xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 44602af8)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm-cpus.h"
48 #include "sysemu/dirtylimit.h"
49 
50 #include "hw/boards.h"
51 #include "monitor/stats.h"
52 
53 /* This check must be after config-host.h is included */
54 #ifdef CONFIG_EVENTFD
55 #include <sys/eventfd.h>
56 #endif
57 
58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
59  * need to use the real host PAGE_SIZE, as that's what KVM will use.
60  */
61 #ifdef PAGE_SIZE
62 #undef PAGE_SIZE
63 #endif
64 #define PAGE_SIZE qemu_real_host_page_size()
65 
66 #ifndef KVM_GUESTDBG_BLOCKIRQ
67 #define KVM_GUESTDBG_BLOCKIRQ 0
68 #endif
69 
70 //#define DEBUG_KVM
71 
72 #ifdef DEBUG_KVM
73 #define DPRINTF(fmt, ...) \
74     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
75 #else
76 #define DPRINTF(fmt, ...) \
77     do { } while (0)
78 #endif
79 
80 #define KVM_MSI_HASHTAB_SIZE    256
81 
82 struct KVMParkedVcpu {
83     unsigned long vcpu_id;
84     int kvm_fd;
85     QLIST_ENTRY(KVMParkedVcpu) node;
86 };
87 
88 enum KVMDirtyRingReaperState {
89     KVM_DIRTY_RING_REAPER_NONE = 0,
90     /* The reaper is sleeping */
91     KVM_DIRTY_RING_REAPER_WAIT,
92     /* The reaper is reaping for dirty pages */
93     KVM_DIRTY_RING_REAPER_REAPING,
94 };
95 
96 /*
97  * KVM reaper instance, responsible for collecting the KVM dirty bits
98  * via the dirty ring.
99  */
100 struct KVMDirtyRingReaper {
101     /* The reaper thread */
102     QemuThread reaper_thr;
103     volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
104     volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
105 };
106 
107 struct KVMState
108 {
109     AccelState parent_obj;
110 
111     int nr_slots;
112     int fd;
113     int vmfd;
114     int coalesced_mmio;
115     int coalesced_pio;
116     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
117     bool coalesced_flush_in_progress;
118     int vcpu_events;
119     int robust_singlestep;
120     int debugregs;
121 #ifdef KVM_CAP_SET_GUEST_DEBUG
122     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
123 #endif
124     int max_nested_state_len;
125     int many_ioeventfds;
126     int intx_set_mask;
127     int kvm_shadow_mem;
128     bool kernel_irqchip_allowed;
129     bool kernel_irqchip_required;
130     OnOffAuto kernel_irqchip_split;
131     bool sync_mmu;
132     uint64_t manual_dirty_log_protect;
133     /* The man page (and posix) say ioctl numbers are signed int, but
134      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
135      * unsigned, and treating them as signed here can break things */
136     unsigned irq_set_ioctl;
137     unsigned int sigmask_len;
138     GHashTable *gsimap;
139 #ifdef KVM_CAP_IRQ_ROUTING
140     struct kvm_irq_routing *irq_routes;
141     int nr_allocated_irq_routes;
142     unsigned long *used_gsi_bitmap;
143     unsigned int gsi_count;
144     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
145 #endif
146     KVMMemoryListener memory_listener;
147     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
148 
149     /* For "info mtree -f" to tell if an MR is registered in KVM */
150     int nr_as;
151     struct KVMAs {
152         KVMMemoryListener *ml;
153         AddressSpace *as;
154     } *as;
155     uint64_t kvm_dirty_ring_bytes;  /* Size of the per-vcpu dirty ring */
156     uint32_t kvm_dirty_ring_size;   /* Number of dirty GFNs per ring */
157     struct KVMDirtyRingReaper reaper;
158 };
159 
160 KVMState *kvm_state;
161 bool kvm_kernel_irqchip;
162 bool kvm_split_irqchip;
163 bool kvm_async_interrupts_allowed;
164 bool kvm_halt_in_kernel_allowed;
165 bool kvm_eventfds_allowed;
166 bool kvm_irqfds_allowed;
167 bool kvm_resamplefds_allowed;
168 bool kvm_msi_via_irqfd_allowed;
169 bool kvm_gsi_routing_allowed;
170 bool kvm_gsi_direct_mapping;
171 bool kvm_allowed;
172 bool kvm_readonly_mem_allowed;
173 bool kvm_vm_attributes_allowed;
174 bool kvm_direct_msi_allowed;
175 bool kvm_ioeventfd_any_length_allowed;
176 bool kvm_msi_use_devid;
177 bool kvm_has_guest_debug;
178 int kvm_sstep_flags;
179 static bool kvm_immediate_exit;
180 static hwaddr kvm_max_slot_size = ~0;
181 
182 static const KVMCapabilityInfo kvm_required_capabilites[] = {
183     KVM_CAP_INFO(USER_MEMORY),
184     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
185     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
186     KVM_CAP_LAST_INFO
187 };
188 
189 static NotifierList kvm_irqchip_change_notifiers =
190     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
191 
192 struct KVMResampleFd {
193     int gsi;
194     EventNotifier *resample_event;
195     QLIST_ENTRY(KVMResampleFd) node;
196 };
197 typedef struct KVMResampleFd KVMResampleFd;
198 
199 /*
200  * Only used with split irqchip where we need to do the resample fd
201  * kick for the kernel from userspace.
202  */
203 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
204     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
205 
206 static QemuMutex kml_slots_lock;
207 
208 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
209 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
210 
211 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
212 
213 static inline void kvm_resample_fd_remove(int gsi)
214 {
215     KVMResampleFd *rfd;
216 
217     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
218         if (rfd->gsi == gsi) {
219             QLIST_REMOVE(rfd, node);
220             g_free(rfd);
221             break;
222         }
223     }
224 }
225 
226 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
227 {
228     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
229 
230     rfd->gsi = gsi;
231     rfd->resample_event = event;
232 
233     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
234 }
235 
236 void kvm_resample_fd_notify(int gsi)
237 {
238     KVMResampleFd *rfd;
239 
240     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
241         if (rfd->gsi == gsi) {
242             event_notifier_set(rfd->resample_event);
243             trace_kvm_resample_fd_notify(gsi);
244             return;
245         }
246     }
247 }
248 
249 int kvm_get_max_memslots(void)
250 {
251     KVMState *s = KVM_STATE(current_accel());
252 
253     return s->nr_slots;
254 }
255 
256 /* Called with KVMMemoryListener.slots_lock held */
257 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
258 {
259     KVMState *s = kvm_state;
260     int i;
261 
262     for (i = 0; i < s->nr_slots; i++) {
263         if (kml->slots[i].memory_size == 0) {
264             return &kml->slots[i];
265         }
266     }
267 
268     return NULL;
269 }
270 
271 bool kvm_has_free_slot(MachineState *ms)
272 {
273     KVMState *s = KVM_STATE(ms->accelerator);
274     bool result;
275     KVMMemoryListener *kml = &s->memory_listener;
276 
277     kvm_slots_lock();
278     result = !!kvm_get_free_slot(kml);
279     kvm_slots_unlock();
280 
281     return result;
282 }
283 
284 /* Called with KVMMemoryListener.slots_lock held */
285 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
286 {
287     KVMSlot *slot = kvm_get_free_slot(kml);
288 
289     if (slot) {
290         return slot;
291     }
292 
293     fprintf(stderr, "%s: no free slot available\n", __func__);
294     abort();
295 }
296 
297 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
298                                          hwaddr start_addr,
299                                          hwaddr size)
300 {
301     KVMState *s = kvm_state;
302     int i;
303 
304     for (i = 0; i < s->nr_slots; i++) {
305         KVMSlot *mem = &kml->slots[i];
306 
307         if (start_addr == mem->start_addr && size == mem->memory_size) {
308             return mem;
309         }
310     }
311 
312     return NULL;
313 }
314 
315 /*
316  * Calculate and align the start address and the size of the section.
317  * Return the size. If the size is 0, the aligned section is empty.
318  */
319 static hwaddr kvm_align_section(MemoryRegionSection *section,
320                                 hwaddr *start)
321 {
322     hwaddr size = int128_get64(section->size);
323     hwaddr delta, aligned;
324 
325     /* kvm works in page size chunks, but the function may be called
326        with sub-page size and unaligned start address. Pad the start
327        address to next and truncate size to previous page boundary. */
328     aligned = ROUND_UP(section->offset_within_address_space,
329                        qemu_real_host_page_size());
330     delta = aligned - section->offset_within_address_space;
331     *start = aligned;
332     if (delta > size) {
333         return 0;
334     }
335 
336     return (size - delta) & qemu_real_host_page_mask();
337 }
338 
339 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
340                                        hwaddr *phys_addr)
341 {
342     KVMMemoryListener *kml = &s->memory_listener;
343     int i, ret = 0;
344 
345     kvm_slots_lock();
346     for (i = 0; i < s->nr_slots; i++) {
347         KVMSlot *mem = &kml->slots[i];
348 
349         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
350             *phys_addr = mem->start_addr + (ram - mem->ram);
351             ret = 1;
352             break;
353         }
354     }
355     kvm_slots_unlock();
356 
357     return ret;
358 }
359 
360 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
361 {
362     KVMState *s = kvm_state;
363     struct kvm_userspace_memory_region mem;
364     int ret;
365 
366     mem.slot = slot->slot | (kml->as_id << 16);
367     mem.guest_phys_addr = slot->start_addr;
368     mem.userspace_addr = (unsigned long)slot->ram;
369     mem.flags = slot->flags;
370 
371     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
372         /* Set the slot size to 0 before setting the slot to the desired
373          * value. This is needed based on KVM commit 75d61fbc. */
374         mem.memory_size = 0;
375         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
376         if (ret < 0) {
377             goto err;
378         }
379     }
380     mem.memory_size = slot->memory_size;
381     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
382     slot->old_flags = mem.flags;
383 err:
384     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
385                               mem.memory_size, mem.userspace_addr, ret);
386     if (ret < 0) {
387         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
388                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
389                      __func__, mem.slot, slot->start_addr,
390                      (uint64_t)mem.memory_size, strerror(errno));
391     }
392     return ret;
393 }
394 
395 static int do_kvm_destroy_vcpu(CPUState *cpu)
396 {
397     KVMState *s = kvm_state;
398     long mmap_size;
399     struct KVMParkedVcpu *vcpu = NULL;
400     int ret = 0;
401 
402     DPRINTF("kvm_destroy_vcpu\n");
403 
404     ret = kvm_arch_destroy_vcpu(cpu);
405     if (ret < 0) {
406         goto err;
407     }
408 
409     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
410     if (mmap_size < 0) {
411         ret = mmap_size;
412         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
413         goto err;
414     }
415 
416     ret = munmap(cpu->kvm_run, mmap_size);
417     if (ret < 0) {
418         goto err;
419     }
420 
421     if (cpu->kvm_dirty_gfns) {
422         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
423         if (ret < 0) {
424             goto err;
425         }
426     }
427 
428     vcpu = g_malloc0(sizeof(*vcpu));
429     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
430     vcpu->kvm_fd = cpu->kvm_fd;
431     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
432 err:
433     return ret;
434 }
435 
436 void kvm_destroy_vcpu(CPUState *cpu)
437 {
438     if (do_kvm_destroy_vcpu(cpu) < 0) {
439         error_report("kvm_destroy_vcpu failed");
440         exit(EXIT_FAILURE);
441     }
442 }
443 
444 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
445 {
446     struct KVMParkedVcpu *cpu;
447 
448     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
449         if (cpu->vcpu_id == vcpu_id) {
450             int kvm_fd;
451 
452             QLIST_REMOVE(cpu, node);
453             kvm_fd = cpu->kvm_fd;
454             g_free(cpu);
455             return kvm_fd;
456         }
457     }
458 
459     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
460 }
461 
462 int kvm_init_vcpu(CPUState *cpu, Error **errp)
463 {
464     KVMState *s = kvm_state;
465     long mmap_size;
466     int ret;
467 
468     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
469 
470     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
471     if (ret < 0) {
472         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
473                          kvm_arch_vcpu_id(cpu));
474         goto err;
475     }
476 
477     cpu->kvm_fd = ret;
478     cpu->kvm_state = s;
479     cpu->vcpu_dirty = true;
480     cpu->dirty_pages = 0;
481     cpu->throttle_us_per_full = 0;
482 
483     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
484     if (mmap_size < 0) {
485         ret = mmap_size;
486         error_setg_errno(errp, -mmap_size,
487                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
488         goto err;
489     }
490 
491     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
492                         cpu->kvm_fd, 0);
493     if (cpu->kvm_run == MAP_FAILED) {
494         ret = -errno;
495         error_setg_errno(errp, ret,
496                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
497                          kvm_arch_vcpu_id(cpu));
498         goto err;
499     }
500 
501     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
502         s->coalesced_mmio_ring =
503             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
504     }
505 
506     if (s->kvm_dirty_ring_size) {
507         /* Use MAP_SHARED to share pages with the kernel */
508         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
509                                    PROT_READ | PROT_WRITE, MAP_SHARED,
510                                    cpu->kvm_fd,
511                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
512         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
513             ret = -errno;
514             DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
515             goto err;
516         }
517     }
518 
519     ret = kvm_arch_init_vcpu(cpu);
520     if (ret < 0) {
521         error_setg_errno(errp, -ret,
522                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
523                          kvm_arch_vcpu_id(cpu));
524     }
525 err:
526     return ret;
527 }
528 
529 /*
530  * dirty pages logging control
531  */
532 
533 static int kvm_mem_flags(MemoryRegion *mr)
534 {
535     bool readonly = mr->readonly || memory_region_is_romd(mr);
536     int flags = 0;
537 
538     if (memory_region_get_dirty_log_mask(mr) != 0) {
539         flags |= KVM_MEM_LOG_DIRTY_PAGES;
540     }
541     if (readonly && kvm_readonly_mem_allowed) {
542         flags |= KVM_MEM_READONLY;
543     }
544     return flags;
545 }
546 
547 /* Called with KVMMemoryListener.slots_lock held */
548 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
549                                  MemoryRegion *mr)
550 {
551     mem->flags = kvm_mem_flags(mr);
552 
553     /* If nothing changed effectively, no need to issue ioctl */
554     if (mem->flags == mem->old_flags) {
555         return 0;
556     }
557 
558     kvm_slot_init_dirty_bitmap(mem);
559     return kvm_set_user_memory_region(kml, mem, false);
560 }
561 
562 static int kvm_section_update_flags(KVMMemoryListener *kml,
563                                     MemoryRegionSection *section)
564 {
565     hwaddr start_addr, size, slot_size;
566     KVMSlot *mem;
567     int ret = 0;
568 
569     size = kvm_align_section(section, &start_addr);
570     if (!size) {
571         return 0;
572     }
573 
574     kvm_slots_lock();
575 
576     while (size && !ret) {
577         slot_size = MIN(kvm_max_slot_size, size);
578         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
579         if (!mem) {
580             /* We don't have a slot if we want to trap every access. */
581             goto out;
582         }
583 
584         ret = kvm_slot_update_flags(kml, mem, section->mr);
585         start_addr += slot_size;
586         size -= slot_size;
587     }
588 
589 out:
590     kvm_slots_unlock();
591     return ret;
592 }
593 
594 static void kvm_log_start(MemoryListener *listener,
595                           MemoryRegionSection *section,
596                           int old, int new)
597 {
598     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
599     int r;
600 
601     if (old != 0) {
602         return;
603     }
604 
605     r = kvm_section_update_flags(kml, section);
606     if (r < 0) {
607         abort();
608     }
609 }
610 
611 static void kvm_log_stop(MemoryListener *listener,
612                           MemoryRegionSection *section,
613                           int old, int new)
614 {
615     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
616     int r;
617 
618     if (new != 0) {
619         return;
620     }
621 
622     r = kvm_section_update_flags(kml, section);
623     if (r < 0) {
624         abort();
625     }
626 }
627 
628 /* get kvm's dirty pages bitmap and update qemu's */
629 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
630 {
631     ram_addr_t start = slot->ram_start_offset;
632     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
633 
634     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
635 }
636 
637 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
638 {
639     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
640 }
641 
642 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
643 
644 /* Allocate the dirty bitmap for a slot  */
645 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
646 {
647     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
648         return;
649     }
650 
651     /*
652      * XXX bad kernel interface alert
653      * For dirty bitmap, kernel allocates array of size aligned to
654      * bits-per-long.  But for case when the kernel is 64bits and
655      * the userspace is 32bits, userspace can't align to the same
656      * bits-per-long, since sizeof(long) is different between kernel
657      * and user space.  This way, userspace will provide buffer which
658      * may be 4 bytes less than the kernel will use, resulting in
659      * userspace memory corruption (which is not detectable by valgrind
660      * too, in most cases).
