1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "qemu/event_notifier.h" 38 #include "qemu/main-loop.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 #include "qapi/visitor.h" 42 #include "qapi/qapi-types-common.h" 43 #include "qapi/qapi-visit-common.h" 44 #include "sysemu/reset.h" 45 #include "qemu/guest-random.h" 46 #include "sysemu/hw_accel.h" 47 #include "kvm-cpus.h" 48 #include "sysemu/dirtylimit.h" 49 50 #include "hw/boards.h" 51 #include "monitor/stats.h" 52 53 /* This check must be after config-host.h is included */ 54 #ifdef CONFIG_EVENTFD 55 #include <sys/eventfd.h> 56 #endif 57 58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 59 * need to use the real host PAGE_SIZE, as that's what KVM will use. 60 */ 61 #ifdef PAGE_SIZE 62 #undef PAGE_SIZE 63 #endif 64 #define PAGE_SIZE qemu_real_host_page_size() 65 66 #ifndef KVM_GUESTDBG_BLOCKIRQ 67 #define KVM_GUESTDBG_BLOCKIRQ 0 68 #endif 69 70 //#define DEBUG_KVM 71 72 #ifdef DEBUG_KVM 73 #define DPRINTF(fmt, ...) \ 74 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 75 #else 76 #define DPRINTF(fmt, ...) \ 77 do { } while (0) 78 #endif 79 80 #define KVM_MSI_HASHTAB_SIZE 256 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 enum KVMDirtyRingReaperState { 89 KVM_DIRTY_RING_REAPER_NONE = 0, 90 /* The reaper is sleeping */ 91 KVM_DIRTY_RING_REAPER_WAIT, 92 /* The reaper is reaping for dirty pages */ 93 KVM_DIRTY_RING_REAPER_REAPING, 94 }; 95 96 /* 97 * KVM reaper instance, responsible for collecting the KVM dirty bits 98 * via the dirty ring. 99 */ 100 struct KVMDirtyRingReaper { 101 /* The reaper thread */ 102 QemuThread reaper_thr; 103 volatile uint64_t reaper_iteration; /* iteration number of reaper thr */ 104 volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */ 105 }; 106 107 struct KVMState 108 { 109 AccelState parent_obj; 110 111 int nr_slots; 112 int fd; 113 int vmfd; 114 int coalesced_mmio; 115 int coalesced_pio; 116 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 117 bool coalesced_flush_in_progress; 118 int vcpu_events; 119 int robust_singlestep; 120 int debugregs; 121 #ifdef KVM_CAP_SET_GUEST_DEBUG 122 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 123 #endif 124 int max_nested_state_len; 125 int many_ioeventfds; 126 int intx_set_mask; 127 int kvm_shadow_mem; 128 bool kernel_irqchip_allowed; 129 bool kernel_irqchip_required; 130 OnOffAuto kernel_irqchip_split; 131 bool sync_mmu; 132 uint64_t manual_dirty_log_protect; 133 /* The man page (and posix) say ioctl numbers are signed int, but 134 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 135 * unsigned, and treating them as signed here can break things */ 136 unsigned irq_set_ioctl; 137 unsigned int sigmask_len; 138 GHashTable *gsimap; 139 #ifdef KVM_CAP_IRQ_ROUTING 140 struct kvm_irq_routing *irq_routes; 141 int nr_allocated_irq_routes; 142 unsigned long *used_gsi_bitmap; 143 unsigned int gsi_count; 144 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 145 #endif 146 KVMMemoryListener memory_listener; 147 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 148 149 /* For "info mtree -f" to tell if an MR is registered in KVM */ 150 int nr_as; 151 struct KVMAs { 152 KVMMemoryListener *ml; 153 AddressSpace *as; 154 } *as; 155 uint64_t kvm_dirty_ring_bytes; /* Size of the per-vcpu dirty ring */ 156 uint32_t kvm_dirty_ring_size; /* Number of dirty GFNs per ring */ 157 struct KVMDirtyRingReaper reaper; 158 }; 159 160 KVMState *kvm_state; 161 bool kvm_kernel_irqchip; 162 bool kvm_split_irqchip; 163 bool kvm_async_interrupts_allowed; 164 bool kvm_halt_in_kernel_allowed; 165 bool kvm_eventfds_allowed; 166 bool kvm_irqfds_allowed; 167 bool kvm_resamplefds_allowed; 168 bool kvm_msi_via_irqfd_allowed; 169 bool kvm_gsi_routing_allowed; 170 bool kvm_gsi_direct_mapping; 171 bool kvm_allowed; 172 bool kvm_readonly_mem_allowed; 173 bool kvm_vm_attributes_allowed; 174 bool kvm_direct_msi_allowed; 175 bool kvm_ioeventfd_any_length_allowed; 176 bool kvm_msi_use_devid; 177 bool kvm_has_guest_debug; 178 int kvm_sstep_flags; 179 static bool kvm_immediate_exit; 180 static hwaddr kvm_max_slot_size = ~0; 181 182 static const KVMCapabilityInfo kvm_required_capabilites[] = { 183 KVM_CAP_INFO(USER_MEMORY), 184 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 185 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 186 KVM_CAP_LAST_INFO 187 }; 188 189 static NotifierList kvm_irqchip_change_notifiers = 190 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 191 192 struct KVMResampleFd { 193 int gsi; 194 EventNotifier *resample_event; 195 QLIST_ENTRY(KVMResampleFd) node; 196 }; 197 typedef struct KVMResampleFd KVMResampleFd; 198 199 /* 200 * Only used with split irqchip where we need to do the resample fd 201 * kick for the kernel from userspace. 202 */ 203 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 204 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 205 206 static QemuMutex kml_slots_lock; 207 208 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 209 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 210 211 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 212 213 static inline void kvm_resample_fd_remove(int gsi) 214 { 215 KVMResampleFd *rfd; 216 217 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 218 if (rfd->gsi == gsi) { 219 QLIST_REMOVE(rfd, node); 220 g_free(rfd); 221 break; 222 } 223 } 224 } 225 226 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 227 { 228 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 229 230 rfd->gsi = gsi; 231 rfd->resample_event = event; 232 233 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 234 } 235 236 void kvm_resample_fd_notify(int gsi) 237 { 238 KVMResampleFd *rfd; 239 240 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 241 if (rfd->gsi == gsi) { 242 event_notifier_set(rfd->resample_event); 243 trace_kvm_resample_fd_notify(gsi); 244 return; 245 } 246 } 247 } 248 249 int kvm_get_max_memslots(void) 250 { 251 KVMState *s = KVM_STATE(current_accel()); 252 253 return s->nr_slots; 254 } 255 256 /* Called with KVMMemoryListener.slots_lock held */ 257 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 258 { 259 KVMState *s = kvm_state; 260 int i; 261 262 for (i = 0; i < s->nr_slots; i++) { 263 if (kml->slots[i].memory_size == 0) { 264 return &kml->slots[i]; 265 } 266 } 267 268 return NULL; 269 } 270 271 bool kvm_has_free_slot(MachineState *ms) 272 { 273 KVMState *s = KVM_STATE(ms->accelerator); 274 bool result; 275 KVMMemoryListener *kml = &s->memory_listener; 276 277 kvm_slots_lock(); 278 result = !!kvm_get_free_slot(kml); 279 kvm_slots_unlock(); 280 281 return result; 282 } 283 284 /* Called with KVMMemoryListener.slots_lock held */ 285 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 286 { 287 KVMSlot *slot = kvm_get_free_slot(kml); 288 289 if (slot) { 290 return slot; 291 } 292 293 fprintf(stderr, "%s: no free slot available\n", __func__); 294 abort(); 295 } 296 297 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 298 hwaddr start_addr, 299 hwaddr size) 300 { 301 KVMState *s = kvm_state; 302 int i; 303 304 for (i = 0; i < s->nr_slots; i++) { 305 KVMSlot *mem = &kml->slots[i]; 306 307 if (start_addr == mem->start_addr && size == mem->memory_size) { 308 return mem; 309 } 310 } 311 312 return NULL; 313 } 314 315 /* 316 * Calculate and align the start address and the size of the section. 317 * Return the size. If the size is 0, the aligned section is empty. 318 */ 319 static hwaddr kvm_align_section(MemoryRegionSection *section, 320 hwaddr *start) 321 { 322 hwaddr size = int128_get64(section->size); 323 hwaddr delta, aligned; 324 325 /* kvm works in page size chunks, but the function may be called 326 with sub-page size and unaligned start address. Pad the start 327 address to next and truncate size to previous page boundary. */ 328 aligned = ROUND_UP(section->offset_within_address_space, 329 qemu_real_host_page_size()); 330 delta = aligned - section->offset_within_address_space; 331 *start = aligned; 332 if (delta > size) { 333 return 0; 334 } 335 336 return (size - delta) & qemu_real_host_page_mask(); 337 } 338 339 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 340 hwaddr *phys_addr) 341 { 342 KVMMemoryListener *kml = &s->memory_listener; 343 int i, ret = 0; 344 345 kvm_slots_lock(); 346 for (i = 0; i < s->nr_slots; i++) { 347 KVMSlot *mem = &kml->slots[i]; 348 349 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 350 *phys_addr = mem->start_addr + (ram - mem->ram); 351 ret = 1; 352 break; 353 } 354 } 355 kvm_slots_unlock(); 356 357 return ret; 358 } 359 360 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 361 { 362 KVMState *s = kvm_state; 363 struct kvm_userspace_memory_region mem; 364 int ret; 365 366 mem.slot = slot->slot | (kml->as_id << 16); 367 mem.guest_phys_addr = slot->start_addr; 368 mem.userspace_addr = (unsigned long)slot->ram; 369 mem.flags = slot->flags; 370 371 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 372 /* Set the slot size to 0 before setting the slot to the desired 373 * value. This is needed based on KVM commit 75d61fbc. */ 374 mem.memory_size = 0; 375 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 376 if (ret < 0) { 377 goto err; 378 } 379 } 380 mem.memory_size = slot->memory_size; 381 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 382 slot->old_flags = mem.flags; 383 err: 384 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 385 mem.memory_size, mem.userspace_addr, ret); 386 if (ret < 0) { 387 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 388 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 389 __func__, mem.slot, slot->start_addr, 390 (uint64_t)mem.memory_size, strerror(errno)); 391 } 392 return ret; 393 } 394 395 static int do_kvm_destroy_vcpu(CPUState *cpu) 396 { 397 KVMState *s = kvm_state; 398 long mmap_size; 399 struct KVMParkedVcpu *vcpu = NULL; 400 int ret = 0; 401 402 DPRINTF("kvm_destroy_vcpu\n"); 403 404 ret = kvm_arch_destroy_vcpu(cpu); 405 if (ret < 0) { 406 goto err; 407 } 408 409 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 410 if (mmap_size < 0) { 411 ret = mmap_size; 412 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 413 goto err; 414 } 415 416 ret = munmap(cpu->kvm_run, mmap_size); 417 if (ret < 0) { 418 goto err; 419 } 420 421 if (cpu->kvm_dirty_gfns) { 422 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 423 if (ret < 0) { 424 goto err; 425 } 426 } 427 428 vcpu = g_malloc0(sizeof(*vcpu)); 429 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 430 vcpu->kvm_fd = cpu->kvm_fd; 431 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 432 err: 433 return ret; 434 } 435 436 void kvm_destroy_vcpu(CPUState *cpu) 437 { 438 if (do_kvm_destroy_vcpu(cpu) < 0) { 439 error_report("kvm_destroy_vcpu failed"); 440 exit(EXIT_FAILURE); 441 } 442 } 443 444 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 445 { 446 struct KVMParkedVcpu *cpu; 447 448 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 449 if (cpu->vcpu_id == vcpu_id) { 450 int kvm_fd; 451 452 QLIST_REMOVE(cpu, node); 453 kvm_fd = cpu->kvm_fd; 454 g_free(cpu); 455 return kvm_fd; 456 } 457 } 458 459 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 460 } 461 462 int kvm_init_vcpu(CPUState *cpu, Error **errp) 463 { 464 KVMState *s = kvm_state; 465 long mmap_size; 466 int ret; 467 468 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 469 470 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 471 if (ret < 0) { 472 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 473 kvm_arch_vcpu_id(cpu)); 474 goto err; 475 } 476 477 cpu->kvm_fd = ret; 478 cpu->kvm_state = s; 479 cpu->vcpu_dirty = true; 480 cpu->dirty_pages = 0; 481 cpu->throttle_us_per_full = 0; 482 483 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 484 if (mmap_size < 0) { 485 ret = mmap_size; 486 error_setg_errno(errp, -mmap_size, 487 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 488 goto err; 489 } 490 491 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 492 cpu->kvm_fd, 0); 493 if (cpu->kvm_run == MAP_FAILED) { 494 ret = -errno; 495 error_setg_errno(errp, ret, 496 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 497 kvm_arch_vcpu_id(cpu)); 498 goto err; 499 } 500 501 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 502 s->coalesced_mmio_ring = 503 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 504 } 505 506 if (s->kvm_dirty_ring_size) { 507 /* Use MAP_SHARED to share pages with the kernel */ 508 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 509 PROT_READ | PROT_WRITE, MAP_SHARED, 510 cpu->kvm_fd, 511 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 512 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 513 ret = -errno; 514 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 515 goto err; 516 } 517 } 518 519 ret = kvm_arch_init_vcpu(cpu); 520 if (ret < 0) { 521 error_setg_errno(errp, -ret, 522 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 523 kvm_arch_vcpu_id(cpu)); 524 } 525 err: 526 return ret; 527 } 528 529 /* 530 * dirty pages logging control 531 */ 532 533 static int kvm_mem_flags(MemoryRegion *mr) 534 { 535 bool readonly = mr->readonly || memory_region_is_romd(mr); 536 int flags = 0; 537 538 if (memory_region_get_dirty_log_mask(mr) != 0) { 539 flags |= KVM_MEM_LOG_DIRTY_PAGES; 540 } 541 if (readonly && kvm_readonly_mem_allowed) { 542 flags |= KVM_MEM_READONLY; 543 } 544 return flags; 545 } 546 547 /* Called with KVMMemoryListener.slots_lock held */ 548 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 549 MemoryRegion *mr) 550 { 551 mem->flags = kvm_mem_flags(mr); 552 553 /* If nothing changed effectively, no need to issue ioctl */ 554 if (mem->flags == mem->old_flags) { 555 return 0; 556 } 557 558 kvm_slot_init_dirty_bitmap(mem); 