM_STATE(current_machine->accelerator); 156 157 return s->nr_slots; 158 } 159 160 bool kvm_memcrypt_enabled(void) 161 { 162 if (kvm_state && kvm_state->memcrypt_handle) { 163 return true; 164 } 165 166 return false; 167 } 168 169 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 170 { 171 if (kvm_state->memcrypt_handle && 172 kvm_state->memcrypt_encrypt_data) { 173 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 174 ptr, len); 175 } 176 177 return 1; 178 } 179 180 /* Called with KVMMemoryListener.slots_lock held */ 181 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 182 { 183 KVMState *s = kvm_state; 184 int i; 185 186 for (i = 0; i < s->nr_slots; i++) { 187 if (kml->slots[i].memory_size == 0) { 188 return &kml->slots[i]; 189 } 190 } 191 192 return NULL; 193 } 194 195 bool kvm_has_free_slot(MachineState *ms) 196 { 197 KVMState *s = KVM_STATE(ms->accelerator); 198 bool result; 199 KVMMemoryListener *kml = &s->memory_listener; 200 201 kvm_slots_lock(kml); 202 result = !!kvm_get_free_slot(kml); 203 kvm_slots_unlock(kml); 204 205 return result; 206 } 207 208 /* Called with KVMMemoryListener.slots_lock held */ 209 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 210 { 211 KVMSlot *slot = kvm_get_free_slot(kml); 212 213 if (slot) { 214 return slot; 215 } 216 217 fprintf(stderr, "%s: no free slot available\n", __func__); 218 abort(); 219 } 220 221 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 222 hwaddr start_addr, 223 hwaddr size) 224 { 225 KVMState *s = kvm_state; 226 int i; 227 228 for (i = 0; i < s->nr_slots; i++) { 229 KVMSlot *mem = &kml->slots[i]; 230 231 if (start_addr == mem->start_addr && size == mem->memory_size) { 232 return mem; 233 } 234 } 235 236 return NULL; 237 } 238 239 /* 240 * Calculate and align the start address and the size of the section. 241 * Return the size. If the size is 0, the aligned section is empty. 242 */ 243 static hwaddr kvm_align_section(MemoryRegionSection *section, 244 hwaddr *start) 245 { 246 hwaddr size = int128_get64(section->size); 247 hwaddr delta, aligned; 248 249 /* kvm works in page size chunks, but the function may be called 250 with sub-page size and unaligned start address. Pad the start 251 address to next and truncate size to previous page boundary. */ 252 aligned = ROUND_UP(section->offset_within_address_space, 253 qemu_real_host_page_size); 254 delta = aligned - section->offset_within_address_space; 255 *start = aligned; 256 if (delta > size) { 257 return 0; 258 } 259 260 return (size - delta) & qemu_real_host_page_mask; 261 } 262 263 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 264 hwaddr *phys_addr) 265 { 266 KVMMemoryListener *kml = &s->memory_listener; 267 int i, ret = 0; 268 269 kvm_slots_lock(kml); 270 for (i = 0; i < s->nr_slots; i++) { 271 KVMSlot *mem = &kml->slots[i]; 272 273 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 274 *phys_addr = mem->start_addr + (ram - mem->ram); 275 ret = 1; 276 break; 277 } 278 } 279 kvm_slots_unlock(kml); 280 281 return ret; 282 } 283 284 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 285 { 286 KVMState *s = kvm_state; 287 struct kvm_userspace_memory_region mem; 288 int ret; 289 290 mem.slot = slot->slot | (kml->as_id << 16); 291 mem.guest_phys_addr = slot->start_addr; 292 mem.userspace_addr = (unsigned long)slot->ram; 293 mem.flags = slot->flags; 294 295 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 296 /* Set the slot size to 0 before setting the slot to the desired 297 * value. This is needed based on KVM commit 75d61fbc. */ 298 mem.memory_size = 0; 299 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 300 } 301 mem.memory_size = slot->memory_size; 302 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 303 slot->old_flags = mem.flags; 304 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 305 mem.memory_size, mem.userspace_addr, ret); 306 return ret; 307 } 308 309 int kvm_destroy_vcpu(CPUState *cpu) 310 { 311 KVMState *s = kvm_state; 312 long mmap_size; 313 struct KVMParkedVcpu *vcpu = NULL; 314 int ret = 0; 315 316 DPRINTF("kvm_destroy_vcpu\n"); 317 318 ret = kvm_arch_destroy_vcpu(cpu); 319 if (ret < 0) { 320 goto err; 321 } 322 323 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 324 if (mmap_size < 0) { 325 ret = mmap_size; 326 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 327 goto err; 328 } 329 330 ret = munmap(cpu->kvm_run, mmap_size); 331 if (ret < 0) { 332 goto err; 333 } 334 335 vcpu = g_malloc0(sizeof(*vcpu)); 336 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 337 vcpu->kvm_fd = cpu->kvm_fd; 338 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 339 err: 340 return ret; 341 } 342 343 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 344 { 345 struct KVMParkedVcpu *cpu; 346 347 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 348 if (cpu->vcpu_id == vcpu_id) { 349 int kvm_fd; 350 351 QLIST_REMOVE(cpu, node); 352 kvm_fd = cpu->kvm_fd; 353 g_free(cpu); 354 return kvm_fd; 355 } 356 } 357 358 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 359 } 360 361 int kvm_init_vcpu(CPUState *cpu) 362 { 363 KVMState *s = kvm_state; 364 long mmap_size; 365 int ret; 366 367 DPRINTF("kvm_init_vcpu\n"); 368 369 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 370 if (ret < 0) { 371 DPRINTF("kvm_create_vcpu failed\n"); 372 goto err; 373 } 374 375 cpu->kvm_fd = ret; 376 cpu->kvm_state = s; 377 cpu->vcpu_dirty = true; 378 379 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 380 if (mmap_size < 0) { 381 ret = mmap_size; 382 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 383 goto err; 384 } 385 386 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 387 cpu->kvm_fd, 0); 388 if (cpu->kvm_run == MAP_FAILED) { 389 ret = -errno; 390 DPRINTF("mmap'ing vcpu state failed\n"); 391 goto err; 392 } 393 394 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 395 s->coalesced_mmio_ring = 396 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 397 } 398 399 ret = kvm_arch_init_vcpu(cpu); 400 err: 401 return ret; 402 } 403 404 /* 405 * dirty pages logging control 406 */ 407 408 static int kvm_mem_flags(MemoryRegion *mr) 409 { 410 bool readonly = mr->readonly || memory_region_is_romd(mr); 411 int flags = 0; 412 413 if (memory_region_get_dirty_log_mask(mr) != 0) { 414 flags |= KVM_MEM_LOG_DIRTY_PAGES; 415 } 416 if (readonly && kvm_readonly_mem_allowed) { 417 flags |= KVM_MEM_READONLY; 418 } 419 return flags; 420 } 421 422 /* Called with KVMMemoryListener.slots_lock held */ 423 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 424 MemoryRegion *mr) 425 { 426 mem->flags = kvm_mem_flags(mr); 427 428 /* If nothing changed effectively, no need to issue ioctl */ 429 if (mem->flags == mem->old_flags) { 430 return 0; 431 } 432 433 return kvm_set_user_memory_region(kml, mem, false); 434 } 435 436 static int kvm_section_update_flags(KVMMemoryListener *kml, 437 MemoryRegionSection *section) 438 { 439 hwaddr start_addr, size; 440 KVMSlot *mem; 441 int ret = 0; 442 443 size = kvm_align_section(section, &start_addr); 444 if (!size) { 445 return 0; 446 } 447 448 kvm_slots_lock(kml); 449 450 mem = kvm_lookup_matching_slot(kml, start_addr, size); 451 if (!mem) { 452 /* We don't have a slot if we want to trap every access. */ 453 goto out; 454 } 455 456 ret = kvm_slot_update_flags(kml, mem, section->mr); 457 458 out: 459 kvm_slots_unlock(kml); 460 return ret; 461 } 462 463 static void kvm_log_start(MemoryListener *listener, 464 MemoryRegionSection *section, 465 int old, int new) 466 { 467 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 468 int r; 469 470 if (old != 0) { 471 return; 472 } 473 474 r = kvm_section_update_flags(kml, section); 475 if (r < 0) { 476 abort(); 477 } 478 } 479 480 static void kvm_log_stop(MemoryListener *listener, 481 MemoryRegionSection *section, 482 int old, int new) 483 { 484 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 485 int r; 486 487 if (new != 0) { 488 return; 489 } 490 491 r = kvm_section_update_flags(kml, section); 492 if (r < 0) { 493 abort(); 494 } 495 } 496 497 /* get kvm's dirty pages bitmap and update qemu's */ 498 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 499 unsigned long *bitmap) 500 { 501 ram_addr_t start = section->offset_within_region + 502 memory_region_get_ram_addr(section->mr); 503 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 504 505 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 506 return 0; 507 } 508 509 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 510 511 /** 512 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 513 * 514 * This function will first try to fetch dirty bitmap from the kernel, 515 * and then updates qemu's dirty bitmap. 