661      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
662      * a hope that sizeof(long) won't become >8 any time soon.
663      *
664      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
665      * And mem->memory_size is aligned to it (otherwise this mem can't
666      * be registered to KVM).
667      */
668     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
669                                         /*HOST_LONG_BITS*/ 64) / 8;
670     mem->dirty_bmap = g_malloc0(bitmap_size);
671     mem->dirty_bmap_size = bitmap_size;
672 }
673 
674 /*
675  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
676  * succeeded, false otherwise
677  */
678 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
679 {
680     struct kvm_dirty_log d = {};
681     int ret;
682 
683     d.dirty_bitmap = slot->dirty_bmap;
684     d.slot = slot->slot | (slot->as_id << 16);
685     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
686 
687     if (ret == -ENOENT) {
688         /* kernel does not have dirty bitmap in this slot */
689         ret = 0;
690     }
691     if (ret) {
692         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
693                           __func__, ret);
694     }
695     return ret == 0;
696 }
697 
698 /* Should be with all slots_lock held for the address spaces. */
699 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
700                                      uint32_t slot_id, uint64_t offset)
701 {
702     KVMMemoryListener *kml;
703     KVMSlot *mem;
704 
705     if (as_id >= s->nr_as) {
706         return;
707     }
708 
709     kml = s->as[as_id].ml;
710     mem = &kml->slots[slot_id];
711 
712     if (!mem->memory_size || offset >=
713         (mem->memory_size / qemu_real_host_page_size())) {
714         return;
715     }
716 
717     set_bit(offset, mem->dirty_bmap);
718 }
719 
720 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
721 {
722     return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
723 }
724 
725 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
726 {
727     gfn->flags = KVM_DIRTY_GFN_F_RESET;
728 }
729 
730 /*
731  * Should be with all slots_lock held for the address spaces.  It returns the
732  * dirty page we've collected on this dirty ring.
733  */
734 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
735 {
736     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
737     uint32_t ring_size = s->kvm_dirty_ring_size;
738     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
739 
740     assert(dirty_gfns && ring_size);
741     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
742 
743     while (true) {
744         cur = &dirty_gfns[fetch % ring_size];
745         if (!dirty_gfn_is_dirtied(cur)) {
746             break;
747         }
748         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
749                                  cur->offset);
750         dirty_gfn_set_collected(cur);
751         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
752         fetch++;
753         count++;
754     }
755     cpu->kvm_fetch_index = fetch;
756     cpu->dirty_pages += count;
757 
758     return count;
759 }
760 
761 /* Must be with slots_lock held */
762 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
763 {
764     int ret;
765     uint64_t total = 0;
766     int64_t stamp;
767 
768     stamp = get_clock();
769 
770     if (cpu) {
771         total = kvm_dirty_ring_reap_one(s, cpu);
772     } else {
773         CPU_FOREACH(cpu) {
774             total += kvm_dirty_ring_reap_one(s, cpu);
775         }
776     }
777 
778     if (total) {
779         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
780         assert(ret == total);
781     }
782 
783     stamp = get_clock() - stamp;
784 
785     if (total) {
786         trace_kvm_dirty_ring_reap(total, stamp / 1000);
787     }
788 
789     return total;
790 }
791 
792 /*
793  * Currently for simplicity, we must hold BQL before calling this.  We can
794  * consider to drop the BQL if we're clear with all the race conditions.
795  */
796 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
797 {
798     uint64_t total;
799 
800     /*
801      * We need to lock all kvm slots for all address spaces here,
802      * because:
803      *
804      * (1) We need to mark dirty for dirty bitmaps in multiple slots
805      *     and for tons of pages, so it's better to take the lock here
806      *     once rather than once per page.  And more importantly,
807      *
808      * (2) We must _NOT_ publish dirty bits to the other threads
809      *     (e.g., the migration thread) via the kvm memory slot dirty
810      *     bitmaps before correctly re-protect those dirtied pages.
811      *     Otherwise we can have potential risk of data corruption if
812      *     the page data is read in the other thread before we do
813      *     reset below.
814      */
815     kvm_slots_lock();
816     total = kvm_dirty_ring_reap_locked(s, cpu);
817     kvm_slots_unlock();
818 
819     return total;
820 }
821 
822 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
823 {
824     /* No need to do anything */
825 }
826 
827 /*
828  * Kick all vcpus out in a synchronized way.  When returned, we
829  * guarantee that every vcpu has been kicked and at least returned to
830  * userspace once.
831  */
832 static void kvm_cpu_synchronize_kick_all(void)
833 {
834     CPUState *cpu;
835 
836     CPU_FOREACH(cpu) {
837         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
838     }
839 }
840 
841 /*
842  * Flush all the existing dirty pages to the KVM slot buffers.  When
843  * this call returns, we guarantee that all the touched dirty pages
844  * before calling this function have been put into the per-kvmslot
845  * dirty bitmap.
846  *
847  * This function must be called with BQL held.
848  */
849 static void kvm_dirty_ring_flush(void)
850 {
851     trace_kvm_dirty_ring_flush(0);
852     /*
853      * The function needs to be serialized.  Since this function
854      * should always be with BQL held, serialization is guaranteed.
855      * However, let's be sure of it.
856      */
857     assert(qemu_mutex_iothread_locked());
858     /*
859      * First make sure to flush the hardware buffers by kicking all
860      * vcpus out in a synchronous way.
861      */
862     kvm_cpu_synchronize_kick_all();
863     kvm_dirty_ring_reap(kvm_state, NULL);
864     trace_kvm_dirty_ring_flush(1);
865 }
866 
867 /**
868  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
869  *
870  * This function will first try to fetch dirty bitmap from the kernel,
871  * and then updates qemu's dirty bitmap.
872  *
873  * NOTE: caller must be with kml->slots_lock held.
874  *
875  * @kml: the KVM memory listener object
876  * @section: the memory section to sync the dirty bitmap with
877  */
878 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
879                                            MemoryRegionSection *section)
880 {
881     KVMState *s = kvm_state;
882     KVMSlot *mem;
883     hwaddr start_addr, size;
884     hwaddr slot_size;
885 
886     size = kvm_align_section(section, &start_addr);
887     while (size) {
888         slot_size = MIN(kvm_max_slot_size, size);
889         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
890         if (!mem) {
891             /* We don't have a slot if we want to trap every access. */
892             return;
893         }
894         if (kvm_slot_get_dirty_log(s, mem)) {
895             kvm_slot_sync_dirty_pages(mem);
896         }
897         start_addr += slot_size;
898         size -= slot_size;
899     }
900 }
901 
902 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
903 #define KVM_CLEAR_LOG_SHIFT  6
904 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
905 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
906 
907 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
908                                   uint64_t size)
909 {
910     KVMState *s = kvm_state;
911     uint64_t end, bmap_start, start_delta, bmap_npages;
912     struct kvm_clear_dirty_log d;
913     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
914     int ret;
915 
916     /*
917      * We need to extend either the start or the size or both to
918      * satisfy the KVM interface requirement.  Firstly, do the start
919      * page alignment on 64 host pages
920      */
921     bmap_start = start & KVM_CLEAR_LOG_MASK;
922     start_delta = start - bmap_start;
923     bmap_start /= psize;
924 
925     /*
926      * The kernel interface has restriction on the size too, that either:
927      *
928      * (1) the size is 64 host pages aligned (just like the start), or
929      * (2) the size fills up until the end of the KVM memslot.
930      */
931     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
932         << KVM_CLEAR_LOG_SHIFT;
933     end = mem->memory_size / psize;
934     if (bmap_npages > end - bmap_start) {
935         bmap_npages = end - bmap_start;
936     }
937     start_delta /= psize;
938 
939     /*
940      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
941      * that we won't clear any unknown dirty bits otherwise we might
942      * accidentally clear some set bits which are not yet synced from
943      * the kernel into QEMU's bitmap, then we'll lose track of the
944      * guest modifications upon those pages (which can directly lead
945      * to guest data loss or panic after migration).
946      *
947      * Layout of the KVMSlot.dirty_bmap:
948      *
949      *                   |<-------- bmap_npages -----------..>|
950      *                                                     [1]
951      *                     start_delta         size
952      *  |----------------|-------------|------------------|------------|
953      *  ^                ^             ^                               ^
954      *  |                |             |                               |
955      * start          bmap_start     (start)                         end
956      * of memslot                                             of memslot
957      *
958      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
959      */
960 
961     assert(bmap_start % BITS_PER_LONG == 0);
962     /* We should never do log_clear before log_sync */
963     assert(mem->dirty_bmap);
964     if (start_delta || bmap_npages - size / psize) {
965         /* Slow path - we need to manipulate a temp bitmap */
966         bmap_clear = bitmap_new(bmap_npages);
967         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
968                                     bmap_start, start_delta + size / psize);
969         /*
970          * We need to fill the holes at start because that was not
971          * specified by the caller and we extended the bitmap only for
972          * 64 pages alignment
973          */
974         bitmap_clear(bmap_clear, 0, start_delta);
975         d.dirty_bitmap = bmap_clear;
976     } else {
977         /*
978          * Fast path - both start and size align well with BITS_PER_LONG
979          * (or the end of memory slot)
980          */
981         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
982     }
983 
984     d.first_page = bmap_start;
985     /* It should never overflow.  If it happens, say something */
986     assert(bmap_npages <= UINT32_MAX);
987     d.num_pages = bmap_npages;
988     d.slot = mem->slot | (as_id << 16);
989 
990     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
991     if (ret < 0 && ret != -ENOENT) {
992         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
993                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
994                      __func__, d.slot, (uint64_t)d.first_page,
995                      (uint32_t)d.num_pages, ret);
996     } else {
997         ret = 0;
998         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
999     }
1000 
1001     /*
1002      * After we have updated the remote dirty bitmap, we update the
1003      * cached bitmap as well for the memslot, then if another user
1004      * clears the same region we know we shouldn't clear it again on
1005      * the remote otherwise it's data loss as well.
1006      */
1007     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1008                  size / psize);
1009     /* This handles the NULL case well */
1010     g_free(bmap_clear);
1011     return ret;
1012 }
1013 
1014 
1015 /**
1016  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1017  *
1018  * NOTE: this will be a no-op if we haven't enabled manual dirty log
1019  * protection in the host kernel because in that case this operation
1020  * will be done within log_sync().