559 return kvm_set_user_memory_region(kml, mem, false); 560 } 561 562 static int kvm_section_update_flags(KVMMemoryListener *kml, 563 MemoryRegionSection *section) 564 { 565 hwaddr start_addr, size, slot_size; 566 KVMSlot *mem; 567 int ret = 0; 568 569 size = kvm_align_section(section, &start_addr); 570 if (!size) { 571 return 0; 572 } 573 574 kvm_slots_lock(); 575 576 while (size && !ret) { 577 slot_size = MIN(kvm_max_slot_size, size); 578 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 579 if (!mem) { 580 /* We don't have a slot if we want to trap every access. */ 581 goto out; 582 } 583 584 ret = kvm_slot_update_flags(kml, mem, section->mr); 585 start_addr += slot_size; 586 size -= slot_size; 587 } 588 589 out: 590 kvm_slots_unlock(); 591 return ret; 592 } 593 594 static void kvm_log_start(MemoryListener *listener, 595 MemoryRegionSection *section, 596 int old, int new) 597 { 598 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 599 int r; 600 601 if (old != 0) { 602 return; 603 } 604 605 r = kvm_section_update_flags(kml, section); 606 if (r < 0) { 607 abort(); 608 } 609 } 610 611 static void kvm_log_stop(MemoryListener *listener, 612 MemoryRegionSection *section, 613 int old, int new) 614 { 615 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 616 int r; 617 618 if (new != 0) { 619 return; 620 } 621 622 r = kvm_section_update_flags(kml, section); 623 if (r < 0) { 624 abort(); 625 } 626 } 627 628 /* get kvm's dirty pages bitmap and update qemu's */ 629 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 630 { 631 ram_addr_t start = slot->ram_start_offset; 632 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 633 634 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 635 } 636 637 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 638 { 639 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 640 } 641 642 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 643 644 /* Allocate the dirty bitmap for a slot */ 645 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 646 { 647 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 648 return; 649 } 650 651 /* 652 * XXX bad kernel interface alert 653 * For dirty bitmap, kernel allocates array of size aligned to 654 * bits-per-long. But for case when the kernel is 64bits and 655 * the userspace is 32bits, userspace can't align to the same 656 * bits-per-long, since sizeof(long) is different between kernel 657 * and user space. This way, userspace will provide buffer which 658 * may be 4 bytes less than the kernel will use, resulting in 659 * userspace memory corruption (which is not detectable by valgrind 660 * too, in most cases). 661 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 662 * a hope that sizeof(long) won't become >8 any time soon. 663 * 664 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 665 * And mem->memory_size is aligned to it (otherwise this mem can't 666 * be registered to KVM). 667 */ 668 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 669 /*HOST_LONG_BITS*/ 64) / 8; 670 mem->dirty_bmap = g_malloc0(bitmap_size); 671 mem->dirty_bmap_size = bitmap_size; 672 } 673 674 /* 675 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 676 * succeeded, false otherwise 677 */ 678 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 679 { 680 struct kvm_dirty_log d = {}; 681 int ret; 682 683 d.dirty_bitmap = slot->dirty_bmap; 684 d.slot = slot->slot | (slot->as_id << 16); 685 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 686 687 if (ret == -ENOENT) { 688 /* kernel does not have dirty bitmap in this slot */ 689 ret = 0; 690 } 691 if (ret) { 692 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 693 __func__, ret); 694 } 695 return ret == 0; 696 } 697 698 /* Should be with all slots_lock held for the address spaces. */ 699 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 700 uint32_t slot_id, uint64_t offset) 701 { 702 KVMMemoryListener *kml; 703 KVMSlot *mem; 704 705 if (as_id >= s->nr_as) { 706 return; 707 } 708 709 kml = s->as[as_id].ml; 710 mem = &kml->slots[slot_id]; 711 712 if (!mem->memory_size || offset >= 713 (mem->memory_size / qemu_real_host_page_size())) { 714 return; 715 } 716 717 set_bit(offset, mem->dirty_bmap); 718 } 719 720 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 721 { 722 return gfn->flags == KVM_DIRTY_GFN_F_DIRTY; 723 } 724 725 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 726 { 727 gfn->flags = KVM_DIRTY_GFN_F_RESET; 728 } 729 730 /* 731 * Should be with all slots_lock held for the address spaces. It returns the 732 * dirty page we've collected on this dirty ring. 733 */ 734 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 735 { 736 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 737 uint32_t ring_size = s->kvm_dirty_ring_size; 738 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 739 740 assert(dirty_gfns && ring_size); 741 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 742 743 while (true) { 744 cur = &dirty_gfns[fetch % ring_size]; 745 if (!dirty_gfn_is_dirtied(cur)) { 746 break; 747 } 748 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 749 cur->offset); 750 dirty_gfn_set_collected(cur); 751 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 752 fetch++; 753 count++; 754 } 755 cpu->kvm_fetch_index = fetch; 756 cpu->dirty_pages += count; 757 758 return count; 759 } 760 761 /* Must be with slots_lock held */ 762 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 763 { 764 int ret; 765 uint64_t total = 0; 766 int64_t stamp; 767 768 stamp = get_clock(); 769 770 if (cpu) { 771 total = kvm_dirty_ring_reap_one(s, cpu); 772 } else { 773 CPU_FOREACH(cpu) { 774 total += kvm_dirty_ring_reap_one(s, cpu); 775 } 776 } 777 778 if (total) { 779 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 780 assert(ret == total); 781 } 782 783 stamp = get_clock() - stamp; 784 785 if (total) { 786 trace_kvm_dirty_ring_reap(total, stamp / 1000); 787 } 788 789 return total; 790 } 791 792 /* 793 * Currently for simplicity, we must hold BQL before calling this. We can 794 * consider to drop the BQL if we're clear with all the race conditions. 795 */ 796 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 797 { 798 uint64_t total; 799 800 /* 801 * We need to lock all kvm slots for all address spaces here, 802 * because: 803 * 804 * (1) We need to mark dirty for dirty bitmaps in multiple slots 805 * and for tons of pages, so it's better to take the lock here 806 * once rather than once per page. And more importantly, 807 * 808 * (2) We must _NOT_ publish dirty bits to the other threads 809 * (e.g., the migration thread) via the kvm memory slot dirty 810 * bitmaps before correctly re-protect those dirtied pages. 811 * Otherwise we can have potential risk of data corruption if 812 * the page data is read in the other thread before we do 813 * reset below. 814 */ 815 kvm_slots_lock(); 816 total = kvm_dirty_ring_reap_locked(s, cpu); 817 kvm_slots_unlock(); 818 819 return total; 820 } 821 822 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 823 { 824 /* No need to do anything */ 825 } 826 827 /* 828 * Kick all vcpus out in a synchronized way. When returned, we 829 * guarantee that every vcpu has been kicked and at least returned to 830 * userspace once. 831 */ 832 static void kvm_cpu_synchronize_kick_all(void) 833 { 834 CPUState *cpu; 835 836 CPU_FOREACH(cpu) { 837 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 838 } 839 } 840 841 /* 842 * Flush all the existing dirty pages to the KVM slot buffers. When 843 * this call returns, we guarantee that all the touched dirty pages 844 * before calling this function have been put into the per-kvmslot 845 * dirty bitmap. 846 * 847 * This function must be called with BQL held. 848 */ 849 static void kvm_dirty_ring_flush(void) 850 { 851 trace_kvm_dirty_ring_flush(0); 852 /* 853 * The function needs to be serialized. Since this function 854 * should always be with BQL held, serialization is guaranteed. 855 * However, let's be sure of it. 856 */ 857 assert(qemu_mutex_iothread_locked()); 858 /* 859 * First make sure to flush the hardware buffers by kicking all 860 * vcpus out in a synchronous way. 861 */ 862 kvm_cpu_synchronize_kick_all(); 863 kvm_dirty_ring_reap(kvm_state, NULL); 864 trace_kvm_dirty_ring_flush(1); 865 } 866 867 /** 868 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 869 * 870 * This function will first try to fetch dirty bitmap from the kernel, 871 * and then updates qemu's dirty bitmap. 872 * 873 * NOTE: caller must be with kml->slots_lock held. 874 * 875 * @kml: the KVM memory listener object 876 * @section: the memory section to sync the dirty bitmap with 877 */ 878 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 879 MemoryRegionSection *section) 880 { 881 KVMState *s = kvm_state; 882 KVMSlot *mem; 883 hwaddr start_addr, size; 884 hwaddr slot_size; 885 886 size = kvm_align_section(section, &start_addr); 887 while (size) { 888 slot_size = MIN(kvm_max_slot_size, size); 889 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 890 if (!mem) { 891 /* We don't have a slot if we want to trap every access. */ 892 return; 893 } 894 if (kvm_slot_get_dirty_log(s, mem)) { 895 kvm_slot_sync_dirty_pages(mem); 896 } 897 start_addr += slot_size; 898 size -= slot_size; 899 } 900 } 901 902 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 903 #define KVM_CLEAR_LOG_SHIFT 6 904 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 905 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 906 907 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 908 uint64_t size) 909 { 910 KVMState *s = kvm_state; 911 uint64_t end, bmap_start, start_delta, bmap_npages; 912 struct kvm_clear_dirty_log d; 913 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 914 int ret; 915 916 /* 917 * We need to extend either the start or the size or both to 918 * satisfy the KVM interface requirement. Firstly, do the start 919 * page alignment on 64 host pages 920 */ 921 bmap_start = start & KVM_CLEAR_LOG_MASK; 922 start_delta = start - bmap_start; 923 bmap_start /= psize; 924 925 /* 926 * The kernel interface has restriction on the size too, that either: 927 * 928 * (1) the size is 64 host pages aligned (just like the start), or 929 * (2) the size fills up until the end of the KVM memslot. 930 */ 931 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 932 << KVM_CLEAR_LOG_SHIFT; 933 end = mem->memory_size / psize; 934 if (bmap_npages > end - bmap_start) { 935 bmap_npages = end - bmap_start; 936 } 937 start_delta /= psize; 938 939 /* 940 * Prepare the bitmap to clear dirty bits. Here we must guarantee 941 * that we won't clear any unknown dirty bits otherwise we might 942 * accidentally clear some set bits which are not yet synced from 943 * the kernel into QEMU's bitmap, then we'll lose track of the 944 * guest modifications upon those pages (which can directly lead 945 * to guest data loss or panic after migration). 946 * 947 * Layout of the KVMSlot.dirty_bmap: 948 * 949 * |<-------- bmap_npages -----------..>| 950 * [1] 951 * start_delta size 952 * |----------------|-------------|------------------|------------| 953 * ^ ^ ^ ^ 954 * | | | | 955 * start bmap_start (start) end 956 * of memslot of memslot 957 * 958 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 959 */ 960 961 assert(bmap_start % BITS_PER_LONG == 0); 962 /* We should never do log_clear before log_sync */ 963 assert(mem->dirty_bmap); 964 if (start_delta || bmap_npages - size / psize) { 965 /* Slow path - we need to manipulate a temp bitmap */ 966 bmap_clear = bitmap_new(bmap_npages); 967 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 968 bmap_start, start_delta + size / psize); 969 /* 970 * We need to fill the holes at start because that was not 971 * specified by the caller and we extended the bitmap only for 972 * 64 pages alignment 973 */ 974 bitmap_clear(bmap_clear, 0, start_delta); 975 d.dirty_bitmap = bmap_clear; 976 } else { 977 /* 978 * Fast path - both start and size align well with BITS_PER_LONG 979 * (or the end of memory slot) 980 */ 981 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 982 } 983 984 d.first_page = bmap_start; 985 /* It should never overflow. If it happens, say something */ 986 assert(bmap_npages <= UINT32_MAX); 987 d.num_pages = bmap_npages; 988 d.slot = mem->slot | (as_id << 16); 989 990 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 991 if (ret < 0 && ret != -ENOENT) { 992 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 993 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 994 __func__, d.slot, (uint64_t)d.first_page, 995 (uint32_t)d.num_pages, ret); 996 } else { 997 ret = 0; 998 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 999 } 1000 1001 /* 1002 * After we have updated the remote dirty bitmap, we update the 1003 * cached bitmap as well for the memslot, then if another user 1004 * clears the same region we know we shouldn't clear it again on 1005 * the remote otherwise it's data loss as well. 1006 */ 1007 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1008 size / psize); 1009 /* This handles the NULL case well */ 1010 g_free(bmap_clear); 1011 return ret; 1012 } 1013 1014 1015 /** 1016 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1017 * 1018 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1019 * protection in the host kernel because in that case this operation 1020 * will be done within log_sync(). 