1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "sysemu/sev.h" 43 #include "qapi/visitor.h" 44 #include "qapi/qapi-types-common.h" 45 #include "qapi/qapi-visit-common.h" 46 #include "sysemu/reset.h" 47 #include "qemu/guest-random.h" 48 #include "sysemu/hw_accel.h" 49 #include "kvm-cpus.h" 50 51 #include "hw/boards.h" 52 53 /* This check must be after config-host.h is included */ 54 #ifdef CONFIG_EVENTFD 55 #include <sys/eventfd.h> 56 #endif 57 58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 59 * need to use the real host PAGE_SIZE, as that's what KVM will use. 60 */ 61 #ifdef PAGE_SIZE 62 #undef PAGE_SIZE 63 #endif 64 #define PAGE_SIZE qemu_real_host_page_size 65 66 //#define DEBUG_KVM 67 68 #ifdef DEBUG_KVM 69 #define DPRINTF(fmt, ...) \ 70 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 71 #else 72 #define DPRINTF(fmt, ...) \ 73 do { } while (0) 74 #endif 75 76 #define KVM_MSI_HASHTAB_SIZE 256 77 78 struct KVMParkedVcpu { 79 unsigned long vcpu_id; 80 int kvm_fd; 81 QLIST_ENTRY(KVMParkedVcpu) node; 82 }; 83 84 struct KVMState 85 { 86 AccelState parent_obj; 87 88 int nr_slots; 89 int fd; 90 int vmfd; 91 int coalesced_mmio; 92 int coalesced_pio; 93 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 94 bool coalesced_flush_in_progress; 95 int vcpu_events; 96 int robust_singlestep; 97 int debugregs; 98 #ifdef KVM_CAP_SET_GUEST_DEBUG 99 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 100 #endif 101 int max_nested_state_len; 102 int many_ioeventfds; 103 int intx_set_mask; 104 int kvm_shadow_mem; 105 bool kernel_irqchip_allowed; 106 bool kernel_irqchip_required; 107 OnOffAuto kernel_irqchip_split; 108 bool sync_mmu; 109 uint64_t manual_dirty_log_protect; 110 /* The man page (and posix) say ioctl numbers are signed int, but 111 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 112 * unsigned, and treating them as signed here can break things */ 113 unsigned irq_set_ioctl; 114 unsigned int sigmask_len; 115 GHashTable *gsimap; 116 #ifdef KVM_CAP_IRQ_ROUTING 117 struct kvm_irq_routing *irq_routes; 118 int nr_allocated_irq_routes; 119 unsigned long *used_gsi_bitmap; 120 unsigned int gsi_count; 121 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 122 #endif 123 KVMMemoryListener memory_listener; 124 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 125 126 /* For "info mtree -f" to tell if an MR is registered in KVM */ 127 int nr_as; 128 struct KVMAs { 129 KVMMemoryListener *ml; 130 AddressSpace *as; 131 } *as; 132 }; 133 134 KVMState *kvm_state; 135 bool kvm_kernel_irqchip; 136 bool kvm_split_irqchip; 137 bool kvm_async_interrupts_allowed; 138 bool kvm_halt_in_kernel_allowed; 139 bool kvm_eventfds_allowed; 140 bool kvm_irqfds_allowed; 141 bool kvm_resamplefds_allowed; 142 bool kvm_msi_via_irqfd_allowed; 143 bool kvm_gsi_routing_allowed; 144 bool kvm_gsi_direct_mapping; 145 bool kvm_allowed; 146 bool kvm_readonly_mem_allowed; 147 bool kvm_vm_attributes_allowed; 148 bool kvm_direct_msi_allowed; 149 bool kvm_ioeventfd_any_length_allowed; 150 bool kvm_msi_use_devid; 151 static bool kvm_immediate_exit; 152 static hwaddr kvm_max_slot_size = ~0; 153 154 static const KVMCapabilityInfo kvm_required_capabilites[] = { 155 KVM_CAP_INFO(USER_MEMORY), 156 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 157 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 158 KVM_CAP_LAST_INFO 159 }; 160 161 static NotifierList kvm_irqchip_change_notifiers = 162 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 163 164 struct KVMResampleFd { 165 int gsi; 166 EventNotifier *resample_event; 167 QLIST_ENTRY(KVMResampleFd) node; 168 }; 169 typedef struct KVMResampleFd KVMResampleFd; 170 171 /* 172 * Only used with split irqchip where we need to do the resample fd 173 * kick for the kernel from userspace. 174 */ 175 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 176 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 177 178 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 179 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 180 181 static inline void kvm_resample_fd_remove(int gsi) 182 { 183 KVMResampleFd *rfd; 184 185 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 186 if (rfd->gsi == gsi) { 187 QLIST_REMOVE(rfd, node); 188 g_free(rfd); 189 break; 190 } 191 } 192 } 193 194 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 195 { 196 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 197 198 rfd->gsi = gsi; 199 rfd->resample_event = event; 200 201 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 202 } 203 204 void kvm_resample_fd_notify(int gsi) 205 { 206 KVMResampleFd *rfd; 207 208 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 209 if (rfd->gsi == gsi) { 210 event_notifier_set(rfd->resample_event); 211 trace_kvm_resample_fd_notify(gsi); 212 return; 213 } 214 } 215 } 216 217 int kvm_get_max_memslots(void) 218 { 219 KVMState *s = KVM_STATE(current_accel()); 220 221 return s->nr_slots; 222 } 223 224 /* Called with KVMMemoryListener.slots_lock held */ 225 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 226 { 227 KVMState *s = kvm_state; 228 int i; 229 230 for (i = 0; i < s->nr_slots; i++) { 231 if (kml->slots[i].memory_size == 0) { 232 return &kml->slots[i]; 233 } 234 } 235 236 return NULL; 237 } 238 239 bool kvm_has_free_slot(MachineState *ms) 240 { 241 KVMState *s = KVM_STATE(ms->accelerator); 242 bool result; 243 KVMMemoryListener *kml = &s->memory_listener; 244 245 kvm_slots_lock(kml); 246 result = !!kvm_get_free_slot(kml); 247 kvm_slots_unlock(kml); 248 249 return result; 250 } 251 252 /* Called with KVMMemoryListener.slots_lock held */ 253 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 254 { 255 KVMSlot *slot = kvm_get_free_slot(kml); 256 257 if (slot) { 258 return slot; 259 } 260 261 fprintf(stderr, "%s: no free slot available\n", __func__); 262 abort(); 263 } 264 265 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 266 hwaddr start_addr, 267 hwaddr size) 268 { 269 KVMState *s = kvm_state; 270 int i; 271 272 for (i = 0; i < s->nr_slots; i++) { 273 KVMSlot *mem = &kml->slots[i]; 274 275 if (start_addr == mem->start_addr && size == mem->memory_size) { 276 return mem; 277 } 278 } 279 280 return NULL; 281 } 282 283 /* 284 * Calculate and align the start address and the size of the section. 285 * Return the size. If the size is 0, the aligned section is empty. 286 */ 287 static hwaddr kvm_align_section(MemoryRegionSection *section, 288 hwaddr *start) 289 { 290 hwaddr size = int128_get64(section->size); 291 hwaddr delta, aligned; 292 293 /* kvm works in page size chunks, but the function may be called 294 with sub-page size and unaligned start address. Pad the start 295 address to next and truncate size to previous page boundary. */ 296 aligned = ROUND_UP(section->offset_within_address_space, 297 qemu_real_host_page_size); 298 delta = aligned - section->offset_within_address_space; 299 *start = aligned; 300 if (delta > size) { 301 return 0; 302 } 303 304 return (size - delta) & qemu_real_host_page_mask; 305 } 306 307 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 308 hwaddr *phys_addr) 309 { 310 KVMMemoryListener *kml = &s->memory_listener; 311 int i, ret = 0; 312 313 kvm_slots_lock(kml); 314 for (i = 0; i < s->nr_slots; i++) { 315 KVMSlot *mem = &kml->slots[i]; 316 317 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 318 *phys_addr = mem->start_addr + (ram - mem->ram); 319 ret = 1; 320 break; 321 } 322 } 323 kvm_slots_unlock(kml); 324 325 return ret; 326 } 327 328 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 329 { 330 KVMState *s = kvm_state; 331 struct kvm_userspace_memory_region mem; 332 int ret; 333 334 mem.slot = slot->slot | (kml->as_id << 16); 335 mem.guest_phys_addr = slot->start_addr; 336 mem.userspace_addr = (unsigned long)slot->ram; 337 mem.flags = slot->flags; 338 339 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 340 /* Set the slot size to 0 before setting the slot to the desired 341 * value. This is needed based on KVM commit 75d61fbc. */ 342 mem.memory_size = 0; 343 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 344 if (ret < 0) { 345 goto err; 346 } 347 } 348 mem.memory_size = slot->memory_size; 349 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 350 slot->old_flags = mem.flags; 351 err: 352 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 353 mem.memory_size, mem.userspace_addr, ret); 354 if (ret < 0) { 355 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 356 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 357 __func__, mem.slot, slot->start_addr, 358 (uint64_t)mem.memory_size, strerror(errno)); 359 } 360 return ret; 361 } 362 363 static int