1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "sysemu/sev.h" 43 #include "sysemu/balloon.h" 44 #include "qapi/visitor.h" 45 46 #include "hw/boards.h" 47 48 /* This check must be after config-host.h is included */ 49 #ifdef CONFIG_EVENTFD 50 #include <sys/eventfd.h> 51 #endif 52 53 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 54 * need to use the real host PAGE_SIZE, as that's what KVM will use. 55 */ 56 #define PAGE_SIZE qemu_real_host_page_size 57 58 //#define DEBUG_KVM 59 60 #ifdef DEBUG_KVM 61 #define DPRINTF(fmt, ...) \ 62 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 63 #else 64 #define DPRINTF(fmt, ...) \ 65 do { } while (0) 66 #endif 67 68 #define KVM_MSI_HASHTAB_SIZE 256 69 70 struct KVMParkedVcpu { 71 unsigned long vcpu_id; 72 int kvm_fd; 73 QLIST_ENTRY(KVMParkedVcpu) node; 74 }; 75 76 struct KVMState 77 { 78 AccelState parent_obj; 79 80 int nr_slots; 81 int fd; 82 int vmfd; 83 int coalesced_mmio; 84 int coalesced_pio; 85 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 86 bool coalesced_flush_in_progress; 87 int vcpu_events; 88 int robust_singlestep; 89 int debugregs; 90 #ifdef KVM_CAP_SET_GUEST_DEBUG 91 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 92 #endif 93 int max_nested_state_len; 94 int many_ioeventfds; 95 int intx_set_mask; 96 int kvm_shadow_mem; 97 bool sync_mmu; 98 bool manual_dirty_log_protect; 99 /* The man page (and posix) say ioctl numbers are signed int, but 100 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 101 * unsigned, and treating them as signed here can break things */ 102 unsigned irq_set_ioctl; 103 unsigned int sigmask_len; 104 GHashTable *gsimap; 105 #ifdef KVM_CAP_IRQ_ROUTING 106 struct kvm_irq_routing *irq_routes; 107 int nr_allocated_irq_routes; 108 unsigned long *used_gsi_bitmap; 109 unsigned int gsi_count; 110 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 111 #endif 112 KVMMemoryListener memory_listener; 113 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 114 115 /* memory encryption */ 116 void *memcrypt_handle; 117 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 118 119 /* For "info mtree -f" to tell if an MR is registered in KVM */ 120 int nr_as; 121 struct KVMAs { 122 KVMMemoryListener *ml; 123 AddressSpace *as; 124 } *as; 125 }; 126 127 KVMState *kvm_state; 128 bool kvm_kernel_irqchip; 129 bool kvm_split_irqchip; 130 bool kvm_async_interrupts_allowed; 131 bool kvm_halt_in_kernel_allowed; 132 bool kvm_eventfds_allowed; 133 bool kvm_irqfds_allowed; 134 bool kvm_resamplefds_allowed; 135 bool kvm_msi_via_irqfd_allowed; 136 bool kvm_gsi_routing_allowed; 137 bool kvm_gsi_direct_mapping; 138 bool kvm_allowed; 139 bool kvm_readonly_mem_allowed; 140 bool kvm_vm_attributes_allowed; 141 bool kvm_direct_msi_allowed; 142 bool kvm_ioeventfd_any_length_allowed; 143 bool kvm_msi_use_devid; 144 static bool kvm_immediate_exit; 145 static hwaddr kvm_max_slot_size = ~0; 146 147 static const KVMCapabilityInfo kvm_required_capabilites[] = { 148 KVM_CAP_INFO(USER_MEMORY), 149 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 150 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 151 KVM_CAP_LAST_INFO 152 }; 153 154 static NotifierList kvm_irqchip_change_notifiers = 155 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 156 157 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 158 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 159 160 int kvm_get_max_memslots(void) 161 { 162 KVMState *s = KVM_STATE(current_machine->accelerator); 163 164 return s->nr_slots; 165 } 166 167 bool kvm_memcrypt_enabled(void) 168 { 169 if (kvm_state && kvm_state->memcrypt_handle) { 170 return true; 171 } 172 173 return false; 174 } 175 176 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 177 { 178 if (kvm_state->memcrypt_handle && 179 kvm_state->memcrypt_encrypt_data) { 180 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 181 ptr, len); 182 } 183 184 return 1; 185 } 186 187 /* Called with KVMMemoryListener.slots_lock held */ 188 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 189 { 190 KVMState *s = kvm_state; 191 int i; 192 193 for (i = 0; i < s->nr_slots; i++) { 194 if (kml->slots[i].memory_size == 0) { 195 return &kml->slots[i]; 196 } 197 } 198 199 return NULL; 200 } 201 202 bool kvm_has_free_slot(MachineState *ms) 203 { 204 KVMState *s = KVM_STATE(ms->accelerator); 205 bool result; 206 KVMMemoryListener *kml = &s->memory_listener; 207 208 kvm_slots_lock(kml); 209 result = !!kvm_get_free_slot(kml); 210 kvm_slots_unlock(kml); 211 212 return result; 213 } 214 215 /* Called with KVMMemoryListener.slots_lock held */ 216 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 217 { 218 KVMSlot *slot = kvm_get_free_slot(kml); 219 220 if (slot) { 221 return slot; 222 } 223 224 fprintf(stderr, "%s: no free slot available\n", __func__); 225 abort(); 226 } 227 228 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 229 hwaddr start_addr, 230 hwaddr size) 231 { 232 KVMState *s = kvm_state; 233 int i; 234 235 for (i = 0; i < s->nr_slots; i++) { 236 KVMSlot *mem = &kml->slots[i]; 237 238 if (start_addr == mem->start_addr && size == mem->memory_size) { 239 return mem; 240 } 241 } 242 243 return NULL; 244 } 245 246 /* 247 * Calculate and align the start address and the size of the section. 248 * Return the size. If the size is 0, the aligned section is empty. 249 */ 250 static hwaddr kvm_align_section(MemoryRegionSection *section, 251 hwaddr *start) 252 { 253 hwaddr size = int128_get64(section->size); 254 hwaddr delta, aligned; 255 256 /* kvm works in page size chunks, but the function may be called 257 with sub-page size and unaligned start address. Pad the start 258 address to next and truncate size to previous page boundary. */ 259 aligned = ROUND_UP(section->offset_within_address_space, 260 qemu_real_host_page_size); 261 delta = aligned - section->offset_within_address_space; 262 *start = aligned; 263 if (delta > size) { 264 return 0; 265 } 266 267 return (size - delta) & qemu_real_host_page_mask; 268 } 269 270 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 271 hwaddr *phys_addr) 272 { 273 KVMMemoryListener *kml = &s->memory_listener; 274 int i, ret = 0; 275 276 kvm_slots_lock(kml); 277 for (i = 0; i < s->nr_slots; i++) { 278 KVMSlot *mem = &kml->slots[i]; 279 280 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 281 *phys_addr = mem->start_addr + (ram - mem->ram); 282 ret = 1; 283 break; 284 } 285 } 286 kvm_slots_unlock(kml); 287 288 return ret; 289 } 290 291 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 292 { 293 KVMState *s = kvm_state; 294 struct kvm_userspace_memory_region mem; 295 int ret; 296 297 mem.slot = slot->slot | (kml->as_id << 16); 298 mem.guest_phys_addr = slot->start_addr; 299 mem.userspace_addr = (unsigned long)slot->ram; 300 mem.flags = slot->flags; 301 302 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 303 /* Set the slot size to 0 before setting the slot to the desired 304 * value. This is needed based on KVM commit 75d61fbc. */ 305 mem.memory_size = 0; 306 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 307 } 308 mem.memory_size = slot->memory_size; 309 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 310 slot->old_flags = mem.flags; 311 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 312 mem.memory_size, mem.userspace_addr, ret); 313 return ret; 314 } 315 316 int kvm_destroy_vcpu(CPUState *cpu) 317 { 318 KVMState *s = kvm_state; 319 long mmap_size; 320 struct KVMParkedVcpu *vcpu = NULL; 321 int ret = 0; 322 323 DPRINTF("kvm_destroy_vcpu\n"); 324 325 ret = kvm_arch_destroy_vcpu(cpu); 326 if (ret < 0) { 327 goto err; 328 } 329 330 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 331 if (mmap_size < 0) { 332 ret = mmap_size; 333 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 334 goto err; 335 } 336 337 ret = munmap(cpu->kvm_run, mmap_size); 338 if (ret < 0) { 339 goto err; 340 } 341 342 vcpu = g_malloc0(sizeof(*vcpu)); 343 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 344 vcpu->kvm_fd = cpu->kvm_fd; 345 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 346 err: 347 return ret; 348 } 349 350 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 351 { 352 struct KVMParkedVcpu *cpu; 353 354 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 355 if (cpu->vcpu_id == vcpu_id) { 356 int kvm_fd; 357 358 QLIST_REMOVE(cpu, node); 359 kvm_fd = cpu->kvm_fd; 360 g_free(cpu); 361 return kvm_fd; 362 } 363 } 364 365 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 366 } 367 368 int kvm_init_vcpu(CPUState *cpu) 369 { 370 KVMState *s = kvm_state; 371 long mmap_size; 372 int ret; 373 374 DPRINTF("kvm_init_vcpu\n"); 375 376 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 377 if (ret < 0) { 378 DPRINTF("kvm_create_vcpu failed\n"); 379 goto err; 380 } 381 382 cpu->kvm_fd = ret; 383 cpu->kvm_state = s; 384 cpu->vcpu_dirty = true; 385 386 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 387 if (mmap_size < 0) { 388 ret = mmap_size; 389 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 390 goto err; 391 } 392 393 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 394 cpu->kvm_fd, 0); 395 if (cpu->kvm_run == MAP_FAILED) { 396 ret = -errno; 397 DPRINTF("mmap'ing vcpu state failed\n"); 398 goto err; 399 } 400 401 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 402 s->coalesced_mmio_ring = 403 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 404 } 405 406 ret = kvm_arch_init_vcpu(cpu); 407 err: 408 return ret; 409 } 410 411 /* 412 * dirty pages logging control 413 */ 414 415 static int kvm_mem_flags(MemoryRegion *mr) 416 { 417 bool readonly = mr->readonly || memory_region_is_romd(mr); 418 int