1021  *
1022  * @kml:     the kvm memory listener
1023  * @section: the memory range to clear dirty bitmap
1024  */
1025 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1026                                   MemoryRegionSection *section)
1027 {
1028     KVMState *s = kvm_state;
1029     uint64_t start, size, offset, count;
1030     KVMSlot *mem;
1031     int ret = 0, i;
1032 
1033     if (!s->manual_dirty_log_protect) {
1034         /* No need to do explicit clear */
1035         return ret;
1036     }
1037 
1038     start = section->offset_within_address_space;
1039     size = int128_get64(section->size);
1040 
1041     if (!size) {
1042         /* Nothing more we can do... */
1043         return ret;
1044     }
1045 
1046     kvm_slots_lock();
1047 
1048     for (i = 0; i < s->nr_slots; i++) {
1049         mem = &kml->slots[i];
1050         /* Discard slots that are empty or do not overlap the section */
1051         if (!mem->memory_size ||
1052             mem->start_addr > start + size - 1 ||
1053             start > mem->start_addr + mem->memory_size - 1) {
1054             continue;
1055         }
1056 
1057         if (start >= mem->start_addr) {
1058             /* The slot starts before section or is aligned to it.  */
1059             offset = start - mem->start_addr;
1060             count = MIN(mem->memory_size - offset, size);
1061         } else {
1062             /* The slot starts after section.  */
1063             offset = 0;
1064             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1065         }
1066         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1067         if (ret < 0) {
1068             break;
1069         }
1070     }
1071 
1072     kvm_slots_unlock();
1073 
1074     return ret;
1075 }
1076 
1077 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1078                                      MemoryRegionSection *secion,
1079                                      hwaddr start, hwaddr size)
1080 {
1081     KVMState *s = kvm_state;
1082 
1083     if (s->coalesced_mmio) {
1084         struct kvm_coalesced_mmio_zone zone;
1085 
1086         zone.addr = start;
1087         zone.size = size;
1088         zone.pad = 0;
1089 
1090         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1091     }
1092 }
1093 
1094 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1095                                        MemoryRegionSection *secion,
1096                                        hwaddr start, hwaddr size)
1097 {
1098     KVMState *s = kvm_state;
1099 
1100     if (s->coalesced_mmio) {
1101         struct kvm_coalesced_mmio_zone zone;
1102 
1103         zone.addr = start;
1104         zone.size = size;
1105         zone.pad = 0;
1106 
1107         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1108     }
1109 }
1110 
1111 static void kvm_coalesce_pio_add(MemoryListener *listener,
1112                                 MemoryRegionSection *section,
1113                                 hwaddr start, hwaddr size)
1114 {
1115     KVMState *s = kvm_state;
1116 
1117     if (s->coalesced_pio) {
1118         struct kvm_coalesced_mmio_zone zone;
1119 
1120         zone.addr = start;
1121         zone.size = size;
1122         zone.pio = 1;
1123 
1124         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1125     }
1126 }
1127 
1128 static void kvm_coalesce_pio_del(MemoryListener *listener,
1129                                 MemoryRegionSection *section,
1130                                 hwaddr start, hwaddr size)
1131 {
1132     KVMState *s = kvm_state;
1133 
1134     if (s->coalesced_pio) {
1135         struct kvm_coalesced_mmio_zone zone;
1136 
1137         zone.addr = start;
1138         zone.size = size;
1139         zone.pio = 1;
1140 
1141         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1142      }
1143 }
1144 
1145 static MemoryListener kvm_coalesced_pio_listener = {
1146     .name = "kvm-coalesced-pio",
1147     .coalesced_io_add = kvm_coalesce_pio_add,
1148     .coalesced_io_del = kvm_coalesce_pio_del,
1149 };
1150 
1151 int kvm_check_extension(KVMState *s, unsigned int extension)
1152 {
1153     int ret;
1154 
1155     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1156     if (ret < 0) {
1157         ret = 0;
1158     }
1159 
1160     return ret;
1161 }
1162 
1163 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1164 {
1165     int ret;
1166 
1167     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1168     if (ret < 0) {
1169         /* VM wide version not implemented, use global one instead */
1170         ret = kvm_check_extension(s, extension);
1171     }
1172 
1173     return ret;
1174 }
1175 
1176 typedef struct HWPoisonPage {
1177     ram_addr_t ram_addr;
1178     QLIST_ENTRY(HWPoisonPage) list;
1179 } HWPoisonPage;
1180 
1181 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1182     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1183 
1184 static void kvm_unpoison_all(void *param)
1185 {
1186     HWPoisonPage *page, *next_page;
1187 
1188     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1189         QLIST_REMOVE(page, list);
1190         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1191         g_free(page);
1192     }
1193 }
1194 
1195 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1196 {
1197     HWPoisonPage *page;
1198 
1199     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1200         if (page->ram_addr == ram_addr) {
1201             return;
1202         }
1203     }
1204     page = g_new(HWPoisonPage, 1);
1205     page->ram_addr = ram_addr;
1206     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1207 }
1208 
1209 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1210 {
1211 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1212     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1213      * endianness, but the memory core hands them in target endianness.
1214      * For example, PPC is always treated as big-endian even if running
1215      * on KVM and on PPC64LE.  Correct here.
1216      */
1217     switch (size) {
1218     case 2:
1219         val = bswap16(val);
1220         break;
1221     case 4:
1222         val = bswap32(val);
1223         break;
1224     }
1225 #endif
1226     return val;
1227 }
1228 
1229 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1230                                   bool assign, uint32_t size, bool datamatch)
1231 {
1232     int ret;
1233     struct kvm_ioeventfd iofd = {
1234         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1235         .addr = addr,
1236         .len = size,
1237         .flags = 0,
1238         .fd = fd,
1239     };
1240 
1241     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1242                                  datamatch);
1243     if (!kvm_enabled()) {
1244         return -ENOSYS;
1245     }
1246 
1247     if (datamatch) {
1248         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1249     }
1250     if (!assign) {
1251         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1252     }
1253 
1254     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1255 
1256     if (ret < 0) {
1257         return -errno;
1258     }
1259 
1260     return 0;
1261 }
1262 
1263 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1264                                  bool assign, uint32_t size, bool datamatch)
1265 {
1266     struct kvm_ioeventfd kick = {
1267         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1268         .addr = addr,
1269         .flags = KVM_IOEVENTFD_FLAG_PIO,
1270         .len = size,
1271         .fd = fd,
1272     };
1273     int r;
1274     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1275     if (!kvm_enabled()) {
1276         return -ENOSYS;
1277     }
1278     if (datamatch) {
1279         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1280     }
1281     if (!assign) {
1282         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1283     }
1284     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1285     if (r < 0) {
1286         return r;
1287     }
1288     return 0;
1289 }
1290 
1291 
1292 static int kvm_check_many_ioeventfds(void)
1293 {
1294     /* Userspace can use ioeventfd for io notification.  This requires a host
1295      * that supports eventfd(2) and an I/O thread; since eventfd does not
1296      * support SIGIO it cannot interrupt the vcpu.
1297      *
1298      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1299      * can avoid creating too many ioeventfds.
1300      */
1301 #if defined(CONFIG_EVENTFD)
1302     int ioeventfds[7];
1303     int i, ret = 0;
1304     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1305         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1306         if (ioeventfds[i] < 0) {
1307             break;
1308         }
1309         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1310         if (ret < 0) {
1311             close(ioeventfds[i]);
1312             break;
1313         }
1314     }
1315 
1316     /* Decide whether many devices are supported or not */
1317     ret = i == ARRAY_SIZE(ioeventfds);
1318 
1319     while (i-- > 0) {
1320         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1321         close(ioeventfds[i]);
1322     }
1323     return ret;
1324 #else
1325     return 0;
1326 #endif
1327 }
1328 
1329 static const KVMCapabilityInfo *
1330 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1331 {
1332     while (list->name) {
1333         if (!kvm_check_extension(s, list->value)) {
1334             return list;
1335         }
1336         list++;
1337     }
1338     return NULL;
1339 }
1340 
1341 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1342 {
1343     g_assert(
1344         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1345     );
1346     kvm_max_slot_size = max_slot_size;
1347 }
1348 
1349 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1350                              MemoryRegionSection *section, bool add)
1351 {
1352     KVMSlot *mem;
1353     int err;
1354     MemoryRegion *mr = section->mr;
1355     bool writable = !mr->readonly && !mr->rom_device;
1356     hwaddr start_addr, size, slot_size, mr_offset;
1357     ram_addr_t ram_start_offset;
1358     void *ram;
1359 
1360     if (!memory_region_is_ram(mr)) {
1361         if (writable || !kvm_readonly_mem_allowed) {
1362             return;
1363         } else if (!mr->romd_mode) {
1364             /* If the memory device is not in romd_mode, then we actually want
1365              * to remove the kvm memory slot so all accesses will trap. */
1366             add = false;
1367         }
1368     }
1369 
1370     size = kvm_align_section(section, &start_addr);
1371     if (!size) {
1372         return;
1373     }
1374 
1375     /* The offset of the kvmslot within the memory region */
1376     mr_offset = section->offset_within_region + start_addr -
1377         section->offset_within_address_space;
1378 
1379     /* use aligned delta to align the ram address and offset */
1380     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1381     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1382 
1383     kvm_slots_lock();
1384 
1385     if (!add) {
1386         do {
1387             slot_size = MIN(kvm_max_slot_size, size);
1388             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1389             if (!mem) {
1390                 goto out;
1391             }
1392             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1393                 /*
1394                  * NOTE: We should be aware of the fact that here we're only
1395                  * doing a best effort to sync dirty bits.  No matter whether
1396                  * we're using dirty log or dirty ring, we ignored two facts:
1397                  *
1398                  * (1) dirty bits can reside in hardware buffers (PML)
1399                  *
1400                  * (2) after we collected dirty bits here, pages can be dirtied
1401                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1402                  * remove the slot.
1403                  *
1404                  * Not easy.  Let's cross the fingers until it's fixed.
1405                  */
1406                 if (kvm_state->kvm_dirty_ring_size) {
1407                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1408                 } else {
1409                     kvm_slot_get_dirty_log(kvm_state, mem);
1410                 }
1411                 kvm_slot_sync_dirty_pages(mem);
1412             }
1413 
1414             /* unregister the slot */
1415             g_free(mem->dirty_bmap);
1416             mem->dirty_bmap = NULL;
1417             mem->memory_size = 0;
1418             mem->flags = 0;
1419             err = kvm_set_user_memory_region(kml, mem, false);
1420             if (err) {
1421                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1422                         __func__, strerror(-err));
1423                 abort();
1424             }
1425             start_addr += slot_size;
1426             size -= slot_size;
1427         } while (size);
1428         goto out;
1429     }
1430 
1431     /* register the new slot */
1432     do {
1433         slot_size = MIN(kvm_max_slot_size, size);
1434         mem = kvm_alloc_slot(kml);
1435         mem->as_id = kml->as_id;
1436         mem->memory_size = slot_size;
1437         mem->start_addr = start_addr;
1438         mem->ram_start_offset = ram_start_offset;
1439         mem->ram = ram;
1440         mem->flags = kvm_mem_flags(mr);
1441         kvm_slot_init_dirty_bitmap(mem);
1442         err = kvm_set_user_memory_region(kml, mem, true);
1443         if (err) {
1444             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1445                     strerror(-err));
1446             abort();
1447         }
1448         start_addr += slot_size;
1449         ram_start_offset += slot_size;
1450         ram += slot_size;
1451         size -= slot_size;
1452     } while (size);
1453 
1454 out:
1455     kvm_slots_unlock();
1456 }
1457 
1458 static void *kvm_dirty_ring_reaper_thread(void *data)
1459 {
1460     KVMState *s = data;
1461     struct KVMDirtyRingReaper *r = &s->reaper;
1462 
1463     rcu_register_thread();
1464 
1465     trace_kvm_dirty_ring_reaper("init");
1466 
1467     while (true) {
1468         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1469         trace_kvm_dirty_ring_reaper("wait");
1470         /*
1471          * TODO: provide a smarter timeout rather than a constant?
1472          */
1473         sleep(1);
1474 
1475         /* keep sleeping so that dirtylimit not be interfered by reaper */
1476         if (dirtylimit_in_service()) {
1477             continue;
1478         }
1479 
1480         trace_kvm_dirty_ring_reaper("wakeup");
1481         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1482 
1483         qemu_mutex_lock_iothread();
1484         kvm_dirty_ring_reap(s, NULL);
1485         qemu_mutex_unlock_iothread();
1486 
1487         r->reaper_iteration++;
1488     }
1489 
1490     trace_kvm_dirty_ring_reaper("exit");
1491 
1492     rcu_unregister_thread();
1493 
1494     return NULL;
1495 }
1496 
1497 static int kvm_dirty_ring_reaper_init(KVMState *s)
1498 {
1499     struct KVMDirtyRingReaper *r = &s->reaper;
1500 
1501     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1502                        kvm_dirty_ring_reaper_thread,
1503                        s, QEMU_THREAD_JOINABLE);
1504 
1505     return 0;
1506 }
1507 
1508 static void kvm_region_add(MemoryListener *listener,
1509                            MemoryRegionSection *section)
1510 {
1511     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1512 
1513     memory_region_ref(section->mr);
1514     kvm_set_phys_mem(kml, section, true);
1515 }
1516 
1517 static void kvm_region_del(MemoryListener *listener,
1518                            MemoryRegionSection *section)
1519 {
1520     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1521 
1522     kvm_set_phys_mem(kml, section, false);
1523     memory_region_unref(section->mr);
1524 }
1525 
1526 static void kvm_log_sync(MemoryListener *listener,
1527                          MemoryRegionSection *section)
1528 {
1529     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1530 
1531     kvm_slots_lock();
1532     kvm_physical_sync_dirty_bitmap(kml, section);
1533     kvm_slots_unlock();
1534 }
1535 
1536 static void kvm_log_sync_global(MemoryListener *l)
1537 {
1538     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1539     KVMState *s = kvm_state;
1540     KVMSlot *mem;
1541     int i;
1542 
1543     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1544     kvm_dirty_ring_flush();
1545 
1546     /*
1547      * TODO: make this faster when nr_slots is big while there are
1548      * only a few used slots (small VMs).
1549      */
1550     kvm_slots_lock();
1551     for (i = 0; i < s->nr_slots; i++) {
1552         mem = &kml->slots[i];
1553         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1554             kvm_slot_sync_dirty_pages(mem);
1555             /*
1556              * This is not needed by KVM_GET_DIRTY_LOG because the
1557              * ioctl will unconditionally overwrite the whole region.
1558              * However kvm dirty ring has no such side effect.