do_kvm_destroy_vcpu(CPUState *cpu) 364 { 365 KVMState *s = kvm_state; 366 long mmap_size; 367 struct KVMParkedVcpu *vcpu = NULL; 368 int ret = 0; 369 370 DPRINTF("kvm_destroy_vcpu\n"); 371 372 ret = kvm_arch_destroy_vcpu(cpu); 373 if (ret < 0) { 374 goto err; 375 } 376 377 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 378 if (mmap_size < 0) { 379 ret = mmap_size; 380 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 381 goto err; 382 } 383 384 ret = munmap(cpu->kvm_run, mmap_size); 385 if (ret < 0) { 386 goto err; 387 } 388 389 vcpu = g_malloc0(sizeof(*vcpu)); 390 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 391 vcpu->kvm_fd = cpu->kvm_fd; 392 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 393 err: 394 return ret; 395 } 396 397 void kvm_destroy_vcpu(CPUState *cpu) 398 { 399 if (do_kvm_destroy_vcpu(cpu) < 0) { 400 error_report("kvm_destroy_vcpu failed"); 401 exit(EXIT_FAILURE); 402 } 403 } 404 405 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 406 { 407 struct KVMParkedVcpu *cpu; 408 409 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 410 if (cpu->vcpu_id == vcpu_id) { 411 int kvm_fd; 412 413 QLIST_REMOVE(cpu, node); 414 kvm_fd = cpu->kvm_fd; 415 g_free(cpu); 416 return kvm_fd; 417 } 418 } 419 420 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 421 } 422 423 int kvm_init_vcpu(CPUState *cpu, Error **errp) 424 { 425 KVMState *s = kvm_state; 426 long mmap_size; 427 int ret; 428 429 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 430 431 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 432 if (ret < 0) { 433 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 434 kvm_arch_vcpu_id(cpu)); 435 goto err; 436 } 437 438 cpu->kvm_fd = ret; 439 cpu->kvm_state = s; 440 cpu->vcpu_dirty = true; 441 442 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 443 if (mmap_size < 0) { 444 ret = mmap_size; 445 error_setg_errno(errp, -mmap_size, 446 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 447 goto err; 448 } 449 450 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 451 cpu->kvm_fd, 0); 452 if (cpu->kvm_run == MAP_FAILED) { 453 ret = -errno; 454 error_setg_errno(errp, ret, 455 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 456 kvm_arch_vcpu_id(cpu)); 457 goto err; 458 } 459 460 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 461 s->coalesced_mmio_ring = 462 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 463 } 464 465 ret = kvm_arch_init_vcpu(cpu); 466 if (ret < 0) { 467 error_setg_errno(errp, -ret, 468 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 469 kvm_arch_vcpu_id(cpu)); 470 } 471 err: 472 return ret; 473 } 474 475 /* 476 * dirty pages logging control 477 */ 478 479 static int kvm_mem_flags(MemoryRegion *mr) 480 { 481 bool readonly = mr->readonly || memory_region_is_romd(mr); 482 int flags = 0; 483 484 if (memory_region_get_dirty_log_mask(mr) != 0) { 485 flags |= KVM_MEM_LOG_DIRTY_PAGES; 486 } 487 if (readonly && kvm_readonly_mem_allowed) { 488 flags |= KVM_MEM_READONLY; 489 } 490 return flags; 491 } 492 493 /* Called with KVMMemoryListener.slots_lock held */ 494 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 495 MemoryRegion *mr) 496 { 497 mem->flags = kvm_mem_flags(mr); 498 499 /* If nothing changed effectively, no need to issue ioctl */ 500 if (mem->flags == mem->old_flags) { 501 return 0; 502 } 503 504 return kvm_set_user_memory_region(kml, mem, false); 505 } 506 507 static int kvm_section_update_flags(KVMMemoryListener *kml, 508 MemoryRegionSection *section) 509 { 510 hwaddr start_addr, size, slot_size; 511 KVMSlot *mem; 512 int ret = 0; 513 514 size = kvm_align_section(section, &start_addr); 515 if (!size) { 516 return 0; 517 } 518 519 kvm_slots_lock(kml); 520 521 while (size && !ret) { 522 slot_size = MIN(kvm_max_slot_size, size); 523 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 524 if (!mem) { 525 /* We don't have a slot if we want to trap every access. */ 526 goto out; 527 } 528 529 ret = kvm_slot_update_flags(kml, mem, section->mr); 530 start_addr += slot_size; 531 size -= slot_size; 532 } 533 534 out: 535 kvm_slots_unlock(kml); 536 return ret; 537 } 538 539 static void kvm_log_start(MemoryListener *listener, 540 MemoryRegionSection *section, 541 int old, int new) 542 { 543 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 544 int r; 545 546 if (old != 0) { 547 return; 548 } 549 550 r = kvm_section_update_flags(kml, section); 551 if (r < 0) { 552 abort(); 553 } 554 } 555 556 static void kvm_log_stop(MemoryListener *listener, 557 MemoryRegionSection *section, 558 int old, int new) 559 { 560 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 561 int r; 562 563 if (new != 0) { 564 return; 565 } 566 567 r = kvm_section_update_flags(kml, section); 568 if (r < 0) { 569 abort(); 570 } 571 } 572 573 /* get kvm's dirty pages bitmap and update qemu's */ 574 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 575 unsigned long *bitmap) 576 { 577 ram_addr_t start = section->offset_within_region + 578 memory_region_get_ram_addr(section->mr); 579 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 580 581 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 582 return 0; 583 } 584 585 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 586 587 /* Allocate the dirty bitmap for a slot */ 588 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 589 { 590 /* 591 * XXX bad kernel interface alert 592 * For dirty bitmap, kernel allocates array of size aligned to 593 * bits-per-long. But for case when the kernel is 64bits and 594 * the userspace is 32bits, userspace can't align to the same 595 * bits-per-long, since sizeof(long) is different between kernel 596 * and user space. This way, userspace will provide buffer which 597 * may be 4 bytes less than the kernel will use, resulting in 598 * userspace memory corruption (which is not detectable by valgrind 599 * too, in most cases). 600 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 601 * a hope that sizeof(long) won't become >8 any time soon. 602 */ 603 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 604 /*HOST_LONG_BITS*/ 64) / 8; 605 mem->dirty_bmap = g_malloc0(bitmap_size); 606 } 607 608 /** 609 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 610 * 611 * This function will first try to fetch dirty bitmap from the kernel, 612 * and then updates qemu's dirty bitmap. 613 * 614 * NOTE: caller must be with kml->slots_lock held. 615 * 616 * @kml: the KVM memory listener object 617 * @section: the memory section to sync the dirty bitmap with 618 */ 619 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 620 MemoryRegionSection *section) 621 { 622 KVMState *s = kvm_state; 623 struct kvm_dirty_log d = {}; 624 KVMSlot *mem; 625 hwaddr start_addr, size; 626 hwaddr slot_size, slot_offset = 0; 627 int ret = 0; 628 629 size = kvm_align_section(section, &start_addr); 630 while (size) { 631 MemoryRegionSection subsection = *section; 632 633 slot_size = MIN(kvm_max_slot_size, size); 634 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 635 if (!mem) { 636 /* We don't have a slot if we want to trap every access. */ 637 goto out; 638 } 639 640 if (!mem->dirty_bmap) { 641 /* Allocate on the first log_sync, once and for all */ 642 kvm_memslot_init_dirty_bitmap(mem); 643 } 644 645 d.dirty_bitmap = mem->dirty_bmap; 646 d.slot = mem->slot | (kml->as_id << 16); 647 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 648 if (ret == -ENOENT) { 649 /* kernel does not have dirty bitmap in this slot */ 650 ret = 0; 651 } else if (ret < 0) { 652 error_report("ioctl KVM_GET_DIRTY_LOG failed: %d", errno); 653 goto out; 654 } else { 655 subsection.offset_within_region += slot_offset; 656 subsection.size = int128_make64(slot_size); 657 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 658 } 659 660 slot_offset += slot_size; 661 start_addr += slot_size; 662 size -= slot_size; 663 } 664 out: 665 return ret; 666 } 667 668 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 669 #define KVM_CLEAR_LOG_SHIFT 6 670 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 671 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 672 673 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 674 uint64_t size) 675 { 676 KVMState *s = kvm_state; 677 uint64_t end, bmap_start, start_delta, bmap_npages; 678 struct kvm_clear_dirty_log d; 679 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 680 int ret; 681 682 /* 683 * We need to extend either the start or the size or both to 684 * satisfy the KVM interface requirement. Firstly, do the start 685 * page alignment on 64 host pages 686 */ 687 bmap_start = start & KVM_CLEAR_LOG_MASK; 688 start_delta = start - bmap_start; 689 bmap_start /= psize; 690 691 /* 692 * The kernel interface has restriction on the size too, that either: 693 * 694 * (1) the size is 64 host pages aligned (just like the start), or 695 * (2) the size fills up until the end of the KVM memslot. 