flags = 0; 419 420 if (memory_region_get_dirty_log_mask(mr) != 0) { 421 flags |= KVM_MEM_LOG_DIRTY_PAGES; 422 } 423 if (readonly && kvm_readonly_mem_allowed) { 424 flags |= KVM_MEM_READONLY; 425 } 426 return flags; 427 } 428 429 /* Called with KVMMemoryListener.slots_lock held */ 430 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 431 MemoryRegion *mr) 432 { 433 mem->flags = kvm_mem_flags(mr); 434 435 /* If nothing changed effectively, no need to issue ioctl */ 436 if (mem->flags == mem->old_flags) { 437 return 0; 438 } 439 440 return kvm_set_user_memory_region(kml, mem, false); 441 } 442 443 static int kvm_section_update_flags(KVMMemoryListener *kml, 444 MemoryRegionSection *section) 445 { 446 hwaddr start_addr, size, slot_size; 447 KVMSlot *mem; 448 int ret = 0; 449 450 size = kvm_align_section(section, &start_addr); 451 if (!size) { 452 return 0; 453 } 454 455 kvm_slots_lock(kml); 456 457 while (size && !ret) { 458 slot_size = MIN(kvm_max_slot_size, size); 459 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 460 if (!mem) { 461 /* We don't have a slot if we want to trap every access. */ 462 goto out; 463 } 464 465 ret = kvm_slot_update_flags(kml, mem, section->mr); 466 start_addr += slot_size; 467 size -= slot_size; 468 } 469 470 out: 471 kvm_slots_unlock(kml); 472 return ret; 473 } 474 475 static void kvm_log_start(MemoryListener *listener, 476 MemoryRegionSection *section, 477 int old, int new) 478 { 479 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 480 int r; 481 482 if (old != 0) { 483 return; 484 } 485 486 r = kvm_section_update_flags(kml, section); 487 if (r < 0) { 488 abort(); 489 } 490 } 491 492 static void kvm_log_stop(MemoryListener *listener, 493 MemoryRegionSection *section, 494 int old, int new) 495 { 496 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 497 int r; 498 499 if (new != 0) { 500 return; 501 } 502 503 r = kvm_section_update_flags(kml, section); 504 if (r < 0) { 505 abort(); 506 } 507 } 508 509 /* get kvm's dirty pages bitmap and update qemu's */ 510 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 511 unsigned long *bitmap) 512 { 513 ram_addr_t start = section->offset_within_region + 514 memory_region_get_ram_addr(section->mr); 515 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 516 517 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 518 return 0; 519 } 520 521 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 522 523 /* Allocate the dirty bitmap for a slot */ 524 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 525 { 526 /* 527 * XXX bad kernel interface alert 528 * For dirty bitmap, kernel allocates array of size aligned to 529 * bits-per-long. But for case when the kernel is 64bits and 530 * the userspace is 32bits, userspace can't align to the same 531 * bits-per-long, since sizeof(long) is different between kernel 532 * and user space. This way, userspace will provide buffer which 533 * may be 4 bytes less than the kernel will use, resulting in 534 * userspace memory corruption (which is not detectable by valgrind 535 * too, in most cases). 536 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 537 * a hope that sizeof(long) won't become >8 any time soon. 538 */ 539 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 540 /*HOST_LONG_BITS*/ 64) / 8; 541 mem->dirty_bmap = g_malloc0(bitmap_size); 542 } 543 544 /** 545 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 546 * 547 * This function will first try to fetch dirty bitmap from the kernel, 548 * and then updates qemu's dirty bitmap. 549 * 550 * NOTE: caller must be with kml->slots_lock held. 551 * 552 * @kml: the KVM memory listener object 553 * @section: the memory section to sync the dirty bitmap with 554 */ 555 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 556 MemoryRegionSection *section) 557 { 558 KVMState *s = kvm_state; 559 struct kvm_dirty_log d = {}; 560 KVMSlot *mem; 561 hwaddr start_addr, size; 562 hwaddr slot_size, slot_offset = 0; 563 int ret = 0; 564 565 size = kvm_align_section(section, &start_addr); 566 while (size) { 567 MemoryRegionSection subsection = *section; 568 569 slot_size = MIN(kvm_max_slot_size, size); 570 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 571 if (!mem) { 572 /* We don't have a slot if we want to trap every access. */ 573 goto out; 574 } 575 576 if (!mem->dirty_bmap) { 577 /* Allocate on the first log_sync, once and for all */ 578 kvm_memslot_init_dirty_bitmap(mem); 579 } 580 581 d.dirty_bitmap = mem->dirty_bmap; 582 d.slot = mem->slot | (kml->as_id << 16); 583 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 584 DPRINTF("ioctl failed %d\n", errno); 585 ret = -1; 586 goto out; 587 } 588 589 subsection.offset_within_region += slot_offset; 590 subsection.size = int128_make64(slot_size); 591 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 592 593 slot_offset += slot_size; 594 start_addr += slot_size; 595 size -= slot_size; 596 } 597 out: 598 return ret; 599 } 600 601 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 602 #define KVM_CLEAR_LOG_SHIFT 6 603 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 604 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 605 606 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 607 uint64_t size) 608 { 609 KVMState *s = kvm_state; 610 uint64_t end, bmap_start, start_delta, bmap_npages; 611 struct kvm_clear_dirty_log d; 612 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 613 int ret; 614 615 /* 616 * We need to extend either the start or the size or both to 617 * satisfy the KVM interface requirement. Firstly, do the start 618 * page alignment on 64 host pages 619 */ 620 bmap_start = start & KVM_CLEAR_LOG_MASK; 621 start_delta = start - bmap_start; 622 bmap_start /= psize; 623 624 /* 625 * The kernel interface has restriction on the size too, that either: 626 * 627 * (1) the size is 64 host pages aligned (just like the start), or 628 * (2) the size fills up until the end of the KVM memslot. 629 */ 630 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 631 << KVM_CLEAR_LOG_SHIFT; 632 end = mem->memory_size / psize; 633 if (bmap_npages > end - bmap_start) { 634 bmap_npages = end - bmap_start; 635 } 636 start_delta /= psize; 637 638 /* 639 * Prepare the bitmap to clear dirty bits. Here we must guarantee 640 * that we won't clear any unknown dirty bits otherwise we might 641 * accidentally clear some set bits which are not yet synced from 642 * the kernel into QEMU's bitmap, then we'll lose track of the 643 * guest modifications upon those pages (which can directly lead 644 * to guest data loss or panic after migration). 645 * 646 * Layout of the KVMSlot.dirty_bmap: 647 * 648 * |<-------- bmap_npages -----------..>| 649 * [1] 650 * start_delta size 651 * |----------------|-------------|------------------|------------| 652 * ^ ^ ^ ^ 653 * | | | | 654 * start bmap_start (start) end 655 * of memslot of memslot 656 * 657 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 658 */ 659 660 assert(bmap_start % BITS_PER_LONG == 0); 661 /* We should never do log_clear before log_sync */ 662 assert(mem->dirty_bmap); 663 if (start_delta) { 664 /* Slow path - we need to manipulate a temp bitmap */ 665 bmap_clear = bitmap_new(bmap_npages); 666 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 667 bmap_start, start_delta + size / psize); 668 /* 669 * We need to fill the holes at start because that was not 670 * specified by the caller and we extended the bitmap only for 671 * 64 pages alignment 672 */ 673 bitmap_clear(bmap_clear, 0, start_delta); 674 d.dirty_bitmap = bmap_clear; 675 } else { 676 /* Fast path - start address aligns well with BITS_PER_LONG */ 677 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 678 } 679 680 d.first_page = bmap_start; 681 /* It should never overflow. If it happens, say something */ 682 assert(bmap_npages <= UINT32_MAX); 683 d.num_pages = bmap_npages; 684 d.slot = mem->slot | (as_id << 16); 685 686 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 687 ret = -errno; 688 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 689 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 690 __func__, d.slot, (uint64_t)d.first_page, 691 (uint32_t)d.num_pages, ret); 692 } else { 693 ret = 0; 694 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 695 } 696 697 /* 698 * After we have updated the remote dirty bitmap, we update the 699 * cached bitmap as well for the memslot, then if another user 700 * clears the same region we know we shouldn't clear it again on 701 * the remote otherwise it's data loss as well. 702 */ 703 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 704 size / psize); 705 /* This handles the NULL case well */ 706 g_free(bmap_clear); 707 return ret; 708 } 709 710 711 /** 712 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 713 * 714 * NOTE: this will be a no-op if we haven't enabled manual dirty log 715 * protection in the host kernel because in that case this operation 716 * will be done within log_sync(). 