516 * 517 * NOTE: caller must be with kml->slots_lock held. 518 * 519 * @kml: the KVM memory listener object 520 * @section: the memory section to sync the dirty bitmap with 521 */ 522 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 523 MemoryRegionSection *section) 524 { 525 KVMState *s = kvm_state; 526 struct kvm_dirty_log d = {}; 527 KVMSlot *mem; 528 hwaddr start_addr, size; 529 int ret = 0; 530 531 size = kvm_align_section(section, &start_addr); 532 if (size) { 533 mem = kvm_lookup_matching_slot(kml, start_addr, size); 534 if (!mem) { 535 /* We don't have a slot if we want to trap every access. */ 536 goto out; 537 } 538 539 /* XXX bad kernel interface alert 540 * For dirty bitmap, kernel allocates array of size aligned to 541 * bits-per-long. But for case when the kernel is 64bits and 542 * the userspace is 32bits, userspace can't align to the same 543 * bits-per-long, since sizeof(long) is different between kernel 544 * and user space. This way, userspace will provide buffer which 545 * may be 4 bytes less than the kernel will use, resulting in 546 * userspace memory corruption (which is not detectable by valgrind 547 * too, in most cases). 548 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 549 * a hope that sizeof(long) won't become >8 any time soon. 550 */ 551 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 552 /*HOST_LONG_BITS*/ 64) / 8; 553 if (!mem->dirty_bmap) { 554 /* Allocate on the first log_sync, once and for all */ 555 mem->dirty_bmap = g_malloc0(size); 556 } 557 558 d.dirty_bitmap = mem->dirty_bmap; 559 d.slot = mem->slot | (kml->as_id << 16); 560 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 561 DPRINTF("ioctl failed %d\n", errno); 562 ret = -1; 563 goto out; 564 } 565 566 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 567 } 568 out: 569 return ret; 570 } 571 572 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 573 #define KVM_CLEAR_LOG_SHIFT 6 574 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 575 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 576 577 /** 578 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 579 * 580 * NOTE: this will be a no-op if we haven't enabled manual dirty log 581 * protection in the host kernel because in that case this operation 582 * will be done within log_sync(). 583 * 584 * @kml: the kvm memory listener 585 * @section: the memory range to clear dirty bitmap 586 */ 587 static int kvm_physical_log_clear(KVMMemoryListener *kml, 588 MemoryRegionSection *section) 589 { 590 KVMState *s = kvm_state; 591 struct kvm_clear_dirty_log d; 592 uint64_t start, end, bmap_start, start_delta, bmap_npages, size; 593 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 594 KVMSlot *mem = NULL; 595 int ret, i; 596 597 if (!s->manual_dirty_log_protect) { 598 /* No need to do explicit clear */ 599 return 0; 600 } 601 602 start = section->offset_within_address_space; 603 size = int128_get64(section->size); 604 605 if (!size) { 606 /* Nothing more we can do... */ 607 return 0; 608 } 609 610 kvm_slots_lock(kml); 611 612 /* Find any possible slot that covers the section */ 613 for (i = 0; i < s->nr_slots; i++) { 614 mem = &kml->slots[i]; 615 if (mem->start_addr <= start && 616 start + size <= mem->start_addr + mem->memory_size) { 617 break; 618 } 619 } 620 621 /* 622 * We should always find one memslot until this point, otherwise 623 * there could be something wrong from the upper layer 624 */ 625 assert(mem && i != s->nr_slots); 626 627 /* 628 * We need to extend either the start or the size or both to 629 * satisfy the KVM interface requirement. Firstly, do the start 630 * page alignment on 64 host pages 631 */ 632 bmap_start = (start - mem->start_addr) & KVM_CLEAR_LOG_MASK; 633 start_delta = start - mem->start_addr - bmap_start; 634 bmap_start /= psize; 635 636 /* 637 * The kernel interface has restriction on the size too, that either: 638 * 639 * (1) the size is 64 host pages aligned (just like the start), or 640 * (2) the size fills up until the end of the KVM memslot. 641 */ 642 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 643 << KVM_CLEAR_LOG_SHIFT; 644 end = mem->memory_size / psize; 645 if (bmap_npages > end - bmap_start) { 646 bmap_npages = end - bmap_start; 647 } 648 start_delta /= psize; 649 650 /* 651 * Prepare the bitmap to clear dirty bits. Here we must guarantee 652 * that we won't clear any unknown dirty bits otherwise we might 653 * accidentally clear some set bits which are not yet synced from 654 * the kernel into QEMU's bitmap, then we'll lose track of the 655 * guest modifications upon those pages (which can directly lead 656 * to guest data loss or panic after migration). 657 * 658 * Layout of the KVMSlot.dirty_bmap: 659 * 660 * |<-------- bmap_npages -----------..>| 661 * [1] 662 * start_delta size 663 * |----------------|-------------|------------------|------------| 664 * ^ ^ ^ ^ 665 * | | | | 666 * start bmap_start (start) end 667 * of memslot of memslot 668 * 669 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 670 */ 671 672 assert(bmap_start % BITS_PER_LONG == 0); 673 /* We should never do log_clear before log_sync */ 674 assert(mem->dirty_bmap); 675 if (start_delta) { 676 /* Slow path - we need to manipulate a temp bitmap */ 677 bmap_clear = bitmap_new(bmap_npages); 678 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 679 bmap_start, start_delta + size / psize); 680 /* 681 * We need to fill the holes at start because that was not 682 * specified by the caller and we extended the bitmap only for 683 * 64 pages alignment 684 */ 685 bitmap_clear(bmap_clear, 0, start_delta); 686 d.dirty_bitmap = bmap_clear; 687 } else { 688 /* Fast path - start address aligns well with BITS_PER_LONG */ 689 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 690 } 691 692 d.first_page = bmap_start; 693 /* It should never overflow. If it happens, say something */ 694 assert(bmap_npages <= UINT32_MAX); 695 d.num_pages = bmap_npages; 696 d.slot = mem->slot | (kml->as_id << 16); 697 698 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 699 ret = -errno; 700 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 701 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 702 __func__, d.slot, (uint64_t)d.first_page, 703 (uint32_t)d.num_pages, ret); 704 } else { 705 ret = 0; 706 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 707 } 708 709 /* 710 * After we have updated the remote dirty bitmap, we update the 711 * cached bitmap as well for the memslot, then if another user 712 * clears the same region we know we shouldn't clear it again on 713 * the remote otherwise it's data loss as well. 714 */ 715 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 716 size / psize); 717 /* This handles the NULL case well */ 718 g_free(bmap_clear); 719 720 kvm_slots_unlock(kml); 721 722 return ret; 723 } 724 725 static void kvm_coalesce_mmio_region(MemoryListener *listener, 726 MemoryRegionSection *secion, 727 hwaddr start, hwaddr size) 728 { 729 KVMState *s = kvm_state; 730 731 if (s->coalesced_mmio) { 732 struct kvm_coalesced_mmio_zone zone; 733 734 zone.addr = start; 735 zone.size = size; 736 zone.pad = 0; 737 738 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 739 } 740 } 741 742 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 743 MemoryRegionSection *secion, 744 hwaddr start, hwaddr size) 745 { 746 KVMState *s = kvm_state; 747 748 if (s->coalesced_mmio) { 749 struct kvm_coalesced_mmio_zone zone; 750 751 zone.addr = start; 752 zone.size = size; 753 zone.pad = 0; 754 755 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 756 } 757 } 758 759 static void kvm_coalesce_pio_add(MemoryListener *listener, 760 MemoryRegionSection *section, 761 hwaddr start, hwaddr size) 762 { 763 KVMState *s = kvm_state; 764 765 if (s->coalesced_pio) { 766 struct kvm_coalesced_mmio_zone zone; 767 768 zone.addr = start; 769 zone.size = size; 770 zone.pio = 1; 771 772 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 773 } 774 } 775 776 static void kvm_coalesce_pio_del(MemoryListener *listener, 777 MemoryRegionSection *section, 778 hwaddr start, hwaddr size) 779 { 780 KVMState *s = kvm_state; 781 782 if (s->coalesced_pio) { 783 struct kvm_coalesced_mmio_zone zone; 784 785 zone.addr = start; 786 zone.size = size; 787 zone.pio = 1; 788 789 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 790 } 791 } 792 793 static MemoryListener kvm_coalesced_pio_listener = { 794 .coalesced_io_add = kvm_coalesce_pio_add, 795 .coalesced_io_del = kvm_coalesce_pio_del, 796 }; 797 798 int kvm_check_extension(KVMState *s, unsigned int extension) 799 { 800 int ret; 801 802 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 803 if (ret < 0) { 804 ret = 0; 805 } 806 807 return ret; 808 } 809 810 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 811 { 812 int ret; 813 814 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 815 if (ret < 0) { 816 /* VM wide version not implemented, use global one instead */ 817 ret = kvm_check_extension(s, extension); 818 } 819 820 return ret; 821 } 822 823 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 824 { 825 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 826 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 827 * endianness, but the memory core hands them in target endianness. 