696 */ 697 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 698 << KVM_CLEAR_LOG_SHIFT; 699 end = mem->memory_size / psize; 700 if (bmap_npages > end - bmap_start) { 701 bmap_npages = end - bmap_start; 702 } 703 start_delta /= psize; 704 705 /* 706 * Prepare the bitmap to clear dirty bits. Here we must guarantee 707 * that we won't clear any unknown dirty bits otherwise we might 708 * accidentally clear some set bits which are not yet synced from 709 * the kernel into QEMU's bitmap, then we'll lose track of the 710 * guest modifications upon those pages (which can directly lead 711 * to guest data loss or panic after migration). 712 * 713 * Layout of the KVMSlot.dirty_bmap: 714 * 715 * |<-------- bmap_npages -----------..>| 716 * [1] 717 * start_delta size 718 * |----------------|-------------|------------------|------------| 719 * ^ ^ ^ ^ 720 * | | | | 721 * start bmap_start (start) end 722 * of memslot of memslot 723 * 724 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 725 */ 726 727 assert(bmap_start % BITS_PER_LONG == 0); 728 /* We should never do log_clear before log_sync */ 729 assert(mem->dirty_bmap); 730 if (start_delta || bmap_npages - size / psize) { 731 /* Slow path - we need to manipulate a temp bitmap */ 732 bmap_clear = bitmap_new(bmap_npages); 733 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 734 bmap_start, start_delta + size / psize); 735 /* 736 * We need to fill the holes at start because that was not 737 * specified by the caller and we extended the bitmap only for 738 * 64 pages alignment 739 */ 740 bitmap_clear(bmap_clear, 0, start_delta); 741 d.dirty_bitmap = bmap_clear; 742 } else { 743 /* 744 * Fast path - both start and size align well with BITS_PER_LONG 745 * (or the end of memory slot) 746 */ 747 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 748 } 749 750 d.first_page = bmap_start; 751 /* It should never overflow. If it happens, say something */ 752 assert(bmap_npages <= UINT32_MAX); 753 d.num_pages = bmap_npages; 754 d.slot = mem->slot | (as_id << 16); 755 756 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 757 if (ret < 0 && ret != -ENOENT) { 758 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 759 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 760 __func__, d.slot, (uint64_t)d.first_page, 761 (uint32_t)d.num_pages, ret); 762 } else { 763 ret = 0; 764 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 765 } 766 767 /* 768 * After we have updated the remote dirty bitmap, we update the 769 * cached bitmap as well for the memslot, then if another user 770 * clears the same region we know we shouldn't clear it again on 771 * the remote otherwise it's data loss as well. 772 */ 773 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 774 size / psize); 775 /* This handles the NULL case well */ 776 g_free(bmap_clear); 777 return ret; 778 } 779 780 781 /** 782 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 783 * 784 * NOTE: this will be a no-op if we haven't enabled manual dirty log 785 * protection in the host kernel because in that case this operation 786 * will be done within log_sync(). 787 * 788 * @kml: the kvm memory listener 789 * @section: the memory range to clear dirty bitmap 790 */ 791 static int kvm_physical_log_clear(KVMMemoryListener *kml, 792 MemoryRegionSection *section) 793 { 794 KVMState *s = kvm_state; 795 uint64_t start, size, offset, count; 796 KVMSlot *mem; 797 int ret = 0, i; 798 799 if (!s->manual_dirty_log_protect) { 800 /* No need to do explicit clear */ 801 return ret; 802 } 803 804 start = section->offset_within_address_space; 805 size = int128_get64(section->size); 806 807 if (!size) { 808 /* Nothing more we can do... */ 809 return ret; 810 } 811 812 kvm_slots_lock(kml); 813 814 for (i = 0; i < s->nr_slots; i++) { 815 mem = &kml->slots[i]; 816 /* Discard slots that are empty or do not overlap the section */ 817 if (!mem->memory_size || 818 mem->start_addr > start + size - 1 || 819 start > mem->start_addr + mem->memory_size - 1) { 820 continue; 821 } 822 823 if (start >= mem->start_addr) { 824 /* The slot starts before section or is aligned to it. */ 825 offset = start - mem->start_addr; 826 count = MIN(mem->memory_size - offset, size); 827 } else { 828 /* The slot starts after section. */ 829 offset = 0; 830 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 831 } 832 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 833 if (ret < 0) { 834 break; 835 } 836 } 837 838 kvm_slots_unlock(kml); 839 840 return ret; 841 } 842 843 static void kvm_coalesce_mmio_region(MemoryListener *listener, 844 MemoryRegionSection *secion, 845 hwaddr start, hwaddr size) 846 { 847 KVMState *s = kvm_state; 848 849 if (s->coalesced_mmio) { 850 struct kvm_coalesced_mmio_zone zone; 851 852 zone.addr = start; 853 zone.size = size; 854 zone.pad = 0; 855 856 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 857 } 858 } 859 860 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 861 MemoryRegionSection *secion, 862 hwaddr start, hwaddr size) 863 { 864 KVMState *s = kvm_state; 865 866 if (s->coalesced_mmio) { 867 struct kvm_coalesced_mmio_zone zone; 868 869 zone.addr = start; 870 zone.size = size; 871 zone.pad = 0; 872 873 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 874 } 875 } 876 877 static void kvm_coalesce_pio_add(MemoryListener *listener, 878 MemoryRegionSection *section, 879 hwaddr start, hwaddr size) 880 { 881 KVMState *s = kvm_state; 882 883 if (s->coalesced_pio) { 884 struct kvm_coalesced_mmio_zone zone; 885 886 zone.addr = start; 887 zone.size = size; 888 zone.pio = 1; 889 890 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 891 } 892 } 893 894 static void kvm_coalesce_pio_del(MemoryListener *listener, 895 MemoryRegionSection *section, 896 hwaddr start, hwaddr size) 897 { 898 KVMState *s = kvm_state; 899 900 if (s->coalesced_pio) { 901 struct kvm_coalesced_mmio_zone zone; 902 903 zone.addr = start; 904 zone.size = size; 905 zone.pio = 1; 906 907 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 908 } 909 } 910 911 static MemoryListener kvm_coalesced_pio_listener = { 912 .coalesced_io_add = kvm_coalesce_pio_add, 913 .coalesced_io_del = kvm_coalesce_pio_del, 914 }; 915 916 int kvm_check_extension(KVMState *s, unsigned int extension) 917 { 918 int ret; 919 920 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 921 if (ret < 0) { 922 ret = 0; 923 } 924 925 return ret; 926 } 927 928 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 929 { 930 int ret; 931 932 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 933 if (ret < 0) { 934 /* VM wide version not implemented, use global one instead */ 935 ret = kvm_check_extension(s, extension); 936 } 937 938 return ret; 939 } 940 941 typedef struct HWPoisonPage { 942 ram_addr_t ram_addr; 943 QLIST_ENTRY(HWPoisonPage) list; 944 } HWPoisonPage; 945 946 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 947 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 948 949 static void kvm_unpoison_all(void *param) 950 { 951 HWPoisonPage *page, *next_page; 952 953 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 954 QLIST_REMOVE(page, list); 955 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 956 g_free(page); 957 } 958 } 959 960 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 961 { 962 HWPoisonPage *page; 963 964 QLIST_FOREACH(page, &hwpoison_page_list, list) { 965 if (page->ram_addr == ram_addr) { 966 return; 967 } 968 } 969 page = g_new(HWPoisonPage, 1); 970 page->ram_addr = ram_addr; 971 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 972 } 973 974 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 975 { 976 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 977 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 978 * endianness, but the memory core hands them in target endianness. 