717 * 718 * @kml: the kvm memory listener 719 * @section: the memory range to clear dirty bitmap 720 */ 721 static int kvm_physical_log_clear(KVMMemoryListener *kml, 722 MemoryRegionSection *section) 723 { 724 KVMState *s = kvm_state; 725 uint64_t start, size, offset, count; 726 KVMSlot *mem; 727 int ret = 0, i; 728 729 if (!s->manual_dirty_log_protect) { 730 /* No need to do explicit clear */ 731 return ret; 732 } 733 734 start = section->offset_within_address_space; 735 size = int128_get64(section->size); 736 737 if (!size) { 738 /* Nothing more we can do... */ 739 return ret; 740 } 741 742 kvm_slots_lock(kml); 743 744 for (i = 0; i < s->nr_slots; i++) { 745 mem = &kml->slots[i]; 746 /* Discard slots that are empty or do not overlap the section */ 747 if (!mem->memory_size || 748 mem->start_addr > start + size - 1 || 749 start > mem->start_addr + mem->memory_size - 1) { 750 continue; 751 } 752 753 if (start >= mem->start_addr) { 754 /* The slot starts before section or is aligned to it. */ 755 offset = start - mem->start_addr; 756 count = MIN(mem->memory_size - offset, size); 757 } else { 758 /* The slot starts after section. */ 759 offset = 0; 760 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 761 } 762 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 763 if (ret < 0) { 764 break; 765 } 766 } 767 768 kvm_slots_unlock(kml); 769 770 return ret; 771 } 772 773 static void kvm_coalesce_mmio_region(MemoryListener *listener, 774 MemoryRegionSection *secion, 775 hwaddr start, hwaddr size) 776 { 777 KVMState *s = kvm_state; 778 779 if (s->coalesced_mmio) { 780 struct kvm_coalesced_mmio_zone zone; 781 782 zone.addr = start; 783 zone.size = size; 784 zone.pad = 0; 785 786 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 787 } 788 } 789 790 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 791 MemoryRegionSection *secion, 792 hwaddr start, hwaddr size) 793 { 794 KVMState *s = kvm_state; 795 796 if (s->coalesced_mmio) { 797 struct kvm_coalesced_mmio_zone zone; 798 799 zone.addr = start; 800 zone.size = size; 801 zone.pad = 0; 802 803 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 804 } 805 } 806 807 static void kvm_coalesce_pio_add(MemoryListener *listener, 808 MemoryRegionSection *section, 809 hwaddr start, hwaddr size) 810 { 811 KVMState *s = kvm_state; 812 813 if (s->coalesced_pio) { 814 struct kvm_coalesced_mmio_zone zone; 815 816 zone.addr = start; 817 zone.size = size; 818 zone.pio = 1; 819 820 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 821 } 822 } 823 824 static void kvm_coalesce_pio_del(MemoryListener *listener, 825 MemoryRegionSection *section, 826 hwaddr start, hwaddr size) 827 { 828 KVMState *s = kvm_state; 829 830 if (s->coalesced_pio) { 831 struct kvm_coalesced_mmio_zone zone; 832 833 zone.addr = start; 834 zone.size = size; 835 zone.pio = 1; 836 837 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 838 } 839 } 840 841 static MemoryListener kvm_coalesced_pio_listener = { 842 .coalesced_io_add = kvm_coalesce_pio_add, 843 .coalesced_io_del = kvm_coalesce_pio_del, 844 }; 845 846 int kvm_check_extension(KVMState *s, unsigned int extension) 847 { 848 int ret; 849 850 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 851 if (ret < 0) { 852 ret = 0; 853 } 854 855 return ret; 856 } 857 858 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 859 { 860 int ret; 861 862 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 863 if (ret < 0) { 864 /* VM wide version not implemented, use global one instead */ 865 ret = kvm_check_extension(s, extension); 866 } 867 868 return ret; 869 } 870 871 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 872 { 873 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 874 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 875 * endianness, but the memory core hands them in target endianness. 876 * For example, PPC is always treated as big-endian even if running 877 * on KVM and on PPC64LE. Correct here. 878 */ 879 switch (size) { 880 case 2: 881 val = bswap16(val); 882 break; 883 case 4: 884 val = bswap32(val); 885 break; 886 } 887 #endif 888 return val; 889 } 890 891 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 892 bool assign, uint32_t size, bool datamatch) 893 { 894 int ret; 895 struct kvm_ioeventfd iofd = { 896 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 897 .addr = addr, 898 .len = size, 899 .flags = 0, 900 .fd = fd, 901 }; 902 903 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 904 datamatch); 905 if (!kvm_enabled()) { 906 return -ENOSYS; 907 } 908 909 if (datamatch) { 910 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 911 } 912 if (!assign) { 913 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 914 } 915 916 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 917 918 if (ret < 0) { 919 return -errno; 920 } 921 922 return 0; 923 } 924 925 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 926 bool assign, uint32_t size, bool datamatch) 927 { 928 struct kvm_ioeventfd kick = { 929 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 930 .addr = addr, 931 .flags = KVM_IOEVENTFD_FLAG_PIO, 932 .len = size, 933 .fd = fd, 934 }; 935 int r; 936 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 937 if (!kvm_enabled()) { 938 return -ENOSYS; 939 } 940 if (datamatch) { 941 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 942 } 943 if (!assign) { 944 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 945 } 946 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 947 if (r < 0) { 948 return r; 949 } 950 return 0; 951 } 952 953 954 static int kvm_check_many_ioeventfds(void) 955 { 956 /* Userspace can use ioeventfd for io notification. This requires a host 957 * that supports eventfd(2) and an I/O thread; since eventfd does not 958 * support SIGIO it cannot interrupt the vcpu. 959 * 960 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 961 * can avoid creating too many ioeventfds. 962 */ 963 #if defined(CONFIG_EVENTFD) 964 int ioeventfds[7]; 965 int i, ret = 0; 966 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 967 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 968 if (ioeventfds[i] < 0) { 969 break; 970 } 971 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 972 if (ret < 0) { 973 close(ioeventfds[i]); 974 break; 975 } 976 } 977 978 /* Decide whether many devices are supported or not */ 979 ret = i == ARRAY_SIZE(ioeventfds); 980 981 while (i-- > 0) { 982 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 983 close(ioeventfds[i]); 984 } 985 return ret; 986 #else 987 return 0; 988 #endif 989 } 990 991 static const KVMCapabilityInfo * 992 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 993 { 994 while (list->name) { 995 if (!kvm_check_extension(s, list->value)) { 996 return list; 997 } 998 list++; 999 } 1000 return NULL; 1001 } 1002 1003 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1004 { 1005 g_assert( 1006 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1007 ); 1008 kvm_max_slot_size = max_slot_size; 1009 } 1010 1011 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1012 MemoryRegionSection *section, bool add) 1013 { 1014 KVMSlot *mem; 1015 int err; 1016 MemoryRegion *mr = section->mr; 1017 bool writeable = !mr->readonly && !mr->rom_device; 1018 hwaddr start_addr, size, slot_size; 1019 void *ram; 1020 1021 if (!memory_region_is_ram(mr)) { 1022 if (writeable || !kvm_readonly_mem_allowed) { 1023 return; 1024 } else if (!mr->romd_mode) { 1025 /* If the memory device is not in romd_mode, then we actually want 1026 * to remove the kvm memory slot so all accesses will trap. */ 1027 add = false; 1028 } 1029 } 1030 1031 size = kvm_align_section(section, &start_addr); 1032 if (!size) { 1033 return; 1034 } 1035 1036 /* use aligned delta to align the ram address */ 1037 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1038 (start_addr - section->offset_within_address_space); 1039 1040 kvm_slots_lock(kml); 1041 1042 if (!add) { 1043 do { 1044 slot_size = MIN(kvm_max_slot_size, size); 1045 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1046 if (!mem) { 1047 goto out; 1048 } 1049 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1050 kvm_physical_sync_dirty_bitmap(kml, section); 1051 } 1052 1053 /* unregister the slot */ 1054 g_free(mem->dirty_bmap); 1055 mem->dirty_bmap = NULL; 1056 mem->memory_size = 0; 1057 mem->flags = 0; 1058 err = kvm_set_user_memory_region(kml, mem, false); 1059 if (err) { 1060 fprintf(stderr, "%s: error unregistering slot: %s\n", 1061 __func__, strerror(-err)); 1062 abort(); 1063 } 1064 start_addr += slot_size; 1065 size -= slot_size; 1066 } while (size); 1067 goto out; 1068 } 1069 1070 /* register the new slot */ 1071 do { 1072 slot_size = MIN(kvm_max_slot_size, size); 1073 mem = kvm_alloc_slot(kml); 1074 mem->memory_size = slot_size; 1075 mem->start_addr = start_addr; 1076 mem->ram = ram; 1077 mem->flags = kvm_mem_flags(mr); 1078 1079 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1080 /* 1081 * Reallocate the bmap; it means it doesn't disappear in 1082 * middle of a migrate. 