1559              */
1560             kvm_slot_reset_dirty_pages(mem);
1561         }
1562     }
1563     kvm_slots_unlock();
1564 }
1565 
1566 static void kvm_log_clear(MemoryListener *listener,
1567                           MemoryRegionSection *section)
1568 {
1569     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1570     int r;
1571 
1572     r = kvm_physical_log_clear(kml, section);
1573     if (r < 0) {
1574         error_report_once("%s: kvm log clear failed: mr=%s "
1575                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1576                           section->mr->name, section->offset_within_region,
1577                           int128_get64(section->size));
1578         abort();
1579     }
1580 }
1581 
1582 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1583                                   MemoryRegionSection *section,
1584                                   bool match_data, uint64_t data,
1585                                   EventNotifier *e)
1586 {
1587     int fd = event_notifier_get_fd(e);
1588     int r;
1589 
1590     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1591                                data, true, int128_get64(section->size),
1592                                match_data);
1593     if (r < 0) {
1594         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1595                 __func__, strerror(-r), -r);
1596         abort();
1597     }
1598 }
1599 
1600 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1601                                   MemoryRegionSection *section,
1602                                   bool match_data, uint64_t data,
1603                                   EventNotifier *e)
1604 {
1605     int fd = event_notifier_get_fd(e);
1606     int r;
1607 
1608     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1609                                data, false, int128_get64(section->size),
1610                                match_data);
1611     if (r < 0) {
1612         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1613                 __func__, strerror(-r), -r);
1614         abort();
1615     }
1616 }
1617 
1618 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1619                                  MemoryRegionSection *section,
1620                                  bool match_data, uint64_t data,
1621                                  EventNotifier *e)
1622 {
1623     int fd = event_notifier_get_fd(e);
1624     int r;
1625 
1626     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1627                               data, true, int128_get64(section->size),
1628                               match_data);
1629     if (r < 0) {
1630         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1631                 __func__, strerror(-r), -r);
1632         abort();
1633     }
1634 }
1635 
1636 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1637                                  MemoryRegionSection *section,
1638                                  bool match_data, uint64_t data,
1639                                  EventNotifier *e)
1640 
1641 {
1642     int fd = event_notifier_get_fd(e);
1643     int r;
1644 
1645     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1646                               data, false, int128_get64(section->size),
1647                               match_data);
1648     if (r < 0) {
1649         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1650                 __func__, strerror(-r), -r);
1651         abort();
1652     }
1653 }
1654 
1655 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1656                                   AddressSpace *as, int as_id, const char *name)
1657 {
1658     int i;
1659 
1660     kml->slots = g_new0(KVMSlot, s->nr_slots);
1661     kml->as_id = as_id;
1662 
1663     for (i = 0; i < s->nr_slots; i++) {
1664         kml->slots[i].slot = i;
1665     }
1666 
1667     kml->listener.region_add = kvm_region_add;
1668     kml->listener.region_del = kvm_region_del;
1669     kml->listener.log_start = kvm_log_start;
1670     kml->listener.log_stop = kvm_log_stop;
1671     kml->listener.priority = 10;
1672     kml->listener.name = name;
1673 
1674     if (s->kvm_dirty_ring_size) {
1675         kml->listener.log_sync_global = kvm_log_sync_global;
1676     } else {
1677         kml->listener.log_sync = kvm_log_sync;
1678         kml->listener.log_clear = kvm_log_clear;
1679     }
1680 
1681     memory_listener_register(&kml->listener, as);
1682 
1683     for (i = 0; i < s->nr_as; ++i) {
1684         if (!s->as[i].as) {
1685             s->as[i].as = as;
1686             s->as[i].ml = kml;
1687             break;
1688         }
1689     }
1690 }
1691 
1692 static MemoryListener kvm_io_listener = {
1693     .name = "kvm-io",
1694     .eventfd_add = kvm_io_ioeventfd_add,
1695     .eventfd_del = kvm_io_ioeventfd_del,
1696     .priority = 10,
1697 };
1698 
1699 int kvm_set_irq(KVMState *s, int irq, int level)
1700 {
1701     struct kvm_irq_level event;
1702     int ret;
1703 
1704     assert(kvm_async_interrupts_enabled());
1705 
1706     event.level = level;
1707     event.irq = irq;
1708     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1709     if (ret < 0) {
1710         perror("kvm_set_irq");
1711         abort();
1712     }
1713 
1714     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1715 }
1716 
1717 #ifdef KVM_CAP_IRQ_ROUTING
1718 typedef struct KVMMSIRoute {
1719     struct kvm_irq_routing_entry kroute;
1720     QTAILQ_ENTRY(KVMMSIRoute) entry;
1721 } KVMMSIRoute;
1722 
1723 static void set_gsi(KVMState *s, unsigned int gsi)
1724 {
1725     set_bit(gsi, s->used_gsi_bitmap);
1726 }
1727 
1728 static void clear_gsi(KVMState *s, unsigned int gsi)
1729 {
1730     clear_bit(gsi, s->used_gsi_bitmap);
1731 }
1732 
1733 void kvm_init_irq_routing(KVMState *s)
1734 {
1735     int gsi_count, i;
1736 
1737     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1738     if (gsi_count > 0) {
1739         /* Round up so we can search ints using ffs */
1740         s->used_gsi_bitmap = bitmap_new(gsi_count);
1741         s->gsi_count = gsi_count;
1742     }
1743 
1744     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1745     s->nr_allocated_irq_routes = 0;
1746 
1747     if (!kvm_direct_msi_allowed) {
1748         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1749             QTAILQ_INIT(&s->msi_hashtab[i]);
1750         }
1751     }
1752 
1753     kvm_arch_init_irq_routing(s);
1754 }
1755 
1756 void kvm_irqchip_commit_routes(KVMState *s)
1757 {
1758     int ret;
1759 
1760     if (kvm_gsi_direct_mapping()) {
1761         return;
1762     }
1763 
1764     if (!kvm_gsi_routing_enabled()) {
1765         return;
1766     }
1767 
1768     s->irq_routes->flags = 0;
1769     trace_kvm_irqchip_commit_routes();
1770     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1771     assert(ret == 0);
1772 }
1773 
1774 static void kvm_add_routing_entry(KVMState *s,
1775                                   struct kvm_irq_routing_entry *entry)
1776 {
1777     struct kvm_irq_routing_entry *new;
1778     int n, size;
1779 
1780     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1781         n = s->nr_allocated_irq_routes * 2;
1782         if (n < 64) {
1783             n = 64;
1784         }
1785         size = sizeof(struct kvm_irq_routing);
1786         size += n * sizeof(*new);
1787         s->irq_routes = g_realloc(s->irq_routes, size);
1788         s->nr_allocated_irq_routes = n;
1789     }
1790     n = s->irq_routes->nr++;
1791     new = &s->irq_routes->entries[n];
1792 
1793     *new = *entry;
1794 
1795     set_gsi(s, entry->gsi);
1796 }
1797 
1798 static int kvm_update_routing_entry(KVMState *s,
1799                                     struct kvm_irq_routing_entry *new_entry)
1800 {
1801     struct kvm_irq_routing_entry *entry;
1802     int n;
1803 
1804     for (n = 0; n < s->irq_routes->nr; n++) {
1805         entry = &s->irq_routes->entries[n];
1806         if (entry->gsi != new_entry->gsi) {
1807             continue;
1808         }
1809 
1810         if(!memcmp(entry, new_entry, sizeof *entry)) {
1811             return 0;
1812         }
1813 
1814         *entry = *new_entry;
1815 
1816         return 0;
1817     }
1818 
1819     return -ESRCH;
1820 }
1821 
1822 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1823 {
1824     struct kvm_irq_routing_entry e = {};
1825 
1826     assert(pin < s->gsi_count);
1827 
1828     e.gsi = irq;
1829     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1830     e.flags = 0;
1831     e.u.irqchip.irqchip = irqchip;
1832     e.u.irqchip.pin = pin;
1833     kvm_add_routing_entry(s, &e);
1834 }
1835 
1836 void kvm_irqchip_release_virq(KVMState *s, int virq)
1837 {
1838     struct kvm_irq_routing_entry *e;
1839     int i;
1840 
1841     if (kvm_gsi_direct_mapping()) {
1842         return;
1843     }
1844 
1845     for (i = 0; i < s->irq_routes->nr; i++) {
1846         e = &s->irq_routes->entries[i];
1847         if (e->gsi == virq) {
1848             s->irq_routes->nr--;
1849             *e = s->irq_routes->entries[s->irq_routes->nr];
1850         }
1851     }
1852     clear_gsi(s, virq);
1853     kvm_arch_release_virq_post(virq);
1854     trace_kvm_irqchip_release_virq(virq);
1855 }
1856 
1857 void kvm_irqchip_add_change_notifier(Notifier *n)
1858 {
1859     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1860 }
1861 
1862 void kvm_irqchip_remove_change_notifier(Notifier *n)
1863 {
1864     notifier_remove(n);
1865 }
1866 
1867 void kvm_irqchip_change_notify(void)
1868 {
1869     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1870 }
1871 
1872 static unsigned int kvm_hash_msi(uint32_t data)
1873 {
1874     /* This is optimized for IA32 MSI layout. However, no other arch shall
1875      * repeat the mistake of not providing a direct MSI injection API. */
1876     return data & 0xff;
1877 }
1878 
1879 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1880 {
1881     KVMMSIRoute *route, *next;
1882     unsigned int hash;
1883 
1884     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1885         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1886             kvm_irqchip_release_virq(s, route->kroute.gsi);
1887             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1888             g_free(route);
1889         }
1890     }
1891 }
1892 
1893 static int kvm_irqchip_get_virq(KVMState *s)
1894 {
1895     int next_virq;
1896 
1897     /*
1898      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1899      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1900      * number can succeed even though a new route entry cannot be added.
1901      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1902      */
1903     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1904         kvm_flush_dynamic_msi_routes(s);
1905     }
1906 
1907     /* Return the lowest unused GSI in the bitmap */
1908     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1909     if (next_virq >= s->gsi_count) {
1910         return -ENOSPC;
1911     } else {
1912         return next_virq;
1913     }
1914 }
1915 
1916 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1917 {
1918     unsigned int hash = kvm_hash_msi(msg.data);
1919     KVMMSIRoute *route;
1920 
1921     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1922         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1923             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1924             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1925             return route;
1926         }
1927     }
1928     return NULL;
1929 }
1930 
1931 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1932 {
1933     struct kvm_msi msi;
1934     KVMMSIRoute *route;
1935 
1936     if (kvm_direct_msi_allowed) {
1937         msi.address_lo = (uint32_t)msg.address;
1938         msi.address_hi = msg.address >> 32;
1939         msi.data = le32_to_cpu(msg.data);
1940         msi.flags = 0;
1941         memset(msi.pad, 0, sizeof(msi.pad));
1942 
1943         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1944     }
1945 
1946     route = kvm_lookup_msi_route(s, msg);
1947     if (!route) {
1948         int virq;
1949 
1950         virq = kvm_irqchip_get_virq(s);
1951         if (virq < 0) {
1952             return virq;
1953         }
1954 
1955         route = g_new0(KVMMSIRoute, 1);
1956         route->kroute.gsi = virq;
1957         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1958         route->kroute.flags = 0;
1959         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1960         route->kroute.u.msi.address_hi = msg.address >> 32;
1961         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1962 
1963         kvm_add_routing_entry(s, &route->kroute);
1964         kvm_irqchip_commit_routes(s);
1965 
1966         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1967                            entry);
1968     }
1969 
1970     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1971 
1972     return kvm_set_irq(s, route->kroute.gsi, 1);
1973 }
1974 
1975 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1976 {
1977     struct kvm_irq_routing_entry kroute = {};
1978     int virq;
1979     KVMState *s = c->s;
1980     MSIMessage msg = {0, 0};
1981 
1982     if (pci_available && dev) {
1983         msg = pci_get_msi_message(dev, vector);
1984     }
1985 
1986     if (kvm_gsi_direct_mapping()) {
1987         return kvm_arch_msi_data_to_gsi(msg.data);
1988     }
1989 
1990     if (!kvm_gsi_routing_enabled()) {
1991         return -ENOSYS;
1992     }
1993 
1994     virq = kvm_irqchip_get_virq(s);
1995     if (virq < 0) {
1996         return virq;
1997     }
1998 
1999     kroute.gsi = virq;
2000     kroute.type = KVM_IRQ_ROUTING_MSI;
2001     kroute.flags = 0;
2002     kroute.u.msi.address_lo = (uint32_t)msg.address;
2003     kroute.u.msi.address_hi = msg.address >> 32;
2004     kroute.u.msi.data = le32_to_cpu(msg.data);
2005     if (pci_available && kvm_msi_devid_required()) {
2006         kroute.flags = KVM_MSI_VALID_DEVID;
2007         kroute.u.msi.devid = pci_requester_id(dev);
2008     }
2009     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2010         kvm_irqchip_release_virq(s, virq);
2011         return -EINVAL;
2012     }
2013 
2014     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2015                                     vector, virq);
2016 
2017     kvm_add_routing_entry(s, &kroute);
2018     kvm_arch_add_msi_route_post(&kroute, vector, dev);
2019     c->changes++;
2020 
2021     return virq;
2022 }
2023 
2024 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2025                                  PCIDevice *dev)
2026 {
2027     struct kvm_irq_routing_entry kroute = {};
2028 
2029     if (kvm_gsi_direct_mapping()) {
2030         return 0;
2031     }
2032 
2033     if (!kvm_irqchip_in_kernel()) {
2034         return -ENOSYS;
2035     }
2036 
2037     kroute.gsi = virq;
2038     kroute.type = KVM_IRQ_ROUTING_MSI;
2039     kroute.flags = 0;
2040     kroute.u.msi.address_lo = (uint32_t)msg.address;
2041     kroute.u.msi.address_hi = msg.address >> 32;
2042     kroute.u.msi.data = le32_to_cpu(msg.data);
2043     if (pci_available && kvm_msi_devid_required()) {
2044         kroute.flags = KVM_MSI_VALID_DEVID;
2045         kroute.u.msi.devid = pci_requester_id(dev);
2046     }
2047     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2048         return -EINVAL;
2049     }
2050 
2051     trace_kvm_irqchip_update_msi_route(virq);
2052 
2053     return kvm_update_routing_entry(s, &kroute);
2054 }
2055 
2056 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2057                                     EventNotifier *resample, int virq,
2058                                     bool assign)
2059 {
2060     int fd = event_notifier_get_fd(event);
2061     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2062 
2063     struct kvm_irqfd irqfd = {
2064         .fd = fd,
2065         .gsi = virq,
2066         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2067     };
2068 
2069     if (rfd != -1) {
2070         assert(assign);
2071         if (kvm_irqchip_is_split()) {
2072             /*
2073              * When the slow irqchip (e.g. IOAPIC) is in the
2074              * userspace, KVM kernel resamplefd will not work because
2075              * the EOI of the interrupt will be delivered to userspace
2076              * instead, so the KVM kernel resamplefd kick will be
2077              * skipped.  The userspace here mimics what the kernel
2078              * provides with resamplefd, remember the resamplefd and
2079              * kick it when we receive EOI of this IRQ.