979 * For example, PPC is always treated as big-endian even if running 980 * on KVM and on PPC64LE. Correct here. 981 */ 982 switch (size) { 983 case 2: 984 val = bswap16(val); 985 break; 986 case 4: 987 val = bswap32(val); 988 break; 989 } 990 #endif 991 return val; 992 } 993 994 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 995 bool assign, uint32_t size, bool datamatch) 996 { 997 int ret; 998 struct kvm_ioeventfd iofd = { 999 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1000 .addr = addr, 1001 .len = size, 1002 .flags = 0, 1003 .fd = fd, 1004 }; 1005 1006 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1007 datamatch); 1008 if (!kvm_enabled()) { 1009 return -ENOSYS; 1010 } 1011 1012 if (datamatch) { 1013 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1014 } 1015 if (!assign) { 1016 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1017 } 1018 1019 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1020 1021 if (ret < 0) { 1022 return -errno; 1023 } 1024 1025 return 0; 1026 } 1027 1028 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1029 bool assign, uint32_t size, bool datamatch) 1030 { 1031 struct kvm_ioeventfd kick = { 1032 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1033 .addr = addr, 1034 .flags = KVM_IOEVENTFD_FLAG_PIO, 1035 .len = size, 1036 .fd = fd, 1037 }; 1038 int r; 1039 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1040 if (!kvm_enabled()) { 1041 return -ENOSYS; 1042 } 1043 if (datamatch) { 1044 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1045 } 1046 if (!assign) { 1047 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1048 } 1049 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1050 if (r < 0) { 1051 return r; 1052 } 1053 return 0; 1054 } 1055 1056 1057 static int kvm_check_many_ioeventfds(void) 1058 { 1059 /* Userspace can use ioeventfd for io notification. This requires a host 1060 * that supports eventfd(2) and an I/O thread; since eventfd does not 1061 * support SIGIO it cannot interrupt the vcpu. 1062 * 1063 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1064 * can avoid creating too many ioeventfds. 1065 */ 1066 #if defined(CONFIG_EVENTFD) 1067 int ioeventfds[7]; 1068 int i, ret = 0; 1069 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1070 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1071 if (ioeventfds[i] < 0) { 1072 break; 1073 } 1074 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1075 if (ret < 0) { 1076 close(ioeventfds[i]); 1077 break; 1078 } 1079 } 1080 1081 /* Decide whether many devices are supported or not */ 1082 ret = i == ARRAY_SIZE(ioeventfds); 1083 1084 while (i-- > 0) { 1085 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1086 close(ioeventfds[i]); 1087 } 1088 return ret; 1089 #else 1090 return 0; 1091 #endif 1092 } 1093 1094 static const KVMCapabilityInfo * 1095 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1096 { 1097 while (list->name) { 1098 if (!kvm_check_extension(s, list->value)) { 1099 return list; 1100 } 1101 list++; 1102 } 1103 return NULL; 1104 } 1105 1106 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1107 { 1108 g_assert( 1109 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1110 ); 1111 kvm_max_slot_size = max_slot_size; 1112 } 1113 1114 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1115 MemoryRegionSection *section, bool add) 1116 { 1117 KVMSlot *mem; 1118 int err; 1119 MemoryRegion *mr = section->mr; 1120 bool writeable = !mr->readonly && !mr->rom_device; 1121 hwaddr start_addr, size, slot_size; 1122 void *ram; 1123 1124 if (!memory_region_is_ram(mr)) { 1125 if (writeable || !kvm_readonly_mem_allowed) { 1126 return; 1127 } else if (!mr->romd_mode) { 1128 /* If the memory device is not in romd_mode, then we actually want 1129 * to remove the kvm memory slot so all accesses will trap. */ 1130 add = false; 1131 } 1132 } 1133 1134 size = kvm_align_section(section, &start_addr); 1135 if (!size) { 1136 return; 1137 } 1138 1139 /* use aligned delta to align the ram address */ 1140 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1141 (start_addr - section->offset_within_address_space); 1142 1143 kvm_slots_lock(kml); 1144 1145 if (!add) { 1146 do { 1147 slot_size = MIN(kvm_max_slot_size, size); 1148 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1149 if (!mem) { 1150 goto out; 1151 } 1152 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1153 kvm_physical_sync_dirty_bitmap(kml, section); 1154 } 1155 1156 /* unregister the slot */ 1157 g_free(mem->dirty_bmap); 1158 mem->dirty_bmap = NULL; 1159 mem->memory_size = 0; 1160 mem->flags = 0; 1161 err = kvm_set_user_memory_region(kml, mem, false); 1162 if (err) { 1163 fprintf(stderr, "%s: error unregistering slot: %s\n", 1164 __func__, strerror(-err)); 1165 abort(); 1166 } 1167 start_addr += slot_size; 1168 size -= slot_size; 1169 } while (size); 1170 goto out; 1171 } 1172 1173 /* register the new slot */ 1174 do { 1175 slot_size = MIN(kvm_max_slot_size, size); 1176 mem = kvm_alloc_slot(kml); 1177 mem->memory_size = slot_size; 1178 mem->start_addr = start_addr; 1179 mem->ram = ram; 1180 mem->flags = kvm_mem_flags(mr); 1181 1182 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1183 /* 1184 * Reallocate the bmap; it means it doesn't disappear in 1185 * middle of a migrate. 1186 */ 1187 kvm_memslot_init_dirty_bitmap(mem); 1188 } 1189 err = kvm_set_user_memory_region(kml, mem, true); 1190 if (err) { 1191 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1192 strerror(-err)); 1193 abort(); 1194 } 1195 start_addr += slot_size; 1196 ram += slot_size; 1197 size -= slot_size; 1198 } while (size); 1199 1200 out: 1201 kvm_slots_unlock(kml); 1202 } 1203 1204 static void kvm_region_add(MemoryListener *listener, 1205 MemoryRegionSection *section) 1206 { 1207 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1208 1209 memory_region_ref(section->mr); 1210 kvm_set_phys_mem(kml, section, true); 1211 } 1212 1213 static void kvm_region_del(MemoryListener *listener, 1214 MemoryRegionSection *section) 1215 { 1216 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1217 1218 kvm_set_phys_mem(kml, section, false); 1219 memory_region_unref(section->mr); 1220 } 1221 1222 static void kvm_log_sync(MemoryListener *listener, 1223 MemoryRegionSection *section) 1224 { 1225 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1226 int r; 1227 1228 kvm_slots_lock(kml); 1229 r = kvm_physical_sync_dirty_bitmap(kml, section); 1230 kvm_slots_unlock(kml); 1231 if (r < 0) { 1232 abort(); 1233 } 1234 } 1235 1236 static void kvm_log_clear(MemoryListener *listener, 1237 MemoryRegionSection *section) 1238 { 1239 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1240 int r; 1241 1242 r = kvm_physical_log_clear(kml, section); 1243 if (r < 0) { 1244 error_report_once("%s: kvm log clear failed: mr=%s " 1245 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1246 section->mr->name, section->offset_within_region, 1247 int128_get64(section->size)); 1248 abort(); 1249 } 1250 } 1251 1252 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1253 MemoryRegionSection *section, 1254 bool match_data, uint64_t data, 1255 EventNotifier *e) 1256 { 1257 int fd = event_notifier_get_fd(e); 1258 int r; 1259 1260 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1261 data, true, int128_get64(section->size), 1262 match_data); 1263 if (r < 0) { 1264 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1265 __func__, strerror(-r), -r); 1266 abort(); 1267 } 1268 } 1269 1270 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1271 MemoryRegionSection *section, 1272 bool match_data, uint64_t data, 1273 EventNotifier *e) 1274 { 1275 int fd = event_notifier_get_fd(e); 1276 int r; 1277 1278 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1279 data, false, int128_get64(section->size), 1280 match_data); 1281 if (r < 0) { 1282 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1283 __func__, strerror(-r), -r); 1284 abort(); 1285 } 1286 } 1287 1288 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1289 MemoryRegionSection *section, 1290 bool match_data, uint64_t data, 1291 EventNotifier *e) 1292 { 1293 int fd = event_notifier_get_fd(e); 1294 int r; 1295 1296 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1297 data, true, int128_get64(section->size), 1298 match_data); 1299 if (r < 0) { 1300 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1301 __func__, strerror(-r), -r); 1302 abort(); 1303 } 1304 } 1305 1306 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1307 MemoryRegionSection *section, 1308 bool match_data, uint64_t data, 1309 EventNotifier *e) 1310 1311 { 1312 int fd = event_notifier_get_fd(e); 1313 int r; 1314 1315 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1316 data, false, int128_get64(section->size), 1317 match_data); 1318 if (r < 0) { 1319 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1320 __func__, strerror(-r), -r); 1321 abort(); 1322 } 1323 } 1324 1325 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1326 AddressSpace *as, int as_id) 1327 { 1328 int i; 1329 1330 qemu_mutex_init(&kml->slots_lock); 1331 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1332 kml->as_id = as_id; 1333 1334 for (i = 0; i < s->nr_slots; i++) { 1335 kml->slots[i].slot = i; 1336 } 