1083 */ 1084 kvm_memslot_init_dirty_bitmap(mem); 1085 } 1086 err = kvm_set_user_memory_region(kml, mem, true); 1087 if (err) { 1088 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1089 strerror(-err)); 1090 abort(); 1091 } 1092 start_addr += slot_size; 1093 ram += slot_size; 1094 size -= slot_size; 1095 } while (size); 1096 1097 out: 1098 kvm_slots_unlock(kml); 1099 } 1100 1101 static void kvm_region_add(MemoryListener *listener, 1102 MemoryRegionSection *section) 1103 { 1104 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1105 1106 memory_region_ref(section->mr); 1107 kvm_set_phys_mem(kml, section, true); 1108 } 1109 1110 static void kvm_region_del(MemoryListener *listener, 1111 MemoryRegionSection *section) 1112 { 1113 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1114 1115 kvm_set_phys_mem(kml, section, false); 1116 memory_region_unref(section->mr); 1117 } 1118 1119 static void kvm_log_sync(MemoryListener *listener, 1120 MemoryRegionSection *section) 1121 { 1122 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1123 int r; 1124 1125 kvm_slots_lock(kml); 1126 r = kvm_physical_sync_dirty_bitmap(kml, section); 1127 kvm_slots_unlock(kml); 1128 if (r < 0) { 1129 abort(); 1130 } 1131 } 1132 1133 static void kvm_log_clear(MemoryListener *listener, 1134 MemoryRegionSection *section) 1135 { 1136 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1137 int r; 1138 1139 r = kvm_physical_log_clear(kml, section); 1140 if (r < 0) { 1141 error_report_once("%s: kvm log clear failed: mr=%s " 1142 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1143 section->mr->name, section->offset_within_region, 1144 int128_get64(section->size)); 1145 abort(); 1146 } 1147 } 1148 1149 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1150 MemoryRegionSection *section, 1151 bool match_data, uint64_t data, 1152 EventNotifier *e) 1153 { 1154 int fd = event_notifier_get_fd(e); 1155 int r; 1156 1157 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1158 data, true, int128_get64(section->size), 1159 match_data); 1160 if (r < 0) { 1161 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1162 __func__, strerror(-r), -r); 1163 abort(); 1164 } 1165 } 1166 1167 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1168 MemoryRegionSection *section, 1169 bool match_data, uint64_t data, 1170 EventNotifier *e) 1171 { 1172 int fd = event_notifier_get_fd(e); 1173 int r; 1174 1175 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1176 data, false, int128_get64(section->size), 1177 match_data); 1178 if (r < 0) { 1179 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1180 __func__, strerror(-r), -r); 1181 abort(); 1182 } 1183 } 1184 1185 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1186 MemoryRegionSection *section, 1187 bool match_data, uint64_t data, 1188 EventNotifier *e) 1189 { 1190 int fd = event_notifier_get_fd(e); 1191 int r; 1192 1193 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1194 data, true, int128_get64(section->size), 1195 match_data); 1196 if (r < 0) { 1197 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1198 __func__, strerror(-r), -r); 1199 abort(); 1200 } 1201 } 1202 1203 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1204 MemoryRegionSection *section, 1205 bool match_data, uint64_t data, 1206 EventNotifier *e) 1207 1208 { 1209 int fd = event_notifier_get_fd(e); 1210 int r; 1211 1212 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1213 data, false, int128_get64(section->size), 1214 match_data); 1215 if (r < 0) { 1216 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1217 __func__, strerror(-r), -r); 1218 abort(); 1219 } 1220 } 1221 1222 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1223 AddressSpace *as, int as_id) 1224 { 1225 int i; 1226 1227 qemu_mutex_init(&kml->slots_lock); 1228 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1229 kml->as_id = as_id; 1230 1231 for (i = 0; i < s->nr_slots; i++) { 1232 kml->slots[i].slot = i; 1233 } 1234 1235 kml->listener.region_add = kvm_region_add; 1236 kml->listener.region_del = kvm_region_del; 1237 kml->listener.log_start = kvm_log_start; 1238 kml->listener.log_stop = kvm_log_stop; 1239 kml->listener.log_sync = kvm_log_sync; 1240 kml->listener.log_clear = kvm_log_clear; 1241 kml->listener.priority = 10; 1242 1243 memory_listener_register(&kml->listener, as); 1244 1245 for (i = 0; i < s->nr_as; ++i) { 1246 if (!s->as[i].as) { 1247 s->as[i].as = as; 1248 s->as[i].ml = kml; 1249 break; 1250 } 1251 } 1252 } 1253 1254 static MemoryListener kvm_io_listener = { 1255 .eventfd_add = kvm_io_ioeventfd_add, 1256 .eventfd_del = kvm_io_ioeventfd_del, 1257 .priority = 10, 1258 }; 1259 1260 int kvm_set_irq(KVMState *s, int irq, int level) 1261 { 1262 struct kvm_irq_level event; 1263 int ret; 1264 1265 assert(kvm_async_interrupts_enabled()); 1266 1267 event.level = level; 1268 event.irq = irq; 1269 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1270 if (ret < 0) { 1271 perror("kvm_set_irq"); 1272 abort(); 1273 } 1274 1275 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1276 } 1277 1278 #ifdef KVM_CAP_IRQ_ROUTING 1279 typedef struct KVMMSIRoute { 1280 struct kvm_irq_routing_entry kroute; 1281 QTAILQ_ENTRY(KVMMSIRoute) entry; 1282 } KVMMSIRoute; 1283 1284 static void set_gsi(KVMState *s, unsigned int gsi) 1285 { 1286 set_bit(gsi, s->used_gsi_bitmap); 1287 } 1288 1289 static void clear_gsi(KVMState *s, unsigned int gsi) 1290 { 1291 clear_bit(gsi, s->used_gsi_bitmap); 1292 } 1293 1294 void kvm_init_irq_routing(KVMState *s) 1295 { 1296 int gsi_count, i; 1297 1298 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1299 if (gsi_count > 0) { 1300 /* Round up so we can search ints using ffs */ 1301 s->used_gsi_bitmap = bitmap_new(gsi_count); 1302 s->gsi_count = gsi_count; 1303 } 1304 1305 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1306 s->nr_allocated_irq_routes = 0; 1307 1308 if (!kvm_direct_msi_allowed) { 1309 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1310 QTAILQ_INIT(&s->msi_hashtab[i]); 1311 } 1312 } 1313 1314 kvm_arch_init_irq_routing(s); 1315 } 1316 1317 void kvm_irqchip_commit_routes(KVMState *s) 1318 { 1319 int ret; 1320 1321 if (kvm_gsi_direct_mapping()) { 1322 return; 1323 } 1324 1325 if (!kvm_gsi_routing_enabled()) { 1326 return; 1327 } 1328 1329 s->irq_routes->flags = 0; 1330 trace_kvm_irqchip_commit_routes(); 1331 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1332 assert(ret == 0); 1333 } 1334 1335 static void kvm_add_routing_entry(KVMState *s, 1336 struct kvm_irq_routing_entry *entry) 1337 { 1338 struct kvm_irq_routing_entry *new; 1339 int n, size; 1340 1341 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1342 n = s->nr_allocated_irq_routes * 2; 1343 if (n < 64) { 1344 n = 64; 1345 } 1346 size = sizeof(struct kvm_irq_routing); 1347 size += n * sizeof(*new); 1348 s->irq_routes = g_realloc(s->irq_routes, size); 1349 s->nr_allocated_irq_routes = n; 1350 } 1351 n = s->irq_routes->nr++; 1352 new = &s->irq_routes->entries[n]; 1353 1354 *new = *entry; 1355 1356 set_gsi(s, entry->gsi); 1357 } 1358 1359 static int kvm_update_routing_entry(KVMState *s, 1360 struct kvm_irq_routing_entry *new_entry) 1361 { 1362 struct kvm_irq_routing_entry *entry; 1363 int n; 1364 1365 for (n = 0; n < s->irq_routes->nr; n++) { 1366 entry = &s->irq_routes->entries[n]; 1367 if (entry->gsi != new_entry->gsi) { 1368 continue; 1369 } 1370 1371 if(!memcmp(entry, new_entry, sizeof *entry)) { 1372 return 0; 1373 } 1374 1375 *entry = *new_entry; 1376 1377 return 0; 1378 } 1379 1380 return -ESRCH; 1381 } 1382 1383 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1384 { 1385 struct kvm_irq_routing_entry e = {}; 1386 1387 assert(pin < s->gsi_count); 1388 1389 e.gsi = irq; 1390 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1391 e.flags = 0; 1392 e.u.irqchip.irqchip = irqchip; 1393 e.u.irqchip.pin = pin; 1394 kvm_add_routing_entry(s, &e); 1395 } 1396 1397 void kvm_irqchip_release_virq(KVMState *s, int virq) 1398 { 1399 struct kvm_irq_routing_entry *e; 1400 int i; 1401 1402 if (kvm_gsi_direct_mapping()) { 1403 return; 1404 } 1405 1406 for (i = 0; i < s->irq_routes->nr; i++) { 1407 e = &s->irq_routes->entries[i]; 1408 if (e->gsi == virq) { 1409 s->irq_routes->nr--; 1410 *e = s->irq_routes->entries[s->irq_routes->nr]; 1411 } 1412 } 1413 clear_gsi(s, virq); 1414 kvm_arch_release_virq_post(virq); 1415 trace_kvm_irqchip_release_virq(virq); 1416 } 1417 1418 void kvm_irqchip_add_change_notifier(Notifier *n) 1419 { 1420 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1421 } 1422 1423 void kvm_irqchip_remove_change_notifier(Notifier *n) 1424 { 1425 notifier_remove(n); 1426 } 1427 1428 void kvm_irqchip_change_notify(void) 1429 { 1430 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1431 } 1432 1433 static unsigned int kvm_hash_msi(uint32_t data) 1434 { 1435 /* This is optimized for IA32 MSI layout. However, no other arch shall 1436 * repeat the mistake of not providing a direct MSI injection API. */ 1437 return data & 0xff; 1438 } 1439 1440 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1441 { 1442 KVMMSIRoute *route, *next; 1443 unsigned int hash; 1444 1445 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1446 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1447 kvm_irqchip_release_virq(s, route->kroute.gsi); 1448 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1449 g_free(route); 1450 } 1451 } 1452 } 1453 1454 static int kvm_irqchip_get_virq(KVMState *s) 1455 { 1456 int next_virq; 1457 1458 /* 1459 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1460 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1461 * number can succeed even though a new route entry cannot be added. 