828 * For example, PPC is always treated as big-endian even if running 829 * on KVM and on PPC64LE. Correct here. 830 */ 831 switch (size) { 832 case 2: 833 val = bswap16(val); 834 break; 835 case 4: 836 val = bswap32(val); 837 break; 838 } 839 #endif 840 return val; 841 } 842 843 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 844 bool assign, uint32_t size, bool datamatch) 845 { 846 int ret; 847 struct kvm_ioeventfd iofd = { 848 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 849 .addr = addr, 850 .len = size, 851 .flags = 0, 852 .fd = fd, 853 }; 854 855 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 856 datamatch); 857 if (!kvm_enabled()) { 858 return -ENOSYS; 859 } 860 861 if (datamatch) { 862 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 863 } 864 if (!assign) { 865 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 866 } 867 868 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 869 870 if (ret < 0) { 871 return -errno; 872 } 873 874 return 0; 875 } 876 877 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 878 bool assign, uint32_t size, bool datamatch) 879 { 880 struct kvm_ioeventfd kick = { 881 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 882 .addr = addr, 883 .flags = KVM_IOEVENTFD_FLAG_PIO, 884 .len = size, 885 .fd = fd, 886 }; 887 int r; 888 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 889 if (!kvm_enabled()) { 890 return -ENOSYS; 891 } 892 if (datamatch) { 893 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 894 } 895 if (!assign) { 896 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 897 } 898 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 899 if (r < 0) { 900 return r; 901 } 902 return 0; 903 } 904 905 906 static int kvm_check_many_ioeventfds(void) 907 { 908 /* Userspace can use ioeventfd for io notification. This requires a host 909 * that supports eventfd(2) and an I/O thread; since eventfd does not 910 * support SIGIO it cannot interrupt the vcpu. 911 * 912 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 913 * can avoid creating too many ioeventfds. 914 */ 915 #if defined(CONFIG_EVENTFD) 916 int ioeventfds[7]; 917 int i, ret = 0; 918 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 919 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 920 if (ioeventfds[i] < 0) { 921 break; 922 } 923 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 924 if (ret < 0) { 925 close(ioeventfds[i]); 926 break; 927 } 928 } 929 930 /* Decide whether many devices are supported or not */ 931 ret = i == ARRAY_SIZE(ioeventfds); 932 933 while (i-- > 0) { 934 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 935 close(ioeventfds[i]); 936 } 937 return ret; 938 #else 939 return 0; 940 #endif 941 } 942 943 static const KVMCapabilityInfo * 944 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 945 { 946 while (list->name) { 947 if (!kvm_check_extension(s, list->value)) { 948 return list; 949 } 950 list++; 951 } 952 return NULL; 953 } 954 955 static void kvm_set_phys_mem(KVMMemoryListener *kml, 956 MemoryRegionSection *section, bool add) 957 { 958 KVMSlot *mem; 959 int err; 960 MemoryRegion *mr = section->mr; 961 bool writeable = !mr->readonly && !mr->rom_device; 962 hwaddr start_addr, size; 963 void *ram; 964 965 if (!memory_region_is_ram(mr)) { 966 if (writeable || !kvm_readonly_mem_allowed) { 967 return; 968 } else if (!mr->romd_mode) { 969 /* If the memory device is not in romd_mode, then we actually want 970 * to remove the kvm memory slot so all accesses will trap. */ 971 add = false; 972 } 973 } 974 975 size = kvm_align_section(section, &start_addr); 976 if (!size) { 977 return; 978 } 979 980 /* use aligned delta to align the ram address */ 981 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 982 (start_addr - section->offset_within_address_space); 983 984 kvm_slots_lock(kml); 985 986 if (!add) { 987 mem = kvm_lookup_matching_slot(kml, start_addr, size); 988 if (!mem) { 989 goto out; 990 } 991 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 992 kvm_physical_sync_dirty_bitmap(kml, section); 993 } 994 995 /* unregister the slot */ 996 g_free(mem->dirty_bmap); 997 mem->dirty_bmap = NULL; 998 mem->memory_size = 0; 999 mem->flags = 0; 1000 err = kvm_set_user_memory_region(kml, mem, false); 1001 if (err) { 1002 fprintf(stderr, "%s: error unregistering slot: %s\n", 1003 __func__, strerror(-err)); 1004 abort(); 1005 } 1006 goto out; 1007 } 1008 1009 /* register the new slot */ 1010 mem = kvm_alloc_slot(kml); 1011 mem->memory_size = size; 1012 mem->start_addr = start_addr; 1013 mem->ram = ram; 1014 mem->flags = kvm_mem_flags(mr); 1015 1016 err = kvm_set_user_memory_region(kml, mem, true); 1017 if (err) { 1018 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1019 strerror(-err)); 1020 abort(); 1021 } 1022 1023 out: 1024 kvm_slots_unlock(kml); 1025 } 1026 1027 static void kvm_region_add(MemoryListener *listener, 1028 MemoryRegionSection *section) 1029 { 1030 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1031 1032 memory_region_ref(section->mr); 1033 kvm_set_phys_mem(kml, section, true); 1034 } 1035 1036 static void kvm_region_del(MemoryListener *listener, 1037 MemoryRegionSection *section) 1038 { 1039 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1040 1041 kvm_set_phys_mem(kml, section, false); 1042 memory_region_unref(section->mr); 1043 } 1044 1045 static void kvm_log_sync(MemoryListener *listener, 1046 MemoryRegionSection *section) 1047 { 1048 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1049 int r; 1050 1051 kvm_slots_lock(kml); 1052 r = kvm_physical_sync_dirty_bitmap(kml, section); 1053 kvm_slots_unlock(kml); 1054 if (r < 0) { 1055 abort(); 1056 } 1057 } 1058 1059 static void kvm_log_clear(MemoryListener *listener, 1060 MemoryRegionSection *section) 1061 { 1062 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1063 int r; 1064 1065 r = kvm_physical_log_clear(kml, section); 1066 if (r < 0) { 1067 error_report_once("%s: kvm log clear failed: mr=%s " 1068 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1069 section->mr->name, section->offset_within_region, 1070 int128_get64(section->size)); 1071 abort(); 1072 } 1073 } 1074 1075 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1076 MemoryRegionSection *section, 1077 bool match_data, uint64_t data, 1078 EventNotifier *e) 1079 { 1080 int fd = event_notifier_get_fd(e); 1081 int r; 1082 1083 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1084 data, true, int128_get64(section->size), 1085 match_data); 1086 if (r < 0) { 1087 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1088 __func__, strerror(-r), -r); 1089 abort(); 1090 } 1091 } 1092 1093 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1094 MemoryRegionSection *section, 1095 bool match_data, uint64_t data, 1096 EventNotifier *e) 1097 { 1098 int fd = event_notifier_get_fd(e); 1099 int r; 1100 1101 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1102 data, false, int128_get64(section->size), 1103 match_data); 1104 if (r < 0) { 1105 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1106 __func__, strerror(-r), -r); 1107 abort(); 1108 } 1109 } 1110 1111 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1112 MemoryRegionSection *section, 1113 bool match_data, uint64_t data, 1114 EventNotifier *e) 1115 { 1116 int fd = event_notifier_get_fd(e); 1117 int r; 1118 1119 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1120 data, true, int128_get64(section->size), 1121 match_data); 1122 if (r < 0) { 1123 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1124 __func__, strerror(-r), -r); 1125 abort(); 1126 } 1127 } 1128 1129 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1130 MemoryRegionSection *section, 1131 bool match_data, uint64_t data, 1132 EventNotifier *e) 1133 1134 { 1135 int fd = event_notifier_get_fd(e); 1136 int r; 1137 1138 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1139 data, false, int128_get64(section->size), 1140 match_data); 1141 if (r < 0) { 1142 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1143 __func__, strerror(-r), -r); 1144 abort(); 1145 } 1146 } 1147 1148 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1149 AddressSpace *as, int as_id) 1150 { 1151 int i; 1152 1153 qemu_mutex_init(&kml->slots_lock); 1154 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1155 kml->as_id = as_id; 1156 1157 for (i = 