1337 1338 kml->listener.region_add = kvm_region_add; 1339 kml->listener.region_del = kvm_region_del; 1340 kml->listener.log_start = kvm_log_start; 1341 kml->listener.log_stop = kvm_log_stop; 1342 kml->listener.log_sync = kvm_log_sync; 1343 kml->listener.log_clear = kvm_log_clear; 1344 kml->listener.priority = 10; 1345 1346 memory_listener_register(&kml->listener, as); 1347 1348 for (i = 0; i < s->nr_as; ++i) { 1349 if (!s->as[i].as) { 1350 s->as[i].as = as; 1351 s->as[i].ml = kml; 1352 break; 1353 } 1354 } 1355 } 1356 1357 static MemoryListener kvm_io_listener = { 1358 .eventfd_add = kvm_io_ioeventfd_add, 1359 .eventfd_del = kvm_io_ioeventfd_del, 1360 .priority = 10, 1361 }; 1362 1363 int kvm_set_irq(KVMState *s, int irq, int level) 1364 { 1365 struct kvm_irq_level event; 1366 int ret; 1367 1368 assert(kvm_async_interrupts_enabled()); 1369 1370 event.level = level; 1371 event.irq = irq; 1372 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1373 if (ret < 0) { 1374 perror("kvm_set_irq"); 1375 abort(); 1376 } 1377 1378 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1379 } 1380 1381 #ifdef KVM_CAP_IRQ_ROUTING 1382 typedef struct KVMMSIRoute { 1383 struct kvm_irq_routing_entry kroute; 1384 QTAILQ_ENTRY(KVMMSIRoute) entry; 1385 } KVMMSIRoute; 1386 1387 static void set_gsi(KVMState *s, unsigned int gsi) 1388 { 1389 set_bit(gsi, s->used_gsi_bitmap); 1390 } 1391 1392 static void clear_gsi(KVMState *s, unsigned int gsi) 1393 { 1394 clear_bit(gsi, s->used_gsi_bitmap); 1395 } 1396 1397 void kvm_init_irq_routing(KVMState *s) 1398 { 1399 int gsi_count, i; 1400 1401 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1402 if (gsi_count > 0) { 1403 /* Round up so we can search ints using ffs */ 1404 s->used_gsi_bitmap = bitmap_new(gsi_count); 1405 s->gsi_count = gsi_count; 1406 } 1407 1408 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1409 s->nr_allocated_irq_routes = 0; 1410 1411 if (!kvm_direct_msi_allowed) { 1412 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1413 QTAILQ_INIT(&s->msi_hashtab[i]); 1414 } 1415 } 1416 1417 kvm_arch_init_irq_routing(s); 1418 } 1419 1420 void kvm_irqchip_commit_routes(KVMState *s) 1421 { 1422 int ret; 1423 1424 if (kvm_gsi_direct_mapping()) { 1425 return; 1426 } 1427 1428 if (!kvm_gsi_routing_enabled()) { 1429 return; 1430 } 1431 1432 s->irq_routes->flags = 0; 1433 trace_kvm_irqchip_commit_routes(); 1434 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1435 assert(ret == 0); 1436 } 1437 1438 static void kvm_add_routing_entry(KVMState *s, 1439 struct kvm_irq_routing_entry *entry) 1440 { 1441 struct kvm_irq_routing_entry *new; 1442 int n, size; 1443 1444 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1445 n = s->nr_allocated_irq_routes * 2; 1446 if (n < 64) { 1447 n = 64; 1448 } 1449 size = sizeof(struct kvm_irq_routing); 1450 size += n * sizeof(*new); 1451 s->irq_routes = g_realloc(s->irq_routes, size); 1452 s->nr_allocated_irq_routes = n; 1453 } 1454 n = s->irq_routes->nr++; 1455 new = &s->irq_routes->entries[n]; 1456 1457 *new = *entry; 1458 1459 set_gsi(s, entry->gsi); 1460 } 1461 1462 static int kvm_update_routing_entry(KVMState *s, 1463 struct kvm_irq_routing_entry *new_entry) 1464 { 1465 struct kvm_irq_routing_entry *entry; 1466 int n; 1467 1468 for (n = 0; n < s->irq_routes->nr; n++) { 1469 entry = &s->irq_routes->entries[n]; 1470 if (entry->gsi != new_entry->gsi) { 1471 continue; 1472 } 1473 1474 if(!memcmp(entry, new_entry, sizeof *entry)) { 1475 return 0; 1476 } 1477 1478 *entry = *new_entry; 1479 1480 return 0; 1481 } 1482 1483 return -ESRCH; 1484 } 1485 1486 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1487 { 1488 struct kvm_irq_routing_entry e = {}; 1489 1490 assert(pin < s->gsi_count); 1491 1492 e.gsi = irq; 1493 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1494 e.flags = 0; 1495 e.u.irqchip.irqchip = irqchip; 1496 e.u.irqchip.pin = pin; 1497 kvm_add_routing_entry(s, &e); 1498 } 1499 1500 void kvm_irqchip_release_virq(KVMState *s, int virq) 1501 { 1502 struct kvm_irq_routing_entry *e; 1503 int i; 1504 1505 if (kvm_gsi_direct_mapping()) { 1506 return; 1507 } 1508 1509 for (i = 0; i < s->irq_routes->nr; i++) { 1510 e = &s->irq_routes->entries[i]; 1511 if (e->gsi == virq) { 1512 s->irq_routes->nr--; 1513 *e = s->irq_routes->entries[s->irq_routes->nr]; 1514 } 1515 } 1516 clear_gsi(s, virq); 1517 kvm_arch_release_virq_post(virq); 1518 trace_kvm_irqchip_release_virq(virq); 1519 } 1520 1521 void kvm_irqchip_add_change_notifier(Notifier *n) 1522 { 1523 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1524 } 1525 1526 void kvm_irqchip_remove_change_notifier(Notifier *n) 1527 { 1528 notifier_remove(n); 1529 } 1530 1531 void kvm_irqchip_change_notify(void) 1532 { 1533 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1534 } 1535 1536 static unsigned int kvm_hash_msi(uint32_t data) 1537 { 1538 /* This is optimized for IA32 MSI layout. However, no other arch shall 1539 * repeat the mistake of not providing a direct MSI injection API. */ 1540 return data & 0xff; 1541 } 1542 1543 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1544 { 1545 KVMMSIRoute *route, *next; 1546 unsigned int hash; 1547 1548 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1549 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1550 kvm_irqchip_release_virq(s, route->kroute.gsi); 1551 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1552 g_free(route); 1553 } 1554 } 1555 } 1556 1557 static int kvm_irqchip_get_virq(KVMState *s) 1558 { 1559 int next_virq; 1560 1561 /* 1562 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1563 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1564 * number can succeed even though a new route entry cannot be added. 1565 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1566 */ 1567 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1568 kvm_flush_dynamic_msi_routes(s); 1569 } 1570 1571 /* Return the lowest unused GSI in the bitmap */ 1572 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1573 if (next_virq >= s->gsi_count) { 1574 return -ENOSPC; 1575 } else { 1576 return next_virq; 1577 } 1578 } 1579 1580 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1581 { 1582 unsigned int hash = kvm_hash_msi(msg.data); 1583 KVMMSIRoute *route; 1584 1585 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1586 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1587 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1588 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1589 return route; 1590 } 1591 } 1592 return NULL; 1593 } 1594 1595 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1596 { 1597 struct kvm_msi msi; 1598 KVMMSIRoute *route; 1599 1600 if (kvm_direct_msi_allowed) { 1601 msi.address_lo = (uint32_t)msg.address; 1602 msi.address_hi = msg.address >> 32; 1603 msi.data = le32_to_cpu(msg.data); 1604 msi.flags = 0; 1605 memset(msi.pad, 0, sizeof(msi.pad)); 1606 1607 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1608 } 1609 1610 route = kvm_lookup_msi_route(s, msg); 1611 if (!route) { 1612 int virq; 1613 1614 virq = kvm_irqchip_get_virq(s); 1615 if (virq < 0) { 1616 return virq; 1617 } 1618 1619 route = g_malloc0(sizeof(KVMMSIRoute)); 1620 route->kroute.gsi = virq; 1621 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1622 route->kroute.flags = 0; 1623 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1624 route->kroute.u.msi.address_hi = msg.address >> 32; 1625 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1626 1627 kvm_add_routing_entry(s, &route->kroute); 1628 kvm_irqchip_commit_routes(s); 1629 1630 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1631 entry); 1632 } 1633 1634 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1635 1636 return kvm_set_irq(s, route->kroute.gsi, 1); 1637 } 1638 1639 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1640 { 1641 struct kvm_irq_routing_entry kroute = {}; 1642 int virq; 1643 MSIMessage msg = {0, 0}; 1644 1645 if (pci_available && dev) { 1646 msg = pci_get_msi_message(dev, vector); 1647 } 1648 1649 if (kvm_gsi_direct_mapping()) { 1650 return kvm_arch_msi_data_to_gsi(msg.data); 1651 } 1652 1653 if (!kvm_gsi_routing_enabled()) { 1654 return -ENOSYS; 1655 } 1656 1657 virq = kvm_irqchip_get_virq(s); 1658 if (virq < 0) { 1659 return virq; 1660 } 1661 1662 kroute.gsi = virq; 1663 kroute.type = KVM_IRQ_ROUTING_MSI; 1664 kroute.flags = 0; 1665 kroute.u.msi.address_lo = (uint32_t)msg.address; 1666 kroute.u.msi.address_hi = msg.address >> 32; 1667 kroute.u.msi.data = le32_to_cpu(msg.data); 1668 if (pci_available && kvm_msi_devid_required()) { 1669 kroute.flags = KVM_MSI_VALID_DEVID; 1670 kroute.u.msi.devid = pci_requester_id(dev); 