1462 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1463 */ 1464 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1465 kvm_flush_dynamic_msi_routes(s); 1466 } 1467 1468 /* Return the lowest unused GSI in the bitmap */ 1469 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1470 if (next_virq >= s->gsi_count) { 1471 return -ENOSPC; 1472 } else { 1473 return next_virq; 1474 } 1475 } 1476 1477 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1478 { 1479 unsigned int hash = kvm_hash_msi(msg.data); 1480 KVMMSIRoute *route; 1481 1482 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1483 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1484 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1485 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1486 return route; 1487 } 1488 } 1489 return NULL; 1490 } 1491 1492 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1493 { 1494 struct kvm_msi msi; 1495 KVMMSIRoute *route; 1496 1497 if (kvm_direct_msi_allowed) { 1498 msi.address_lo = (uint32_t)msg.address; 1499 msi.address_hi = msg.address >> 32; 1500 msi.data = le32_to_cpu(msg.data); 1501 msi.flags = 0; 1502 memset(msi.pad, 0, sizeof(msi.pad)); 1503 1504 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1505 } 1506 1507 route = kvm_lookup_msi_route(s, msg); 1508 if (!route) { 1509 int virq; 1510 1511 virq = kvm_irqchip_get_virq(s); 1512 if (virq < 0) { 1513 return virq; 1514 } 1515 1516 route = g_malloc0(sizeof(KVMMSIRoute)); 1517 route->kroute.gsi = virq; 1518 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1519 route->kroute.flags = 0; 1520 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1521 route->kroute.u.msi.address_hi = msg.address >> 32; 1522 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1523 1524 kvm_add_routing_entry(s, &route->kroute); 1525 kvm_irqchip_commit_routes(s); 1526 1527 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1528 entry); 1529 } 1530 1531 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1532 1533 return kvm_set_irq(s, route->kroute.gsi, 1); 1534 } 1535 1536 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1537 { 1538 struct kvm_irq_routing_entry kroute = {}; 1539 int virq; 1540 MSIMessage msg = {0, 0}; 1541 1542 if (pci_available && dev) { 1543 msg = pci_get_msi_message(dev, vector); 1544 } 1545 1546 if (kvm_gsi_direct_mapping()) { 1547 return kvm_arch_msi_data_to_gsi(msg.data); 1548 } 1549 1550 if (!kvm_gsi_routing_enabled()) { 1551 return -ENOSYS; 1552 } 1553 1554 virq = kvm_irqchip_get_virq(s); 1555 if (virq < 0) { 1556 return virq; 1557 } 1558 1559 kroute.gsi = virq; 1560 kroute.type = KVM_IRQ_ROUTING_MSI; 1561 kroute.flags = 0; 1562 kroute.u.msi.address_lo = (uint32_t)msg.address; 1563 kroute.u.msi.address_hi = msg.address >> 32; 1564 kroute.u.msi.data = le32_to_cpu(msg.data); 1565 if (pci_available && kvm_msi_devid_required()) { 1566 kroute.flags = KVM_MSI_VALID_DEVID; 1567 kroute.u.msi.devid = pci_requester_id(dev); 1568 } 1569 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1570 kvm_irqchip_release_virq(s, virq); 1571 return -EINVAL; 1572 } 1573 1574 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1575 vector, virq); 1576 1577 kvm_add_routing_entry(s, &kroute); 1578 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1579 kvm_irqchip_commit_routes(s); 1580 1581 return virq; 1582 } 1583 1584 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1585 PCIDevice *dev) 1586 { 1587 struct kvm_irq_routing_entry kroute = {}; 1588 1589 if (kvm_gsi_direct_mapping()) { 1590 return 0; 1591 } 1592 1593 if (!kvm_irqchip_in_kernel()) { 1594 return -ENOSYS; 1595 } 1596 1597 kroute.gsi = virq; 1598 kroute.type = KVM_IRQ_ROUTING_MSI; 1599 kroute.flags = 0; 1600 kroute.u.msi.address_lo = (uint32_t)msg.address; 1601 kroute.u.msi.address_hi = msg.address >> 32; 1602 kroute.u.msi.data = le32_to_cpu(msg.data); 1603 if (pci_available && kvm_msi_devid_required()) { 1604 kroute.flags = KVM_MSI_VALID_DEVID; 1605 kroute.u.msi.devid = pci_requester_id(dev); 1606 } 1607 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1608 return -EINVAL; 1609 } 1610 1611 trace_kvm_irqchip_update_msi_route(virq); 1612 1613 return kvm_update_routing_entry(s, &kroute); 1614 } 1615 1616 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1617 bool assign) 1618 { 1619 struct kvm_irqfd irqfd = { 1620 .fd = fd, 1621 .gsi = virq, 1622 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1623 }; 1624 1625 if (rfd != -1) { 1626 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1627 irqfd.resamplefd = rfd; 1628 } 1629 1630 if (!kvm_irqfds_enabled()) { 1631 return -ENOSYS; 1632 } 1633 1634 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1635 } 1636 1637 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1638 { 1639 struct kvm_irq_routing_entry kroute = {}; 1640 int virq; 1641 1642 if (!kvm_gsi_routing_enabled()) { 1643 return -ENOSYS; 1644 } 1645 1646 virq = kvm_irqchip_get_virq(s); 1647 if (virq < 0) { 1648 return virq; 1649 } 1650 1651 kroute.gsi = virq; 1652 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1653 kroute.flags = 0; 1654 kroute.u.adapter.summary_addr = adapter->summary_addr; 1655 kroute.u.adapter.ind_addr = adapter->ind_addr; 1656 kroute.u.adapter.summary_offset = adapter->summary_offset; 1657 kroute.u.adapter.ind_offset = adapter->ind_offset; 1658 kroute.u.adapter.adapter_id = adapter->adapter_id; 1659 1660 kvm_add_routing_entry(s, &kroute); 1661 1662 return virq; 1663 } 1664 1665 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1666 { 1667 struct kvm_irq_routing_entry kroute = {}; 1668 int virq; 1669 1670 if (!kvm_gsi_routing_enabled()) { 1671 return -ENOSYS; 1672 } 1673 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1674 return -ENOSYS; 1675 } 1676 virq = kvm_irqchip_get_virq(s); 1677 if (virq < 0) { 1678 return virq; 1679 } 1680 1681 kroute.gsi = virq; 1682 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1683 kroute.flags = 0; 1684 kroute.u.hv_sint.vcpu = vcpu; 1685 kroute.u.hv_sint.sint = sint; 1686 1687 kvm_add_routing_entry(s, &kroute); 1688 kvm_irqchip_commit_routes(s); 1689 1690 return virq; 1691 } 1692 1693 #else /* !KVM_CAP_IRQ_ROUTING */ 1694 1695 void kvm_init_irq_routing(KVMState *s) 1696 { 1697 } 1698 1699 void kvm_irqchip_release_virq(KVMState *s, int virq) 1700 { 1701 } 1702 1703 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1704 { 1705 abort(); 1706 } 1707 1708 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1709 { 1710 return -ENOSYS; 1711 } 1712 1713 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1714 { 1715 return -ENOSYS; 1716 } 1717 1718 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1719 { 1720 return -ENOSYS; 1721 } 1722 1723 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1724 { 1725 abort(); 1726 } 1727 1728 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1729 { 1730 return -ENOSYS; 1731 } 1732 #endif /* !KVM_CAP_IRQ_ROUTING */ 1733 1734 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1735 EventNotifier *rn, int virq) 1736 { 1737 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1738 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1739 } 1740 1741 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1742 int virq) 1743 { 1744 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1745 false); 1746 } 1747 1748 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1749 EventNotifier *rn, qemu_irq irq) 1750 { 1751 gpointer key, gsi; 1752 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1753 1754 if (!found) { 1755 return -ENXIO; 1756 } 1757 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1758 } 1759 1760 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1761 qemu_irq irq) 1762 { 1763 gpointer key, gsi; 1764 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1765 1766 if (!found) { 1767 return -ENXIO; 1768 } 1769 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1770 } 1771 1772 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1773 { 1774 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1775 } 1776 1777 static void kvm_irqchip_create(KVMState *s) 1778 { 1779 int ret; 1780 1781 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1782 ; 1783 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1784 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1785 if (ret < 0) { 1786 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1787 exit(1); 1788 } 1789 } else { 1790 return; 1791 } 1792 1793 /* First probe and see if there's a arch-specific hook to create the 1794 * in-kernel irqchip for us */ 1795 ret = kvm_arch_irqchip_create(s); 1796 if (ret == 0) { 1797 if (kvm_kernel_irqchip_split()) { 1798 perror("Split IRQ chip mode not supported."); 1799 exit(1); 1800 } else { 1801 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1802 } 1803 } 1804 if (ret < 0) { 1805 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1806 exit(1); 1807 } 1808 1809 kvm_kernel_irqchip = true; 1810 /* If we have an in-kernel IRQ chip then we must have asynchronous 1811 * interrupt delivery (though the reverse is not necessarily true) 1812 */ 1813 kvm_async_interrupts_allowed = true; 1814 kvm_halt_in_kernel_allowed = true; 1815 1816 kvm_init_irq_routing(s); 1817 1818 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1819 } 1820 1821 /* Find number of supported CPUs using the recommended 1822 * procedure from the kernel API documentation to cope with 1823 * older kernels that may be missing capabilities. 1824 */ 1825 static int kvm_recommended_vcpus(KVMState *s) 1826 { 1827 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1828 return (ret) ? ret : 4; 1829 } 1830 1831 static int kvm_max_vcpus(KVMState *s) 1832 { 1833 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1834 return (ret) ? ret : kvm_recommended_vcpus(s); 1835 } 1836 1837 static int kvm_max_vcpu_id(KVMState *s) 1838 { 1839 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1840 return (ret) ? ret : kvm_max_vcpus(s); 1841 } 1842 1843 bool kvm_vcpu_id_is_valid(int vcpu_id) 1844 { 1845 KVMState *s = KVM_STATE(current_machine->accelerator); 1846 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1847 } 1848 1849 static int kvm_init(MachineState *ms) 1850 { 1851 MachineClass *mc = MACHINE_GET_CLASS(ms); 1852 static const char upgrade_note[] = 1853 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1854 "(see http://sourceforge.net/projects/kvm).\n"; 1855 struct { 1856 const char *name; 1857 int num; 1858 } num_cpus[] = { 1859 { "SMP", ms->smp.cpus }, 1860 { "hotpluggable", ms->smp.max_cpus }, 1861 { NULL, } 1862 }, *nc = num_cpus; 1863 int soft_vcpus_limit, hard_vcpus_limit; 1864 KVMState *s; 1865 const KVMCapabilityInfo *missing_cap; 1866 int ret; 1867 int type = 0; 1868 const char *kvm_type; 1869 1870 s = KVM_STATE(ms->accelerator); 1871 1872 /* 1873 * On systems where the kernel can support different base page 1874 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1875 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1876 * page size for the system though. 