2080              *
2081              * This is hackery because IOAPIC is mostly bypassed
2082              * (except EOI broadcasts) when irqfd is used.  However
2083              * this can bring much performance back for split irqchip
2084              * with INTx IRQs (for VFIO, this gives 93% perf of the
2085              * full fast path, which is 46% perf boost comparing to
2086              * the INTx slow path).
2087              */
2088             kvm_resample_fd_insert(virq, resample);
2089         } else {
2090             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2091             irqfd.resamplefd = rfd;
2092         }
2093     } else if (!assign) {
2094         if (kvm_irqchip_is_split()) {
2095             kvm_resample_fd_remove(virq);
2096         }
2097     }
2098 
2099     if (!kvm_irqfds_enabled()) {
2100         return -ENOSYS;
2101     }
2102 
2103     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2104 }
2105 
2106 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2107 {
2108     struct kvm_irq_routing_entry kroute = {};
2109     int virq;
2110 
2111     if (!kvm_gsi_routing_enabled()) {
2112         return -ENOSYS;
2113     }
2114 
2115     virq = kvm_irqchip_get_virq(s);
2116     if (virq < 0) {
2117         return virq;
2118     }
2119 
2120     kroute.gsi = virq;
2121     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2122     kroute.flags = 0;
2123     kroute.u.adapter.summary_addr = adapter->summary_addr;
2124     kroute.u.adapter.ind_addr = adapter->ind_addr;
2125     kroute.u.adapter.summary_offset = adapter->summary_offset;
2126     kroute.u.adapter.ind_offset = adapter->ind_offset;
2127     kroute.u.adapter.adapter_id = adapter->adapter_id;
2128 
2129     kvm_add_routing_entry(s, &kroute);
2130 
2131     return virq;
2132 }
2133 
2134 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2135 {
2136     struct kvm_irq_routing_entry kroute = {};
2137     int virq;
2138 
2139     if (!kvm_gsi_routing_enabled()) {
2140         return -ENOSYS;
2141     }
2142     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2143         return -ENOSYS;
2144     }
2145     virq = kvm_irqchip_get_virq(s);
2146     if (virq < 0) {
2147         return virq;
2148     }
2149 
2150     kroute.gsi = virq;
2151     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2152     kroute.flags = 0;
2153     kroute.u.hv_sint.vcpu = vcpu;
2154     kroute.u.hv_sint.sint = sint;
2155 
2156     kvm_add_routing_entry(s, &kroute);
2157     kvm_irqchip_commit_routes(s);
2158 
2159     return virq;
2160 }
2161 
2162 #else /* !KVM_CAP_IRQ_ROUTING */
2163 
2164 void kvm_init_irq_routing(KVMState *s)
2165 {
2166 }
2167 
2168 void kvm_irqchip_release_virq(KVMState *s, int virq)
2169 {
2170 }
2171 
2172 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2173 {
2174     abort();
2175 }
2176 
2177 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2178 {
2179     return -ENOSYS;
2180 }
2181 
2182 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2183 {
2184     return -ENOSYS;
2185 }
2186 
2187 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2188 {
2189     return -ENOSYS;
2190 }
2191 
2192 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2193                                     EventNotifier *resample, int virq,
2194                                     bool assign)
2195 {
2196     abort();
2197 }
2198 
2199 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2200 {
2201     return -ENOSYS;
2202 }
2203 #endif /* !KVM_CAP_IRQ_ROUTING */
2204 
2205 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2206                                        EventNotifier *rn, int virq)
2207 {
2208     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2209 }
2210 
2211 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2212                                           int virq)
2213 {
2214     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2215 }
2216 
2217 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2218                                    EventNotifier *rn, qemu_irq irq)
2219 {
2220     gpointer key, gsi;
2221     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2222 
2223     if (!found) {
2224         return -ENXIO;
2225     }
2226     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2227 }
2228 
2229 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2230                                       qemu_irq irq)
2231 {
2232     gpointer key, gsi;
2233     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2234 
2235     if (!found) {
2236         return -ENXIO;
2237     }
2238     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2239 }
2240 
2241 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2242 {
2243     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2244 }
2245 
2246 static void kvm_irqchip_create(KVMState *s)
2247 {
2248     int ret;
2249 
2250     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2251     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2252         ;
2253     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2254         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2255         if (ret < 0) {
2256             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2257             exit(1);
2258         }
2259     } else {
2260         return;
2261     }
2262 
2263     /* First probe and see if there's a arch-specific hook to create the
2264      * in-kernel irqchip for us */
2265     ret = kvm_arch_irqchip_create(s);
2266     if (ret == 0) {
2267         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2268             perror("Split IRQ chip mode not supported.");
2269             exit(1);
2270         } else {
2271             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2272         }
2273     }
2274     if (ret < 0) {
2275         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2276         exit(1);
2277     }
2278 
2279     kvm_kernel_irqchip = true;
2280     /* If we have an in-kernel IRQ chip then we must have asynchronous
2281      * interrupt delivery (though the reverse is not necessarily true)
2282      */
2283     kvm_async_interrupts_allowed = true;
2284     kvm_halt_in_kernel_allowed = true;
2285 
2286     kvm_init_irq_routing(s);
2287 
2288     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2289 }
2290 
2291 /* Find number of supported CPUs using the recommended
2292  * procedure from the kernel API documentation to cope with
2293  * older kernels that may be missing capabilities.
2294  */
2295 static int kvm_recommended_vcpus(KVMState *s)
2296 {
2297     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2298     return (ret) ? ret : 4;
2299 }
2300 
2301 static int kvm_max_vcpus(KVMState *s)
2302 {
2303     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2304     return (ret) ? ret : kvm_recommended_vcpus(s);
2305 }
2306 
2307 static int kvm_max_vcpu_id(KVMState *s)
2308 {
2309     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2310     return (ret) ? ret : kvm_max_vcpus(s);
2311 }
2312 
2313 bool kvm_vcpu_id_is_valid(int vcpu_id)
2314 {
2315     KVMState *s = KVM_STATE(current_accel());
2316     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2317 }
2318 
2319 bool kvm_dirty_ring_enabled(void)
2320 {
2321     return kvm_state->kvm_dirty_ring_size ? true : false;
2322 }
2323 
2324 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2325                            strList *names, strList *targets, Error **errp);
2326 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2327 
2328 uint32_t kvm_dirty_ring_size(void)
2329 {
2330     return kvm_state->kvm_dirty_ring_size;
2331 }
2332 
2333 static int kvm_init(MachineState *ms)
2334 {
2335     MachineClass *mc = MACHINE_GET_CLASS(ms);
2336     static const char upgrade_note[] =
2337         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2338         "(see http://sourceforge.net/projects/kvm).\n";
2339     struct {
2340         const char *name;
2341         int num;
2342     } num_cpus[] = {
2343         { "SMP",          ms->smp.cpus },
2344         { "hotpluggable", ms->smp.max_cpus },
2345         { NULL, }
2346     }, *nc = num_cpus;
2347     int soft_vcpus_limit, hard_vcpus_limit;
2348     KVMState *s;
2349     const KVMCapabilityInfo *missing_cap;
2350     int ret;
2351     int type = 0;
2352     uint64_t dirty_log_manual_caps;
2353 
2354     qemu_mutex_init(&kml_slots_lock);
2355 
2356     s = KVM_STATE(ms->accelerator);
2357 
2358     /*
2359      * On systems where the kernel can support different base page
2360      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2361      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2362      * page size for the system though.
2363      */
2364     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2365 
2366     s->sigmask_len = 8;
2367 
2368 #ifdef KVM_CAP_SET_GUEST_DEBUG
2369     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2370 #endif
2371     QLIST_INIT(&s->kvm_parked_vcpus);
2372     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2373     if (s->fd == -1) {
2374         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2375         ret = -errno;
2376         goto err;
2377     }
2378 
2379     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2380     if (ret < KVM_API_VERSION) {
2381         if (ret >= 0) {
2382             ret = -EINVAL;
2383         }
2384         fprintf(stderr, "kvm version too old\n");
2385         goto err;
2386     }
2387 
2388     if (ret > KVM_API_VERSION) {
2389         ret = -EINVAL;
2390         fprintf(stderr, "kvm version not supported\n");
2391         goto err;
2392     }
2393 
2394     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2395     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2396 
2397     /* If unspecified, use the default value */
2398     if (!s->nr_slots) {
2399         s->nr_slots = 32;
2400     }
2401 
2402     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2403     if (s->nr_as <= 1) {
2404         s->nr_as = 1;
2405     }
2406     s->as = g_new0(struct KVMAs, s->nr_as);
2407 
2408     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2409         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2410                                                             "kvm-type",
2411                                                             &error_abort);
2412         type = mc->kvm_type(ms, kvm_type);
2413     } else if (mc->kvm_type) {
2414         type = mc->kvm_type(ms, NULL);
2415     }
2416 
2417     do {
2418         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2419     } while (ret == -EINTR);
2420 
2421     if (ret < 0) {
2422         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2423                 strerror(-ret));
2424 
2425 #ifdef TARGET_S390X
2426         if (ret == -EINVAL) {
2427             fprintf(stderr,
2428                     "Host kernel setup problem detected. Please verify:\n");
2429             fprintf(stderr, "- for kernels supporting the switch_amode or"
2430                     " user_mode parameters, whether\n");
2431             fprintf(stderr,
2432                     "  user space is running in primary address space\n");
2433             fprintf(stderr,
2434                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2435                     "whether it is enabled\n");
2436         }
2437 #elif defined(TARGET_PPC)
2438         if (ret == -EINVAL) {
2439             fprintf(stderr,
2440                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2441                     (type == 2) ? "pr" : "hv");
2442         }
2443 #endif
2444         goto err;
2445     }
2446 
2447     s->vmfd = ret;
2448 
2449     /* check the vcpu limits */
2450     soft_vcpus_limit = kvm_recommended_vcpus(s);
2451     hard_vcpus_limit = kvm_max_vcpus(s);
2452 
2453     while (nc->name) {
2454         if (nc->num > soft_vcpus_limit) {
2455             warn_report("Number of %s cpus requested (%d) exceeds "
2456                         "the recommended cpus supported by KVM (%d)",
2457                         nc->name, nc->num, soft_vcpus_limit);
2458 
2459             if (nc->num > hard_vcpus_limit) {
2460                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2461                         "the maximum cpus supported by KVM (%d)\n",
2462                         nc->name, nc->num, hard_vcpus_limit);
2463                 exit(1);
2464             }
2465         }
2466         nc++;
2467     }
2468 
2469     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2470     if (!missing_cap) {
2471         missing_cap =
2472             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2473     }
2474     if (missing_cap) {
2475         ret = -EINVAL;
2476         fprintf(stderr, "kvm does not support %s\n%s",
2477                 missing_cap->name, upgrade_note);
2478         goto err;
2479     }
2480 
2481     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2482     s->coalesced_pio = s->coalesced_mmio &&
2483                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2484 
2485     /*
2486      * Enable KVM dirty ring if supported, otherwise fall back to
2487      * dirty logging mode
2488      */
2489     if (s->kvm_dirty_ring_size > 0) {
2490         uint64_t ring_bytes;
2491 
2492         ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2493 
2494         /* Read the max supported pages */
2495         ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2496         if (ret > 0) {
2497             if (ring_bytes > ret) {
2498                 error_report("KVM dirty ring size %" PRIu32 " too big "
2499                              "(maximum is %ld).  Please use a smaller value.",
2500                              s->kvm_dirty_ring_size,
2501                              (long)ret / sizeof(struct kvm_dirty_gfn));
2502                 ret = -EINVAL;
2503                 goto err;
2504             }
2505 
2506             ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2507             if (ret) {
2508                 error_report("Enabling of KVM dirty ring failed: %s. "
2509                              "Suggested minimum value is 1024.", strerror(-ret));
2510                 goto err;
2511             }
2512 
2513             s->kvm_dirty_ring_bytes = ring_bytes;
2514          } else {
2515              warn_report("KVM dirty ring not available, using bitmap method");
2516              s->kvm_dirty_ring_size = 0;
2517         }
2518     }
2519 
2520     /*
2521      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2522      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2523      * page is wr-protected initially, which is against how kvm dirty ring is
2524      * usage - kvm dirty ring requires all pages are wr-protected at the very
2525      * beginning.  Enabling this feature for dirty ring causes data corruption.
2526      *
2527      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2528      * we may expect a higher stall time when starting the migration.  In the
2529      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2530      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2531      * guest pages.