1021 * 1022 * @kml: the kvm memory listener 1023 * @section: the memory range to clear dirty bitmap 1024 */ 1025 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1026 MemoryRegionSection *section) 1027 { 1028 KVMState *s = kvm_state; 1029 uint64_t start, size, offset, count; 1030 KVMSlot *mem; 1031 int ret = 0, i; 1032 1033 if (!s->manual_dirty_log_protect) { 1034 /* No need to do explicit clear */ 1035 return ret; 1036 } 1037 1038 start = section->offset_within_address_space; 1039 size = int128_get64(section->size); 1040 1041 if (!size) { 1042 /* Nothing more we can do... */ 1043 return ret; 1044 } 1045 1046 kvm_slots_lock(); 1047 1048 for (i = 0; i < s->nr_slots; i++) { 1049 mem = &kml->slots[i]; 1050 /* Discard slots that are empty or do not overlap the section */ 1051 if (!mem->memory_size || 1052 mem->start_addr > start + size - 1 || 1053 start > mem->start_addr + mem->memory_size - 1) { 1054 continue; 1055 } 1056 1057 if (start >= mem->start_addr) { 1058 /* The slot starts before section or is aligned to it. */ 1059 offset = start - mem->start_addr; 1060 count = MIN(mem->memory_size - offset, size); 1061 } else { 1062 /* The slot starts after section. */ 1063 offset = 0; 1064 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1065 } 1066 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1067 if (ret < 0) { 1068 break; 1069 } 1070 } 1071 1072 kvm_slots_unlock(); 1073 1074 return ret; 1075 } 1076 1077 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1078 MemoryRegionSection *secion, 1079 hwaddr start, hwaddr size) 1080 { 1081 KVMState *s = kvm_state; 1082 1083 if (s->coalesced_mmio) { 1084 struct kvm_coalesced_mmio_zone zone; 1085 1086 zone.addr = start; 1087 zone.size = size; 1088 zone.pad = 0; 1089 1090 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1091 } 1092 } 1093 1094 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1095 MemoryRegionSection *secion, 1096 hwaddr start, hwaddr size) 1097 { 1098 KVMState *s = kvm_state; 1099 1100 if (s->coalesced_mmio) { 1101 struct kvm_coalesced_mmio_zone zone; 1102 1103 zone.addr = start; 1104 zone.size = size; 1105 zone.pad = 0; 1106 1107 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1108 } 1109 } 1110 1111 static void kvm_coalesce_pio_add(MemoryListener *listener, 1112 MemoryRegionSection *section, 1113 hwaddr start, hwaddr size) 1114 { 1115 KVMState *s = kvm_state; 1116 1117 if (s->coalesced_pio) { 1118 struct kvm_coalesced_mmio_zone zone; 1119 1120 zone.addr = start; 1121 zone.size = size; 1122 zone.pio = 1; 1123 1124 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1125 } 1126 } 1127 1128 static void kvm_coalesce_pio_del(MemoryListener *listener, 1129 MemoryRegionSection *section, 1130 hwaddr start, hwaddr size) 1131 { 1132 KVMState *s = kvm_state; 1133 1134 if (s->coalesced_pio) { 1135 struct kvm_coalesced_mmio_zone zone; 1136 1137 zone.addr = start; 1138 zone.size = size; 1139 zone.pio = 1; 1140 1141 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1142 } 1143 } 1144 1145 static MemoryListener kvm_coalesced_pio_listener = { 1146 .name = "kvm-coalesced-pio", 1147 .coalesced_io_add = kvm_coalesce_pio_add, 1148 .coalesced_io_del = kvm_coalesce_pio_del, 1149 }; 1150 1151 int kvm_check_extension(KVMState *s, unsigned int extension) 1152 { 1153 int ret; 1154 1155 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1156 if (ret < 0) { 1157 ret = 0; 1158 } 1159 1160 return ret; 1161 } 1162 1163 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1164 { 1165 int ret; 1166 1167 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1168 if (ret < 0) { 1169 /* VM wide version not implemented, use global one instead */ 1170 ret = kvm_check_extension(s, extension); 1171 } 1172 1173 return ret; 1174 } 1175 1176 typedef struct HWPoisonPage { 1177 ram_addr_t ram_addr; 1178 QLIST_ENTRY(HWPoisonPage) list; 1179 } HWPoisonPage; 1180 1181 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1182 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1183 1184 static void kvm_unpoison_all(void *param) 1185 { 1186 HWPoisonPage *page, *next_page; 1187 1188 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1189 QLIST_REMOVE(page, list); 1190 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1191 g_free(page); 1192 } 1193 } 1194 1195 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1196 { 1197 HWPoisonPage *page; 1198 1199 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1200 if (page->ram_addr == ram_addr) { 1201 return; 1202 } 1203 } 1204 page = g_new(HWPoisonPage, 1); 1205 page->ram_addr = ram_addr; 1206 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1207 } 1208 1209 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1210 { 1211 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1212 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1213 * endianness, but the memory core hands them in target endianness. 1214 * For example, PPC is always treated as big-endian even if running 1215 * on KVM and on PPC64LE. Correct here. 1216 */ 1217 switch (size) { 1218 case 2: 1219 val = bswap16(val); 1220 break; 1221 case 4: 1222 val = bswap32(val); 1223 break; 1224 } 1225 #endif 1226 return val; 1227 } 1228 1229 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1230 bool assign, uint32_t size, bool datamatch) 1231 { 1232 int ret; 1233 struct kvm_ioeventfd iofd = { 1234 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1235 .addr = addr, 1236 .len = size, 1237 .flags = 0, 1238 .fd = fd, 1239 }; 1240 1241 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1242 datamatch); 1243 if (!kvm_enabled()) { 1244 return -ENOSYS; 1245 } 1246 1247 if (datamatch) { 1248 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1249 } 1250 if (!assign) { 1251 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1252 } 1253 1254 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1255 1256 if (ret < 0) { 1257 return -errno; 1258 } 1259 1260 return 0; 1261 } 1262 1263 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1264 bool assign, uint32_t size, bool datamatch) 1265 { 1266 struct kvm_ioeventfd kick = { 1267 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1268 .addr = addr, 1269 .flags = KVM_IOEVENTFD_FLAG_PIO, 1270 .len = size, 1271 .fd = fd, 1272 }; 1273 int r; 1274 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1275 if (!kvm_enabled()) { 1276 return -ENOSYS; 1277 } 1278 if (datamatch) { 1279 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1280 } 1281 if (!assign) { 1282 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1283 } 1284 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1285 if (r < 0) { 1286 return r; 1287 } 1288 return 0; 1289 } 1290 1291 1292 static int kvm_check_many_ioeventfds(void) 1293 { 1294 /* Userspace can use ioeventfd for io notification. This requires a host 1295 * that supports eventfd(2) and an I/O thread; since eventfd does not 1296 * support SIGIO it cannot interrupt the vcpu. 1297 * 1298 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1299 * can avoid creating too many ioeventfds. 1300 */ 1301 #if defined(CONFIG_EVENTFD) 1302 int ioeventfds[7]; 1303 int i, ret = 0; 1304 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1305 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1306 if (ioeventfds[i] < 0) { 1307 break; 1308 } 1309 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1310 if (ret < 0) { 1311 close(ioeventfds[i]); 1312 break; 1313 } 1314 } 1315 1316 /* Decide whether many devices are supported or not */ 1317 ret = i == ARRAY_SIZE(ioeventfds); 1318 1319 while (i-- > 0) { 1320 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1321 close(ioeventfds[i]); 1322 } 1323 return ret; 1324 #else 1325 return 0; 1326 #endif 1327 } 1328 1329 static const KVMCapabilityInfo * 1330 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1331 { 1332 while (list->name) { 1333 if (!kvm_check_extension(s, list->value)) { 1334 return list; 1335 } 1336 list++; 1337 } 1338 return NULL; 1339 } 1340 1341 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1342 { 1343 g_assert( 1344 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1345 ); 1346 kvm_max_slot_size = max_slot_size; 1347 } 1348 1349 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1350 MemoryRegionSection *section, bool add) 1351 { 1352 KVMSlot *mem; 1353 int err; 1354 MemoryRegion *mr = section->mr; 1355 bool writable = !mr->readonly && !mr->rom_device; 1356 hwaddr start_addr, size, slot_size, mr_offset; 1357 ram_addr_t ram_start_offset; 1358 void *ram; 1359 1360 if (!memory_region_is_ram(mr)) { 1361 if (writable || !kvm_readonly_mem_allowed) { 1362 return; 1363 } else if (!mr->romd_mode) { 1364 /* If the memory device is not in romd_mode, then we actually want 1365 * to remove the kvm memory slot so all accesses will trap. */ 1366 add = false; 1367 } 1368 } 1369 1370 size = kvm_align_section(section, &start_addr); 1371 if (!size) { 1372 return; 1373 } 1374 1375 /* The offset of the kvmslot within the memory region */ 1376 mr_offset = section->offset_within_region + start_addr - 1377 section->offset_within_address_space; 1378 1379 /* use aligned delta to align the ram address and offset */ 1380 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1381 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1382 1383 kvm_slots_lock(); 1384 1385 if (!add) { 1386 do { 1387 slot_size = MIN(kvm_max_slot_size, size); 1388 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1389 if (!mem) { 1390 goto out; 1391 } 1392 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1393 /* 1394 * NOTE: We should be aware of the fact that here we're only 1395 * doing a best effort to sync dirty bits. No matter whether 1396 * we're using dirty log or dirty ring, we ignored two facts: 1397 * 1398 * (1) dirty bits can reside in hardware buffers (PML) 1399 * 1400 * (2) after we collected dirty bits here, pages can be dirtied 1401 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1402 * remove the slot. 1403 * 1404 * Not easy. Let's cross the fingers until it's fixed. 1405 */ 1406 if (kvm_state->kvm_dirty_ring_size) { 1407 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1408 } else { 1409 kvm_slot_get_dirty_log(kvm_state, mem); 1410 } 1411 kvm_slot_sync_dirty_pages(mem); 1412 } 1413 1414 /* unregister the slot */ 1415 g_free(mem->dirty_bmap); 1416 mem->dirty_bmap = NULL; 1417 mem->memory_size = 0; 1418 mem->flags = 0; 1419 err = kvm_set_user_memory_region(kml, mem, false); 1420 if (err) { 1421 fprintf(stderr, "%s: error unregistering slot: %s\n", 1422 __func__, strerror(-err)); 1423 abort(); 1424 } 1425 start_addr += slot_size; 1426 size -= slot_size; 1427 } while (size); 1428 goto out; 1429 } 1430 1431 /* register the new slot */ 1432 do { 1433 slot_size = MIN(kvm_max_slot_size, size); 1434 mem = kvm_alloc_slot(kml); 1435 mem->as_id = kml->as_id; 1436 mem->memory_size = slot_size; 1437 mem->start_addr = start_addr; 1438 mem->ram_start_offset = ram_start_offset; 1439 mem->ram = ram; 1440 mem->flags = kvm_mem_flags(mr); 1441 kvm_slot_init_dirty_bitmap(mem); 1442 err = kvm_set_user_memory_region(kml, mem, true); 1443 if (err) { 1444 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1445 strerror(-err)); 1446 abort(); 1447 } 1448 start_addr += slot_size; 1449 ram_start_offset += slot_size; 1450 ram += slot_size; 1451 size -= slot_size; 1452 } while (size); 1453 1454 out: 1455 kvm_slots_unlock(); 1456 } 1457 1458 static void *kvm_dirty_ring_reaper_thread(void *data) 1459 { 1460 KVMState *s = data; 1461 struct KVMDirtyRingReaper *r = &s->reaper; 1462 1463 rcu_register_thread(); 1464 1465 trace_kvm_dirty_ring_reaper("init"); 1466 1467 while (true) { 1468 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1469 trace_kvm_dirty_ring_reaper("wait"); 1470 /* 1471 * TODO: provide a smarter timeout rather than a constant? 1472 */ 1473 sleep(1); 1474 1475 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1476 if (dirtylimit_in_service()) { 1477 continue; 1478 } 1479 1480 trace_kvm_dirty_ring_reaper("wakeup"); 1481 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1482 1483 qemu_mutex_lock_iothread(); 1484 kvm_dirty_ring_reap(s, NULL); 1485 qemu_mutex_unlock_iothread(); 1486 1487 r->reaper_iteration++; 1488 } 1489 1490 trace_kvm_dirty_ring_reaper("exit"); 1491 1492 rcu_unregister_thread(); 1493 1494 return NULL; 1495 } 1496 1497 static int kvm_dirty_ring_reaper_init(KVMState *s) 1498 { 1499 struct KVMDirtyRingReaper *r = &s->reaper; 1500 1501 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1502 kvm_dirty_ring_reaper_thread, 1503 s, QEMU_THREAD_JOINABLE); 1504 1505 return 0; 1506 } 1507 1508 static void kvm_region_add(MemoryListener *listener, 1509 MemoryRegionSection *section) 1510 { 1511 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1512 1513 memory_region_ref(section->mr); 1514 kvm_set_phys_mem(kml, section, true); 1515 } 1516 1517 static void kvm_region_del(MemoryListener *listener, 1518 MemoryRegionSection *section) 1519 { 1520 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1521 1522 kvm_set_phys_mem(kml, section, false); 1523 memory_region_unref(section->mr); 1524 } 1525 1526 static void kvm_log_sync(MemoryListener *listener, 1527 MemoryRegionSection *section) 1528 { 1529 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1530 1531 kvm_slots_lock(); 1532 kvm_physical_sync_dirty_bitmap(kml, section); 1533 kvm_slots_unlock(); 1534 } 1535 1536 static void kvm_log_sync_global(MemoryListener *l) 1537 { 1538 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1539 KVMState *s = kvm_state; 1540 KVMSlot *mem; 1541 int i; 1542 1543 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1544 kvm_dirty_ring_flush(); 1545 1546 /* 1547 * TODO: make this faster when nr_slots is big while there are 1548 * only a few used slots (small VMs). 1549 */ 1550 kvm_slots_lock(); 1551 for (i = 0; i < s->nr_slots; i++) { 1552 mem = &kml->slots[i]; 1553 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1554 kvm_slot_sync_dirty_pages(mem); 1555 /* 1556 * This is not needed by KVM_GET_DIRTY_LOG because the 1557 * ioctl will unconditionally overwrite the whole region. 