0; i < s->nr_slots; i++) { 1158 kml->slots[i].slot = i; 1159 } 1160 1161 kml->listener.region_add = kvm_region_add; 1162 kml->listener.region_del = kvm_region_del; 1163 kml->listener.log_start = kvm_log_start; 1164 kml->listener.log_stop = kvm_log_stop; 1165 kml->listener.log_sync = kvm_log_sync; 1166 kml->listener.log_clear = kvm_log_clear; 1167 kml->listener.priority = 10; 1168 1169 memory_listener_register(&kml->listener, as); 1170 1171 for (i = 0; i < s->nr_as; ++i) { 1172 if (!s->as[i].as) { 1173 s->as[i].as = as; 1174 s->as[i].ml = kml; 1175 break; 1176 } 1177 } 1178 } 1179 1180 static MemoryListener kvm_io_listener = { 1181 .eventfd_add = kvm_io_ioeventfd_add, 1182 .eventfd_del = kvm_io_ioeventfd_del, 1183 .priority = 10, 1184 }; 1185 1186 int kvm_set_irq(KVMState *s, int irq, int level) 1187 { 1188 struct kvm_irq_level event; 1189 int ret; 1190 1191 assert(kvm_async_interrupts_enabled()); 1192 1193 event.level = level; 1194 event.irq = irq; 1195 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1196 if (ret < 0) { 1197 perror("kvm_set_irq"); 1198 abort(); 1199 } 1200 1201 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1202 } 1203 1204 #ifdef KVM_CAP_IRQ_ROUTING 1205 typedef struct KVMMSIRoute { 1206 struct kvm_irq_routing_entry kroute; 1207 QTAILQ_ENTRY(KVMMSIRoute) entry; 1208 } KVMMSIRoute; 1209 1210 static void set_gsi(KVMState *s, unsigned int gsi) 1211 { 1212 set_bit(gsi, s->used_gsi_bitmap); 1213 } 1214 1215 static void clear_gsi(KVMState *s, unsigned int gsi) 1216 { 1217 clear_bit(gsi, s->used_gsi_bitmap); 1218 } 1219 1220 void kvm_init_irq_routing(KVMState *s) 1221 { 1222 int gsi_count, i; 1223 1224 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1225 if (gsi_count > 0) { 1226 /* Round up so we can search ints using ffs */ 1227 s->used_gsi_bitmap = bitmap_new(gsi_count); 1228 s->gsi_count = gsi_count; 1229 } 1230 1231 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1232 s->nr_allocated_irq_routes = 0; 1233 1234 if (!kvm_direct_msi_allowed) { 1235 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1236 QTAILQ_INIT(&s->msi_hashtab[i]); 1237 } 1238 } 1239 1240 kvm_arch_init_irq_routing(s); 1241 } 1242 1243 void kvm_irqchip_commit_routes(KVMState *s) 1244 { 1245 int ret; 1246 1247 if (kvm_gsi_direct_mapping()) { 1248 return; 1249 } 1250 1251 if (!kvm_gsi_routing_enabled()) { 1252 return; 1253 } 1254 1255 s->irq_routes->flags = 0; 1256 trace_kvm_irqchip_commit_routes(); 1257 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1258 assert(ret == 0); 1259 } 1260 1261 static void kvm_add_routing_entry(KVMState *s, 1262 struct kvm_irq_routing_entry *entry) 1263 { 1264 struct kvm_irq_routing_entry *new; 1265 int n, size; 1266 1267 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1268 n = s->nr_allocated_irq_routes * 2; 1269 if (n < 64) { 1270 n = 64; 1271 } 1272 size = sizeof(struct kvm_irq_routing); 1273 size += n * sizeof(*new); 1274 s->irq_routes = g_realloc(s->irq_routes, size); 1275 s->nr_allocated_irq_routes = n; 1276 } 1277 n = s->irq_routes->nr++; 1278 new = &s->irq_routes->entries[n]; 1279 1280 *new = *entry; 1281 1282 set_gsi(s, entry->gsi); 1283 } 1284 1285 static int kvm_update_routing_entry(KVMState *s, 1286 struct kvm_irq_routing_entry *new_entry) 1287 { 1288 struct kvm_irq_routing_entry *entry; 1289 int n; 1290 1291 for (n = 0; n < s->irq_routes->nr; n++) { 1292 entry = &s->irq_routes->entries[n]; 1293 if (entry->gsi != new_entry->gsi) { 1294 continue; 1295 } 1296 1297 if(!memcmp(entry, new_entry, sizeof *entry)) { 1298 return 0; 1299 } 1300 1301 *entry = *new_entry; 1302 1303 return 0; 1304 } 1305 1306 return -ESRCH; 1307 } 1308 1309 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1310 { 1311 struct kvm_irq_routing_entry e = {}; 1312 1313 assert(pin < s->gsi_count); 1314 1315 e.gsi = irq; 1316 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1317 e.flags = 0; 1318 e.u.irqchip.irqchip = irqchip; 1319 e.u.irqchip.pin = pin; 1320 kvm_add_routing_entry(s, &e); 1321 } 1322 1323 void kvm_irqchip_release_virq(KVMState *s, int virq) 1324 { 1325 struct kvm_irq_routing_entry *e; 1326 int i; 1327 1328 if (kvm_gsi_direct_mapping()) { 1329 return; 1330 } 1331 1332 for (i = 0; i < s->irq_routes->nr; i++) { 1333 e = &s->irq_routes->entries[i]; 1334 if (e->gsi == virq) { 1335 s->irq_routes->nr--; 1336 *e = s->irq_routes->entries[s->irq_routes->nr]; 1337 } 1338 } 1339 clear_gsi(s, virq); 1340 kvm_arch_release_virq_post(virq); 1341 trace_kvm_irqchip_release_virq(virq); 1342 } 1343 1344 static unsigned int kvm_hash_msi(uint32_t data) 1345 { 1346 /* This is optimized for IA32 MSI layout. However, no other arch shall 1347 * repeat the mistake of not providing a direct MSI injection API. */ 1348 return data & 0xff; 1349 } 1350 1351 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1352 { 1353 KVMMSIRoute *route, *next; 1354 unsigned int hash; 1355 1356 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1357 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1358 kvm_irqchip_release_virq(s, route->kroute.gsi); 1359 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1360 g_free(route); 1361 } 1362 } 1363 } 1364 1365 static int kvm_irqchip_get_virq(KVMState *s) 1366 { 1367 int next_virq; 1368 1369 /* 1370 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1371 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1372 * number can succeed even though a new route entry cannot be added. 1373 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1374 */ 1375 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1376 kvm_flush_dynamic_msi_routes(s); 1377 } 1378 1379 /* Return the lowest unused GSI in the bitmap */ 1380 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1381 if (next_virq >= s->gsi_count) { 1382 return -ENOSPC; 1383 } else { 1384 return next_virq; 1385 } 1386 } 1387 1388 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1389 { 1390 unsigned int hash = kvm_hash_msi(msg.data); 1391 KVMMSIRoute *route; 1392 1393 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1394 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1395 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1396 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1397 return route; 1398 } 1399 } 1400 return NULL; 1401 } 1402 1403 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1404 { 1405 struct kvm_msi msi; 1406 KVMMSIRoute *route; 1407 1408 if (kvm_direct_msi_allowed) { 1409 msi.address_lo = (uint32_t)msg.address; 1410 msi.address_hi = msg.address >> 32; 1411 msi.data = le32_to_cpu(msg.data); 1412 msi.flags = 0; 1413 memset(msi.pad, 0, sizeof(msi.pad)); 1414 1415 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1416 } 1417 1418 route = kvm_lookup_msi_route(s, msg); 1419 if (!route) { 1420 int virq; 1421 1422 virq = kvm_irqchip_get_virq(s); 1423 if (virq < 0) { 1424 return virq; 1425 } 1426 1427 route = g_malloc0(sizeof(KVMMSIRoute)); 1428 route->kroute.gsi = virq; 1429 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1430 route->kroute.flags = 0; 1431 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1432 route->kroute.u.msi.address_hi = msg.address >> 32; 1433 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1434 1435 kvm_add_routing_entry(s, &route->kroute); 1436 kvm_irqchip_commit_routes(s); 1437 1438 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1439 entry); 1440 } 1441 1442 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1443 1444 return kvm_set_irq(s, route->kroute.gsi, 1); 1445 } 1446 1447 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1448 { 1449 struct kvm_irq_routing_entry kroute = {}; 1450 int virq; 1451 MSIMessage msg = {0, 0}; 1452 1453 if (pci_available && dev) { 1454 msg = pci_get_msi_message(dev, vector); 1455 } 1456 1457 if (kvm_gsi_direct_mapping()) { 1458 return kvm_arch_msi_data_to_gsi(msg.data); 1459 } 1460 1461 if (!kvm_gsi_routing_enabled()) { 1462 return -ENOSYS; 1463 } 1464 1465 virq = kvm_irqchip_get_virq(s); 1466 if (virq < 0) { 1467 return virq; 1468 } 1469 1470 kroute.gsi = virq; 1471 kroute.type = KVM_IRQ_ROUTING_MSI; 1472 kroute.flags = 0; 1473 kroute.u.msi.address_lo = (uint32_t)msg.address; 1474 kroute.u.msi.address_hi = msg.address >> 32; 1475 kroute.u.msi.data = le32_to_cpu(msg.data); 1476 if (pci_available && kvm_msi_devid_required()) { 1477 kroute.flags = KVM_MSI_VALID_DEVID; 1478 kroute.u.msi.devid = pci_requester_id(dev); 1479 } 1480 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1481 kvm_irqchip_release_virq(s, virq); 1482 return -EINVAL; 1483 } 1484 1485 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1486 vector, virq); 1487 1488 kvm_add_routing_entry(s, &kroute); 1489 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1490 kvm_irqchip_commit_routes(s); 1491 1492 return virq; 1493 } 1494 