2532      */
2533     if (!s->kvm_dirty_ring_size) {
2534         dirty_log_manual_caps =
2535             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2536         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2537                                   KVM_DIRTY_LOG_INITIALLY_SET);
2538         s->manual_dirty_log_protect = dirty_log_manual_caps;
2539         if (dirty_log_manual_caps) {
2540             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2541                                     dirty_log_manual_caps);
2542             if (ret) {
2543                 warn_report("Trying to enable capability %"PRIu64" of "
2544                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2545                             "Falling back to the legacy mode. ",
2546                             dirty_log_manual_caps);
2547                 s->manual_dirty_log_protect = 0;
2548             }
2549         }
2550     }
2551 
2552 #ifdef KVM_CAP_VCPU_EVENTS
2553     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2554 #endif
2555 
2556     s->robust_singlestep =
2557         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2558 
2559 #ifdef KVM_CAP_DEBUGREGS
2560     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2561 #endif
2562 
2563     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2564 
2565 #ifdef KVM_CAP_IRQ_ROUTING
2566     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2567 #endif
2568 
2569     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2570 
2571     s->irq_set_ioctl = KVM_IRQ_LINE;
2572     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2573         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2574     }
2575 
2576     kvm_readonly_mem_allowed =
2577         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2578 
2579     kvm_eventfds_allowed =
2580         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2581 
2582     kvm_irqfds_allowed =
2583         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2584 
2585     kvm_resamplefds_allowed =
2586         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2587 
2588     kvm_vm_attributes_allowed =
2589         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2590 
2591     kvm_ioeventfd_any_length_allowed =
2592         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2593 
2594 #ifdef KVM_CAP_SET_GUEST_DEBUG
2595     kvm_has_guest_debug =
2596         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2597 #endif
2598 
2599     kvm_sstep_flags = 0;
2600     if (kvm_has_guest_debug) {
2601         kvm_sstep_flags = SSTEP_ENABLE;
2602 
2603 #if defined KVM_CAP_SET_GUEST_DEBUG2
2604         int guest_debug_flags =
2605             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2606 
2607         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2608             kvm_sstep_flags |= SSTEP_NOIRQ;
2609         }
2610 #endif
2611     }
2612 
2613     kvm_state = s;
2614 
2615     ret = kvm_arch_init(ms, s);
2616     if (ret < 0) {
2617         goto err;
2618     }
2619 
2620     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2621         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2622     }
2623 
2624     qemu_register_reset(kvm_unpoison_all, NULL);
2625 
2626     if (s->kernel_irqchip_allowed) {
2627         kvm_irqchip_create(s);
2628     }
2629 
2630     if (kvm_eventfds_allowed) {
2631         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2632         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2633     }
2634     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2635     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2636 
2637     kvm_memory_listener_register(s, &s->memory_listener,
2638                                  &address_space_memory, 0, "kvm-memory");
2639     if (kvm_eventfds_allowed) {
2640         memory_listener_register(&kvm_io_listener,
2641                                  &address_space_io);
2642     }
2643     memory_listener_register(&kvm_coalesced_pio_listener,
2644                              &address_space_io);
2645 
2646     s->many_ioeventfds = kvm_check_many_ioeventfds();
2647 
2648     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2649     if (!s->sync_mmu) {
2650         ret = ram_block_discard_disable(true);
2651         assert(!ret);
2652     }
2653 
2654     if (s->kvm_dirty_ring_size) {
2655         ret = kvm_dirty_ring_reaper_init(s);
2656         if (ret) {
2657             goto err;
2658         }
2659     }
2660 
2661     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2662         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2663                             query_stats_schemas_cb);
2664     }
2665 
2666     return 0;
2667 
2668 err:
2669     assert(ret < 0);
2670     if (s->vmfd >= 0) {
2671         close(s->vmfd);
2672     }
2673     if (s->fd != -1) {
2674         close(s->fd);
2675     }
2676     g_free(s->memory_listener.slots);
2677 
2678     return ret;
2679 }
2680 
2681 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2682 {
2683     s->sigmask_len = sigmask_len;
2684 }
2685 
2686 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2687                           int size, uint32_t count)
2688 {
2689     int i;
2690     uint8_t *ptr = data;
2691 
2692     for (i = 0; i < count; i++) {
2693         address_space_rw(&address_space_io, port, attrs,
2694                          ptr, size,
2695                          direction == KVM_EXIT_IO_OUT);
2696         ptr += size;
2697     }
2698 }
2699 
2700 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2701 {
2702     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2703             run->internal.suberror);
2704 
2705     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2706         int i;
2707 
2708         for (i = 0; i < run->internal.ndata; ++i) {
2709             fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2710                     i, (uint64_t)run->internal.data[i]);
2711         }
2712     }
2713     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2714         fprintf(stderr, "emulation failure\n");
2715         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2716             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2717             return EXCP_INTERRUPT;
2718         }
2719     }
2720     /* FIXME: Should trigger a qmp message to let management know
2721      * something went wrong.
2722      */
2723     return -1;
2724 }
2725 
2726 void kvm_flush_coalesced_mmio_buffer(void)
2727 {
2728     KVMState *s = kvm_state;
2729 
2730     if (s->coalesced_flush_in_progress) {
2731         return;
2732     }
2733 
2734     s->coalesced_flush_in_progress = true;
2735 
2736     if (s->coalesced_mmio_ring) {
2737         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2738         while (ring->first != ring->last) {
2739             struct kvm_coalesced_mmio *ent;
2740 
2741             ent = &ring->coalesced_mmio[ring->first];
2742 
2743             if (ent->pio == 1) {
2744                 address_space_write(&address_space_io, ent->phys_addr,
2745                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2746                                     ent->len);
2747             } else {
2748                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2749             }
2750             smp_wmb();
2751             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2752         }
2753     }
2754 
2755     s->coalesced_flush_in_progress = false;
2756 }
2757 
2758 bool kvm_cpu_check_are_resettable(void)
2759 {
2760     return kvm_arch_cpu_check_are_resettable();
2761 }
2762 
2763 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2764 {
2765     if (!cpu->vcpu_dirty) {
2766         kvm_arch_get_registers(cpu);
2767         cpu->vcpu_dirty = true;
2768     }
2769 }
2770 
2771 void kvm_cpu_synchronize_state(CPUState *cpu)
2772 {
2773     if (!cpu->vcpu_dirty) {
2774         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2775     }
2776 }
2777 
2778 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2779 {
2780     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2781     cpu->vcpu_dirty = false;
2782 }
2783 
2784 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2785 {
2786     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2787 }
2788 
2789 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2790 {
2791     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2792     cpu->vcpu_dirty = false;
2793 }
2794 
2795 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2796 {
2797     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2798 }
2799 
2800 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2801 {
2802     cpu->vcpu_dirty = true;
2803 }
2804 
2805 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2806 {
2807     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2808 }
2809 
2810 #ifdef KVM_HAVE_MCE_INJECTION
2811 static __thread void *pending_sigbus_addr;
2812 static __thread int pending_sigbus_code;
2813 static __thread bool have_sigbus_pending;
2814 #endif
2815 
2816 static void kvm_cpu_kick(CPUState *cpu)
2817 {
2818     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2819 }
2820 
2821 static void kvm_cpu_kick_self(void)
2822 {
2823     if (kvm_immediate_exit) {
2824         kvm_cpu_kick(current_cpu);
2825     } else {
2826         qemu_cpu_kick_self();
2827     }
2828 }
2829 
2830 static void kvm_eat_signals(CPUState *cpu)
2831 {
2832     struct timespec ts = { 0, 0 };
2833     siginfo_t siginfo;
2834     sigset_t waitset;
2835     sigset_t chkset;
2836     int r;
2837 
2838     if (kvm_immediate_exit) {
2839         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2840         /* Write kvm_run->immediate_exit before the cpu->exit_request
2841          * write in kvm_cpu_exec.
2842          */
2843         smp_wmb();
2844         return;
2845     }
2846 
2847     sigemptyset(&waitset);
2848     sigaddset(&waitset, SIG_IPI);
2849 
2850     do {
2851         r = sigtimedwait(&waitset, &siginfo, &ts);
2852         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2853             perror("sigtimedwait");
2854             exit(1);
2855         }
2856 
2857         r = sigpending(&chkset);
2858         if (r == -1) {
2859             perror("sigpending");
2860             exit(1);
2861         }
2862     } while (sigismember(&chkset, SIG_IPI));
2863 }
2864 
2865 int kvm_cpu_exec(CPUState *cpu)
2866 {
2867     struct kvm_run *run = cpu->kvm_run;
2868     int ret, run_ret;
2869 
2870     DPRINTF("kvm_cpu_exec()\n");
2871 
2872     if (kvm_arch_process_async_events(cpu)) {
2873         qatomic_set(&cpu->exit_request, 0);
2874         return EXCP_HLT;
2875     }
2876 
2877     qemu_mutex_unlock_iothread();
2878     cpu_exec_start(cpu);
2879 
2880     do {
2881         MemTxAttrs attrs;
2882 
2883         if (cpu->vcpu_dirty) {
2884             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2885             cpu->vcpu_dirty = false;
2886         }
2887 
2888         kvm_arch_pre_run(cpu, run);
2889         if (qatomic_read(&cpu->exit_request)) {
2890             DPRINTF("interrupt exit requested\n");
2891             /*
2892              * KVM requires us to reenter the kernel after IO exits to complete
2893              * instruction emulation. This self-signal will ensure that we
2894              * leave ASAP again.
2895              */
2896             kvm_cpu_kick_self();
2897         }
2898 
2899         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2900          * Matching barrier in kvm_eat_signals.
2901          */
2902         smp_rmb();
2903 
2904         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2905 
2906         attrs = kvm_arch_post_run(cpu, run);
2907 
2908 #ifdef KVM_HAVE_MCE_INJECTION
2909         if (unlikely(have_sigbus_pending)) {
2910             qemu_mutex_lock_iothread();
2911             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2912                                     pending_sigbus_addr);
2913             have_sigbus_pending = false;
2914             qemu_mutex_unlock_iothread();
2915         }
2916 #endif
2917 
2918         if (run_ret < 0) {
2919             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2920                 DPRINTF("io window exit\n");
2921                 kvm_eat_signals(cpu);
2922                 ret = EXCP_INTERRUPT;
2923                 break;
2924             }
2925             fprintf(stderr, "error: kvm run failed %s\n",
2926                     strerror(-run_ret));
2927 #ifdef TARGET_PPC
2928             if (run_ret == -EBUSY) {
2929                 fprintf(stderr,
2930                         "This is probably because your SMT is enabled.\n"
2931                         "VCPU can only run on primary threads with all "
2932                         "secondary threads offline.\n");
2933             }
2934 #endif
2935             ret = -1;
2936             break;
2937         }
2938 
2939         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2940         switch (run->exit_reason) {
2941         case KVM_EXIT_IO:
2942             DPRINTF("handle_io\n");
2943             /* Called outside BQL */
2944             kvm_handle_io(run->io.port, attrs,
2945                           (uint8_t *)run + run->io.data_offset,
2946                           run->io.direction,
2947                           run->io.size,
2948                           run->io.count);
2949             ret = 0;
2950             break;
2951         case KVM_EXIT_MMIO:
2952             DPRINTF("handle_mmio\n");
2953             /* Called outside BQL */
2954             address_space_rw(&address_space_memory,
2955                              run->mmio.phys_addr, attrs,
2956                              run->mmio.data,
2957                              run->mmio.len,
2958                              run->mmio.is_write);
2959             ret = 0;
2960             break;
2961         case KVM_EXIT_IRQ_WINDOW_OPEN:
2962             DPRINTF("irq_window_open\n");
2963             ret = EXCP_INTERRUPT;
2964             break;
2965         case KVM_EXIT_SHUTDOWN:
2966             DPRINTF("shutdown\n");
2967             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2968             ret = EXCP_INTERRUPT;
2969             break;
2970         case KVM_EXIT_UNKNOWN:
2971             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2972                     (uint64_t)run->hw.hardware_exit_reason);
2973             ret = -1;
2974             break;
2975         case KVM_EXIT_INTERNAL_ERROR:
2976             ret = kvm_handle_internal_error(cpu, run);
2977             break;
2978         case KVM_EXIT_DIRTY_RING_FULL:
2979             /*
2980              * We shouldn't continue if the dirty ring of this vcpu is
2981              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
2982              */
2983             trace_kvm_dirty_ring_full(cpu->cpu_index);
2984             qemu_mutex_lock_iothread();
2985             /*
2986              * We throttle vCPU by making it sleep once it exit from kernel
2987              * due to dirty ring full. In the dirtylimit scenario, reaping
2988              * all vCPUs after a single vCPU dirty ring get full result in
2989              * the miss of sleep, so just reap the ring-fulled vCPU.
2990              */
2991             if (dirtylimit_in_service()) {
2992                 kvm_dirty_ring_reap(kvm_state, cpu);
2993             } else {
2994                 kvm_dirty_ring_reap(kvm_state, NULL);
2995             }
2996             qemu_mutex_unlock_iothread();
2997             dirtylimit_vcpu_execute(cpu);
2998             ret = 0;
2999             break;
3000         case KVM_EXIT_SYSTEM_EVENT:
3001             switch (run->system_event.type) {
3002             case KVM_SYSTEM_EVENT_SHUTDOWN:
3003                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3004                 ret = EXCP_INTERRUPT;
3005                 break;
3006             case KVM_SYSTEM_EVENT_RESET:
3007                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3008                 ret = EXCP_INTERRUPT;
3009                 break;
3010             case KVM_SYSTEM_EVENT_CRASH:
3011                 kvm_cpu_synchronize_state(cpu);
3012                 qemu_mutex_lock_iothread();
3013                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3014                 qemu_mutex_unlock_iothread();
3015                 ret = 0;
3016                 break;
3017             default:
3018                 DPRINTF("kvm_arch_handle_exit\n");
3019                 ret = kvm_arch_handle_exit(cpu, run);
3020                 break;
3021             }
3022             break;
3023         default:
3024             DPRINTF("kvm_arch_handle_exit\n");
3025             ret = kvm_arch_handle_exit(cpu, run);
3026             break;
3027         }
3028     } while (ret == 0);
3029 
3030     cpu_exec_end(cpu);
3031     qemu_mutex_lock_iothread();
3032 
3033     if (ret < 0) {
3034         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3035         vm_stop(RUN_STATE_INTERNAL_ERROR);
3036     }
3037 
3038     qatomic_set(&cpu->exit_request, 0);
3039     return ret;
3040 }
3041 
3042 int kvm_ioctl(KVMState *s, int type, ...)
3043 {
3044     int ret;
3045     void *arg;
3046     va_list ap;
3047 
3048     va_start(ap, type);
3049     arg = va_arg(ap, void *);
3050     va_end(ap);
3051 
3052     trace_kvm_ioctl(type, arg);
3053     ret = ioctl(s->fd, type, arg);
3054     if (ret == -1) {
3055         ret = -errno;
3056     }
3057     return ret;
3058 }
3059 
3060 int kvm_vm_ioctl(KVMState *s, int type, ...)
3061 {
3062     int ret;
3063     void *arg;
3064     va_list ap;
3065 
3066     va_start(ap, type);
3067     arg = va_arg(ap, void *);
3068     va_end(ap);
3069 
3070     trace_kvm_vm_ioctl(type, arg);
3071     ret = ioctl(s->vmfd, type, arg);
3072     if (ret == -1) {
3073         ret = -errno;
3074     }
3075     return ret;
3076 }
3077 
3078 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3079 {
3080     int ret;
3081     void *arg;
3082     va_list ap;
3083 
3084     va_start(ap, type);
3085     arg = va_arg(ap, void *);
3086     va_end(ap);
3087 
3088     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3089     ret = ioctl(cpu->kvm_fd, type, arg);
3090     if (ret == -1) {
3091         ret = -errno;
3092     }
3093     return ret;
3094 }
3095 
3096 int kvm_device_ioctl(int fd, int type, ...)