1558 * However kvm dirty ring has no such side effect. 1559 */ 1560 kvm_slot_reset_dirty_pages(mem); 1561 } 1562 } 1563 kvm_slots_unlock(); 1564 } 1565 1566 static void kvm_log_clear(MemoryListener *listener, 1567 MemoryRegionSection *section) 1568 { 1569 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1570 int r; 1571 1572 r = kvm_physical_log_clear(kml, section); 1573 if (r < 0) { 1574 error_report_once("%s: kvm log clear failed: mr=%s " 1575 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1576 section->mr->name, section->offset_within_region, 1577 int128_get64(section->size)); 1578 abort(); 1579 } 1580 } 1581 1582 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1583 MemoryRegionSection *section, 1584 bool match_data, uint64_t data, 1585 EventNotifier *e) 1586 { 1587 int fd = event_notifier_get_fd(e); 1588 int r; 1589 1590 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1591 data, true, int128_get64(section->size), 1592 match_data); 1593 if (r < 0) { 1594 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1595 __func__, strerror(-r), -r); 1596 abort(); 1597 } 1598 } 1599 1600 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1601 MemoryRegionSection *section, 1602 bool match_data, uint64_t data, 1603 EventNotifier *e) 1604 { 1605 int fd = event_notifier_get_fd(e); 1606 int r; 1607 1608 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1609 data, false, int128_get64(section->size), 1610 match_data); 1611 if (r < 0) { 1612 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1613 __func__, strerror(-r), -r); 1614 abort(); 1615 } 1616 } 1617 1618 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1619 MemoryRegionSection *section, 1620 bool match_data, uint64_t data, 1621 EventNotifier *e) 1622 { 1623 int fd = event_notifier_get_fd(e); 1624 int r; 1625 1626 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1627 data, true, int128_get64(section->size), 1628 match_data); 1629 if (r < 0) { 1630 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1631 __func__, strerror(-r), -r); 1632 abort(); 1633 } 1634 } 1635 1636 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1637 MemoryRegionSection *section, 1638 bool match_data, uint64_t data, 1639 EventNotifier *e) 1640 1641 { 1642 int fd = event_notifier_get_fd(e); 1643 int r; 1644 1645 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1646 data, false, int128_get64(section->size), 1647 match_data); 1648 if (r < 0) { 1649 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1650 __func__, strerror(-r), -r); 1651 abort(); 1652 } 1653 } 1654 1655 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1656 AddressSpace *as, int as_id, const char *name) 1657 { 1658 int i; 1659 1660 kml->slots = g_new0(KVMSlot, s->nr_slots); 1661 kml->as_id = as_id; 1662 1663 for (i = 0; i < s->nr_slots; i++) { 1664 kml->slots[i].slot = i; 1665 } 1666 1667 kml->listener.region_add = kvm_region_add; 1668 kml->listener.region_del = kvm_region_del; 1669 kml->listener.log_start = kvm_log_start; 1670 kml->listener.log_stop = kvm_log_stop; 1671 kml->listener.priority = 10; 1672 kml->listener.name = name; 1673 1674 if (s->kvm_dirty_ring_size) { 1675 kml->listener.log_sync_global = kvm_log_sync_global; 1676 } else { 1677 kml->listener.log_sync = kvm_log_sync; 1678 kml->listener.log_clear = kvm_log_clear; 1679 } 1680 1681 memory_listener_register(&kml->listener, as); 1682 1683 for (i = 0; i < s->nr_as; ++i) { 1684 if (!s->as[i].as) { 1685 s->as[i].as = as; 1686 s->as[i].ml = kml; 1687 break; 1688 } 1689 } 1690 } 1691 1692 static MemoryListener kvm_io_listener = { 1693 .name = "kvm-io", 1694 .eventfd_add = kvm_io_ioeventfd_add, 1695 .eventfd_del = kvm_io_ioeventfd_del, 1696 .priority = 10, 1697 }; 1698 1699 int kvm_set_irq(KVMState *s, int irq, int level) 1700 { 1701 struct kvm_irq_level event; 1702 int ret; 1703 1704 assert(kvm_async_interrupts_enabled()); 1705 1706 event.level = level; 1707 event.irq = irq; 1708 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1709 if (ret < 0) { 1710 perror("kvm_set_irq"); 1711 abort(); 1712 } 1713 1714 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1715 } 1716 1717 #ifdef KVM_CAP_IRQ_ROUTING 1718 typedef struct KVMMSIRoute { 1719 struct kvm_irq_routing_entry kroute; 1720 QTAILQ_ENTRY(KVMMSIRoute) entry; 1721 } KVMMSIRoute; 1722 1723 static void set_gsi(KVMState *s, unsigned int gsi) 1724 { 1725 set_bit(gsi, s->used_gsi_bitmap); 1726 } 1727 1728 static void clear_gsi(KVMState *s, unsigned int gsi) 1729 { 1730 clear_bit(gsi, s->used_gsi_bitmap); 1731 } 1732 1733 void kvm_init_irq_routing(KVMState *s) 1734 { 1735 int gsi_count, i; 1736 1737 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1738 if (gsi_count > 0) { 1739 /* Round up so we can search ints using ffs */ 1740 s->used_gsi_bitmap = bitmap_new(gsi_count); 1741 s->gsi_count = gsi_count; 1742 } 1743 1744 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1745 s->nr_allocated_irq_routes = 0; 1746 1747 if (!kvm_direct_msi_allowed) { 1748 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1749 QTAILQ_INIT(&s->msi_hashtab[i]); 1750 } 1751 } 1752 1753 kvm_arch_init_irq_routing(s); 1754 } 1755 1756 void kvm_irqchip_commit_routes(KVMState *s) 1757 { 1758 int ret; 1759 1760 if (kvm_gsi_direct_mapping()) { 1761 return; 1762 } 1763 1764 if (!kvm_gsi_routing_enabled()) { 1765 return; 1766 } 1767 1768 s->irq_routes->flags = 0; 1769 trace_kvm_irqchip_commit_routes(); 1770 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1771 assert(ret == 0); 1772 } 1773 1774 static void kvm_add_routing_entry(KVMState *s, 1775 struct kvm_irq_routing_entry *entry) 1776 { 1777 struct kvm_irq_routing_entry *new; 1778 int n, size; 1779 1780 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1781 n = s->nr_allocated_irq_routes * 2; 1782 if (n < 64) { 1783 n = 64; 1784 } 1785 size = sizeof(struct kvm_irq_routing); 1786 size += n * sizeof(*new); 1787 s->irq_routes = g_realloc(s->irq_routes, size); 1788 s->nr_allocated_irq_routes = n; 1789 } 1790 n = s->irq_routes->nr++; 1791 new = &s->irq_routes->entries[n]; 1792 1793 *new = *entry; 1794 1795 set_gsi(s, entry->gsi); 1796 } 1797 1798 static int kvm_update_routing_entry(KVMState *s, 1799 struct kvm_irq_routing_entry *new_entry) 1800 { 1801 struct kvm_irq_routing_entry *entry; 1802 int n; 1803 1804 for (n = 0; n < s->irq_routes->nr; n++) { 1805 entry = &s->irq_routes->entries[n]; 1806 if (entry->gsi != new_entry->gsi) { 1807 continue; 1808 } 1809 1810 if(!memcmp(entry, new_entry, sizeof *entry)) { 1811 return 0; 1812 } 1813 1814 *entry = *new_entry; 1815 1816 return 0; 1817 } 1818 1819 return -ESRCH; 1820 } 1821 1822 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1823 { 1824 struct kvm_irq_routing_entry e = {}; 1825 1826 assert(pin < s->gsi_count); 1827 1828 e.gsi = irq; 1829 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1830 e.flags = 0; 1831 e.u.irqchip.irqchip = irqchip; 1832 e.u.irqchip.pin = pin; 1833 kvm_add_routing_entry(s, &e); 1834 } 1835 1836 void kvm_irqchip_release_virq(KVMState *s, int virq) 1837 { 1838 struct kvm_irq_routing_entry *e; 1839 int i; 1840 1841 if (kvm_gsi_direct_mapping()) { 1842 return; 1843 } 1844 1845 for (i = 0; i < s->irq_routes->nr; i++) { 1846 e = &s->irq_routes->entries[i]; 1847 if (e->gsi == virq) { 1848 s->irq_routes->nr--; 1849 *e = s->irq_routes->entries[s->irq_routes->nr]; 1850 } 1851 } 1852 clear_gsi(s, virq); 1853 kvm_arch_release_virq_post(virq); 1854 trace_kvm_irqchip_release_virq(virq); 1855 } 1856 1857 void kvm_irqchip_add_change_notifier(Notifier *n) 1858 { 1859 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1860 } 1861 1862 void kvm_irqchip_remove_change_notifier(Notifier *n) 1863 { 1864 notifier_remove(n); 1865 } 1866 1867 void kvm_irqchip_change_notify(void) 1868 { 1869 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1870 } 1871 1872 static unsigned int kvm_hash_msi(uint32_t data) 1873 { 1874 /* This is optimized for IA32 MSI layout. However, no other arch shall 1875 * repeat the mistake of not providing a direct MSI injection API. */ 1876 return data & 0xff; 1877 } 1878 1879 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1880 { 1881 KVMMSIRoute *route, *next; 1882 unsigned int hash; 1883 1884 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1885 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1886 kvm_irqchip_release_virq(s, route->kroute.gsi); 1887 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1888 g_free(route); 1889 } 1890 } 1891 } 1892 1893 static int kvm_irqchip_get_virq(KVMState *s) 1894 { 1895 int next_virq; 1896 1897 /* 1898 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1899 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1900 * number can succeed even though a new route entry cannot be added. 1901 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1902 */ 1903 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1904 kvm_flush_dynamic_msi_routes(s); 1905 } 1906 1907 /* Return the lowest unused GSI in the bitmap */ 1908 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1909 if (next_virq >= s->gsi_count) { 1910 return -ENOSPC; 1911 } else { 1912 return next_virq; 1913 } 1914 } 1915 1916 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1917 { 1918 unsigned int hash = kvm_hash_msi(msg.data); 1919 KVMMSIRoute *route; 1920 1921 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1922 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1923 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1924 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1925 return route; 1926 } 1927 } 1928 return NULL; 1929 } 1930 1931 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1932 { 1933 struct kvm_msi msi; 1934 KVMMSIRoute *route; 1935 1936 if (kvm_direct_msi_allowed) { 1937 msi.address_lo = (uint32_t)msg.address; 1938 msi.address_hi = msg.address >> 32; 1939 msi.data = le32_to_cpu(msg.data); 1940 msi.flags = 0; 1941 memset(msi.pad, 0, sizeof(msi.pad)); 1942 1943 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1944 } 1945 1946 route = kvm_lookup_msi_route(s, msg); 1947 if (!route) { 1948 int virq; 1949 1950 virq = kvm_irqchip_get_virq(s); 1951 if (virq < 0) { 1952 return virq; 1953 } 1954 1955 route = g_new0(KVMMSIRoute, 1); 1956 route->kroute.gsi = virq; 1957 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1958 route->kroute.flags = 0; 1959 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1960 route->kroute.u.msi.address_hi = msg.address >> 32; 1961 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1962 1963 kvm_add_routing_entry(s, &route->kroute); 1964 kvm_irqchip_commit_routes(s); 1965 1966 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1967 entry); 1968 } 1969 1970 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1971 1972 return kvm_set_irq(s, route->kroute.gsi, 1); 1973 } 1974 1975 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 1976 { 1977 struct kvm_irq_routing_entry kroute = {}; 1978 int virq; 1979 KVMState *s = c->s; 1980 MSIMessage msg = {0, 0}; 1981 1982 if (pci_available && dev) { 1983 msg = pci_get_msi_message(dev, vector); 1984 } 1985 1986 if (kvm_gsi_direct_mapping()) { 1987 return kvm_arch_msi_data_to_gsi(msg.data); 1988 } 1989 1990 if (!kvm_gsi_routing_enabled()) { 1991 return -ENOSYS; 1992 } 1993 1994 virq = kvm_irqchip_get_virq(s); 1995 if (virq < 0) { 1996 return virq; 1997 } 1998 1999 kroute.gsi = virq; 2000 kroute.type = KVM_IRQ_ROUTING_MSI; 2001 kroute.flags = 0; 2002 kroute.u.msi.address_lo = (uint32_t)msg.address; 2003 kroute.u.msi.address_hi = msg.address >> 32; 2004 kroute.u.msi.data = le32_to_cpu(msg.data); 2005 if (pci_available && kvm_msi_devid_required()) { 2006 kroute.flags = KVM_MSI_VALID_DEVID; 2007 kroute.u.msi.devid = pci_requester_id(dev); 2008 } 2009 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2010 kvm_irqchip_release_virq(s, virq); 2011 return -EINVAL; 2012 } 2013 2014 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2015 vector, virq); 2016 2017 kvm_add_routing_entry(s, &kroute); 2018 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2019 c->changes++; 2020 2021 return virq; 2022 } 2023 2024 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2025 PCIDevice *dev) 2026 { 2027 struct kvm_irq_routing_entry kroute = {}; 2028 2029 if (kvm_gsi_direct_mapping()) { 2030 return 0; 2031 } 2032 2033 if (!kvm_irqchip_in_kernel()) { 2034 return -ENOSYS; 2035 } 2036 2037 kroute.gsi = virq; 2038 kroute.type = KVM_IRQ_ROUTING_MSI; 2039 kroute.flags = 0; 2040 kroute.u.msi.address_lo = (uint32_t)msg.address; 2041 kroute.u.msi.address_hi = msg.address >> 32; 2042 kroute.u.msi.data = le32_to_cpu(msg.data); 2043 if (pci_available && kvm_msi_devid_required()) { 2044 kroute.flags = KVM_MSI_VALID_DEVID; 2045 kroute.u.msi.devid = pci_requester_id(dev); 2046 } 2047 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2048 return -EINVAL; 2049 } 2050 2051 trace_kvm_irqchip_update_msi_route(virq); 2052 2053 return kvm_update_routing_entry(s, &kroute); 2054 } 2055 2056 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2057 EventNotifier *resample, int virq, 2058 bool assign) 2059 { 2060 int fd = event_notifier_get_fd(event); 2061 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2062 2063 struct kvm_irqfd irqfd = { 2064 .fd = fd, 2065 .gsi = virq, 2066 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2067 }; 2068 2069 if (rfd != -1) { 2070 assert(assign); 2071 if (kvm_irqchip_is_split()) { 2072 /* 2073 * When the slow irqchip (e.g. IOAPIC) is in the 2074 * userspace, KVM kernel resamplefd will not work because 2075 * the EOI of the interrupt will be delivered to userspace 2076 * instead, so the KVM kernel resamplefd kick will be 2077 * skipped. The userspace here mimics what the kernel 2078 * provides with resamplefd, remember the resamplefd and 2079 * kick it when we receive EOI of this IRQ. 2080 * 2081 * This is hackery because IOAPIC is mostly bypassed 2082 * (except EOI broadcasts) when irqfd is used. However 2083 * this can bring much performance back for split irqchip 2084 * with INTx IRQs (for VFIO, this gives 93% perf of the 2085 * full fast path, which is 46% perf boost comparing to 2086 * the INTx slow path). 