1495 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1496 PCIDevice *dev) 1497 { 1498 struct kvm_irq_routing_entry kroute = {}; 1499 1500 if (kvm_gsi_direct_mapping()) { 1501 return 0; 1502 } 1503 1504 if (!kvm_irqchip_in_kernel()) { 1505 return -ENOSYS; 1506 } 1507 1508 kroute.gsi = virq; 1509 kroute.type = KVM_IRQ_ROUTING_MSI; 1510 kroute.flags = 0; 1511 kroute.u.msi.address_lo = (uint32_t)msg.address; 1512 kroute.u.msi.address_hi = msg.address >> 32; 1513 kroute.u.msi.data = le32_to_cpu(msg.data); 1514 if (pci_available && kvm_msi_devid_required()) { 1515 kroute.flags = KVM_MSI_VALID_DEVID; 1516 kroute.u.msi.devid = pci_requester_id(dev); 1517 } 1518 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1519 return -EINVAL; 1520 } 1521 1522 trace_kvm_irqchip_update_msi_route(virq); 1523 1524 return kvm_update_routing_entry(s, &kroute); 1525 } 1526 1527 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1528 bool assign) 1529 { 1530 struct kvm_irqfd irqfd = { 1531 .fd = fd, 1532 .gsi = virq, 1533 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1534 }; 1535 1536 if (rfd != -1) { 1537 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1538 irqfd.resamplefd = rfd; 1539 } 1540 1541 if (!kvm_irqfds_enabled()) { 1542 return -ENOSYS; 1543 } 1544 1545 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1546 } 1547 1548 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1549 { 1550 struct kvm_irq_routing_entry kroute = {}; 1551 int virq; 1552 1553 if (!kvm_gsi_routing_enabled()) { 1554 return -ENOSYS; 1555 } 1556 1557 virq = kvm_irqchip_get_virq(s); 1558 if (virq < 0) { 1559 return virq; 1560 } 1561 1562 kroute.gsi = virq; 1563 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1564 kroute.flags = 0; 1565 kroute.u.adapter.summary_addr = adapter->summary_addr; 1566 kroute.u.adapter.ind_addr = adapter->ind_addr; 1567 kroute.u.adapter.summary_offset = adapter->summary_offset; 1568 kroute.u.adapter.ind_offset = adapter->ind_offset; 1569 kroute.u.adapter.adapter_id = adapter->adapter_id; 1570 1571 kvm_add_routing_entry(s, &kroute); 1572 1573 return virq; 1574 } 1575 1576 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1577 { 1578 struct kvm_irq_routing_entry kroute = {}; 1579 int virq; 1580 1581 if (!kvm_gsi_routing_enabled()) { 1582 return -ENOSYS; 1583 } 1584 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1585 return -ENOSYS; 1586 } 1587 virq = kvm_irqchip_get_virq(s); 1588 if (virq < 0) { 1589 return virq; 1590 } 1591 1592 kroute.gsi = virq; 1593 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1594 kroute.flags = 0; 1595 kroute.u.hv_sint.vcpu = vcpu; 1596 kroute.u.hv_sint.sint = sint; 1597 1598 kvm_add_routing_entry(s, &kroute); 1599 kvm_irqchip_commit_routes(s); 1600 1601 return virq; 1602 } 1603 1604 #else /* !KVM_CAP_IRQ_ROUTING */ 1605 1606 void kvm_init_irq_routing(KVMState *s) 1607 { 1608 } 1609 1610 void kvm_irqchip_release_virq(KVMState *s, int virq) 1611 { 1612 } 1613 1614 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1615 { 1616 abort(); 1617 } 1618 1619 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1620 { 1621 return -ENOSYS; 1622 } 1623 1624 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1625 { 1626 return -ENOSYS; 1627 } 1628 1629 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1630 { 1631 return -ENOSYS; 1632 } 1633 1634 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1635 { 1636 abort(); 1637 } 1638 1639 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1640 { 1641 return -ENOSYS; 1642 } 1643 #endif /* !KVM_CAP_IRQ_ROUTING */ 1644 1645 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1646 EventNotifier *rn, int virq) 1647 { 1648 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1649 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1650 } 1651 1652 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1653 int virq) 1654 { 1655 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1656 false); 1657 } 1658 1659 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1660 EventNotifier *rn, qemu_irq irq) 1661 { 1662 gpointer key, gsi; 1663 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1664 1665 if (!found) { 1666 return -ENXIO; 1667 } 1668 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1669 } 1670 1671 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1672 qemu_irq irq) 1673 { 1674 gpointer key, gsi; 1675 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1676 1677 if (!found) { 1678 return -ENXIO; 1679 } 1680 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1681 } 1682 1683 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1684 { 1685 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1686 } 1687 1688 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1689 { 1690 int ret; 1691 1692 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1693 ; 1694 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1695 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1696 if (ret < 0) { 1697 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1698 exit(1); 1699 } 1700 } else { 1701 return; 1702 } 1703 1704 /* First probe and see if there's a arch-specific hook to create the 1705 * in-kernel irqchip for us */ 1706 ret = kvm_arch_irqchip_create(machine, s); 1707 if (ret == 0) { 1708 if (machine_kernel_irqchip_split(machine)) { 1709 perror("Split IRQ chip mode not supported."); 1710 exit(1); 1711 } else { 1712 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1713 } 1714 } 1715 if (ret < 0) { 1716 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1717 exit(1); 1718 } 1719 1720 kvm_kernel_irqchip = true; 1721 /* If we have an in-kernel IRQ chip then we must have asynchronous 1722 * interrupt delivery (though the reverse is not necessarily true) 1723 */ 1724 kvm_async_interrupts_allowed = true; 1725 kvm_halt_in_kernel_allowed = true; 1726 1727 kvm_init_irq_routing(s); 1728 1729 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1730 } 1731 1732 /* Find number of supported CPUs using the recommended 1733 * procedure from the kernel API documentation to cope with 1734 * older kernels that may be missing capabilities. 1735 */ 1736 static int kvm_recommended_vcpus(KVMState *s) 1737 { 1738 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1739 return (ret) ? ret : 4; 1740 } 1741 1742 static int kvm_max_vcpus(KVMState *s) 1743 { 1744 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1745 return (ret) ? ret : kvm_recommended_vcpus(s); 1746 } 1747 1748 static int kvm_max_vcpu_id(KVMState *s) 1749 { 1750 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1751 return (ret) ? ret : kvm_max_vcpus(s); 1752 } 1753 1754 bool kvm_vcpu_id_is_valid(int vcpu_id) 1755 { 1756 KVMState *s = KVM_STATE(current_machine->accelerator); 1757 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1758 } 1759 1760 static int kvm_init(MachineState *ms) 1761 { 1762 MachineClass *mc = MACHINE_GET_CLASS(ms); 1763 static const char upgrade_note[] = 1764 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1765 "(see http://sourceforge.net/projects/kvm).\n"; 1766 struct { 1767 const char *name; 1768 int num; 1769 } num_cpus[] = { 1770 { "SMP", ms->smp.cpus }, 1771 { "hotpluggable", ms->smp.max_cpus }, 1772 { NULL, } 1773 }, *nc = num_cpus; 1774 int soft_vcpus_limit, hard_vcpus_limit; 1775 KVMState *s; 1776 const KVMCapabilityInfo *missing_cap; 1777 int ret; 1778 int type = 0; 1779 const char *kvm_type; 1780 1781 s = KVM_STATE(ms->accelerator); 1782 1783 /* 1784 * On systems where the kernel can support different base page 1785 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1786 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1787 * page size for the system though. 