3097 {
3098     int ret;
3099     void *arg;
3100     va_list ap;
3101 
3102     va_start(ap, type);
3103     arg = va_arg(ap, void *);
3104     va_end(ap);
3105 
3106     trace_kvm_device_ioctl(fd, type, arg);
3107     ret = ioctl(fd, type, arg);
3108     if (ret == -1) {
3109         ret = -errno;
3110     }
3111     return ret;
3112 }
3113 
3114 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3115 {
3116     int ret;
3117     struct kvm_device_attr attribute = {
3118         .group = group,
3119         .attr = attr,
3120     };
3121 
3122     if (!kvm_vm_attributes_allowed) {
3123         return 0;
3124     }
3125 
3126     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3127     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3128     return ret ? 0 : 1;
3129 }
3130 
3131 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3132 {
3133     struct kvm_device_attr attribute = {
3134         .group = group,
3135         .attr = attr,
3136         .flags = 0,
3137     };
3138 
3139     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3140 }
3141 
3142 int kvm_device_access(int fd, int group, uint64_t attr,
3143                       void *val, bool write, Error **errp)
3144 {
3145     struct kvm_device_attr kvmattr;
3146     int err;
3147 
3148     kvmattr.flags = 0;
3149     kvmattr.group = group;
3150     kvmattr.attr = attr;
3151     kvmattr.addr = (uintptr_t)val;
3152 
3153     err = kvm_device_ioctl(fd,
3154                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3155                            &kvmattr);
3156     if (err < 0) {
3157         error_setg_errno(errp, -err,
3158                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3159                          "attr 0x%016" PRIx64,
3160                          write ? "SET" : "GET", group, attr);
3161     }
3162     return err;
3163 }
3164 
3165 bool kvm_has_sync_mmu(void)
3166 {
3167     return kvm_state->sync_mmu;
3168 }
3169 
3170 int kvm_has_vcpu_events(void)
3171 {
3172     return kvm_state->vcpu_events;
3173 }
3174 
3175 int kvm_has_robust_singlestep(void)
3176 {
3177     return kvm_state->robust_singlestep;
3178 }
3179 
3180 int kvm_has_debugregs(void)
3181 {
3182     return kvm_state->debugregs;
3183 }
3184 
3185 int kvm_max_nested_state_length(void)
3186 {
3187     return kvm_state->max_nested_state_len;
3188 }
3189 
3190 int kvm_has_many_ioeventfds(void)
3191 {
3192     if (!kvm_enabled()) {
3193         return 0;
3194     }
3195     return kvm_state->many_ioeventfds;
3196 }
3197 
3198 int kvm_has_gsi_routing(void)
3199 {
3200 #ifdef KVM_CAP_IRQ_ROUTING
3201     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3202 #else
3203     return false;
3204 #endif
3205 }
3206 
3207 int kvm_has_intx_set_mask(void)
3208 {
3209     return kvm_state->intx_set_mask;
3210 }
3211 
3212 bool kvm_arm_supports_user_irq(void)
3213 {
3214     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3215 }
3216 
3217 #ifdef KVM_CAP_SET_GUEST_DEBUG
3218 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3219                                                  target_ulong pc)
3220 {
3221     struct kvm_sw_breakpoint *bp;
3222 
3223     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3224         if (bp->pc == pc) {
3225             return bp;
3226         }
3227     }
3228     return NULL;
3229 }
3230 
3231 int kvm_sw_breakpoints_active(CPUState *cpu)
3232 {
3233     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3234 }
3235 
3236 struct kvm_set_guest_debug_data {
3237     struct kvm_guest_debug dbg;
3238     int err;
3239 };
3240 
3241 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3242 {
3243     struct kvm_set_guest_debug_data *dbg_data =
3244         (struct kvm_set_guest_debug_data *) data.host_ptr;
3245 
3246     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3247                                    &dbg_data->dbg);
3248 }
3249 
3250 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3251 {
3252     struct kvm_set_guest_debug_data data;
3253 
3254     data.dbg.control = reinject_trap;
3255 
3256     if (cpu->singlestep_enabled) {
3257         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3258 
3259         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3260             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3261         }
3262     }
3263     kvm_arch_update_guest_debug(cpu, &data.dbg);
3264 
3265     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3266                RUN_ON_CPU_HOST_PTR(&data));
3267     return data.err;
3268 }
3269 
3270 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3271                           target_ulong len, int type)
3272 {
3273     struct kvm_sw_breakpoint *bp;
3274     int err;
3275 
3276     if (type == GDB_BREAKPOINT_SW) {
3277         bp = kvm_find_sw_breakpoint(cpu, addr);
3278         if (bp) {
3279             bp->use_count++;
3280             return 0;
3281         }
3282 
3283         bp = g_new(struct kvm_sw_breakpoint, 1);
3284         bp->pc = addr;
3285         bp->use_count = 1;
3286         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3287         if (err) {
3288             g_free(bp);
3289             return err;
3290         }
3291 
3292         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3293     } else {
3294         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3295         if (err) {
3296             return err;
3297         }
3298     }
3299 
3300     CPU_FOREACH(cpu) {
3301         err = kvm_update_guest_debug(cpu, 0);
3302         if (err) {
3303             return err;
3304         }
3305     }
3306     return 0;
3307 }
3308 
3309 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3310                           target_ulong len, int type)
3311 {
3312     struct kvm_sw_breakpoint *bp;
3313     int err;
3314 
3315     if (type == GDB_BREAKPOINT_SW) {
3316         bp = kvm_find_sw_breakpoint(cpu, addr);
3317         if (!bp) {
3318             return -ENOENT;
3319         }
3320 
3321         if (bp->use_count > 1) {
3322             bp->use_count--;
3323             return 0;
3324         }
3325 
3326         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3327         if (err) {
3328             return err;
3329         }
3330 
3331         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3332         g_free(bp);
3333     } else {
3334         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3335         if (err) {
3336             return err;
3337         }
3338     }
3339 
3340     CPU_FOREACH(cpu) {
3341         err = kvm_update_guest_debug(cpu, 0);
3342         if (err) {
3343             return err;
3344         }
3345     }
3346     return 0;
3347 }
3348 
3349 void kvm_remove_all_breakpoints(CPUState *cpu)
3350 {
3351     struct kvm_sw_breakpoint *bp, *next;
3352     KVMState *s = cpu->kvm_state;
3353     CPUState *tmpcpu;
3354 
3355     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3356         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3357             /* Try harder to find a CPU that currently sees the breakpoint. */
3358             CPU_FOREACH(tmpcpu) {
3359                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3360                     break;
3361                 }
3362             }
3363         }
3364         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3365         g_free(bp);
3366     }
3367     kvm_arch_remove_all_hw_breakpoints();
3368 
3369     CPU_FOREACH(cpu) {
3370         kvm_update_guest_debug(cpu, 0);
3371     }
3372 }
3373 
3374 #else /* !KVM_CAP_SET_GUEST_DEBUG */
3375 
3376 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3377 {
3378     return -EINVAL;
3379 }
3380 
3381 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3382                           target_ulong len, int type)
3383 {
3384     return -EINVAL;
3385 }
3386 
3387 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3388                           target_ulong len, int type)
3389 {
3390     return -EINVAL;
3391 }
3392 
3393 void kvm_remove_all_breakpoints(CPUState *cpu)
3394 {
3395 }
3396 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3397 
3398 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3399 {
3400     KVMState *s = kvm_state;
3401     struct kvm_signal_mask *sigmask;
3402     int r;
3403 
3404     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3405 
3406     sigmask->len = s->sigmask_len;
3407     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3408     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3409     g_free(sigmask);
3410 
3411     return r;
3412 }
3413 
3414 static void kvm_ipi_signal(int sig)
3415 {
3416     if (current_cpu) {
3417         assert(kvm_immediate_exit);
3418         kvm_cpu_kick(current_cpu);
3419     }
3420 }
3421 
3422 void kvm_init_cpu_signals(CPUState *cpu)
3423 {
3424     int r;
3425     sigset_t set;
3426     struct sigaction sigact;
3427 
3428     memset(&sigact, 0, sizeof(sigact));
3429     sigact.sa_handler = kvm_ipi_signal;
3430     sigaction(SIG_IPI, &sigact, NULL);
3431 
3432     pthread_sigmask(SIG_BLOCK, NULL, &set);
3433 #if defined KVM_HAVE_MCE_INJECTION
3434     sigdelset(&set, SIGBUS);
3435     pthread_sigmask(SIG_SETMASK, &set, NULL);
3436 #endif
3437     sigdelset(&set, SIG_IPI);
3438     if (kvm_immediate_exit) {
3439         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3440     } else {
3441         r = kvm_set_signal_mask(cpu, &set);
3442     }
3443     if (r) {
3444         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3445         exit(1);
3446     }
3447 }
3448 
3449 /* Called asynchronously in VCPU thread.  */
3450 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3451 {
3452 #ifdef KVM_HAVE_MCE_INJECTION
3453     if (have_sigbus_pending) {
3454         return 1;
3455     }
3456     have_sigbus_pending = true;
3457     pending_sigbus_addr = addr;
3458     pending_sigbus_code = code;
3459     qatomic_set(&cpu->exit_request, 1);
3460     return 0;
3461 #else
3462     return 1;
3463 #endif
3464 }
3465 
3466 /* Called synchronously (via signalfd) in main thread.  */
3467 int kvm_on_sigbus(int code, void *addr)
3468 {
3469 #ifdef KVM_HAVE_MCE_INJECTION
3470     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3471      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3472      * we can only get action optional here.
3473      */
3474     assert(code != BUS_MCEERR_AR);
3475     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3476     return 0;
3477 #else
3478     return 1;
3479 #endif
3480 }
3481 
3482 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3483 {
3484     int ret;
3485     struct kvm_create_device create_dev;
3486 
3487     create_dev.type = type;
3488     create_dev.fd = -1;
3489     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3490 
3491     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3492         return -ENOTSUP;
3493     }
3494 
3495     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3496     if (ret) {
3497         return ret;
3498     }
3499 
3500     return test ? 0 : create_dev.fd;
3501 }
3502 
3503 bool kvm_device_supported(int vmfd, uint64_t type)
3504 {
3505     struct kvm_create_device create_dev = {
3506         .type = type,
3507         .fd = -1,
3508         .flags = KVM_CREATE_DEVICE_TEST,
3509     };
3510 
3511     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3512         return false;
3513     }
3514 
3515     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3516 }
3517 
3518 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3519 {
3520     struct kvm_one_reg reg;
3521     int r;
3522 
3523     reg.id = id;
3524     reg.addr = (uintptr_t) source;
3525     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3526     if (r) {
3527         trace_kvm_failed_reg_set(id, strerror(-r));
3528     }
3529     return r;
3530 }
3531 
3532 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3533 {
3534     struct kvm_one_reg reg;
3535     int r;
3536 
3537     reg.id = id;
3538     reg.addr = (uintptr_t) target;
3539     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3540     if (r) {
3541         trace_kvm_failed_reg_get(id, strerror(-r));
3542     }
3543     return r;
3544 }
3545 
3546 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3547                                  hwaddr start_addr, hwaddr size)
3548 {
3549     KVMState *kvm = KVM_STATE(ms->accelerator);
3550     int i;
3551 
3552     for (i = 0; i < kvm->nr_as; ++i) {
3553         if (kvm->as[i].as == as && kvm->as[i].ml) {
3554             size = MIN(kvm_max_slot_size, size);
3555             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3556                                                     start_addr, size);
3557         }
3558     }
3559 
3560     return false;
3561 }
3562 
3563 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3564                                    const char *name, void *opaque,
3565                                    Error **errp)
3566 {
3567     KVMState *s = KVM_STATE(obj);
3568     int64_t value = s->kvm_shadow_mem;
3569 
3570     visit_type_int(v, name, &value, errp);
3571 }
3572 
3573 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3574                                    const char *name, void *opaque,
3575                                    Error **errp)
3576 {
3577     KVMState *s = KVM_STATE(obj);
3578     int64_t value;
3579 
3580     if (s->fd != -1) {
3581         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3582         return;
3583     }
3584 
3585     if (!visit_type_int(v, name, &value, errp)) {
3586         return;
3587     }
3588 
3589     s->kvm_shadow_mem = value;
3590 }
3591 
3592 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3593                                    const char *name, void *opaque,
3594                                    Error **errp)
3595 {
3596     KVMState *s = KVM_STATE(obj);
3597     OnOffSplit mode;
3598 
3599     if (s->fd != -1) {
3600         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3601         return;
3602     }
3603 
3604     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3605         return;
3606     }
3607     switch (mode) {
3608     case ON_OFF_SPLIT_ON:
3609         s->kernel_irqchip_allowed = true;
3610         s->kernel_irqchip_required = true;
3611         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3612         break;
3613     case ON_OFF_SPLIT_OFF:
3614         s->kernel_irqchip_allowed = false;
3615         s->kernel_irqchip_required = false;
3616         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3617         break;
3618     case ON_OFF_SPLIT_SPLIT:
3619         s->kernel_irqchip_allowed = true;
3620         s->kernel_irqchip_required = true;
3621         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3622         break;
3623     default:
3624         /* The value was checked in visit_type_OnOffSplit() above. If
3625          * we get here, then something is wrong in QEMU.