1671 } 1672 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1673 kvm_irqchip_release_virq(s, virq); 1674 return -EINVAL; 1675 } 1676 1677 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1678 vector, virq); 1679 1680 kvm_add_routing_entry(s, &kroute); 1681 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1682 kvm_irqchip_commit_routes(s); 1683 1684 return virq; 1685 } 1686 1687 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1688 PCIDevice *dev) 1689 { 1690 struct kvm_irq_routing_entry kroute = {}; 1691 1692 if (kvm_gsi_direct_mapping()) { 1693 return 0; 1694 } 1695 1696 if (!kvm_irqchip_in_kernel()) { 1697 return -ENOSYS; 1698 } 1699 1700 kroute.gsi = virq; 1701 kroute.type = KVM_IRQ_ROUTING_MSI; 1702 kroute.flags = 0; 1703 kroute.u.msi.address_lo = (uint32_t)msg.address; 1704 kroute.u.msi.address_hi = msg.address >> 32; 1705 kroute.u.msi.data = le32_to_cpu(msg.data); 1706 if (pci_available && kvm_msi_devid_required()) { 1707 kroute.flags = KVM_MSI_VALID_DEVID; 1708 kroute.u.msi.devid = pci_requester_id(dev); 1709 } 1710 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1711 return -EINVAL; 1712 } 1713 1714 trace_kvm_irqchip_update_msi_route(virq); 1715 1716 return kvm_update_routing_entry(s, &kroute); 1717 } 1718 1719 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1720 EventNotifier *resample, int virq, 1721 bool assign) 1722 { 1723 int fd = event_notifier_get_fd(event); 1724 int rfd = resample ? event_notifier_get_fd(resample) : -1; 1725 1726 struct kvm_irqfd irqfd = { 1727 .fd = fd, 1728 .gsi = virq, 1729 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1730 }; 1731 1732 if (rfd != -1) { 1733 assert(assign); 1734 if (kvm_irqchip_is_split()) { 1735 /* 1736 * When the slow irqchip (e.g. IOAPIC) is in the 1737 * userspace, KVM kernel resamplefd will not work because 1738 * the EOI of the interrupt will be delivered to userspace 1739 * instead, so the KVM kernel resamplefd kick will be 1740 * skipped. The userspace here mimics what the kernel 1741 * provides with resamplefd, remember the resamplefd and 1742 * kick it when we receive EOI of this IRQ. 1743 * 1744 * This is hackery because IOAPIC is mostly bypassed 1745 * (except EOI broadcasts) when irqfd is used. However 1746 * this can bring much performance back for split irqchip 1747 * with INTx IRQs (for VFIO, this gives 93% perf of the 1748 * full fast path, which is 46% perf boost comparing to 1749 * the INTx slow path). 1750 */ 1751 kvm_resample_fd_insert(virq, resample); 1752 } else { 1753 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1754 irqfd.resamplefd = rfd; 1755 } 1756 } else if (!assign) { 1757 if (kvm_irqchip_is_split()) { 1758 kvm_resample_fd_remove(virq); 1759 } 1760 } 1761 1762 if (!kvm_irqfds_enabled()) { 1763 return -ENOSYS; 1764 } 1765 1766 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1767 } 1768 1769 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1770 { 1771 struct kvm_irq_routing_entry kroute = {}; 1772 int virq; 1773 1774 if (!kvm_gsi_routing_enabled()) { 1775 return -ENOSYS; 1776 } 1777 1778 virq = kvm_irqchip_get_virq(s); 1779 if (virq < 0) { 1780 return virq; 1781 } 1782 1783 kroute.gsi = virq; 1784 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1785 kroute.flags = 0; 1786 kroute.u.adapter.summary_addr = adapter->summary_addr; 1787 kroute.u.adapter.ind_addr = adapter->ind_addr; 1788 kroute.u.adapter.summary_offset = adapter->summary_offset; 1789 kroute.u.adapter.ind_offset = adapter->ind_offset; 1790 kroute.u.adapter.adapter_id = adapter->adapter_id; 1791 1792 kvm_add_routing_entry(s, &kroute); 1793 1794 return virq; 1795 } 1796 1797 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1798 { 1799 struct kvm_irq_routing_entry kroute = {}; 1800 int virq; 1801 1802 if (!kvm_gsi_routing_enabled()) { 1803 return -ENOSYS; 1804 } 1805 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1806 return -ENOSYS; 1807 } 1808 virq = kvm_irqchip_get_virq(s); 1809 if (virq < 0) { 1810 return virq; 1811 } 1812 1813 kroute.gsi = virq; 1814 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1815 kroute.flags = 0; 1816 kroute.u.hv_sint.vcpu = vcpu; 1817 kroute.u.hv_sint.sint = sint; 1818 1819 kvm_add_routing_entry(s, &kroute); 1820 kvm_irqchip_commit_routes(s); 1821 1822 return virq; 1823 } 1824 1825 #else /* !KVM_CAP_IRQ_ROUTING */ 1826 1827 void kvm_init_irq_routing(KVMState *s) 1828 { 1829 } 1830 1831 void kvm_irqchip_release_virq(KVMState *s, int virq) 1832 { 1833 } 1834 1835 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1836 { 1837 abort(); 1838 } 1839 1840 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1841 { 1842 return -ENOSYS; 1843 } 1844 1845 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1846 { 1847 return -ENOSYS; 1848 } 1849 1850 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1851 { 1852 return -ENOSYS; 1853 } 1854 1855 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1856 EventNotifier *resample, int virq, 1857 bool assign) 1858 { 1859 abort(); 1860 } 1861 1862 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1863 { 1864 return -ENOSYS; 1865 } 1866 #endif /* !KVM_CAP_IRQ_ROUTING */ 1867 1868 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1869 EventNotifier *rn, int virq) 1870 { 1871 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 1872 } 1873 1874 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1875 int virq) 1876 { 1877 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 1878 } 1879 1880 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1881 EventNotifier *rn, qemu_irq irq) 1882 { 1883 gpointer key, gsi; 1884 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1885 1886 if (!found) { 1887 return -ENXIO; 1888 } 1889 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1890 } 1891 1892 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1893 qemu_irq irq) 1894 { 1895 gpointer key, gsi; 1896 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1897 1898 if (!found) { 1899 return -ENXIO; 1900 } 1901 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1902 } 1903 1904 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1905 { 1906 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1907 } 1908 1909 static void kvm_irqchip_create(KVMState *s) 1910 { 1911 int ret; 1912 1913 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 1914 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1915 ; 1916 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1917 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1918 if (ret < 0) { 1919 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1920 exit(1); 1921 } 1922 } else { 1923 return; 1924 } 1925 1926 /* First probe and see if there's a arch-specific hook to create the 1927 * in-kernel irqchip for us */ 1928 ret = kvm_arch_irqchip_create(s); 1929 if (ret == 0) { 1930 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 1931 perror("Split IRQ chip mode not supported."); 1932 exit(1); 1933 } else { 1934 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1935 } 1936 } 1937 if (ret < 0) { 1938 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1939 exit(1); 1940 } 1941 1942 kvm_kernel_irqchip = true; 1943 /* If we have an in-kernel IRQ chip then we must have asynchronous 1944 * interrupt delivery (though the reverse is not necessarily true) 1945 */ 1946 kvm_async_interrupts_allowed = true; 1947 kvm_halt_in_kernel_allowed = true; 1948 1949 kvm_init_irq_routing(s); 1950 1951 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1952 } 1953 1954 /* Find number of supported CPUs using the recommended 1955 * procedure from the kernel API documentation to cope with 1956 * older kernels that may be missing capabilities. 1957 */ 1958 static int kvm_recommended_vcpus(KVMState *s) 1959 { 1960 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1961 return (ret) ? ret : 4; 1962 } 1963 1964 static int kvm_max_vcpus(KVMState *s) 1965 { 1966 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1967 return (ret) ? ret : kvm_recommended_vcpus(s); 1968 } 1969 1970 static int kvm_max_vcpu_id(KVMState *s) 1971 { 1972 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1973 return (ret) ? ret : kvm_max_vcpus(s); 1974 } 1975 1976 bool kvm_vcpu_id_is_valid(int vcpu_id) 1977 { 1978 KVMState *s = KVM_STATE(current_accel()); 1979 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1980 } 1981 1982 static int kvm_init(MachineState *ms) 1983 { 1984 MachineClass *mc = MACHINE_GET_CLASS(ms); 1985 static const char upgrade_note[] = 1986 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1987 "(see http://sourceforge.net/projects/kvm).