1788 */ 1789 assert(TARGET_PAGE_SIZE <= getpagesize()); 1790 1791 s->sigmask_len = 8; 1792 1793 #ifdef KVM_CAP_SET_GUEST_DEBUG 1794 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1795 #endif 1796 QLIST_INIT(&s->kvm_parked_vcpus); 1797 s->vmfd = -1; 1798 s->fd = qemu_open("/dev/kvm", O_RDWR); 1799 if (s->fd == -1) { 1800 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1801 ret = -errno; 1802 goto err; 1803 } 1804 1805 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1806 if (ret < KVM_API_VERSION) { 1807 if (ret >= 0) { 1808 ret = -EINVAL; 1809 } 1810 fprintf(stderr, "kvm version too old\n"); 1811 goto err; 1812 } 1813 1814 if (ret > KVM_API_VERSION) { 1815 ret = -EINVAL; 1816 fprintf(stderr, "kvm version not supported\n"); 1817 goto err; 1818 } 1819 1820 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1821 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1822 1823 /* If unspecified, use the default value */ 1824 if (!s->nr_slots) { 1825 s->nr_slots = 32; 1826 } 1827 1828 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 1829 if (s->nr_as <= 1) { 1830 s->nr_as = 1; 1831 } 1832 s->as = g_new0(struct KVMAs, s->nr_as); 1833 1834 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1835 if (mc->kvm_type) { 1836 type = mc->kvm_type(ms, kvm_type); 1837 } else if (kvm_type) { 1838 ret = -EINVAL; 1839 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1840 goto err; 1841 } 1842 1843 do { 1844 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1845 } while (ret == -EINTR); 1846 1847 if (ret < 0) { 1848 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1849 strerror(-ret)); 1850 1851 #ifdef TARGET_S390X 1852 if (ret == -EINVAL) { 1853 fprintf(stderr, 1854 "Host kernel setup problem detected. Please verify:\n"); 1855 fprintf(stderr, "- for kernels supporting the switch_amode or" 1856 " user_mode parameters, whether\n"); 1857 fprintf(stderr, 1858 " user space is running in primary address space\n"); 1859 fprintf(stderr, 1860 "- for kernels supporting the vm.allocate_pgste sysctl, " 1861 "whether it is enabled\n"); 1862 } 1863 #endif 1864 goto err; 1865 } 1866 1867 s->vmfd = ret; 1868 1869 /* check the vcpu limits */ 1870 soft_vcpus_limit = kvm_recommended_vcpus(s); 1871 hard_vcpus_limit = kvm_max_vcpus(s); 1872 1873 while (nc->name) { 1874 if (nc->num > soft_vcpus_limit) { 1875 warn_report("Number of %s cpus requested (%d) exceeds " 1876 "the recommended cpus supported by KVM (%d)", 1877 nc->name, nc->num, soft_vcpus_limit); 1878 1879 if (nc->num > hard_vcpus_limit) { 1880 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1881 "the maximum cpus supported by KVM (%d)\n", 1882 nc->name, nc->num, hard_vcpus_limit); 1883 exit(1); 1884 } 1885 } 1886 nc++; 1887 } 1888 1889 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1890 if (!missing_cap) { 1891 missing_cap = 1892 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1893 } 1894 if (missing_cap) { 1895 ret = -EINVAL; 1896 fprintf(stderr, "kvm does not support %s\n%s", 1897 missing_cap->name, upgrade_note); 1898 goto err; 1899 } 1900 1901 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1902 s->coalesced_pio = s->coalesced_mmio && 1903 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1904 1905 s->manual_dirty_log_protect = 1906 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 1907 if (s->manual_dirty_log_protect) { 1908 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1); 1909 if (ret) { 1910 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 " 1911 "but failed. Falling back to the legacy mode. "); 1912 s->manual_dirty_log_protect = false; 1913 } 1914 } 1915 1916 #ifdef KVM_CAP_VCPU_EVENTS 1917 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1918 #endif 1919 1920 s->robust_singlestep = 1921 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1922 1923 #ifdef KVM_CAP_DEBUGREGS 1924 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1925 #endif 1926 1927 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 1928 1929 #ifdef KVM_CAP_IRQ_ROUTING 1930 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1931 #endif 1932 1933 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1934 1935 s->irq_set_ioctl = KVM_IRQ_LINE; 1936 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1937 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1938 } 1939 1940 kvm_readonly_mem_allowed = 1941 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1942 1943 kvm_eventfds_allowed = 1944 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1945 1946 kvm_irqfds_allowed = 1947 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1948 1949 kvm_resamplefds_allowed = 1950 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1951 1952 kvm_vm_attributes_allowed = 1953 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1954 1955 kvm_ioeventfd_any_length_allowed = 1956 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1957 1958 kvm_state = s; 1959 1960 /* 1961 * if memory encryption object is specified then initialize the memory 1962 * encryption context. 1963 */ 1964 if (ms->memory_encryption) { 1965 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 1966 if (!kvm_state->memcrypt_handle) { 1967 ret = -1; 1968 goto err; 1969 } 1970 1971 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 1972 } 1973 1974 ret = kvm_arch_init(ms, s); 1975 if (ret < 0) { 1976 goto err; 1977 } 1978 1979 if (machine_kernel_irqchip_allowed(ms)) { 1980 kvm_irqchip_create(ms, s); 1981 } 1982 1983 if (kvm_eventfds_allowed) { 1984 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1985 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1986 } 1987 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 1988 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 1989 1990 kvm_memory_listener_register(s, &s->memory_listener, 1991 &address_space_memory, 0); 1992 memory_listener_register(&kvm_io_listener, 1993 &address_space_io); 1994 memory_listener_register(&kvm_coalesced_pio_listener, 1995 &address_space_io); 1996 1997 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1998 1999 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2000 if (!s->sync_mmu) { 2001 qemu_balloon_inhibit(true); 2002 } 2003 2004 return 0; 2005 2006 err: 2007 assert(ret < 0); 2008 if (s->vmfd >= 0) { 2009 close(s->vmfd); 2010 } 2011 if (s->fd != -1) { 2012 close(s->fd); 2013 } 2014 g_free(s->memory_listener.slots); 2015 2016 return ret; 2017 } 2018 2019 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2020 { 2021 s->sigmask_len = sigmask_len; 2022 } 2023 2024 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2025 int size, uint32_t count) 2026 { 2027 int i; 2028 uint8_t *ptr = data; 2029 2030 for (i = 0; i < count; i++) { 2031 address_space_rw(&address_space_io, port, attrs, 2032 ptr, size, 2033 direction == KVM_EXIT_IO_OUT); 2034 ptr += size; 2035 } 2036 } 2037 2038 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2039 { 2040 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2041 run->internal.suberror); 2042 2043 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2044 int i; 2045 2046 for (i = 0; i < run->internal.ndata; ++i) { 2047 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2048 i, (uint64_t)run->internal.data[i]); 2049 } 2050 } 2051 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2052 fprintf(stderr, "emulation failure\n"); 2053 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2054 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2055 return EXCP_INTERRUPT; 2056 } 2057 } 2058 /* FIXME: Should trigger a qmp message to let management know 2059 * something went wrong. 2060 */ 2061 return -1; 2062 } 2063 2064 void kvm_flush_coalesced_mmio_buffer(void) 2065 { 2066 KVMState *s = kvm_state; 2067 2068 if (s->coalesced_flush_in_progress) { 2069 return; 2070 } 2071 2072 s->coalesced_flush_in_progress = true; 2073 2074 if (s->coalesced_mmio_ring) { 2075 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2076 while (ring->first != ring->last) { 2077 struct kvm_coalesced_mmio *ent; 2078 2079 ent = &ring->coalesced_mmio[ring->first]; 2080 2081 if (ent->pio == 1) { 2082 address_space_rw(&address_space_io, ent->phys_addr, 2083 MEMTXATTRS_UNSPECIFIED, ent->data, 2084 ent->len, true); 2085 } else { 2086 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2087 } 2088 smp_wmb(); 2089 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2090 } 2091 } 2092 2093 s->coalesced_flush_in_progress = false; 2094 } 2095 2096 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2097 { 2098 if (!cpu->vcpu_dirty) { 2099 kvm_arch_get_registers(cpu); 2100 cpu->vcpu_dirty = true; 2101 } 2102 } 2103 2104 void kvm_cpu_synchronize_state(CPUState *cpu) 2105 { 2106 if (!cpu->vcpu_dirty) { 2107 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2108 } 2109 } 2110 2111 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2112 { 2113 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2114 cpu->vcpu_dirty = false; 2115 } 2116 2117 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2118 { 2119 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2120 } 2121 2122 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2123 { 2124 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2125 cpu->vcpu_dirty = false; 2126 } 2127 2128 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2129 { 2130 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2131 } 2132 2133 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2134 { 2135 cpu->vcpu_dirty = true; 2136 } 2137 2138 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2139 { 2140 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2141 } 2142 2143 #ifdef KVM_HAVE_MCE_INJECTION 2144 static __thread void *pending_sigbus_addr; 2145 static __thread int pending_sigbus_code; 2146 static __thread bool have_sigbus_pending; 2147 #endif 2148 2149 static void kvm_cpu_kick(CPUState *cpu) 2150 { 2151 