2087 */ 2088 kvm_resample_fd_insert(virq, resample); 2089 } else { 2090 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2091 irqfd.resamplefd = rfd; 2092 } 2093 } else if (!assign) { 2094 if (kvm_irqchip_is_split()) { 2095 kvm_resample_fd_remove(virq); 2096 } 2097 } 2098 2099 if (!kvm_irqfds_enabled()) { 2100 return -ENOSYS; 2101 } 2102 2103 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2104 } 2105 2106 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2107 { 2108 struct kvm_irq_routing_entry kroute = {}; 2109 int virq; 2110 2111 if (!kvm_gsi_routing_enabled()) { 2112 return -ENOSYS; 2113 } 2114 2115 virq = kvm_irqchip_get_virq(s); 2116 if (virq < 0) { 2117 return virq; 2118 } 2119 2120 kroute.gsi = virq; 2121 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2122 kroute.flags = 0; 2123 kroute.u.adapter.summary_addr = adapter->summary_addr; 2124 kroute.u.adapter.ind_addr = adapter->ind_addr; 2125 kroute.u.adapter.summary_offset = adapter->summary_offset; 2126 kroute.u.adapter.ind_offset = adapter->ind_offset; 2127 kroute.u.adapter.adapter_id = adapter->adapter_id; 2128 2129 kvm_add_routing_entry(s, &kroute); 2130 2131 return virq; 2132 } 2133 2134 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2135 { 2136 struct kvm_irq_routing_entry kroute = {}; 2137 int virq; 2138 2139 if (!kvm_gsi_routing_enabled()) { 2140 return -ENOSYS; 2141 } 2142 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2143 return -ENOSYS; 2144 } 2145 virq = kvm_irqchip_get_virq(s); 2146 if (virq < 0) { 2147 return virq; 2148 } 2149 2150 kroute.gsi = virq; 2151 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2152 kroute.flags = 0; 2153 kroute.u.hv_sint.vcpu = vcpu; 2154 kroute.u.hv_sint.sint = sint; 2155 2156 kvm_add_routing_entry(s, &kroute); 2157 kvm_irqchip_commit_routes(s); 2158 2159 return virq; 2160 } 2161 2162 #else /* !KVM_CAP_IRQ_ROUTING */ 2163 2164 void kvm_init_irq_routing(KVMState *s) 2165 { 2166 } 2167 2168 void kvm_irqchip_release_virq(KVMState *s, int virq) 2169 { 2170 } 2171 2172 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2173 { 2174 abort(); 2175 } 2176 2177 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2178 { 2179 return -ENOSYS; 2180 } 2181 2182 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2183 { 2184 return -ENOSYS; 2185 } 2186 2187 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2188 { 2189 return -ENOSYS; 2190 } 2191 2192 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2193 EventNotifier *resample, int virq, 2194 bool assign) 2195 { 2196 abort(); 2197 } 2198 2199 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2200 { 2201 return -ENOSYS; 2202 } 2203 #endif /* !KVM_CAP_IRQ_ROUTING */ 2204 2205 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2206 EventNotifier *rn, int virq) 2207 { 2208 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2209 } 2210 2211 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2212 int virq) 2213 { 2214 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2215 } 2216 2217 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2218 EventNotifier *rn, qemu_irq irq) 2219 { 2220 gpointer key, gsi; 2221 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2222 2223 if (!found) { 2224 return -ENXIO; 2225 } 2226 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2227 } 2228 2229 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2230 qemu_irq irq) 2231 { 2232 gpointer key, gsi; 2233 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2234 2235 if (!found) { 2236 return -ENXIO; 2237 } 2238 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2239 } 2240 2241 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2242 { 2243 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2244 } 2245 2246 static void kvm_irqchip_create(KVMState *s) 2247 { 2248 int ret; 2249 2250 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2251 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2252 ; 2253 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2254 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2255 if (ret < 0) { 2256 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2257 exit(1); 2258 } 2259 } else { 2260 return; 2261 } 2262 2263 /* First probe and see if there's a arch-specific hook to create the 2264 * in-kernel irqchip for us */ 2265 ret = kvm_arch_irqchip_create(s); 2266 if (ret == 0) { 2267 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2268 perror("Split IRQ chip mode not supported."); 2269 exit(1); 2270 } else { 2271 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2272 } 2273 } 2274 if (ret < 0) { 2275 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2276 exit(1); 2277 } 2278 2279 kvm_kernel_irqchip = true; 2280 /* If we have an in-kernel IRQ chip then we must have asynchronous 2281 * interrupt delivery (though the reverse is not necessarily true) 2282 */ 2283 kvm_async_interrupts_allowed = true; 2284 kvm_halt_in_kernel_allowed = true; 2285 2286 kvm_init_irq_routing(s); 2287 2288 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2289 } 2290 2291 /* Find number of supported CPUs using the recommended 2292 * procedure from the kernel API documentation to cope with 2293 * older kernels that may be missing capabilities. 2294 */ 2295 static int kvm_recommended_vcpus(KVMState *s) 2296 { 2297 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2298 return (ret) ? ret : 4; 2299 } 2300 2301 static int kvm_max_vcpus(KVMState *s) 2302 { 2303 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2304 return (ret) ? ret : kvm_recommended_vcpus(s); 2305 } 2306 2307 static int kvm_max_vcpu_id(KVMState *s) 2308 { 2309 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2310 return (ret) ? ret : kvm_max_vcpus(s); 2311 } 2312 2313 bool kvm_vcpu_id_is_valid(int vcpu_id) 2314 { 2315 KVMState *s = KVM_STATE(current_accel()); 2316 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2317 } 2318 2319 bool kvm_dirty_ring_enabled(void) 2320 { 2321 return kvm_state->kvm_dirty_ring_size ? true : false; 2322 } 2323 2324 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2325 strList *names, strList *targets, Error **errp); 2326 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2327 2328 uint32_t kvm_dirty_ring_size(void) 2329 { 2330 return kvm_state->kvm_dirty_ring_size; 2331 } 2332 2333 static int kvm_init(MachineState *ms) 2334 { 2335 MachineClass *mc = MACHINE_GET_CLASS(ms); 2336 static const char upgrade_note[] = 2337 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2338 "(see http://sourceforge.net/projects/kvm).\n"; 2339 struct { 2340 const char *name; 2341 int num; 2342 } num_cpus[] = { 2343 { "SMP", ms->smp.cpus }, 2344 { "hotpluggable", ms->smp.max_cpus }, 2345 { NULL, } 2346 }, *nc = num_cpus; 2347 int soft_vcpus_limit, hard_vcpus_limit; 2348 KVMState *s; 2349 const KVMCapabilityInfo *missing_cap; 2350 int ret; 2351 int type = 0; 2352 uint64_t dirty_log_manual_caps; 2353 2354 qemu_mutex_init(&kml_slots_lock); 2355 2356 s = KVM_STATE(ms->accelerator); 2357 2358 /* 2359 * On systems where the kernel can support different base page 2360 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2361 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2362 * page size for the system though. 2363 */ 2364 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2365 2366 s->sigmask_len = 8; 2367 2368 #ifdef KVM_CAP_SET_GUEST_DEBUG 2369 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2370 #endif 2371 QLIST_INIT(&s->kvm_parked_vcpus); 2372 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2373 if (s->fd == -1) { 2374 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2375 ret = -errno; 2376 goto err; 2377 } 2378 2379 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2380 if (ret < KVM_API_VERSION) { 2381 if (ret >= 0) { 2382 ret = -EINVAL; 2383 } 2384 fprintf(stderr, "kvm version too old\n"); 2385 goto err; 2386 } 2387 2388 if (ret > KVM_API_VERSION) { 2389 ret = -EINVAL; 2390 fprintf(stderr, "kvm version not supported\n"); 2391 goto err; 2392 } 2393 2394 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2395 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2396 2397 /* If unspecified, use the default value */ 2398 if (!s->nr_slots) { 2399 s->nr_slots = 32; 2400 } 2401 2402 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2403 if (s->nr_as <= 1) { 2404 s->nr_as = 1; 2405 } 2406 s->as = g_new0(struct KVMAs, s->nr_as); 2407 2408 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2409 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2410 "kvm-type", 2411 &error_abort); 2412 type = mc->kvm_type(ms, kvm_type); 2413 } else if (mc->kvm_type) { 2414 type = mc->kvm_type(ms, NULL); 2415 } 2416 2417 do { 2418 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2419 } while (ret == -EINTR); 2420 2421 if (ret < 0) { 2422 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2423 strerror(-ret)); 2424 2425 #ifdef TARGET_S390X 2426 if (ret == -EINVAL) { 2427 fprintf(stderr, 2428 "Host kernel setup problem detected. Please verify:\n"); 2429 fprintf(stderr, "- for kernels supporting the switch_amode or" 2430 " user_mode parameters, whether\n"); 2431 fprintf(stderr, 2432 " user space is running in primary address space\n"); 2433 fprintf(stderr, 2434 "- for kernels supporting the vm.allocate_pgste sysctl, " 2435 "whether it is enabled\n"); 2436 } 2437 #elif defined(TARGET_PPC) 2438 if (ret == -EINVAL) { 2439 fprintf(stderr, 2440 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2441 (type == 2) ? "pr" : "hv"); 2442 } 2443 #endif 2444 goto err; 2445 } 2446 2447 s->vmfd = ret; 2448 2449 /* check the vcpu limits */ 2450 soft_vcpus_limit = kvm_recommended_vcpus(s); 2451 hard_vcpus_limit = kvm_max_vcpus(s); 2452 2453 while (nc->name) { 2454 if (nc->num > soft_vcpus_limit) { 2455 warn_report("Number of %s cpus requested (%d) exceeds " 2456 "the recommended cpus supported by KVM (%d)", 2457 nc->name, nc->num, soft_vcpus_limit); 2458 2459 if (nc->num > hard_vcpus_limit) { 2460 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2461 "the maximum cpus supported by KVM (%d)\n", 2462 nc->name, nc->num, hard_vcpus_limit); 2463 exit(1); 2464 } 2465 } 2466 nc++; 2467 } 2468 2469 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2470 if (!missing_cap) { 2471 missing_cap = 2472 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2473 } 2474 if (missing_cap) { 2475 ret = -EINVAL; 2476 fprintf(stderr, "kvm does not support %s\n%s", 2477 missing_cap->name, upgrade_note); 2478 goto err; 2479 } 2480 2481 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2482 s->coalesced_pio = s->coalesced_mmio && 2483 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2484 2485 /* 2486 * Enable KVM dirty ring if supported, otherwise fall back to 2487 * dirty logging mode 2488 */ 2489 if (s->kvm_dirty_ring_size > 0) { 2490 uint64_t ring_bytes; 2491 2492 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn); 2493 2494 /* Read the max supported pages */ 2495 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING); 2496 if (ret > 0) { 2497 if (ring_bytes > ret) { 2498 error_report("KVM dirty ring size %" PRIu32 " too big " 2499 "(maximum is %ld). Please use a smaller value.", 2500 s->kvm_dirty_ring_size, 2501 (long)ret / sizeof(struct kvm_dirty_gfn)); 2502 ret = -EINVAL; 2503 goto err; 2504 } 2505 2506 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes); 2507 if (ret) { 2508 error_report("Enabling of KVM dirty ring failed: %s. " 2509 "Suggested minimum value is 1024.", strerror(-ret)); 2510 goto err; 2511 } 2512 2513 s->kvm_dirty_ring_bytes = ring_bytes; 2514 } else { 2515 warn_report("KVM dirty ring not available, using bitmap method"); 2516 s->kvm_dirty_ring_size = 0; 2517 } 2518 } 2519 2520 /* 2521 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2522 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2523 * page is wr-protected initially, which is against how kvm dirty ring is 2524 * usage - kvm dirty ring requires all pages are wr-protected at the very 2525 * beginning. Enabling this feature for dirty ring causes data corruption. 2526 * 2527 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2528 * we may expect a higher stall time when starting the migration. In the 2529 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2530 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2531 * guest pages. 