\n"; 1988 struct { 1989 const char *name; 1990 int num; 1991 } num_cpus[] = { 1992 { "SMP", ms->smp.cpus }, 1993 { "hotpluggable", ms->smp.max_cpus }, 1994 { NULL, } 1995 }, *nc = num_cpus; 1996 int soft_vcpus_limit, hard_vcpus_limit; 1997 KVMState *s; 1998 const KVMCapabilityInfo *missing_cap; 1999 int ret; 2000 int type = 0; 2001 uint64_t dirty_log_manual_caps; 2002 2003 s = KVM_STATE(ms->accelerator); 2004 2005 /* 2006 * On systems where the kernel can support different base page 2007 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2008 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2009 * page size for the system though. 2010 */ 2011 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2012 2013 s->sigmask_len = 8; 2014 2015 #ifdef KVM_CAP_SET_GUEST_DEBUG 2016 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2017 #endif 2018 QLIST_INIT(&s->kvm_parked_vcpus); 2019 s->vmfd = -1; 2020 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2021 if (s->fd == -1) { 2022 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2023 ret = -errno; 2024 goto err; 2025 } 2026 2027 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2028 if (ret < KVM_API_VERSION) { 2029 if (ret >= 0) { 2030 ret = -EINVAL; 2031 } 2032 fprintf(stderr, "kvm version too old\n"); 2033 goto err; 2034 } 2035 2036 if (ret > KVM_API_VERSION) { 2037 ret = -EINVAL; 2038 fprintf(stderr, "kvm version not supported\n"); 2039 goto err; 2040 } 2041 2042 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2043 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2044 2045 /* If unspecified, use the default value */ 2046 if (!s->nr_slots) { 2047 s->nr_slots = 32; 2048 } 2049 2050 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2051 if (s->nr_as <= 1) { 2052 s->nr_as = 1; 2053 } 2054 s->as = g_new0(struct KVMAs, s->nr_as); 2055 2056 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2057 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2058 "kvm-type", 2059 &error_abort); 2060 type = mc->kvm_type(ms, kvm_type); 2061 } 2062 2063 do { 2064 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2065 } while (ret == -EINTR); 2066 2067 if (ret < 0) { 2068 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2069 strerror(-ret)); 2070 2071 #ifdef TARGET_S390X 2072 if (ret == -EINVAL) { 2073 fprintf(stderr, 2074 "Host kernel setup problem detected. Please verify:\n"); 2075 fprintf(stderr, "- for kernels supporting the switch_amode or" 2076 " user_mode parameters, whether\n"); 2077 fprintf(stderr, 2078 " user space is running in primary address space\n"); 2079 fprintf(stderr, 2080 "- for kernels supporting the vm.allocate_pgste sysctl, " 2081 "whether it is enabled\n"); 2082 } 2083 #endif 2084 goto err; 2085 } 2086 2087 s->vmfd = ret; 2088 2089 /* check the vcpu limits */ 2090 soft_vcpus_limit = kvm_recommended_vcpus(s); 2091 hard_vcpus_limit = kvm_max_vcpus(s); 2092 2093 while (nc->name) { 2094 if (nc->num > soft_vcpus_limit) { 2095 warn_report("Number of %s cpus requested (%d) exceeds " 2096 "the recommended cpus supported by KVM (%d)", 2097 nc->name, nc->num, soft_vcpus_limit); 2098 2099 if (nc->num > hard_vcpus_limit) { 2100 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2101 "the maximum cpus supported by KVM (%d)\n", 2102 nc->name, nc->num, hard_vcpus_limit); 2103 exit(1); 2104 } 2105 } 2106 nc++; 2107 } 2108 2109 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2110 if (!missing_cap) { 2111 missing_cap = 2112 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2113 } 2114 if (missing_cap) { 2115 ret = -EINVAL; 2116 fprintf(stderr, "kvm does not support %s\n%s", 2117 missing_cap->name, upgrade_note); 2118 goto err; 2119 } 2120 2121 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2122 s->coalesced_pio = s->coalesced_mmio && 2123 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2124 2125 dirty_log_manual_caps = 2126 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2127 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2128 KVM_DIRTY_LOG_INITIALLY_SET); 2129 s->manual_dirty_log_protect = dirty_log_manual_caps; 2130 if (dirty_log_manual_caps) { 2131 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2132 dirty_log_manual_caps); 2133 if (ret) { 2134 warn_report("Trying to enable capability %"PRIu64" of " 2135 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2136 "Falling back to the legacy mode. ", 2137 dirty_log_manual_caps); 2138 s->manual_dirty_log_protect = 0; 2139 } 2140 } 2141 2142 #ifdef KVM_CAP_VCPU_EVENTS 2143 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2144 #endif 2145 2146 s->robust_singlestep = 2147 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2148 2149 #ifdef KVM_CAP_DEBUGREGS 2150 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2151 #endif 2152 2153 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2154 2155 #ifdef KVM_CAP_IRQ_ROUTING 2156 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2157 #endif 2158 2159 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2160 2161 s->irq_set_ioctl = KVM_IRQ_LINE; 2162 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2163 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2164 } 2165 2166 kvm_readonly_mem_allowed = 2167 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2168 2169 kvm_eventfds_allowed = 2170 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2171 2172 kvm_irqfds_allowed = 2173 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2174 2175 kvm_resamplefds_allowed = 2176 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2177 2178 kvm_vm_attributes_allowed = 2179 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2180 2181 kvm_ioeventfd_any_length_allowed = 2182 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2183 2184 kvm_state = s; 2185 2186 ret = kvm_arch_init(ms, s); 2187 if (ret < 0) { 2188 goto err; 2189 } 2190 2191 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2192 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2193 } 2194 2195 qemu_register_reset(kvm_unpoison_all, NULL); 2196 2197 if (s->kernel_irqchip_allowed) { 2198 kvm_irqchip_create(s); 2199 } 2200 2201 if (kvm_eventfds_allowed) { 2202 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2203 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2204 } 2205 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2206 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2207 2208 kvm_memory_listener_register(s, &s->memory_listener, 2209 &address_space_memory, 0); 2210 if (kvm_eventfds_allowed) { 2211 memory_listener_register(&kvm_io_listener, 2212 &address_space_io); 2213 } 2214 memory_listener_register(&kvm_coalesced_pio_listener, 2215 &address_space_io); 2216 2217 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2218 2219 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2220 if (!s->sync_mmu) { 2221 ret = ram_block_discard_disable(true); 2222 assert(!ret); 2223 } 2224 return 0; 2225 2226 err: 2227 assert(ret < 0); 2228 if (s->vmfd >= 0) { 2229 close(s->vmfd); 2230 } 2231 if (s->fd != -1) { 2232 close(s->fd); 2233 } 2234 g_free(s->memory_listener.slots); 2235 2236 return ret; 2237 } 2238 2239 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2240 { 2241 s->sigmask_len = sigmask_len; 2242 } 2243 2244 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2245 int size, uint32_t count) 2246 { 2247 int i; 2248 uint8_t *ptr = data; 2249 2250 for (i = 0; i < count; i++) { 2251 address_space_rw(&address_space_io, port, attrs, 2252 ptr, size, 2253 direction == KVM_EXIT_IO_OUT); 2254 ptr += size; 2255 } 2256 } 2257 2258 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2259 { 2260 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2261 run->internal.suberror); 2262 2263 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2264 int i; 2265 2266 for (i = 0; i < run->internal.ndata; ++i) { 2267 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2268 i, (uint64_t)run->internal.data[i]); 2269 } 2270 } 2271 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2272 fprintf(stderr, "emulation failure\n"); 2273 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2274 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2275 return EXCP_INTERRUPT; 2276 } 2277 } 2278 /* FIXME: Should trigger a qmp message to let management know 2279 * something went wrong. 