1877 */ 1878 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 1879 1880 s->sigmask_len = 8; 1881 1882 #ifdef KVM_CAP_SET_GUEST_DEBUG 1883 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1884 #endif 1885 QLIST_INIT(&s->kvm_parked_vcpus); 1886 s->vmfd = -1; 1887 s->fd = qemu_open("/dev/kvm", O_RDWR); 1888 if (s->fd == -1) { 1889 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1890 ret = -errno; 1891 goto err; 1892 } 1893 1894 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1895 if (ret < KVM_API_VERSION) { 1896 if (ret >= 0) { 1897 ret = -EINVAL; 1898 } 1899 fprintf(stderr, "kvm version too old\n"); 1900 goto err; 1901 } 1902 1903 if (ret > KVM_API_VERSION) { 1904 ret = -EINVAL; 1905 fprintf(stderr, "kvm version not supported\n"); 1906 goto err; 1907 } 1908 1909 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1910 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1911 1912 /* If unspecified, use the default value */ 1913 if (!s->nr_slots) { 1914 s->nr_slots = 32; 1915 } 1916 1917 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 1918 if (s->nr_as <= 1) { 1919 s->nr_as = 1; 1920 } 1921 s->as = g_new0(struct KVMAs, s->nr_as); 1922 1923 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1924 if (mc->kvm_type) { 1925 type = mc->kvm_type(ms, kvm_type); 1926 } else if (kvm_type) { 1927 ret = -EINVAL; 1928 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1929 goto err; 1930 } 1931 1932 do { 1933 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1934 } while (ret == -EINTR); 1935 1936 if (ret < 0) { 1937 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1938 strerror(-ret)); 1939 1940 #ifdef TARGET_S390X 1941 if (ret == -EINVAL) { 1942 fprintf(stderr, 1943 "Host kernel setup problem detected. Please verify:\n"); 1944 fprintf(stderr, "- for kernels supporting the switch_amode or" 1945 " user_mode parameters, whether\n"); 1946 fprintf(stderr, 1947 " user space is running in primary address space\n"); 1948 fprintf(stderr, 1949 "- for kernels supporting the vm.allocate_pgste sysctl, " 1950 "whether it is enabled\n"); 1951 } 1952 #endif 1953 goto err; 1954 } 1955 1956 s->vmfd = ret; 1957 1958 /* check the vcpu limits */ 1959 soft_vcpus_limit = kvm_recommended_vcpus(s); 1960 hard_vcpus_limit = kvm_max_vcpus(s); 1961 1962 while (nc->name) { 1963 if (nc->num > soft_vcpus_limit) { 1964 warn_report("Number of %s cpus requested (%d) exceeds " 1965 "the recommended cpus supported by KVM (%d)", 1966 nc->name, nc->num, soft_vcpus_limit); 1967 1968 if (nc->num > hard_vcpus_limit) { 1969 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1970 "the maximum cpus supported by KVM (%d)\n", 1971 nc->name, nc->num, hard_vcpus_limit); 1972 exit(1); 1973 } 1974 } 1975 nc++; 1976 } 1977 1978 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1979 if (!missing_cap) { 1980 missing_cap = 1981 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1982 } 1983 if (missing_cap) { 1984 ret = -EINVAL; 1985 fprintf(stderr, "kvm does not support %s\n%s", 1986 missing_cap->name, upgrade_note); 1987 goto err; 1988 } 1989 1990 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1991 s->coalesced_pio = s->coalesced_mmio && 1992 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1993 1994 s->manual_dirty_log_protect = 1995 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 1996 if (s->manual_dirty_log_protect) { 1997 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1); 1998 if (ret) { 1999 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 " 2000 "but failed. Falling back to the legacy mode. "); 2001 s->manual_dirty_log_protect = false; 2002 } 2003 } 2004 2005 #ifdef KVM_CAP_VCPU_EVENTS 2006 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2007 #endif 2008 2009 s->robust_singlestep = 2010 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2011 2012 #ifdef KVM_CAP_DEBUGREGS 2013 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2014 #endif 2015 2016 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2017 2018 #ifdef KVM_CAP_IRQ_ROUTING 2019 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2020 #endif 2021 2022 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2023 2024 s->irq_set_ioctl = KVM_IRQ_LINE; 2025 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2026 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2027 } 2028 2029 kvm_readonly_mem_allowed = 2030 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2031 2032 kvm_eventfds_allowed = 2033 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2034 2035 kvm_irqfds_allowed = 2036 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2037 2038 kvm_resamplefds_allowed = 2039 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2040 2041 kvm_vm_attributes_allowed = 2042 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2043 2044 kvm_ioeventfd_any_length_allowed = 2045 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2046 2047 kvm_state = s; 2048 2049 /* 2050 * if memory encryption object is specified then initialize the memory 2051 * encryption context. 2052 */ 2053 if (ms->memory_encryption) { 2054 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 2055 if (!kvm_state->memcrypt_handle) { 2056 ret = -1; 2057 goto err; 2058 } 2059 2060 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 2061 } 2062 2063 ret = kvm_arch_init(ms, s); 2064 if (ret < 0) { 2065 goto err; 2066 } 2067 2068 if (machine_kernel_irqchip_allowed(ms)) { 2069 kvm_irqchip_create(s); 2070 } 2071 2072 if (kvm_eventfds_allowed) { 2073 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2074 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2075 } 2076 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2077 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2078 2079 kvm_memory_listener_register(s, &s->memory_listener, 2080 &address_space_memory, 0); 2081 memory_listener_register(&kvm_io_listener, 2082 &address_space_io); 2083 memory_listener_register(&kvm_coalesced_pio_listener, 2084 &address_space_io); 2085 2086 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2087 2088 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2089 if (!s->sync_mmu) { 2090 qemu_balloon_inhibit(true); 2091 } 2092 2093 return 0; 2094 2095 err: 2096 assert(ret < 0); 2097 if (s->vmfd >= 0) { 2098 close(s->vmfd); 2099 } 2100 if (s->fd != -1) { 2101 close(s->fd); 2102 } 2103 g_free(s->memory_listener.slots); 2104 2105 return ret; 2106 } 2107 2108 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2109 { 2110 s->sigmask_len = sigmask_len; 2111 } 2112 2113 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2114 int size, uint32_t count) 2115 { 2116 int i; 2117 uint8_t *ptr = data; 2118 2119 for (i = 0; i < count; i++) { 2120 address_space_rw(&address_space_io, port, attrs, 2121 ptr, size, 2122 direction == KVM_EXIT_IO_OUT); 2123 ptr += size; 2124 } 2125 } 2126 2127 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2128 { 2129 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2130 run->internal.suberror); 2131 2132 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2133 int i; 2134 2135 for (i = 0; i < run->internal.ndata; ++i) { 2136 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2137 i, (uint64_t)run->internal.data[i]); 2138 } 2139 } 2140 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2141 fprintf(stderr, "emulation failure\n"); 2142 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2143 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2144 return EXCP_INTERRUPT; 2145 } 2146 } 2147 /* FIXME: Should trigger a qmp message to let management know 2148 * something went wrong. 2149 */ 2150 return -1; 2151 } 2152 2153 void kvm_flush_coalesced_mmio_buffer(void) 2154 { 2155 KVMState *s = kvm_state; 2156 2157 if (s->coalesced_flush_in_progress) { 2158 return; 2159 } 2160 2161 s->coalesced_flush_in_progress = true; 2162 2163 if (s->coalesced_mmio_ring) { 2164 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2165 while (ring->first != ring->last) { 2166 struct kvm_coalesced_mmio *ent; 2167 2168 ent = &ring->coalesced_mmio[ring->first]; 2169 2170 if (ent->pio == 1) { 2171 address_space_rw(&address_space_io, ent->phys_addr, 2172 MEMTXATTRS_UNSPECIFIED, ent->data, 2173 ent->len, true); 2174 } else { 2175 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2176 } 2177 smp_wmb(); 2178 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2179 } 2180 } 2181 2182 s->coalesced_flush_in_progress = false; 2183 } 2184 2185 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2186 { 2187 if (!cpu->vcpu_dirty) { 2188 kvm_arch_get_registers(cpu); 2189 cpu->vcpu_dirty = true; 2190 } 2191 } 2192 2193 void kvm_cpu_synchronize_state(CPUState *cpu) 2194 { 2195 if (!cpu->vcpu_dirty) { 2196 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2197 } 2198 } 2199 2200 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2201 { 2202 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2203 cpu->vcpu_dirty = false; 2204 } 2205 2206 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2207 { 2208 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2209 } 2210 2211 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2212 { 2213 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2214 cpu->vcpu_dirty = false; 2215 } 2216 2217 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2218 { 2219 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2220 } 2221 2222 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2223 { 2224 cpu->vcpu_dirty = true; 2225 } 2226 2227 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2228 { 2229 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2230 } 2231 2232 #ifdef KVM_HAVE_MCE_INJECTION 2233 static __thread void *pending_sigbus_addr; 2234 static __thread int pending_sigbus_code; 2235 static __thread bool have_sigbus_pending; 2236 #endif 2237 2238 static void kvm_cpu_kick(CPUState *cpu) 2239 { 2240 atomic_set(&cpu->kvm_run->immediate_exit, 1); 2241 } 2242 2243 static void kvm_cpu_kick_self(void) 2244 { 2245 if (kvm_immediate_exit) { 2246 kvm_cpu_kick(current_cpu); 2247 } else { 2248 qemu_cpu_kick_self(); 2249 } 2250 } 2251 2252 static void kvm_eat_signals(CPUState *cpu) 2253 { 2254 struct timespec ts = { 0, 0 }; 2255 siginfo_t siginfo; 2256 sigset_t waitset; 2257 sigset_t chkset; 2258 int r; 2259 2260 if (kvm_immediate_exit) { 2261 atomic_set(&cpu->kvm_run->immediate_exit, 0); 2262 /* Write kvm_run->immediate_exit before the cpu->exit_request 2263 * write in kvm_cpu_exec. 2264 */ 2265 smp_wmb(); 2266 return; 2267 } 2268 2269 sigemptyset(&waitset); 2270 sigaddset(&waitset, SIG_IPI); 2271 2272 do { 2273 r = sigtimedwait(&waitset, &siginfo, &ts); 2274 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2275 perror("sigtimedwait"); 2276 exit(1); 2277 } 2278 2279 r = sigpending(&chkset); 2280 if (r == -1) { 2281 perror("sigpending"); 2282 exit(1); 2283 } 2284 } while (sigismember(&chkset, SIG_IPI)); 2285 } 2286 2287 int kvm_cpu_exec(CPUState *cpu) 2288 { 2289 struct kvm_run *run = cpu->kvm_run; 2290 int ret, run_ret; 2291 2292 DPRINTF("kvm_cpu_exec()\n"); 2293 2294 if (kvm_arch_process_async_events(cpu)) { 2295 atomic_set(&cpu->exit_request, 0); 2296 return EXCP_HLT; 2297 } 2298 2299 qemu_mutex_unlock_iothread(); 2300 cpu_exec_start(cpu); 2301 2302 do { 2303 MemTxAttrs attrs; 2304 2305 if (cpu->vcpu_dirty) { 2306 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2307 cpu->vcpu_dirty = false; 2308 } 2309 2310 kvm_arch_pre_run(cpu, run); 2311 if (atomic_read(&cpu->exit_request)) { 2312 DPRINTF("interrupt exit requested\n"); 2313 /* 2314 * KVM requires us to reenter the kernel after IO exits to complete 2315 * instruction emulation. This self-signal will ensure that we 2316 * leave ASAP again. 2317 */ 2318 kvm_cpu_kick_self(); 2319 } 2320 2321 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2322 * Matching barrier in kvm_eat_signals. 2323 */ 2324 smp_rmb(); 2325 2326 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2327 2328 attrs = kvm_arch_post_run(cpu, run); 2329 2330 #ifdef KVM_HAVE_MCE_INJECTION 2331 if (unlikely(have_sigbus_pending)) { 2332 qemu_mutex_lock_iothread(); 2333 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2334 pending_sigbus_addr); 2335 have_sigbus_pending = false; 2336 qemu_mutex_unlock_iothread(); 2337 } 2338 #endif 2339 2340 if (run_ret < 0) { 2341 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2342 DPRINTF("io window exit\n"); 2343 kvm_eat_signals(cpu); 2344 ret = EXCP_INTERRUPT; 2345 break; 2346 } 2347 fprintf(stderr, "error: kvm run failed %s\n", 2348 strerror(-run_ret)); 2349 #ifdef TARGET_PPC 2350 if (run_ret == -EBUSY) { 2351 fprintf(stderr, 2352 "This is probably because your SMT is enabled.\n" 2353 "VCPU can only run on primary threads with all " 2354 "secondary threads offline.\n"); 2355 } 2356 #endif 2357 ret = -1; 2358 break; 2359 } 2360 2361 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2362 switch (run->exit_reason) { 2363 case KVM_EXIT_IO: 2364 DPRINTF("handle_io\n"); 2365 /* Called outside BQL */ 2366 kvm_handle_io(run->io.port, attrs, 2367 (uint8_t *)run + run->io.data_offset, 2368 run->io.direction, 2369 run->io.size, 2370 run->io.count); 2371 ret = 0; 2372 break; 2373 case KVM_EXIT_MMIO: 2374 DPRINTF("handle_mmio\n"); 2375 /* Called outside BQL */ 2376 address_space_rw(&address_space_memory, 2377 run->mmio.phys_addr, attrs, 2378 run->mmio.data, 2379 run->mmio.len, 2380 run->mmio.is_write); 2381 ret = 0; 2382 break; 2383 case KVM_EXIT_IRQ_WINDOW_OPEN: 2384 DPRINTF("irq_window_open\n"); 2385 ret = EXCP_INTERRUPT; 2386 break; 2387 case KVM_EXIT_SHUTDOWN: 2388 DPRINTF("shutdown\n"); 2389 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2390 ret = EXCP_INTERRUPT; 2391 break; 2392 case KVM_EXIT_UNKNOWN: 2393 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2394 (uint64_t)run->hw.hardware_exit_reason); 2395 ret = -1; 2396 break; 2397 case KVM_EXIT_INTERNAL_ERROR: 2398 ret = kvm_handle_internal_error(cpu, run); 2399 break; 2400 case KVM_EXIT_SYSTEM_EVENT: 2401 switch (run->system_event.type) { 2402 case KVM_SYSTEM_EVENT_SHUTDOWN: 2403 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2404 ret = EXCP_INTERRUPT; 2405 break; 2406 case KVM_SYSTEM_EVENT_RESET: 2407 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2408 ret = EXCP_INTERRUPT; 2409 break; 2410 case KVM_SYSTEM_EVENT_CRASH: 2411 kvm_cpu_synchronize_state(cpu); 2412 qemu_mutex_lock_iothread(); 2413 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2414 qemu_mutex_unlock_iothread(); 2415 ret = 0; 2416 break; 2417 default: 2418 DPRINTF("kvm_arch_handle_exit\n"); 2419 ret = kvm_arch_handle_exit(cpu, run); 2420 break; 2421 } 2422 break; 2423 default: 2424 DPRINTF("kvm_arch_handle_exit\n"); 2425 ret = kvm_arch_handle_exit(cpu, run); 2426 break; 2427 } 2428 } while (ret == 0); 2429 2430 cpu_exec_end(cpu); 2431 qemu_mutex_lock_iothread(); 2432 2433 if (ret < 0) { 2434 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2435 vm_stop(RUN_STATE_INTERNAL_ERROR); 2436 } 2437 2438 atomic_set(&cpu->exit_request, 0); 2439 return ret; 2440 } 2441 2442 int kvm_ioctl(KVMState *s, int type, ...) 2443 { 2444 int ret; 2445 void *arg; 2446 va_list ap; 2447 2448 va_start(ap, type); 2449 arg = va_arg(ap, void *); 2450 va_end(ap); 2451 2452 trace_kvm_ioctl(type, arg); 2453 ret = ioctl(s->fd, type, arg); 2454 if (ret == -1) { 2455 ret = -errno; 2456 } 2457 return ret; 2458 } 2459 2460 int kvm_vm_ioctl(KVMState *s, int type, ...) 2461 { 2462 int ret; 2463 void *arg; 2464 va_list ap; 2465 2466 va_start(ap, type); 2467 arg = va_arg(ap, void *); 2468 va_end(ap); 2469 2470 trace_kvm_vm_ioctl(type, arg); 2471 ret = ioctl(s->vmfd, type, arg); 2472 if (ret == -1) { 2473 ret = -errno; 2474 } 2475 return ret; 2476 } 2477 2478 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2479 { 2480 int ret; 2481 void *arg; 2482 va_list ap; 2483 2484 va_start(ap, type); 2485 arg = va_arg(ap, void *); 2486 va_end(ap); 2487 2488 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2489 ret = ioctl(cpu->kvm_fd, type, arg); 2490 if (ret == -1) { 2491 ret = -errno; 2492 } 2493 return ret; 2494 } 2495 2496 int kvm_device_ioctl(int fd, int type, ...) 2497 { 2498 int ret; 2499 void *arg; 2500 va_list ap; 2501 2502 va_start(ap, type); 2503 arg = va_arg(ap, void *); 2504 va_end(ap); 2505 2506 trace_kvm_device_ioctl(fd, type, arg); 2507 ret = ioctl(fd, type, arg); 2508 if (ret == -1) { 2509 ret = -errno; 2510 } 2511 return ret; 2512 } 2513 2514 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2515 { 2516 int ret; 2517 struct kvm_device_attr attribute = { 2518 .group = group, 2519 .attr = attr, 2520 }; 2521 2522 if (!kvm_vm_attributes_allowed) { 2523 return 0; 2524 } 2525 2526 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2527 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2528 return ret ? 0 : 1; 2529 } 2530 2531 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2532 { 2533 struct kvm_device_attr attribute = { 2534 .group = group, 2535 .attr = attr, 2536 .flags = 0, 2537 }; 2538 2539 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2540 } 2541 2542 int kvm_device_access(int fd, int group, uint64_t attr, 2543 void *val, bool write, Error **errp) 2544 { 2545 struct kvm_device_attr kvmattr; 2546 int err; 2547 2548 kvmattr.flags = 0; 2549 kvmattr.group = group; 2550 kvmattr.attr = attr; 2551 kvmattr.addr = (uintptr_t)val; 2552 2553 err = kvm_device_ioctl(fd, 2554 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2555 &kvmattr); 2556 if (err < 0) { 2557 error_setg_errno(errp, -err, 2558 "KVM_%s_DEVICE_ATTR failed: Group %d " 2559 "attr 0x%016" PRIx64, 2560 write ? "SET" : "GET", group, attr); 2561 } 2562 return err; 2563 } 2564 2565 bool kvm_has_sync_mmu(void) 2566 { 2567 return kvm_state->sync_mmu; 2568 } 2569 2570 int kvm_has_vcpu_events(void) 2571 { 2572 return kvm_state->vcpu_events; 2573 } 2574 2575 int kvm_has_robust_singlestep(void) 2576 { 2577 return kvm_state->robust_singlestep; 2578 } 2579 2580 int kvm_has_debugregs(void) 2581 { 2582 return kvm_state->debugregs; 2583 } 2584 2585 int kvm_max_nested_state_length(void) 2586 { 2587 return kvm_state->max_nested_state_len; 2588 } 2589 2590 int kvm_has_many_ioeventfds(void) 2591 { 2592 if (!kvm_enabled()) { 2593 return 0; 2594 } 2595 return kvm_state->many_ioeventfds; 2596 } 2597 2598 int kvm_has_gsi_routing(void) 2599 { 2600 #ifdef KVM_CAP_IRQ_ROUTING 2601 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2602 #else 2603 return false; 2604 #endif 2605 } 2606 2607 int kvm_has_intx_set_mask(void) 2608 { 2609 return kvm_state->intx_set_mask; 2610 } 2611 2612 bool kvm_arm_supports_user_irq(void) 2613 { 2614 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2615 } 2616 2617 #ifdef KVM_CAP_SET_GUEST_DEBUG 2618 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2619 target_ulong pc) 2620 { 2621 struct kvm_sw_breakpoint *bp; 2622 2623 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2624 if (bp->pc == pc) { 2625 return bp; 2626 } 2627 } 2628 return NULL; 2629 } 2630 2631 int kvm_sw_breakpoints_active(CPUState *cpu) 2632 { 2633 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2634 } 2635 2636 struct kvm_set_guest_debug_data { 2637 struct kvm_guest_debug dbg; 2638 int err; 2639 }; 2640 2641 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2642 { 2643 struct kvm_set_guest_debug_data *dbg_data = 2644 (struct kvm_set_guest_debug_data *) data.host_ptr; 2645 2646 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2647 &dbg_data->dbg); 2648 } 2649 2650 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2651 { 2652 struct kvm_set_guest_debug_data data; 2653 2654 data.dbg.control = reinject_trap; 2655 2656 if (cpu->singlestep_enabled) { 2657 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2658 } 2659 kvm_arch_update_guest_debug(cpu, &data.dbg); 2660 2661 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2662 RUN_ON_CPU_HOST_PTR(&data)); 2663 return data.err; 2664 } 2665 2666 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2667 target_ulong len, int type) 2668 { 2669 struct kvm_sw_breakpoint *bp; 2670 int err; 2671 2672 if (type == GDB_BREAKPOINT_SW) { 2673 bp = kvm_find_sw_breakpoint(cpu, addr); 2674 if (bp) { 2675 bp->use_count++; 2676 return 0; 2677 } 2678 2679 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2680 bp->pc = addr; 2681 bp->use_count = 1; 2682 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2683 if (err) { 2684 g_free(bp); 2685 return err; 2686 } 2687 2688 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2689 } else { 2690 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2691 if (err) { 2692 return err; 2693 } 2694 } 2695 2696 CPU_FOREACH(cpu) { 2697 err = kvm_update_guest_debug(cpu, 0); 2698 if (err) { 2699 return err; 2700 } 2701 } 2702 return 0; 2703 } 2704 2705 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2706 target_ulong len, int type) 2707 { 2708 struct kvm_sw_breakpoint *bp; 2709 int err; 2710 2711 if (type == GDB_BREAKPOINT_SW) { 2712 bp = kvm_find_sw_breakpoint(cpu, addr); 2713 if (!bp) { 2714 return -ENOENT; 2715 } 2716 2717 if (bp->use_count > 1) { 2718 bp->use_count--; 2719 return 0; 2720 } 2721 2722 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2723 if (err) { 2724 return err; 2725 } 2726 2727 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2728 g_free(bp); 2729 } else { 2730 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2731 if (err) { 2732 return err; 2733 } 2734 } 2735 2736 CPU_FOREACH(cpu) { 2737 err = kvm_update_guest_debug(cpu, 0); 2738 if (err) { 2739 return err; 2740 } 2741 } 2742 return 0; 2743 } 2744 2745 void kvm_remove_all_breakpoints(CPUState *cpu) 2746 { 2747 struct kvm_sw_breakpoint *bp, *next; 2748 KVMState *s = cpu->kvm_state; 2749 CPUState *tmpcpu; 2750 2751 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2752 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2753 /* Try harder to find a CPU that currently sees the breakpoint. */ 2754 CPU_FOREACH(tmpcpu) { 2755 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2756 break; 2757 } 2758 } 2759 } 2760 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2761 g_free(bp); 2762 } 2763 kvm_arch_remove_all_hw_breakpoints(); 2764 2765 CPU_FOREACH(cpu) { 2766 kvm_update_guest_debug(cpu, 0); 2767 } 2768 } 2769 2770 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2771 2772 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2773 { 2774 return -EINVAL; 2775 } 2776 2777 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2778 target_ulong len, int type) 2779 { 2780 return -EINVAL; 2781 } 2782 2783 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2784 target_ulong len, int type) 2785 { 2786 return -EINVAL; 2787 } 2788 2789 void kvm_remove_all_breakpoints(CPUState *cpu) 2790 { 2791 } 2792 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2793 2794 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2795 { 2796 KVMState *s = kvm_state; 2797 struct kvm_signal_mask *sigmask; 2798 int r; 2799 2800 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2801 2802 sigmask->len = s->sigmask_len; 2803 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2804 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2805 g_free(sigmask); 2806 2807 return r; 2808 } 2809 2810 static void kvm_ipi_signal(int sig) 2811 { 2812 if (current_cpu) { 2813 assert(kvm_immediate_exit); 2814 kvm_cpu_kick(current_cpu); 2815 } 2816 } 2817 2818 void kvm_init_cpu_signals(CPUState *cpu) 2819 { 2820 int r; 2821 sigset_t set; 2822 struct sigaction sigact; 2823 2824 memset(&sigact, 0, sizeof(sigact)); 2825 sigact.sa_handler = kvm_ipi_signal; 2826 sigaction(SIG_IPI, &sigact, NULL); 2827 2828 pthread_sigmask(SIG_BLOCK, NULL, &set); 2829 #if defined KVM_HAVE_MCE_INJECTION 2830 sigdelset(&set, SIGBUS); 2831 pthread_sigmask(SIG_SETMASK, &set, NULL); 2832 #endif 2833 sigdelset(&set, SIG_IPI); 2834 if (kvm_immediate_exit) { 2835 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2836 } else { 2837 r = kvm_set_signal_mask(cpu, &set); 2838 } 2839 if (r) { 2840 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2841 exit(1); 2842 } 2843 } 2844 2845 /* Called asynchronously in VCPU thread. */ 2846 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2847 { 2848 #ifdef KVM_HAVE_MCE_INJECTION 2849 if (have_sigbus_pending) { 2850 return 1; 2851 } 2852 have_sigbus_pending = true; 2853 pending_sigbus_addr = addr; 2854 pending_sigbus_code = code; 2855 atomic_set(&cpu->exit_request, 1); 2856 return 0; 2857 #else 2858 return 1; 2859 #endif 2860 } 2861 2862 /* Called synchronously (via signalfd) in main thread. */ 2863 int kvm_on_sigbus(int code, void *addr) 2864 { 2865 #ifdef KVM_HAVE_MCE_INJECTION 2866 /* Action required MCE kills the process if SIGBUS is blocked. Because 2867 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2868 * we can only get action optional here. 2869 */ 2870 assert(code != BUS_MCEERR_AR); 2871 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2872 return 0; 2873 #else 2874 return 1; 2875 #endif 2876 } 2877 2878 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2879 { 2880 int ret; 2881 struct kvm_create_device create_dev; 2882 2883 create_dev.type = type; 2884 create_dev.fd = -1; 2885 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2886 2887 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2888 return -ENOTSUP; 2889 } 2890 2891 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2892 if (ret) { 2893 return ret; 2894 } 2895 2896 return test ? 0 : create_dev.fd; 2897 } 2898 2899 bool kvm_device_supported(int vmfd, uint64_t type) 2900 { 2901 struct kvm_create_device create_dev = { 2902 .type = type, 2903 .fd = -1, 2904 .flags = KVM_CREATE_DEVICE_TEST, 2905 }; 2906 2907 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2908 return false; 2909 } 2910 2911 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2912 } 2913 2914 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2915 { 2916 struct kvm_one_reg reg; 2917 int r; 2918 2919 reg.id = id; 2920 reg.addr = (uintptr_t) source; 2921 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2922 if (r) { 2923 trace_kvm_failed_reg_set(id, strerror(-r)); 2924 } 2925 return r; 2926 } 2927 2928 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2929 { 2930 struct kvm_one_reg reg; 2931 int r; 2932 2933 reg.id = id; 2934 reg.addr = (uintptr_t) target; 2935 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2936 if (r) { 2937 trace_kvm_failed_reg_get(id, strerror(-r)); 2938 } 2939 return r; 2940 } 2941 2942 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 2943 hwaddr start_addr, hwaddr size) 2944 { 2945 KVMState *kvm = KVM_STATE(ms->accelerator); 2946 int i; 2947 2948 for (i = 0; i < kvm->nr_as; ++i) { 2949 if (kvm->as[i].as == as && kvm->as[i].ml) { 2950 size = MIN(kvm_max_slot_size, size); 2951 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 2952 start_addr, size); 2953 } 2954 } 2955 2956 return false; 2957 } 2958 2959 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 2960 const char *name, void *opaque, 2961 Error **errp) 2962 { 2963 KVMState *s = KVM_STATE(obj); 2964 int64_t value = s->kvm_shadow_mem; 2965 2966 visit_type_int(v, name, &value, errp); 2967 } 2968 2969 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 2970 const char *name, void *opaque, 2971 Error **errp) 2972 { 2973 KVMState *s = KVM_STATE(obj); 2974 Error *error = NULL; 2975 int64_t value; 2976 2977 visit_type_int(v, name, &value, &error); 2978 if (error) { 2979 error_propagate(errp, error); 2980 return; 2981 } 2982 2983 s->kvm_shadow_mem = value; 2984 } 2985 2986 bool kvm_kernel_irqchip_allowed(void) 2987 { 2988 return machine_kernel_irqchip_allowed(current_machine); 2989 } 2990 2991 bool kvm_kernel_irqchip_required(void) 2992 { 2993 return machine_kernel_irqchip_required(current_machine); 2994 } 2995 2996 bool kvm_kernel_irqchip_split(void) 2997 { 2998 return machine_kernel_irqchip_split(current_machine); 2999 } 3000 3001 static void kvm_accel_instance_init(Object *obj) 3002 { 3003 KVMState *s = KVM_STATE(obj); 3004 3005 s->kvm_shadow_mem = -1; 3006 } 3007 3008 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3009 { 3010 AccelClass *ac = ACCEL_CLASS(oc); 3011 ac->name = "KVM"; 3012 ac->init_machine = kvm_init; 3013 ac->has_memory = kvm_accel_has_memory; 3014 ac->allowed = &kvm_allowed; 3015 3016 object_class_property_add(oc, "kvm-shadow-mem", "int", 3017 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3018 NULL, NULL, &error_abort); 3019 object_class_property_set_description(oc, "kvm-shadow-mem", 3020 "KVM shadow MMU size", &error_abort); 3021 } 3022 3023 static const TypeInfo kvm_accel_type = { 3024 .name = TYPE_KVM_ACCEL, 3025 .parent = TYPE_ACCEL, 3026 .instance_init = kvm_accel_instance_init, 3027 .class_init = kvm_accel_class_init, 3028 .instance_size = sizeof(KVMState), 3029 }; 3030 3031 static void kvm_type_init(void) 3032 { 3033 type_register_static(&kvm_accel_type); 3034 } 3035 3036 type_init(kvm_type_init); 3037