2532 */ 2533 if (!s->kvm_dirty_ring_size) { 2534 dirty_log_manual_caps = 2535 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2536 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2537 KVM_DIRTY_LOG_INITIALLY_SET); 2538 s->manual_dirty_log_protect = dirty_log_manual_caps; 2539 if (dirty_log_manual_caps) { 2540 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2541 dirty_log_manual_caps); 2542 if (ret) { 2543 warn_report("Trying to enable capability %"PRIu64" of " 2544 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2545 "Falling back to the legacy mode. ", 2546 dirty_log_manual_caps); 2547 s->manual_dirty_log_protect = 0; 2548 } 2549 } 2550 } 2551 2552 #ifdef KVM_CAP_VCPU_EVENTS 2553 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2554 #endif 2555 2556 s->robust_singlestep = 2557 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2558 2559 #ifdef KVM_CAP_DEBUGREGS 2560 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2561 #endif 2562 2563 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2564 2565 #ifdef KVM_CAP_IRQ_ROUTING 2566 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2567 #endif 2568 2569 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2570 2571 s->irq_set_ioctl = KVM_IRQ_LINE; 2572 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2573 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2574 } 2575 2576 kvm_readonly_mem_allowed = 2577 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2578 2579 kvm_eventfds_allowed = 2580 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2581 2582 kvm_irqfds_allowed = 2583 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2584 2585 kvm_resamplefds_allowed = 2586 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2587 2588 kvm_vm_attributes_allowed = 2589 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2590 2591 kvm_ioeventfd_any_length_allowed = 2592 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2593 2594 #ifdef KVM_CAP_SET_GUEST_DEBUG 2595 kvm_has_guest_debug = 2596 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2597 #endif 2598 2599 kvm_sstep_flags = 0; 2600 if (kvm_has_guest_debug) { 2601 kvm_sstep_flags = SSTEP_ENABLE; 2602 2603 #if defined KVM_CAP_SET_GUEST_DEBUG2 2604 int guest_debug_flags = 2605 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2606 2607 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2608 kvm_sstep_flags |= SSTEP_NOIRQ; 2609 } 2610 #endif 2611 } 2612 2613 kvm_state = s; 2614 2615 ret = kvm_arch_init(ms, s); 2616 if (ret < 0) { 2617 goto err; 2618 } 2619 2620 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2621 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2622 } 2623 2624 qemu_register_reset(kvm_unpoison_all, NULL); 2625 2626 if (s->kernel_irqchip_allowed) { 2627 kvm_irqchip_create(s); 2628 } 2629 2630 if (kvm_eventfds_allowed) { 2631 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2632 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2633 } 2634 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2635 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2636 2637 kvm_memory_listener_register(s, &s->memory_listener, 2638 &address_space_memory, 0, "kvm-memory"); 2639 if (kvm_eventfds_allowed) { 2640 memory_listener_register(&kvm_io_listener, 2641 &address_space_io); 2642 } 2643 memory_listener_register(&kvm_coalesced_pio_listener, 2644 &address_space_io); 2645 2646 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2647 2648 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2649 if (!s->sync_mmu) { 2650 ret = ram_block_discard_disable(true); 2651 assert(!ret); 2652 } 2653 2654 if (s->kvm_dirty_ring_size) { 2655 ret = kvm_dirty_ring_reaper_init(s); 2656 if (ret) { 2657 goto err; 2658 } 2659 } 2660 2661 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2662 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2663 query_stats_schemas_cb); 2664 } 2665 2666 return 0; 2667 2668 err: 2669 assert(ret < 0); 2670 if (s->vmfd >= 0) { 2671 close(s->vmfd); 2672 } 2673 if (s->fd != -1) { 2674 close(s->fd); 2675 } 2676 g_free(s->memory_listener.slots); 2677 2678 return ret; 2679 } 2680 2681 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2682 { 2683 s->sigmask_len = sigmask_len; 2684 } 2685 2686 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2687 int size, uint32_t count) 2688 { 2689 int i; 2690 uint8_t *ptr = data; 2691 2692 for (i = 0; i < count; i++) { 2693 address_space_rw(&address_space_io, port, attrs, 2694 ptr, size, 2695 direction == KVM_EXIT_IO_OUT); 2696 ptr += size; 2697 } 2698 } 2699 2700 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2701 { 2702 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2703 run->internal.suberror); 2704 2705 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2706 int i; 2707 2708 for (i = 0; i < run->internal.ndata; ++i) { 2709 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2710 i, (uint64_t)run->internal.data[i]); 2711 } 2712 } 2713 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2714 fprintf(stderr, "emulation failure\n"); 2715 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2716 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2717 return EXCP_INTERRUPT; 2718 } 2719 } 2720 /* FIXME: Should trigger a qmp message to let management know 2721 * something went wrong. 2722 */ 2723 return -1; 2724 } 2725 2726 void kvm_flush_coalesced_mmio_buffer(void) 2727 { 2728 KVMState *s = kvm_state; 2729 2730 if (s->coalesced_flush_in_progress) { 2731 return; 2732 } 2733 2734 s->coalesced_flush_in_progress = true; 2735 2736 if (s->coalesced_mmio_ring) { 2737 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2738 while (ring->first != ring->last) { 2739 struct kvm_coalesced_mmio *ent; 2740 2741 ent = &ring->coalesced_mmio[ring->first]; 2742 2743 if (ent->pio == 1) { 2744 address_space_write(&address_space_io, ent->phys_addr, 2745 MEMTXATTRS_UNSPECIFIED, ent->data, 2746 ent->len); 2747 } else { 2748 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2749 } 2750 smp_wmb(); 2751 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2752 } 2753 } 2754 2755 s->coalesced_flush_in_progress = false; 2756 } 2757 2758 bool kvm_cpu_check_are_resettable(void) 2759 { 2760 return kvm_arch_cpu_check_are_resettable(); 2761 } 2762 2763 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2764 { 2765 if (!cpu->vcpu_dirty) { 2766 kvm_arch_get_registers(cpu); 2767 cpu->vcpu_dirty = true; 2768 } 2769 } 2770 2771 void kvm_cpu_synchronize_state(CPUState *cpu) 2772 { 2773 if (!cpu->vcpu_dirty) { 2774 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2775 } 2776 } 2777 2778 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2779 { 2780 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2781 cpu->vcpu_dirty = false; 2782 } 2783 2784 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2785 { 2786 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2787 } 2788 2789 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2790 { 2791 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2792 cpu->vcpu_dirty = false; 2793 } 2794 2795 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2796 { 2797 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2798 } 2799 2800 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2801 { 2802 cpu->vcpu_dirty = true; 2803 } 2804 2805 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2806 { 2807 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2808 } 2809 2810 #ifdef KVM_HAVE_MCE_INJECTION 2811 static __thread void *pending_sigbus_addr; 2812 static __thread int pending_sigbus_code; 2813 static __thread bool have_sigbus_pending; 2814 #endif 2815 2816 static void kvm_cpu_kick(CPUState *cpu) 2817 { 2818 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2819 } 2820 2821 static void kvm_cpu_kick_self(void) 2822 { 2823 if (kvm_immediate_exit) { 2824 kvm_cpu_kick(current_cpu); 2825 } else { 2826 qemu_cpu_kick_self(); 2827 } 2828 } 2829 2830 static void kvm_eat_signals(CPUState *cpu) 2831 { 2832 struct timespec ts = { 0, 0 }; 2833 siginfo_t siginfo; 2834 sigset_t waitset; 2835 sigset_t chkset; 2836 int r; 2837 2838 if (kvm_immediate_exit) { 2839 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2840 /* Write kvm_run->immediate_exit before the cpu->exit_request 2841 * write in kvm_cpu_exec. 2842 */ 2843 smp_wmb(); 2844 return; 2845 } 2846 2847 sigemptyset(&waitset); 2848 sigaddset(&waitset, SIG_IPI); 2849 2850 do { 2851 r = sigtimedwait(&waitset, &siginfo, &ts); 2852 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2853 perror("sigtimedwait"); 2854 exit(1); 2855 } 2856 2857 r = sigpending(&chkset); 2858 if (r == -1) { 2859 perror("sigpending"); 2860 exit(1); 2861 } 2862 } while (sigismember(&chkset, SIG_IPI)); 2863 } 2864 2865 int kvm_cpu_exec(CPUState *cpu) 2866 { 2867 struct kvm_run *run = cpu->kvm_run; 2868 int ret, run_ret; 2869 2870 DPRINTF("kvm_cpu_exec()\n"); 2871 2872 if (kvm_arch_process_async_events(cpu)) { 2873 qatomic_set(&cpu->exit_request, 0); 2874 return EXCP_HLT; 2875 } 2876 2877 qemu_mutex_unlock_iothread(); 2878 cpu_exec_start(cpu); 2879 2880 do { 2881 MemTxAttrs attrs; 2882 2883 if (cpu->vcpu_dirty) { 2884 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2885 cpu->vcpu_dirty = false; 2886 } 2887 2888 kvm_arch_pre_run(cpu, run); 2889 if (qatomic_read(&cpu->exit_request)) { 2890 DPRINTF("interrupt exit requested\n"); 2891 /* 2892 * KVM requires us to reenter the kernel after IO exits to complete 2893 * instruction emulation. This self-signal will ensure that we 2894 * leave ASAP again. 2895 */ 2896 kvm_cpu_kick_self(); 2897 } 2898 2899 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2900 * Matching barrier in kvm_eat_signals. 2901 */ 2902 smp_rmb(); 2903 2904 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2905 2906 attrs = kvm_arch_post_run(cpu, run); 2907 2908 #ifdef KVM_HAVE_MCE_INJECTION 2909 if (unlikely(have_sigbus_pending)) { 2910 qemu_mutex_lock_iothread(); 2911 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2912 pending_sigbus_addr); 2913 have_sigbus_pending = false; 2914 qemu_mutex_unlock_iothread(); 2915 } 2916 #endif 2917 2918 if (run_ret < 0) { 2919 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2920 DPRINTF("io window exit\n"); 2921 kvm_eat_signals(cpu); 2922 ret = EXCP_INTERRUPT; 2923 break; 2924 } 2925 fprintf(stderr, "error: kvm run failed %s\n", 2926 strerror(-run_ret)); 2927 #ifdef TARGET_PPC 2928 if (run_ret == -EBUSY) { 2929 fprintf(stderr, 2930 "This is probably because your SMT is enabled.\n" 2931 "VCPU can only run on primary threads with all " 2932 "secondary threads offline.\n"); 2933 } 2934 #endif 2935 ret = -1; 2936 break; 2937 } 2938 2939 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2940 switch (run->exit_reason) { 2941 case KVM_EXIT_IO: 2942 DPRINTF("handle_io\n"); 2943 /* Called outside BQL */ 2944 kvm_handle_io(run->io.port, attrs, 2945 (uint8_t *)run + run->io.data_offset, 2946 run->io.direction, 2947 run->io.size, 2948 run->io.count); 2949 ret = 0; 2950 break; 2951 case KVM_EXIT_MMIO: 2952 DPRINTF("handle_mmio\n"); 2953 /* Called outside BQL */ 2954 address_space_rw(&address_space_memory, 2955 run->mmio.phys_addr, attrs, 2956 run->mmio.data, 2957 run->mmio.len, 2958 run->mmio.is_write); 2959 ret = 0; 2960 break; 2961 case KVM_EXIT_IRQ_WINDOW_OPEN: 2962 DPRINTF("irq_window_open\n"); 2963 ret = EXCP_INTERRUPT; 2964 break; 2965 case KVM_EXIT_SHUTDOWN: 2966 DPRINTF("shutdown\n"); 2967 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2968 ret = EXCP_INTERRUPT; 2969 break; 2970 case KVM_EXIT_UNKNOWN: 2971 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2972 (uint64_t)run->hw.hardware_exit_reason); 2973 ret = -1; 2974 break; 2975 case KVM_EXIT_INTERNAL_ERROR: 2976 ret = kvm_handle_internal_error(cpu, run); 2977 break; 2978 case KVM_EXIT_DIRTY_RING_FULL: 2979 /* 2980 * We shouldn't continue if the dirty ring of this vcpu is 2981 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 2982 */ 2983 trace_kvm_dirty_ring_full(cpu->cpu_index); 2984 qemu_mutex_lock_iothread(); 2985 /* 2986 * We throttle vCPU by making it sleep once it exit from kernel 2987 * due to dirty ring full. In the dirtylimit scenario, reaping 2988 * all vCPUs after a single vCPU dirty ring get full result in 2989 * the miss of sleep, so just reap the ring-fulled vCPU. 2990 */ 2991 if (dirtylimit_in_service()) { 2992 kvm_dirty_ring_reap(kvm_state, cpu); 2993 } else { 2994 kvm_dirty_ring_reap(kvm_state, NULL); 2995 } 2996 qemu_mutex_unlock_iothread(); 2997 dirtylimit_vcpu_execute(cpu); 2998 ret = 0; 2999 break; 3000 case KVM_EXIT_SYSTEM_EVENT: 3001 switch (run->system_event.type) { 3002 case KVM_SYSTEM_EVENT_SHUTDOWN: 3003 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3004 ret = EXCP_INTERRUPT; 3005 break; 3006 case KVM_SYSTEM_EVENT_RESET: 3007 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3008 ret = EXCP_INTERRUPT; 3009 break; 3010 case KVM_SYSTEM_EVENT_CRASH: 3011 kvm_cpu_synchronize_state(cpu); 3012 qemu_mutex_lock_iothread(); 3013 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3014 qemu_mutex_unlock_iothread(); 3015 ret = 0; 3016 break; 3017 default: 3018 DPRINTF("kvm_arch_handle_exit\n"); 3019 ret = kvm_arch_handle_exit(cpu, run); 3020 break; 3021 } 3022 break; 3023 default: 3024 DPRINTF("kvm_arch_handle_exit\n"); 3025 ret = kvm_arch_handle_exit(cpu, run); 3026 break; 3027 } 3028 } while (ret == 0); 3029 3030 cpu_exec_end(cpu); 3031 qemu_mutex_lock_iothread(); 3032 3033 if (ret < 0) { 3034 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3035 vm_stop(RUN_STATE_INTERNAL_ERROR); 3036 } 3037 3038 qatomic_set(&cpu->exit_request, 0); 3039 return ret; 3040 } 3041 3042 int kvm_ioctl(KVMState *s, int type, ...) 3043 { 3044 int ret; 3045 void *arg; 3046 va_list ap; 3047 3048 va_start(ap, type); 3049 arg = va_arg(ap, void *); 3050 va_end(ap); 3051 3052 trace_kvm_ioctl(type, arg); 3053 ret = ioctl(s->fd, type, arg); 3054 if (ret == -1) { 3055 ret = -errno; 3056 } 3057 return ret; 3058 } 3059 3060 int kvm_vm_ioctl(KVMState *s, int type, ...) 3061 { 3062 int ret; 3063 void *arg; 3064 va_list ap; 3065 3066 va_start(ap, type); 3067 arg = va_arg(ap, void *); 3068 va_end(ap); 3069 3070 trace_kvm_vm_ioctl(type, arg); 3071 ret = ioctl(s->vmfd, type, arg); 3072 if (ret == -1) { 3073 ret = -errno; 3074 } 3075 return ret; 3076 } 3077 3078 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3079 { 3080 int ret; 3081 void *arg; 3082 va_list ap; 3083 3084 va_start(ap, type); 3085 arg = va_arg(ap, void *); 3086 va_end(ap); 3087 3088 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3089 ret = ioctl(cpu->kvm_fd, type, arg); 3090 if (ret == -1) { 3091 ret = -errno; 3092 } 3093 return ret; 3094 } 3095 3096 int kvm_device_ioctl(int fd, int type, ...) 