atomic_set(&cpu->kvm_run->immediate_exit, 1); 2152 } 2153 2154 static void kvm_cpu_kick_self(void) 2155 { 2156 if (kvm_immediate_exit) { 2157 kvm_cpu_kick(current_cpu); 2158 } else { 2159 qemu_cpu_kick_self(); 2160 } 2161 } 2162 2163 static void kvm_eat_signals(CPUState *cpu) 2164 { 2165 struct timespec ts = { 0, 0 }; 2166 siginfo_t siginfo; 2167 sigset_t waitset; 2168 sigset_t chkset; 2169 int r; 2170 2171 if (kvm_immediate_exit) { 2172 atomic_set(&cpu->kvm_run->immediate_exit, 0); 2173 /* Write kvm_run->immediate_exit before the cpu->exit_request 2174 * write in kvm_cpu_exec. 2175 */ 2176 smp_wmb(); 2177 return; 2178 } 2179 2180 sigemptyset(&waitset); 2181 sigaddset(&waitset, SIG_IPI); 2182 2183 do { 2184 r = sigtimedwait(&waitset, &siginfo, &ts); 2185 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2186 perror("sigtimedwait"); 2187 exit(1); 2188 } 2189 2190 r = sigpending(&chkset); 2191 if (r == -1) { 2192 perror("sigpending"); 2193 exit(1); 2194 } 2195 } while (sigismember(&chkset, SIG_IPI)); 2196 } 2197 2198 int kvm_cpu_exec(CPUState *cpu) 2199 { 2200 struct kvm_run *run = cpu->kvm_run; 2201 int ret, run_ret; 2202 2203 DPRINTF("kvm_cpu_exec()\n"); 2204 2205 if (kvm_arch_process_async_events(cpu)) { 2206 atomic_set(&cpu->exit_request, 0); 2207 return EXCP_HLT; 2208 } 2209 2210 qemu_mutex_unlock_iothread(); 2211 cpu_exec_start(cpu); 2212 2213 do { 2214 MemTxAttrs attrs; 2215 2216 if (cpu->vcpu_dirty) { 2217 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2218 cpu->vcpu_dirty = false; 2219 } 2220 2221 kvm_arch_pre_run(cpu, run); 2222 if (atomic_read(&cpu->exit_request)) { 2223 DPRINTF("interrupt exit requested\n"); 2224 /* 2225 * KVM requires us to reenter the kernel after IO exits to complete 2226 * instruction emulation. This self-signal will ensure that we 2227 * leave ASAP again. 2228 */ 2229 kvm_cpu_kick_self(); 2230 } 2231 2232 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2233 * Matching barrier in kvm_eat_signals. 2234 */ 2235 smp_rmb(); 2236 2237 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2238 2239 attrs = kvm_arch_post_run(cpu, run); 2240 2241 #ifdef KVM_HAVE_MCE_INJECTION 2242 if (unlikely(have_sigbus_pending)) { 2243 qemu_mutex_lock_iothread(); 2244 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2245 pending_sigbus_addr); 2246 have_sigbus_pending = false; 2247 qemu_mutex_unlock_iothread(); 2248 } 2249 #endif 2250 2251 if (run_ret < 0) { 2252 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2253 DPRINTF("io window exit\n"); 2254 kvm_eat_signals(cpu); 2255 ret = EXCP_INTERRUPT; 2256 break; 2257 } 2258 fprintf(stderr, "error: kvm run failed %s\n", 2259 strerror(-run_ret)); 2260 #ifdef TARGET_PPC 2261 if (run_ret == -EBUSY) { 2262 fprintf(stderr, 2263 "This is probably because your SMT is enabled.\n" 2264 "VCPU can only run on primary threads with all " 2265 "secondary threads offline.\n"); 2266 } 2267 #endif 2268 ret = -1; 2269 break; 2270 } 2271 2272 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2273 switch (run->exit_reason) { 2274 case KVM_EXIT_IO: 2275 DPRINTF("handle_io\n"); 2276 /* Called outside BQL */ 2277 kvm_handle_io(run->io.port, attrs, 2278 (uint8_t *)run + run->io.data_offset, 2279 run->io.direction, 2280 run->io.size, 2281 run->io.count); 2282 ret = 0; 2283 break; 2284 case KVM_EXIT_MMIO: 2285 DPRINTF("handle_mmio\n"); 2286 /* Called outside BQL */ 2287 address_space_rw(&address_space_memory, 2288 run->mmio.phys_addr, attrs, 2289 run->mmio.data, 2290 run->mmio.len, 2291 run->mmio.is_write); 2292 ret = 0; 2293 break; 2294 case KVM_EXIT_IRQ_WINDOW_OPEN: 2295 DPRINTF("irq_window_open\n"); 2296 ret = EXCP_INTERRUPT; 2297 break; 2298 case KVM_EXIT_SHUTDOWN: 2299 DPRINTF("shutdown\n"); 2300 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2301 ret = EXCP_INTERRUPT; 2302 break; 2303 case KVM_EXIT_UNKNOWN: 2304 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2305 (uint64_t)run->hw.hardware_exit_reason); 2306 ret = -1; 2307 break; 2308 case KVM_EXIT_INTERNAL_ERROR: 2309 ret = kvm_handle_internal_error(cpu, run); 2310 break; 2311 case KVM_EXIT_SYSTEM_EVENT: 2312 switch (run->system_event.type) { 2313 case KVM_SYSTEM_EVENT_SHUTDOWN: 2314 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2315 ret = EXCP_INTERRUPT; 2316 break; 2317 case KVM_SYSTEM_EVENT_RESET: 2318 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2319 ret = EXCP_INTERRUPT; 2320 break; 2321 case KVM_SYSTEM_EVENT_CRASH: 2322 kvm_cpu_synchronize_state(cpu); 2323 qemu_mutex_lock_iothread(); 2324 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2325 qemu_mutex_unlock_iothread(); 2326 ret = 0; 2327 break; 2328 default: 2329 DPRINTF("kvm_arch_handle_exit\n"); 2330 ret = kvm_arch_handle_exit(cpu, run); 2331 break; 2332 } 2333 break; 2334 default: 2335 DPRINTF("kvm_arch_handle_exit\n"); 2336 ret = kvm_arch_handle_exit(cpu, run); 2337 break; 2338 } 2339 } while (ret == 0); 2340 2341 cpu_exec_end(cpu); 2342 qemu_mutex_lock_iothread(); 2343 2344 if (ret < 0) { 2345 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2346 vm_stop(RUN_STATE_INTERNAL_ERROR); 2347 } 2348 2349 atomic_set(&cpu->exit_request, 0); 2350 return ret; 2351 } 2352 2353 int kvm_ioctl(KVMState *s, int type, ...) 2354 { 2355 int ret; 2356 void *arg; 2357 va_list ap; 2358 2359 va_start(ap, type); 2360 arg = va_arg(ap, void *); 2361 va_end(ap); 2362 2363 trace_kvm_ioctl(type, arg); 2364 ret = ioctl(s->fd, type, arg); 2365 if (ret == -1) { 2366 ret = -errno; 2367 } 2368 return ret; 2369 } 2370 2371 int kvm_vm_ioctl(KVMState *s, int type, ...) 2372 { 2373 int ret; 2374 void *arg; 2375 va_list ap; 2376 2377 va_start(ap, type); 2378 arg = va_arg(ap, void *); 2379 va_end(ap); 2380 2381 trace_kvm_vm_ioctl(type, arg); 2382 ret = ioctl(s->vmfd, type, arg); 2383 if (ret == -1) { 2384 ret = -errno; 2385 } 2386 return ret; 2387 } 2388 2389 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2390 { 2391 int ret; 2392 void *arg; 2393 va_list ap; 2394 2395 va_start(ap, type); 2396 arg = va_arg(ap, void *); 2397 va_end(ap); 2398 2399 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2400 ret = ioctl(cpu->kvm_fd, type, arg); 2401 if (ret == -1) { 2402 ret = -errno; 2403 } 2404 return ret; 2405 } 2406 2407 int kvm_device_ioctl(int fd, int type, ...) 2408 { 2409 int ret; 2410 void *arg; 2411 va_list ap; 2412 2413 va_start(ap, type); 2414 arg = va_arg(ap, void *); 2415 va_end(ap); 2416 2417 trace_kvm_device_ioctl(fd, type, arg); 2418 ret = ioctl(fd, type, arg); 2419 if (ret == -1) { 2420 ret = -errno; 2421 } 2422 return ret; 2423 } 2424 2425 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2426 { 2427 int ret; 2428 struct kvm_device_attr attribute = { 2429 .group = group, 2430 .attr = attr, 2431 }; 2432 2433 if (!kvm_vm_attributes_allowed) { 2434 return 0; 2435 } 2436 2437 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2438 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2439 return ret ? 0 : 1; 2440 } 2441 2442 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2443 { 2444 struct kvm_device_attr attribute = { 2445 .group = group, 2446 .attr = attr, 2447 .flags = 0, 2448 }; 2449 2450 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2451 } 2452 2453 int kvm_device_access(int fd, int group, uint64_t attr, 2454 void *val, bool write, Error **errp) 2455 { 2456 struct kvm_device_attr kvmattr; 2457 int err; 2458 2459 kvmattr.flags = 0; 2460 kvmattr.group = group; 2461 kvmattr.attr = attr; 2462 kvmattr.addr = (uintptr_t)val; 2463 2464 err = kvm_device_ioctl(fd, 2465 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2466 &kvmattr); 2467 if (err < 0) { 2468 error_setg_errno(errp, -err, 2469 "KVM_%s_DEVICE_ATTR failed: Group %d " 2470 "attr 0x%016" PRIx64, 2471 write ? "SET" : "GET", group, attr); 2472 } 2473 return err; 2474 } 2475 2476 bool kvm_has_sync_mmu(void) 2477 { 2478 return kvm_state->sync_mmu; 2479 } 2480 2481 int kvm_has_vcpu_events(void) 2482 { 2483 return kvm_state->vcpu_events; 2484 } 2485 2486 int kvm_has_robust_singlestep(void) 2487 { 2488 return kvm_state->robust_singlestep; 2489 } 2490 2491 int kvm_has_debugregs(void) 2492 { 2493 return kvm_state->debugregs; 2494 } 2495 2496 int kvm_max_nested_state_length(void) 2497 { 2498 return kvm_state->max_nested_state_len; 2499 } 2500 2501 int kvm_has_many_ioeventfds(void) 2502 { 2503 if (!kvm_enabled()) { 2504 return 0; 2505 } 2506 return kvm_state->many_ioeventfds; 2507 } 2508 2509 int kvm_has_gsi_routing(void) 2510 { 2511 #ifdef KVM_CAP_IRQ_ROUTING 2512 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2513 #else 2514 return false; 2515 #endif 2516 } 2517 2518 int kvm_has_intx_set_mask(void) 2519 { 2520 return kvm_state->intx_set_mask; 2521 } 2522 2523 bool kvm_arm_supports_user_irq(void) 2524 { 2525 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2526 } 2527 2528 #ifdef KVM_CAP_SET_GUEST_DEBUG 2529 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2530 target_ulong pc) 2531 { 2532 struct kvm_sw_breakpoint *bp; 2533 2534 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2535 if (bp->pc == pc) { 2536 return bp; 2537 } 2538 } 2539 return NULL; 2540 } 2541 2542 int kvm_sw_breakpoints_active(CPUState *cpu) 2543 { 2544 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2545 } 2546 2547 struct kvm_set_guest_debug_data { 2548 struct kvm_guest_debug dbg; 2549 int err; 2550 }; 2551 2552 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2553 { 2554 struct kvm_set_guest_debug_data *dbg_data = 2555 (struct kvm_set_guest_debug_data *) data.host_ptr; 2556 2557 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2558 &dbg_data->dbg); 2559 } 2560 2561 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2562 { 2563 struct kvm_set_guest_debug_data data; 2564 2565 data.dbg.control = reinject_trap; 2566 2567 if (cpu->singlestep_enabled) { 2568 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2569 } 2570 kvm_arch_update_guest_debug(cpu, &data.dbg); 2571 2572 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2573 RUN_ON_CPU_HOST_PTR(&data)); 2574 return data.err; 2575 } 2576 2577 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2578 target_ulong len, int type) 2579 { 2580 struct kvm_sw_breakpoint *bp; 2581 int err; 2582 2583 if (type == GDB_BREAKPOINT_SW) { 2584 bp = kvm_find_sw_breakpoint(cpu, addr); 2585 if (bp) { 2586 bp->use_count++; 2587 return 0; 2588 } 2589 2590 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2591 bp->pc = addr; 2592 bp->use_count = 1; 2593 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2594 if (err) { 2595 g_free(bp); 2596 return err; 2597 } 2598 2599 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2600 } else { 2601 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2602 if (err) { 2603 return err; 2604 } 2605 } 2606 2607 CPU_FOREACH(cpu) { 2608 err = kvm_update_guest_debug(cpu, 0); 2609 if (err) { 2610 return err; 2611 } 2612 } 2613 return 0; 2614 } 2615 2616 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2617 target_ulong len, int type) 2618 { 2619 struct kvm_sw_breakpoint *bp; 2620 int err; 2621 2622 if (type == GDB_BREAKPOINT_SW) { 2623 bp = kvm_find_sw_breakpoint(cpu, addr); 2624 if (!bp) { 2625 return -ENOENT; 2626 } 2627 2628 if (bp->use_count > 1) { 2629 bp->use_count--; 2630 return 0; 2631 } 2632 2633 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2634 if (err) { 2635 return err; 2636 } 2637 2638 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2639 g_free(bp); 2640 } else { 2641 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2642 if (err) { 2643 return err; 2644 } 2645 } 2646 2647 CPU_FOREACH(cpu) { 2648 err = kvm_update_guest_debug(cpu, 0); 2649 if (err) { 2650 return err; 2651 } 2652 } 2653 return 0; 2654 } 2655 2656 void kvm_remove_all_breakpoints(CPUState *cpu) 2657 { 2658 struct kvm_sw_breakpoint *bp, *next; 2659 KVMState *s = cpu->kvm_state; 2660 CPUState *tmpcpu; 2661 2662 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2663 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2664 /* Try harder to find a CPU that currently sees the breakpoint. */ 2665 CPU_FOREACH(tmpcpu) { 2666 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2667 break; 2668 } 2669 } 2670 } 2671 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2672 g_free(bp); 2673 } 2674 kvm_arch_remove_all_hw_breakpoints(); 2675 2676 CPU_FOREACH(cpu) { 2677 kvm_update_guest_debug(cpu, 0); 2678 } 2679 } 2680 2681 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2682 2683 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2684 { 2685 return -EINVAL; 2686 } 2687 2688 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2689 target_ulong len, int type) 2690 { 2691 return -EINVAL; 2692 } 2693 2694 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2695 target_ulong len, int type) 2696 { 2697 return -EINVAL; 2698 } 2699 2700 void kvm_remove_all_breakpoints(CPUState *cpu) 2701 { 2702 } 2703 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2704 2705 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2706 { 2707 KVMState *s = kvm_state; 2708 struct kvm_signal_mask *sigmask; 2709 int r; 2710 2711 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2712 2713 sigmask->len = s->sigmask_len; 2714 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2715 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2716 g_free(sigmask); 2717 2718 return r; 2719 } 2720 2721 static void kvm_ipi_signal(int sig) 2722 { 2723 if (current_cpu) { 2724 assert(kvm_immediate_exit); 2725 kvm_cpu_kick(current_cpu); 2726 } 2727 } 2728 2729 void kvm_init_cpu_signals(CPUState *cpu) 2730 { 2731 int r; 2732 sigset_t set; 2733 struct sigaction sigact; 2734 2735 memset(&sigact, 0, sizeof(sigact)); 2736 sigact.sa_handler = kvm_ipi_signal; 2737 sigaction(SIG_IPI, &sigact, NULL); 2738 2739 pthread_sigmask(SIG_BLOCK, NULL, &set); 2740 #if defined KVM_HAVE_MCE_INJECTION 2741 sigdelset(&set, SIGBUS); 2742 pthread_sigmask(SIG_SETMASK, &set, NULL); 2743 #endif 2744 sigdelset(&set, SIG_IPI); 2745 if (kvm_immediate_exit) { 2746 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2747 } else { 2748 r = kvm_set_signal_mask(cpu, &set); 2749 } 2750 if (r) { 2751 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2752 exit(1); 2753 } 2754 } 2755 2756 /* Called asynchronously in VCPU thread. */ 2757 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2758 { 2759 #ifdef KVM_HAVE_MCE_INJECTION 2760 if (have_sigbus_pending) { 2761 return 1; 2762 } 2763 have_sigbus_pending = true; 2764 pending_sigbus_addr = addr; 2765 pending_sigbus_code = code; 2766 atomic_set(&cpu->exit_request, 1); 2767 return 0; 2768 #else 2769 return 1; 2770 #endif 2771 } 2772 2773 /* Called synchronously (via signalfd) in main thread. */ 2774 int kvm_on_sigbus(int code, void *addr) 2775 { 2776 #ifdef KVM_HAVE_MCE_INJECTION 2777 /* Action required MCE kills the process if SIGBUS is blocked. Because 2778 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2779 * we can only get action optional here. 2780 */ 2781 assert(code != BUS_MCEERR_AR); 2782 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2783 return 0; 2784 #else 2785 return 1; 2786 #endif 2787 } 2788 2789 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2790 { 2791 int ret; 2792 struct kvm_create_device create_dev; 2793 2794 create_dev.type = type; 2795 create_dev.fd = -1; 2796 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2797 2798 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2799 return -ENOTSUP; 2800 } 2801 2802 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2803 if (ret) { 2804 return ret; 2805 } 2806 2807 return test ? 0 : create_dev.fd; 2808 } 2809 2810 bool kvm_device_supported(int vmfd, uint64_t type) 2811 { 2812 struct kvm_create_device create_dev = { 2813 .type = type, 2814 .fd = -1, 2815 .flags = KVM_CREATE_DEVICE_TEST, 2816 }; 2817 2818 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2819 return false; 2820 } 2821 2822 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2823 } 2824 2825 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2826 { 2827 struct kvm_one_reg reg; 2828 int r; 2829 2830 reg.id = id; 2831 reg.addr = (uintptr_t) source; 2832 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2833 if (r) { 2834 trace_kvm_failed_reg_set(id, strerror(-r)); 2835 } 2836 return r; 2837 } 2838 2839 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2840 { 2841 struct kvm_one_reg reg; 2842 int r; 2843 2844 reg.id = id; 2845 reg.addr = (uintptr_t) target; 2846 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2847 if (r) { 2848 trace_kvm_failed_reg_get(id, strerror(-r)); 2849 } 2850 return r; 2851 } 2852 2853 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 2854 hwaddr start_addr, hwaddr size) 2855 { 2856 KVMState *kvm = KVM_STATE(ms->accelerator); 2857 int i; 2858 2859 for (i = 0; i < kvm->nr_as; ++i) { 2860 if (kvm->as[i].as == as && kvm->as[i].ml) { 2861 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 2862 start_addr, size); 2863 } 2864 } 2865 2866 return false; 2867 } 2868 2869 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2870 { 2871 AccelClass *ac = ACCEL_CLASS(oc); 2872 ac->name = "KVM"; 2873 ac->init_machine = kvm_init; 2874 ac->has_memory = kvm_accel_has_memory; 2875 ac->allowed = &kvm_allowed; 2876 } 2877 2878 static const TypeInfo kvm_accel_type = { 2879 .name = TYPE_KVM_ACCEL, 2880 .parent = TYPE_ACCEL, 2881 .class_init = kvm_accel_class_init, 2882 .instance_size = sizeof(KVMState), 2883 }; 2884 2885 static void kvm_type_init(void) 2886 { 2887 type_register_static(&kvm_accel_type); 2888 } 2889 2890 type_init(kvm_type_init); 2891