3626          */
3627         abort();
3628     }
3629 }
3630 
3631 bool kvm_kernel_irqchip_allowed(void)
3632 {
3633     return kvm_state->kernel_irqchip_allowed;
3634 }
3635 
3636 bool kvm_kernel_irqchip_required(void)
3637 {
3638     return kvm_state->kernel_irqchip_required;
3639 }
3640 
3641 bool kvm_kernel_irqchip_split(void)
3642 {
3643     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3644 }
3645 
3646 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3647                                     const char *name, void *opaque,
3648                                     Error **errp)
3649 {
3650     KVMState *s = KVM_STATE(obj);
3651     uint32_t value = s->kvm_dirty_ring_size;
3652 
3653     visit_type_uint32(v, name, &value, errp);
3654 }
3655 
3656 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3657                                     const char *name, void *opaque,
3658                                     Error **errp)
3659 {
3660     KVMState *s = KVM_STATE(obj);
3661     Error *error = NULL;
3662     uint32_t value;
3663 
3664     if (s->fd != -1) {
3665         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3666         return;
3667     }
3668 
3669     visit_type_uint32(v, name, &value, &error);
3670     if (error) {
3671         error_propagate(errp, error);
3672         return;
3673     }
3674     if (value & (value - 1)) {
3675         error_setg(errp, "dirty-ring-size must be a power of two.");
3676         return;
3677     }
3678 
3679     s->kvm_dirty_ring_size = value;
3680 }
3681 
3682 static void kvm_accel_instance_init(Object *obj)
3683 {
3684     KVMState *s = KVM_STATE(obj);
3685 
3686     s->fd = -1;
3687     s->vmfd = -1;
3688     s->kvm_shadow_mem = -1;
3689     s->kernel_irqchip_allowed = true;
3690     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3691     /* KVM dirty ring is by default off */
3692     s->kvm_dirty_ring_size = 0;
3693 }
3694 
3695 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3696 {
3697     AccelClass *ac = ACCEL_CLASS(oc);
3698     ac->name = "KVM";
3699     ac->init_machine = kvm_init;
3700     ac->has_memory = kvm_accel_has_memory;
3701     ac->allowed = &kvm_allowed;
3702 
3703     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3704         NULL, kvm_set_kernel_irqchip,
3705         NULL, NULL);
3706     object_class_property_set_description(oc, "kernel-irqchip",
3707         "Configure KVM in-kernel irqchip");
3708 
3709     object_class_property_add(oc, "kvm-shadow-mem", "int",
3710         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3711         NULL, NULL);
3712     object_class_property_set_description(oc, "kvm-shadow-mem",
3713         "KVM shadow MMU size");
3714 
3715     object_class_property_add(oc, "dirty-ring-size", "uint32",
3716         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3717         NULL, NULL);
3718     object_class_property_set_description(oc, "dirty-ring-size",
3719         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3720 }
3721 
3722 static const TypeInfo kvm_accel_type = {
3723     .name = TYPE_KVM_ACCEL,
3724     .parent = TYPE_ACCEL,
3725     .instance_init = kvm_accel_instance_init,
3726     .class_init = kvm_accel_class_init,
3727     .instance_size = sizeof(KVMState),
3728 };
3729 
3730 static void kvm_type_init(void)
3731 {
3732     type_register_static(&kvm_accel_type);
3733 }
3734 
3735 type_init(kvm_type_init);
3736 
3737 typedef struct StatsArgs {
3738     union StatsResultsType {
3739         StatsResultList **stats;
3740         StatsSchemaList **schema;
3741     } result;
3742     strList *names;
3743     Error **errp;
3744 } StatsArgs;
3745 
3746 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3747                                     uint64_t *stats_data,
3748                                     StatsList *stats_list,
3749                                     Error **errp)
3750 {
3751 
3752     Stats *stats;
3753     uint64List *val_list = NULL;
3754 
3755     /* Only add stats that we understand.  */
3756     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3757     case KVM_STATS_TYPE_CUMULATIVE:
3758     case KVM_STATS_TYPE_INSTANT:
3759     case KVM_STATS_TYPE_PEAK:
3760     case KVM_STATS_TYPE_LINEAR_HIST:
3761     case KVM_STATS_TYPE_LOG_HIST:
3762         break;
3763     default:
3764         return stats_list;
3765     }
3766 
3767     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3768     case KVM_STATS_UNIT_NONE:
3769     case KVM_STATS_UNIT_BYTES:
3770     case KVM_STATS_UNIT_CYCLES:
3771     case KVM_STATS_UNIT_SECONDS:
3772     case KVM_STATS_UNIT_BOOLEAN:
3773         break;
3774     default:
3775         return stats_list;
3776     }
3777 
3778     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3779     case KVM_STATS_BASE_POW10:
3780     case KVM_STATS_BASE_POW2:
3781         break;
3782     default:
3783         return stats_list;
3784     }
3785 
3786     /* Alloc and populate data list */
3787     stats = g_new0(Stats, 1);
3788     stats->name = g_strdup(pdesc->name);
3789     stats->value = g_new0(StatsValue, 1);;
3790 
3791     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3792         stats->value->u.boolean = *stats_data;
3793         stats->value->type = QTYPE_QBOOL;
3794     } else if (pdesc->size == 1) {
3795         stats->value->u.scalar = *stats_data;
3796         stats->value->type = QTYPE_QNUM;
3797     } else {
3798         int i;
3799         for (i = 0; i < pdesc->size; i++) {
3800             QAPI_LIST_PREPEND(val_list, stats_data[i]);
3801         }
3802         stats->value->u.list = val_list;
3803         stats->value->type = QTYPE_QLIST;
3804     }
3805 
3806     QAPI_LIST_PREPEND(stats_list, stats);
3807     return stats_list;
3808 }
3809 
3810 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3811                                                  StatsSchemaValueList *list,
3812                                                  Error **errp)
3813 {
3814     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3815     schema_entry->value = g_new0(StatsSchemaValue, 1);
3816 
3817     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3818     case KVM_STATS_TYPE_CUMULATIVE:
3819         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3820         break;
3821     case KVM_STATS_TYPE_INSTANT:
3822         schema_entry->value->type = STATS_TYPE_INSTANT;
3823         break;
3824     case KVM_STATS_TYPE_PEAK:
3825         schema_entry->value->type = STATS_TYPE_PEAK;
3826         break;
3827     case KVM_STATS_TYPE_LINEAR_HIST:
3828         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3829         schema_entry->value->bucket_size = pdesc->bucket_size;
3830         schema_entry->value->has_bucket_size = true;
3831         break;
3832     case KVM_STATS_TYPE_LOG_HIST:
3833         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3834         break;
3835     default:
3836         goto exit;
3837     }
3838 
3839     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3840     case KVM_STATS_UNIT_NONE:
3841         break;
3842     case KVM_STATS_UNIT_BOOLEAN:
3843         schema_entry->value->has_unit = true;
3844         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3845         break;
3846     case KVM_STATS_UNIT_BYTES:
3847         schema_entry->value->has_unit = true;
3848         schema_entry->value->unit = STATS_UNIT_BYTES;
3849         break;
3850     case KVM_STATS_UNIT_CYCLES:
3851         schema_entry->value->has_unit = true;
3852         schema_entry->value->unit = STATS_UNIT_CYCLES;
3853         break;
3854     case KVM_STATS_UNIT_SECONDS:
3855         schema_entry->value->has_unit = true;
3856         schema_entry->value->unit = STATS_UNIT_SECONDS;
3857         break;
3858     default:
3859         goto exit;
3860     }
3861 
3862     schema_entry->value->exponent = pdesc->exponent;
3863     if (pdesc->exponent) {
3864         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3865         case KVM_STATS_BASE_POW10:
3866             schema_entry->value->has_base = true;
3867             schema_entry->value->base = 10;
3868             break;
3869         case KVM_STATS_BASE_POW2:
3870             schema_entry->value->has_base = true;
3871             schema_entry->value->base = 2;
3872             break;
3873         default:
3874             goto exit;
3875         }
3876     }
3877 
3878     schema_entry->value->name = g_strdup(pdesc->name);
3879     schema_entry->next = list;
3880     return schema_entry;
3881 exit:
3882     g_free(schema_entry->value);
3883     g_free(schema_entry);
3884     return list;
3885 }
3886 
3887 /* Cached stats descriptors */
3888 typedef struct StatsDescriptors {
3889     const char *ident; /* cache key, currently the StatsTarget */
3890     struct kvm_stats_desc *kvm_stats_desc;
3891     struct kvm_stats_header *kvm_stats_header;
3892     QTAILQ_ENTRY(StatsDescriptors) next;
3893 } StatsDescriptors;
3894 
3895 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3896     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3897 
3898 /*
3899  * Return the descriptors for 'target', that either have already been read
3900  * or are retrieved from 'stats_fd'.
3901  */
3902 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3903                                                 Error **errp)
3904 {
3905     StatsDescriptors *descriptors;
3906     const char *ident;
3907     struct kvm_stats_desc *kvm_stats_desc;
3908     struct kvm_stats_header *kvm_stats_header;
3909     size_t size_desc;
3910     ssize_t ret;
3911 
3912     ident = StatsTarget_str(target);
3913     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3914         if (g_str_equal(descriptors->ident, ident)) {
3915             return descriptors;
3916         }
3917     }
3918 
3919     descriptors = g_new0(StatsDescriptors, 1);
3920 
3921     /* Read stats header */
3922     kvm_stats_header = g_malloc(sizeof(*kvm_stats_header));
3923     ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header));
3924     if (ret != sizeof(*kvm_stats_header)) {
3925         error_setg(errp, "KVM stats: failed to read stats header: "
3926                    "expected %zu actual %zu",
3927                    sizeof(*kvm_stats_header), ret);
3928         g_free(descriptors);
3929         return NULL;
3930     }
3931     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3932 
3933     /* Read stats descriptors */
3934     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3935     ret = pread(stats_fd, kvm_stats_desc,
3936                 size_desc * kvm_stats_header->num_desc,
3937                 kvm_stats_header->desc_offset);
3938 
3939     if (ret != size_desc * kvm_stats_header->num_desc) {
3940         error_setg(errp, "KVM stats: failed to read stats descriptors: "
3941                    "expected %zu actual %zu",
3942                    size_desc * kvm_stats_header->num_desc, ret);
3943         g_free(descriptors);
3944         g_free(kvm_stats_desc);
3945         return NULL;
3946     }
3947     descriptors->kvm_stats_header = kvm_stats_header;
3948     descriptors->kvm_stats_desc = kvm_stats_desc;
3949     descriptors->ident = ident;
3950     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3951     return descriptors;
3952 }
3953 
3954 static void query_stats(StatsResultList **result, StatsTarget target,
3955                         strList *names, int stats_fd, Error **errp)
3956 {
3957     struct kvm_stats_desc *kvm_stats_desc;
3958     struct kvm_stats_header *kvm_stats_header;
3959     StatsDescriptors *descriptors;
3960     g_autofree uint64_t *stats_data = NULL;
3961     struct kvm_stats_desc *pdesc;
3962     StatsList *stats_list = NULL;
3963     size_t size_desc, size_data = 0;
3964     ssize_t ret;
3965     int i;
3966 
3967     descriptors = find_stats_descriptors(target, stats_fd, errp);
3968     if (!descriptors) {
3969         return;
3970     }
3971 
3972     kvm_stats_header = descriptors->kvm_stats_header;
3973     kvm_stats_desc = descriptors->kvm_stats_desc;
3974     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3975 
3976     /* Tally the total data size; read schema data */
3977     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3978         pdesc = (void *)kvm_stats_desc + i * size_desc;
3979         size_data += pdesc->size * sizeof(*stats_data);
3980     }
3981 
3982     stats_data = g_malloc0(size_data);
3983     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
3984 
3985     if (ret != size_data) {
3986         error_setg(errp, "KVM stats: failed to read data: "
3987                    "expected %zu actual %zu", size_data, ret);
3988         return;
3989     }
3990 
3991     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3992         uint64_t *stats;
3993         pdesc = (void *)kvm_stats_desc + i * size_desc;
3994 
3995         /* Add entry to the list */
3996         stats = (void *)stats_data + pdesc->offset;
3997         if (!apply_str_list_filter(pdesc->name, names)) {
3998             continue;
3999         }
4000         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4001     }
4002 
4003     if (!stats_list) {
4004         return;
4005     }
4006 
4007     switch (target) {
4008     case STATS_TARGET_VM:
4009         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4010         break;
4011     case STATS_TARGET_VCPU:
4012         add_stats_entry(result, STATS_PROVIDER_KVM,
4013                         current_cpu->parent_obj.canonical_path,
4014                         stats_list);
4015         break;
4016     default:
4017         g_assert_not_reached();
4018     }
4019 }
4020 
4021 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4022                                int stats_fd, Error **errp)
4023 {
4024     struct kvm_stats_desc *kvm_stats_desc;
4025     struct kvm_stats_header *kvm_stats_header;
4026     StatsDescriptors *descriptors;
4027     struct kvm_stats_desc *pdesc;
4028     StatsSchemaValueList *stats_list = NULL;
4029     size_t size_desc;
4030     int i;
4031 
4032     descriptors = find_stats_descriptors(target, stats_fd, errp);
4033     if (!descriptors) {
4034         return;
4035     }
4036 
4037     kvm_stats_header = descriptors->kvm_stats_header;
4038     kvm_stats_desc = descriptors->kvm_stats_desc;
4039     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4040 
4041     /* Tally the total data size; read schema data */
4042     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4043         pdesc = (void *)kvm_stats_desc + i * size_desc;
4044         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4045     }
4046 
4047     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4048 }
4049 
4050 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data)
4051 {
4052     StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4053     int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4054     Error *local_err = NULL;
4055 
4056     if (stats_fd == -1) {
4057         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4058         error_propagate(kvm_stats_args->errp, local_err);
4059         return;
4060     }
4061     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4062                 kvm_stats_args->names, stats_fd, kvm_stats_args->errp);
4063     close(stats_fd);
4064 }
4065 
4066 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data)
4067 {
4068     StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4069     int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4070     Error *local_err = NULL;
4071 
4072     if (stats_fd == -1) {
4073         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4074         error_propagate(kvm_stats_args->errp, local_err);
4075         return;
4076     }
4077     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4078                        kvm_stats_args->errp);
4079     close(stats_fd);
4080 }
4081 
4082 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4083                            strList *names, strList *targets, Error **errp)
4084 {
4085     KVMState *s = kvm_state;
4086     CPUState *cpu;
4087     int stats_fd;
4088 
4089     switch (target) {
4090     case STATS_TARGET_VM:
4091     {
4092         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4093         if (stats_fd == -1) {
4094             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4095             return;
4096         }
4097         query_stats(result, target, names, stats_fd, errp);
4098         close(stats_fd);
4099         break;
4100     }
4101     case STATS_TARGET_VCPU:
4102     {
4103         StatsArgs stats_args;
4104         stats_args.result.stats = result;
4105         stats_args.names = names;
4106         stats_args.errp = errp;
4107         CPU_FOREACH(cpu) {
4108             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4109                 continue;
4110             }
4111             run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
4112         }
4113         break;
4114     }
4115     default:
4116         break;
4117     }
4118 }
4119 
4120 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4121 {
4122     StatsArgs stats_args;
4123     KVMState *s = kvm_state;
4124     int stats_fd;
4125 
4126     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4127     if (stats_fd == -1) {
4128         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4129         return;
4130     }
4131     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4132     close(stats_fd);
4133 
4134     stats_args.result.schema = result;
4135     stats_args.errp = errp;
4136     run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
4137 }
4138