3097 { 3098 int ret; 3099 void *arg; 3100 va_list ap; 3101 3102 va_start(ap, type); 3103 arg = va_arg(ap, void *); 3104 va_end(ap); 3105 3106 trace_kvm_device_ioctl(fd, type, arg); 3107 ret = ioctl(fd, type, arg); 3108 if (ret == -1) { 3109 ret = -errno; 3110 } 3111 return ret; 3112 } 3113 3114 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3115 { 3116 int ret; 3117 struct kvm_device_attr attribute = { 3118 .group = group, 3119 .attr = attr, 3120 }; 3121 3122 if (!kvm_vm_attributes_allowed) { 3123 return 0; 3124 } 3125 3126 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3127 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3128 return ret ? 0 : 1; 3129 } 3130 3131 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3132 { 3133 struct kvm_device_attr attribute = { 3134 .group = group, 3135 .attr = attr, 3136 .flags = 0, 3137 }; 3138 3139 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3140 } 3141 3142 int kvm_device_access(int fd, int group, uint64_t attr, 3143 void *val, bool write, Error **errp) 3144 { 3145 struct kvm_device_attr kvmattr; 3146 int err; 3147 3148 kvmattr.flags = 0; 3149 kvmattr.group = group; 3150 kvmattr.attr = attr; 3151 kvmattr.addr = (uintptr_t)val; 3152 3153 err = kvm_device_ioctl(fd, 3154 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3155 &kvmattr); 3156 if (err < 0) { 3157 error_setg_errno(errp, -err, 3158 "KVM_%s_DEVICE_ATTR failed: Group %d " 3159 "attr 0x%016" PRIx64, 3160 write ? "SET" : "GET", group, attr); 3161 } 3162 return err; 3163 } 3164 3165 bool kvm_has_sync_mmu(void) 3166 { 3167 return kvm_state->sync_mmu; 3168 } 3169 3170 int kvm_has_vcpu_events(void) 3171 { 3172 return kvm_state->vcpu_events; 3173 } 3174 3175 int kvm_has_robust_singlestep(void) 3176 { 3177 return kvm_state->robust_singlestep; 3178 } 3179 3180 int kvm_has_debugregs(void) 3181 { 3182 return kvm_state->debugregs; 3183 } 3184 3185 int kvm_max_nested_state_length(void) 3186 { 3187 return kvm_state->max_nested_state_len; 3188 } 3189 3190 int kvm_has_many_ioeventfds(void) 3191 { 3192 if (!kvm_enabled()) { 3193 return 0; 3194 } 3195 return kvm_state->many_ioeventfds; 3196 } 3197 3198 int kvm_has_gsi_routing(void) 3199 { 3200 #ifdef KVM_CAP_IRQ_ROUTING 3201 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3202 #else 3203 return false; 3204 #endif 3205 } 3206 3207 int kvm_has_intx_set_mask(void) 3208 { 3209 return kvm_state->intx_set_mask; 3210 } 3211 3212 bool kvm_arm_supports_user_irq(void) 3213 { 3214 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3215 } 3216 3217 #ifdef KVM_CAP_SET_GUEST_DEBUG 3218 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3219 target_ulong pc) 3220 { 3221 struct kvm_sw_breakpoint *bp; 3222 3223 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3224 if (bp->pc == pc) { 3225 return bp; 3226 } 3227 } 3228 return NULL; 3229 } 3230 3231 int kvm_sw_breakpoints_active(CPUState *cpu) 3232 { 3233 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3234 } 3235 3236 struct kvm_set_guest_debug_data { 3237 struct kvm_guest_debug dbg; 3238 int err; 3239 }; 3240 3241 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3242 { 3243 struct kvm_set_guest_debug_data *dbg_data = 3244 (struct kvm_set_guest_debug_data *) data.host_ptr; 3245 3246 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3247 &dbg_data->dbg); 3248 } 3249 3250 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3251 { 3252 struct kvm_set_guest_debug_data data; 3253 3254 data.dbg.control = reinject_trap; 3255 3256 if (cpu->singlestep_enabled) { 3257 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3258 3259 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3260 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3261 } 3262 } 3263 kvm_arch_update_guest_debug(cpu, &data.dbg); 3264 3265 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3266 RUN_ON_CPU_HOST_PTR(&data)); 3267 return data.err; 3268 } 3269 3270 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 3271 target_ulong len, int type) 3272 { 3273 struct kvm_sw_breakpoint *bp; 3274 int err; 3275 3276 if (type == GDB_BREAKPOINT_SW) { 3277 bp = kvm_find_sw_breakpoint(cpu, addr); 3278 if (bp) { 3279 bp->use_count++; 3280 return 0; 3281 } 3282 3283 bp = g_new(struct kvm_sw_breakpoint, 1); 3284 bp->pc = addr; 3285 bp->use_count = 1; 3286 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3287 if (err) { 3288 g_free(bp); 3289 return err; 3290 } 3291 3292 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3293 } else { 3294 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3295 if (err) { 3296 return err; 3297 } 3298 } 3299 3300 CPU_FOREACH(cpu) { 3301 err = kvm_update_guest_debug(cpu, 0); 3302 if (err) { 3303 return err; 3304 } 3305 } 3306 return 0; 3307 } 3308 3309 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 3310 target_ulong len, int type) 3311 { 3312 struct kvm_sw_breakpoint *bp; 3313 int err; 3314 3315 if (type == GDB_BREAKPOINT_SW) { 3316 bp = kvm_find_sw_breakpoint(cpu, addr); 3317 if (!bp) { 3318 return -ENOENT; 3319 } 3320 3321 if (bp->use_count > 1) { 3322 bp->use_count--; 3323 return 0; 3324 } 3325 3326 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3327 if (err) { 3328 return err; 3329 } 3330 3331 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3332 g_free(bp); 3333 } else { 3334 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3335 if (err) { 3336 return err; 3337 } 3338 } 3339 3340 CPU_FOREACH(cpu) { 3341 err = kvm_update_guest_debug(cpu, 0); 3342 if (err) { 3343 return err; 3344 } 3345 } 3346 return 0; 3347 } 3348 3349 void kvm_remove_all_breakpoints(CPUState *cpu) 3350 { 3351 struct kvm_sw_breakpoint *bp, *next; 3352 KVMState *s = cpu->kvm_state; 3353 CPUState *tmpcpu; 3354 3355 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3356 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3357 /* Try harder to find a CPU that currently sees the breakpoint. */ 3358 CPU_FOREACH(tmpcpu) { 3359 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3360 break; 3361 } 3362 } 3363 } 3364 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3365 g_free(bp); 3366 } 3367 kvm_arch_remove_all_hw_breakpoints(); 3368 3369 CPU_FOREACH(cpu) { 3370 kvm_update_guest_debug(cpu, 0); 3371 } 3372 } 3373 3374 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 3375 3376 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3377 { 3378 return -EINVAL; 3379 } 3380 3381 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 3382 target_ulong len, int type) 3383 { 3384 return -EINVAL; 3385 } 3386 3387 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 3388 target_ulong len, int type) 3389 { 3390 return -EINVAL; 3391 } 3392 3393 void kvm_remove_all_breakpoints(CPUState *cpu) 3394 { 3395 } 3396 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3397 3398 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3399 { 3400 KVMState *s = kvm_state; 3401 struct kvm_signal_mask *sigmask; 3402 int r; 3403 3404 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3405 3406 sigmask->len = s->sigmask_len; 3407 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3408 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3409 g_free(sigmask); 3410 3411 return r; 3412 } 3413 3414 static void kvm_ipi_signal(int sig) 3415 { 3416 if (current_cpu) { 3417 assert(kvm_immediate_exit); 3418 kvm_cpu_kick(current_cpu); 3419 } 3420 } 3421 3422 void kvm_init_cpu_signals(CPUState *cpu) 3423 { 3424 int r; 3425 sigset_t set; 3426 struct sigaction sigact; 3427 3428 memset(&sigact, 0, sizeof(sigact)); 3429 sigact.sa_handler = kvm_ipi_signal; 3430 sigaction(SIG_IPI, &sigact, NULL); 3431 3432 pthread_sigmask(SIG_BLOCK, NULL, &set); 3433 #if defined KVM_HAVE_MCE_INJECTION 3434 sigdelset(&set, SIGBUS); 3435 pthread_sigmask(SIG_SETMASK, &set, NULL); 3436 #endif 3437 sigdelset(&set, SIG_IPI); 3438 if (kvm_immediate_exit) { 3439 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3440 } else { 3441 r = kvm_set_signal_mask(cpu, &set); 3442 } 3443 if (r) { 3444 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3445 exit(1); 3446 } 3447 } 3448 3449 /* Called asynchronously in VCPU thread. */ 3450 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3451 { 3452 #ifdef KVM_HAVE_MCE_INJECTION 3453 if (have_sigbus_pending) { 3454 return 1; 3455 } 3456 have_sigbus_pending = true; 3457 pending_sigbus_addr = addr; 3458 pending_sigbus_code = code; 3459 qatomic_set(&cpu->exit_request, 1); 3460 return 0; 3461 #else 3462 return 1; 3463 #endif 3464 } 3465 3466 /* Called synchronously (via signalfd) in main thread. */ 3467 int kvm_on_sigbus(int code, void *addr) 3468 { 3469 #ifdef KVM_HAVE_MCE_INJECTION 3470 /* Action required MCE kills the process if SIGBUS is blocked. Because 3471 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3472 * we can only get action optional here. 3473 */ 3474 assert(code != BUS_MCEERR_AR); 3475 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3476 return 0; 3477 #else 3478 return 1; 3479 #endif 3480 } 3481 3482 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3483 { 3484 int ret; 3485 struct kvm_create_device create_dev; 3486 3487 create_dev.type = type; 3488 create_dev.fd = -1; 3489 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3490 3491 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3492 return -ENOTSUP; 3493 } 3494 3495 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3496 if (ret) { 3497 return ret; 3498 } 3499 3500 return test ? 0 : create_dev.fd; 3501 } 3502 3503 bool kvm_device_supported(int vmfd, uint64_t type) 3504 { 3505 struct kvm_create_device create_dev = { 3506 .type = type, 3507 .fd = -1, 3508 .flags = KVM_CREATE_DEVICE_TEST, 3509 }; 3510 3511 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3512 return false; 3513 } 3514 3515 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3516 } 3517 3518 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3519 { 3520 struct kvm_one_reg reg; 3521 int r; 3522 3523 reg.id = id; 3524 reg.addr = (uintptr_t) source; 3525 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3526 if (r) { 3527 trace_kvm_failed_reg_set(id, strerror(-r)); 3528 } 3529 return r; 3530 } 3531 3532 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3533 { 3534 struct kvm_one_reg reg; 3535 int r; 3536 3537 reg.id = id; 3538 reg.addr = (uintptr_t) target; 3539 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3540 if (r) { 3541 trace_kvm_failed_reg_get(id, strerror(-r)); 3542 } 3543 return r; 3544 } 3545 3546 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3547 hwaddr start_addr, hwaddr size) 3548 { 3549 KVMState *kvm = KVM_STATE(ms->accelerator); 3550 int i; 3551 3552 for (i = 0; i < kvm->nr_as; ++i) { 3553 if (kvm->as[i].as == as && kvm->as[i].ml) { 3554 size = MIN(kvm_max_slot_size, size); 3555 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3556 start_addr, size); 3557 } 3558 } 3559 3560 return false; 3561 } 3562 3563 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3564 const char *name, void *opaque, 3565 Error **errp) 3566 { 3567 KVMState *s = KVM_STATE(obj); 3568 int64_t value = s->kvm_shadow_mem; 3569 3570 visit_type_int(v, name, &value, errp); 3571 } 3572 3573 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3574 const char *name, void *opaque, 3575 Error **errp) 3576 { 3577 KVMState *s = KVM_STATE(obj); 3578 int64_t value; 3579 3580 if (s->fd != -1) { 3581 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3582 return; 3583 } 3584 3585 if (!visit_type_int(v, name, &value, errp)) { 3586 return; 3587 } 3588 3589 s->kvm_shadow_mem = value; 3590 } 3591 3592 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3593 const char *name, void *opaque, 3594 Error **errp) 3595 { 3596 KVMState *s = KVM_STATE(obj); 3597 OnOffSplit mode; 3598 3599 if (s->fd != -1) { 3600 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3601 return; 3602 } 3603 3604 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3605 return; 3606 } 3607 switch (mode) { 3608 case ON_OFF_SPLIT_ON: 3609 s->kernel_irqchip_allowed = true; 3610 s->kernel_irqchip_required = true; 3611 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3612 break; 3613 case ON_OFF_SPLIT_OFF: 3614 s->kernel_irqchip_allowed = false; 3615 s->kernel_irqchip_required = false; 3616 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3617 break; 3618 case ON_OFF_SPLIT_SPLIT: 3619 s->kernel_irqchip_allowed = true; 3620 s->kernel_irqchip_required = true; 3621 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3622 break; 3623 default: 3624 /* The value was checked in visit_type_OnOffSplit() above. If 3625 * we get here, then something is wrong in QEMU. 3626 */ 3627 abort(); 3628 } 3629 } 3630 3631 bool kvm_kernel_irqchip_allowed(void) 3632 { 3633 return kvm_state->kernel_irqchip_allowed; 3634 } 3635 3636 bool kvm_kernel_irqchip_required(void) 3637 { 3638 return kvm_state->kernel_irqchip_required; 3639 } 3640 3641 bool kvm_kernel_irqchip_split(void) 3642 { 3643 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3644 } 3645 3646 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3647 const char *name, void *opaque, 3648 Error **errp) 3649 { 3650 KVMState *s = KVM_STATE(obj); 3651 uint32_t value = s->kvm_dirty_ring_size; 3652 3653 visit_type_uint32(v, name, &value, errp); 3654 } 3655 3656 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3657 const char *name, void *opaque, 3658 Error **errp) 3659 { 3660 KVMState *s = KVM_STATE(obj); 3661 Error *error = NULL; 3662 uint32_t value; 3663 3664 if (s->fd != -1) { 3665 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3666 return; 3667 } 3668 3669 visit_type_uint32(v, name, &value, &error); 3670 if (error) { 3671 error_propagate(errp, error); 3672 return; 3673 } 3674 if (value & (value - 1)) { 3675 error_setg(errp, "dirty-ring-size must be a power of two."); 3676 return; 3677 } 3678 3679 s->kvm_dirty_ring_size = value; 3680 } 3681 3682 static void kvm_accel_instance_init(Object *obj) 3683 { 3684 KVMState *s = KVM_STATE(obj); 3685 3686 s->fd = -1; 3687 s->vmfd = -1; 3688 s->kvm_shadow_mem = -1; 3689 s->kernel_irqchip_allowed = true; 3690 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3691 /* KVM dirty ring is by default off */ 3692 s->kvm_dirty_ring_size = 0; 3693 } 3694 3695 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3696 { 3697 AccelClass *ac = ACCEL_CLASS(oc); 3698 ac->name = "KVM"; 3699 ac->init_machine = kvm_init; 3700 ac->has_memory = kvm_accel_has_memory; 3701 ac->allowed = &kvm_allowed; 3702 3703 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3704 NULL, kvm_set_kernel_irqchip, 3705 NULL, NULL); 3706 object_class_property_set_description(oc, "kernel-irqchip", 3707 "Configure KVM in-kernel irqchip"); 3708 3709 object_class_property_add(oc, "kvm-shadow-mem", "int", 3710 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3711 NULL, NULL); 3712 object_class_property_set_description(oc, "kvm-shadow-mem", 3713 "KVM shadow MMU size"); 3714 3715 object_class_property_add(oc, "dirty-ring-size", "uint32", 3716 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3717 NULL, NULL); 3718 object_class_property_set_description(oc, "dirty-ring-size", 3719 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3720 } 3721 3722 static const TypeInfo kvm_accel_type = { 3723 .name = TYPE_KVM_ACCEL, 3724 .parent = TYPE_ACCEL, 3725 .instance_init = kvm_accel_instance_init, 3726 .class_init = kvm_accel_class_init, 3727 .instance_size = sizeof(KVMState), 3728 }; 3729 3730 static void kvm_type_init(void) 3731 { 3732 type_register_static(&kvm_accel_type); 3733 } 3734 3735 type_init(kvm_type_init); 3736 3737 typedef struct StatsArgs { 3738 union StatsResultsType { 3739 StatsResultList **stats; 3740 StatsSchemaList **schema; 3741 } result; 3742 strList *names; 3743 Error **errp; 3744 } StatsArgs; 3745 3746 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3747 uint64_t *stats_data, 3748 StatsList *stats_list, 3749 Error **errp) 3750 { 3751 3752 Stats *stats; 3753 uint64List *val_list = NULL; 3754 3755 /* Only add stats that we understand. */ 3756 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3757 case KVM_STATS_TYPE_CUMULATIVE: 3758 case KVM_STATS_TYPE_INSTANT: 3759 case KVM_STATS_TYPE_PEAK: 3760 case KVM_STATS_TYPE_LINEAR_HIST: 3761 case KVM_STATS_TYPE_LOG_HIST: 3762 break; 3763 default: 3764 return stats_list; 3765 } 3766 3767 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3768 case KVM_STATS_UNIT_NONE: 3769 case KVM_STATS_UNIT_BYTES: 3770 case KVM_STATS_UNIT_CYCLES: 3771 case KVM_STATS_UNIT_SECONDS: 3772 case KVM_STATS_UNIT_BOOLEAN: 3773 break; 3774 default: 3775 return stats_list; 3776 } 3777 3778 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3779 case KVM_STATS_BASE_POW10: 3780 case KVM_STATS_BASE_POW2: 3781 break; 3782 default: 3783 return stats_list; 3784 } 3785 3786 /* Alloc and populate data list */ 3787 stats = g_new0(Stats, 1); 3788 stats->name = g_strdup(pdesc->name); 3789 stats->value = g_new0(StatsValue, 1);; 3790 3791 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3792 stats->value->u.boolean = *stats_data; 3793 stats->value->type = QTYPE_QBOOL; 3794 } else if (pdesc->size == 1) { 3795 stats->value->u.scalar = *stats_data; 3796 stats->value->type = QTYPE_QNUM; 3797 } else { 3798 int i; 3799 for (i = 0; i < pdesc->size; i++) { 3800 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3801 } 3802 stats->value->u.list = val_list; 3803 stats->value->type = QTYPE_QLIST; 3804 } 3805 3806 QAPI_LIST_PREPEND(stats_list, stats); 3807 return stats_list; 3808 } 3809 3810 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3811 StatsSchemaValueList *list, 3812 Error **errp) 3813 { 3814 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3815 schema_entry->value = g_new0(StatsSchemaValue, 1); 3816 3817 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3818 case KVM_STATS_TYPE_CUMULATIVE: 3819 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3820 break; 3821 case KVM_STATS_TYPE_INSTANT: 3822 schema_entry->value->type = STATS_TYPE_INSTANT; 3823 break; 3824 case KVM_STATS_TYPE_PEAK: 3825 schema_entry->value->type = STATS_TYPE_PEAK; 3826 break; 3827 case KVM_STATS_TYPE_LINEAR_HIST: 3828 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3829 schema_entry->value->bucket_size = pdesc->bucket_size; 3830 schema_entry->value->has_bucket_size = true; 3831 break; 3832 case KVM_STATS_TYPE_LOG_HIST: 3833 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3834 break; 3835 default: 3836 goto exit; 3837 } 3838 3839 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3840 case KVM_STATS_UNIT_NONE: 3841 break; 3842 case KVM_STATS_UNIT_BOOLEAN: 3843 schema_entry->value->has_unit = true; 3844 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3845 break; 3846 case KVM_STATS_UNIT_BYTES: 3847 schema_entry->value->has_unit = true; 3848 schema_entry->value->unit = STATS_UNIT_BYTES; 3849 break; 3850 case KVM_STATS_UNIT_CYCLES: 3851 schema_entry->value->has_unit = true; 3852 schema_entry->value->unit = STATS_UNIT_CYCLES; 3853 break; 3854 case KVM_STATS_UNIT_SECONDS: 3855 schema_entry->value->has_unit = true; 3856 schema_entry->value->unit = STATS_UNIT_SECONDS; 3857 break; 3858 default: 3859 goto exit; 3860 } 3861 3862 schema_entry->value->exponent = pdesc->exponent; 3863 if (pdesc->exponent) { 3864 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3865 case KVM_STATS_BASE_POW10: 3866 schema_entry->value->has_base = true; 3867 schema_entry->value->base = 10; 3868 break; 3869 case KVM_STATS_BASE_POW2: 3870 schema_entry->value->has_base = true; 3871 schema_entry->value->base = 2; 3872 break; 3873 default: 3874 goto exit; 3875 } 3876 } 3877 3878 schema_entry->value->name = g_strdup(pdesc->name); 3879 schema_entry->next = list; 3880 return schema_entry; 3881 exit: 3882 g_free(schema_entry->value); 3883 g_free(schema_entry); 3884 return list; 3885 } 3886 3887 /* Cached stats descriptors */ 3888 typedef struct StatsDescriptors { 3889 const char *ident; /* cache key, currently the StatsTarget */ 3890 struct kvm_stats_desc *kvm_stats_desc; 3891 struct kvm_stats_header *kvm_stats_header; 3892 QTAILQ_ENTRY(StatsDescriptors) next; 3893 } StatsDescriptors; 3894 3895 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3896 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3897 3898 /* 3899 * Return the descriptors for 'target', that either have already been read 3900 * or are retrieved from 'stats_fd'. 3901 */ 3902 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3903 Error **errp) 3904 { 3905 StatsDescriptors *descriptors; 3906 const char *ident; 3907 struct kvm_stats_desc *kvm_stats_desc; 3908 struct kvm_stats_header *kvm_stats_header; 3909 size_t size_desc; 3910 ssize_t ret; 3911 3912 ident = StatsTarget_str(target); 3913 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 3914 if (g_str_equal(descriptors->ident, ident)) { 3915 return descriptors; 3916 } 3917 } 3918 3919 descriptors = g_new0(StatsDescriptors, 1); 3920 3921 /* Read stats header */ 3922 kvm_stats_header = g_malloc(sizeof(*kvm_stats_header)); 3923 ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header)); 3924 if (ret != sizeof(*kvm_stats_header)) { 3925 error_setg(errp, "KVM stats: failed to read stats header: " 3926 "expected %zu actual %zu", 3927 sizeof(*kvm_stats_header), ret); 3928 g_free(descriptors); 3929 return NULL; 3930 } 3931 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3932 3933 /* Read stats descriptors */ 3934 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 3935 ret = pread(stats_fd, kvm_stats_desc, 3936 size_desc * kvm_stats_header->num_desc, 3937 kvm_stats_header->desc_offset); 3938 3939 if (ret != size_desc * kvm_stats_header->num_desc) { 3940 error_setg(errp, "KVM stats: failed to read stats descriptors: " 3941 "expected %zu actual %zu", 3942 size_desc * kvm_stats_header->num_desc, ret); 3943 g_free(descriptors); 3944 g_free(kvm_stats_desc); 3945 return NULL; 3946 } 3947 descriptors->kvm_stats_header = kvm_stats_header; 3948 descriptors->kvm_stats_desc = kvm_stats_desc; 3949 descriptors->ident = ident; 3950 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 3951 return descriptors; 3952 } 3953 3954 static void query_stats(StatsResultList **result, StatsTarget target, 3955 strList *names, int stats_fd, Error **errp) 3956 { 3957 struct kvm_stats_desc *kvm_stats_desc; 3958 struct kvm_stats_header *kvm_stats_header; 3959 StatsDescriptors *descriptors; 3960 g_autofree uint64_t *stats_data = NULL; 3961 struct kvm_stats_desc *pdesc; 3962 StatsList *stats_list = NULL; 3963 size_t size_desc, size_data = 0; 3964 ssize_t ret; 3965 int i; 3966 3967 descriptors = find_stats_descriptors(target, stats_fd, errp); 3968 if (!descriptors) { 3969 return; 3970 } 3971 3972 kvm_stats_header = descriptors->kvm_stats_header; 3973 kvm_stats_desc = descriptors->kvm_stats_desc; 3974 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3975 3976 /* Tally the total data size; read schema data */ 3977 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3978 pdesc = (void *)kvm_stats_desc + i * size_desc; 3979 size_data += pdesc->size * sizeof(*stats_data); 3980 } 3981 3982 stats_data = g_malloc0(size_data); 3983 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 3984 3985 if (ret != size_data) { 3986 error_setg(errp, "KVM stats: failed to read data: " 3987 "expected %zu actual %zu", size_data, ret); 3988 return; 3989 } 3990 3991 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3992 uint64_t *stats; 3993 pdesc = (void *)kvm_stats_desc + i * size_desc; 3994 3995 /* Add entry to the list */ 3996 stats = (void *)stats_data + pdesc->offset; 3997 if (!apply_str_list_filter(pdesc->name, names)) { 3998 continue; 3999 } 4000 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4001 } 4002 4003 if (!stats_list) { 4004 return; 4005 } 4006 4007 switch (target) { 4008 case STATS_TARGET_VM: 4009 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4010 break; 4011 case STATS_TARGET_VCPU: 4012 add_stats_entry(result, STATS_PROVIDER_KVM, 4013 current_cpu->parent_obj.canonical_path, 4014 stats_list); 4015 break; 4016 default: 4017 g_assert_not_reached(); 4018 } 4019 } 4020 4021 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4022 int stats_fd, Error **errp) 4023 { 4024 struct kvm_stats_desc *kvm_stats_desc; 4025 struct kvm_stats_header *kvm_stats_header; 4026 StatsDescriptors *descriptors; 4027 struct kvm_stats_desc *pdesc; 4028 StatsSchemaValueList *stats_list = NULL; 4029 size_t size_desc; 4030 int i; 4031 4032 descriptors = find_stats_descriptors(target, stats_fd, errp); 4033 if (!descriptors) { 4034 return; 4035 } 4036 4037 kvm_stats_header = descriptors->kvm_stats_header; 4038 kvm_stats_desc = descriptors->kvm_stats_desc; 4039 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4040 4041 /* Tally the total data size; read schema data */ 4042 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4043 pdesc = (void *)kvm_stats_desc + i * size_desc; 4044 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4045 } 4046 4047 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4048 } 4049 4050 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data) 4051 { 4052 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; 4053 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 4054 Error *local_err = NULL; 4055 4056 if (stats_fd == -1) { 4057 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4058 error_propagate(kvm_stats_args->errp, local_err); 4059 return; 4060 } 4061 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4062 kvm_stats_args->names, stats_fd, kvm_stats_args->errp); 4063 close(stats_fd); 4064 } 4065 4066 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data) 4067 { 4068 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; 4069 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 4070 Error *local_err = NULL; 4071 4072 if (stats_fd == -1) { 4073 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4074 error_propagate(kvm_stats_args->errp, local_err); 4075 return; 4076 } 4077 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4078 kvm_stats_args->errp); 4079 close(stats_fd); 4080 } 4081 4082 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4083 strList *names, strList *targets, Error **errp) 4084 { 4085 KVMState *s = kvm_state; 4086 CPUState *cpu; 4087 int stats_fd; 4088 4089 switch (target) { 4090 case STATS_TARGET_VM: 4091 { 4092 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4093 if (stats_fd == -1) { 4094 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4095 return; 4096 } 4097 query_stats(result, target, names, stats_fd, errp); 4098 close(stats_fd); 4099 break; 4100 } 4101 case STATS_TARGET_VCPU: 4102 { 4103 StatsArgs stats_args; 4104 stats_args.result.stats = result; 4105 stats_args.names = names; 4106 stats_args.errp = errp; 4107 CPU_FOREACH(cpu) { 4108 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4109 continue; 4110 } 4111 run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); 4112 } 4113 break; 4114 } 4115 default: 4116 break; 4117 } 4118 } 4119 4120 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4121 { 4122 StatsArgs stats_args; 4123 KVMState *s = kvm_state; 4124 int stats_fd; 4125 4126 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4127 if (stats_fd == -1) { 4128 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4129 return; 4130 } 4131 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4132 close(stats_fd); 4133 4134 stats_args.result.schema = result; 4135 stats_args.errp = errp; 4136 run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); 4137 } 4138