2280 */ 2281 return -1; 2282 } 2283 2284 void kvm_flush_coalesced_mmio_buffer(void) 2285 { 2286 KVMState *s = kvm_state; 2287 2288 if (s->coalesced_flush_in_progress) { 2289 return; 2290 } 2291 2292 s->coalesced_flush_in_progress = true; 2293 2294 if (s->coalesced_mmio_ring) { 2295 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2296 while (ring->first != ring->last) { 2297 struct kvm_coalesced_mmio *ent; 2298 2299 ent = &ring->coalesced_mmio[ring->first]; 2300 2301 if (ent->pio == 1) { 2302 address_space_write(&address_space_io, ent->phys_addr, 2303 MEMTXATTRS_UNSPECIFIED, ent->data, 2304 ent->len); 2305 } else { 2306 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2307 } 2308 smp_wmb(); 2309 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2310 } 2311 } 2312 2313 s->coalesced_flush_in_progress = false; 2314 } 2315 2316 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2317 { 2318 if (!cpu->vcpu_dirty) { 2319 kvm_arch_get_registers(cpu); 2320 cpu->vcpu_dirty = true; 2321 } 2322 } 2323 2324 void kvm_cpu_synchronize_state(CPUState *cpu) 2325 { 2326 if (!cpu->vcpu_dirty) { 2327 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2328 } 2329 } 2330 2331 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2332 { 2333 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2334 cpu->vcpu_dirty = false; 2335 } 2336 2337 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2338 { 2339 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2340 } 2341 2342 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2343 { 2344 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2345 cpu->vcpu_dirty = false; 2346 } 2347 2348 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2349 { 2350 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2351 } 2352 2353 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2354 { 2355 cpu->vcpu_dirty = true; 2356 } 2357 2358 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2359 { 2360 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2361 } 2362 2363 #ifdef KVM_HAVE_MCE_INJECTION 2364 static __thread void *pending_sigbus_addr; 2365 static __thread int pending_sigbus_code; 2366 static __thread bool have_sigbus_pending; 2367 #endif 2368 2369 static void kvm_cpu_kick(CPUState *cpu) 2370 { 2371 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2372 } 2373 2374 static void kvm_cpu_kick_self(void) 2375 { 2376 if (kvm_immediate_exit) { 2377 kvm_cpu_kick(current_cpu); 2378 } else { 2379 qemu_cpu_kick_self(); 2380 } 2381 } 2382 2383 static void kvm_eat_signals(CPUState *cpu) 2384 { 2385 struct timespec ts = { 0, 0 }; 2386 siginfo_t siginfo; 2387 sigset_t waitset; 2388 sigset_t chkset; 2389 int r; 2390 2391 if (kvm_immediate_exit) { 2392 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2393 /* Write kvm_run->immediate_exit before the cpu->exit_request 2394 * write in kvm_cpu_exec. 2395 */ 2396 smp_wmb(); 2397 return; 2398 } 2399 2400 sigemptyset(&waitset); 2401 sigaddset(&waitset, SIG_IPI); 2402 2403 do { 2404 r = sigtimedwait(&waitset, &siginfo, &ts); 2405 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2406 perror("sigtimedwait"); 2407 exit(1); 2408 } 2409 2410 r = sigpending(&chkset); 2411 if (r == -1) { 2412 perror("sigpending"); 2413 exit(1); 2414 } 2415 } while (sigismember(&chkset, SIG_IPI)); 2416 } 2417 2418 int kvm_cpu_exec(CPUState *cpu) 2419 { 2420 struct kvm_run *run = cpu->kvm_run; 2421 int ret, run_ret; 2422 2423 DPRINTF("kvm_cpu_exec()\n"); 2424 2425 if (kvm_arch_process_async_events(cpu)) { 2426 qatomic_set(&cpu->exit_request, 0); 2427 return EXCP_HLT; 2428 } 2429 2430 qemu_mutex_unlock_iothread(); 2431 cpu_exec_start(cpu); 2432 2433 do { 2434 MemTxAttrs attrs; 2435 2436 if (cpu->vcpu_dirty) { 2437 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2438 cpu->vcpu_dirty = false; 2439 } 2440 2441 kvm_arch_pre_run(cpu, run); 2442 if (qatomic_read(&cpu->exit_request)) { 2443 DPRINTF("interrupt exit requested\n"); 2444 /* 2445 * KVM requires us to reenter the kernel after IO exits to complete 2446 * instruction emulation. This self-signal will ensure that we 2447 * leave ASAP again. 2448 */ 2449 kvm_cpu_kick_self(); 2450 } 2451 2452 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2453 * Matching barrier in kvm_eat_signals. 2454 */ 2455 smp_rmb(); 2456 2457 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2458 2459 attrs = kvm_arch_post_run(cpu, run); 2460 2461 #ifdef KVM_HAVE_MCE_INJECTION 2462 if (unlikely(have_sigbus_pending)) { 2463 qemu_mutex_lock_iothread(); 2464 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2465 pending_sigbus_addr); 2466 have_sigbus_pending = false; 2467 qemu_mutex_unlock_iothread(); 2468 } 2469 #endif 2470 2471 if (run_ret < 0) { 2472 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2473 DPRINTF("io window exit\n"); 2474 kvm_eat_signals(cpu); 2475 ret = EXCP_INTERRUPT; 2476 break; 2477 } 2478 fprintf(stderr, "error: kvm run failed %s\n", 2479 strerror(-run_ret)); 2480 #ifdef TARGET_PPC 2481 if (run_ret == -EBUSY) { 2482 fprintf(stderr, 2483 "This is probably because your SMT is enabled.\n" 2484 "VCPU can only run on primary threads with all " 2485 "secondary threads offline.\n"); 2486 } 2487 #endif 2488 ret = -1; 2489 break; 2490 } 2491 2492 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2493 switch (run->exit_reason) { 2494 case KVM_EXIT_IO: 2495 DPRINTF("handle_io\n"); 2496 /* Called outside BQL */ 2497 kvm_handle_io(run->io.port, attrs, 2498 (uint8_t *)run + run->io.data_offset, 2499 run->io.direction, 2500 run->io.size, 2501 run->io.count); 2502 ret = 0; 2503 break; 2504 case KVM_EXIT_MMIO: 2505 DPRINTF("handle_mmio\n"); 2506 /* Called outside BQL */ 2507 address_space_rw(&address_space_memory, 2508 run->mmio.phys_addr, attrs, 2509 run->mmio.data, 2510 run->mmio.len, 2511 run->mmio.is_write); 2512 ret = 0; 2513 break; 2514 case KVM_EXIT_IRQ_WINDOW_OPEN: 2515 DPRINTF("irq_window_open\n"); 2516 ret = EXCP_INTERRUPT; 2517 break; 2518 case KVM_EXIT_SHUTDOWN: 2519 DPRINTF("shutdown\n"); 2520 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2521 ret = EXCP_INTERRUPT; 2522 break; 2523 case KVM_EXIT_UNKNOWN: 2524 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2525 (uint64_t)run->hw.hardware_exit_reason); 2526 ret = -1; 2527 break; 2528 case KVM_EXIT_INTERNAL_ERROR: 2529 ret = kvm_handle_internal_error(cpu, run); 2530 break; 2531 case KVM_EXIT_SYSTEM_EVENT: 2532 switch (run->system_event.type) { 2533 case KVM_SYSTEM_EVENT_SHUTDOWN: 2534 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2535 ret = EXCP_INTERRUPT; 2536 break; 2537 case KVM_SYSTEM_EVENT_RESET: 2538 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2539 ret = EXCP_INTERRUPT; 2540 break; 2541 case KVM_SYSTEM_EVENT_CRASH: 2542 kvm_cpu_synchronize_state(cpu); 2543 qemu_mutex_lock_iothread(); 2544 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2545 qemu_mutex_unlock_iothread(); 2546 ret = 0; 2547 break; 2548 default: 2549 DPRINTF("kvm_arch_handle_exit\n"); 2550 ret = kvm_arch_handle_exit(cpu, run); 2551 break; 2552 } 2553 break; 2554 default: 2555 DPRINTF("kvm_arch_handle_exit\n"); 2556 ret = kvm_arch_handle_exit(cpu, run); 2557 break; 2558 } 2559 } while (ret == 0); 2560 2561 cpu_exec_end(cpu); 2562 qemu_mutex_lock_iothread(); 2563 2564 if (ret < 0) { 2565 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2566 vm_stop(RUN_STATE_INTERNAL_ERROR); 2567 } 2568 2569 qatomic_set(&cpu->exit_request, 0); 2570 return ret; 2571 } 2572 2573 int kvm_ioctl(KVMState *s, int type, ...) 2574 { 2575 int ret; 2576 void *arg; 2577 va_list ap; 2578 2579 va_start(ap, type); 2580 arg = va_arg(ap, void *); 2581 va_end(ap); 2582 2583 trace_kvm_ioctl(type, arg); 2584 ret = ioctl(s->fd, type, arg); 2585 if (ret == -1) { 2586 ret = -errno; 2587 } 2588 return ret; 2589 } 2590 2591 int kvm_vm_ioctl(KVMState *s, int type, ...) 2592 { 2593 int ret; 2594 void *arg; 2595 va_list ap; 2596 2597 va_start(ap, type); 2598 arg = va_arg(ap, void *); 2599 va_end(ap); 2600 2601 trace_kvm_vm_ioctl(type, arg); 2602 ret = ioctl(s->vmfd, type, arg); 2603 if (ret == -1) { 2604 ret = -errno; 2605 } 2606 return ret; 2607 } 2608 2609 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2610 { 2611 int ret; 2612 void *arg; 2613 va_list ap; 2614 2615 va_start(ap, type); 2616 arg = va_arg(ap, void *); 2617 va_end(ap); 2618 2619 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2620 ret = ioctl(cpu->kvm_fd, type, arg); 2621 if (ret == -1) { 2622 ret = -errno; 2623 } 2624 return ret; 2625 } 2626 2627 int kvm_device_ioctl(int fd, int type, ...) 2628 { 2629 int ret; 2630 void *arg; 2631 va_list ap; 2632 2633 va_start(ap, type); 2634 arg = va_arg(ap, void *); 2635 va_end(ap); 2636 2637 trace_kvm_device_ioctl(fd, type, arg); 2638 ret = ioctl(fd, type, arg); 2639 if (ret == -1) { 2640 ret = -errno; 2641 } 2642 return ret; 2643 } 2644 2645 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2646 { 2647 int ret; 2648 struct kvm_device_attr attribute = { 2649 .group = group, 2650 .attr = attr, 2651 }; 2652 2653 if (!kvm_vm_attributes_allowed) { 2654 return 0; 2655 } 2656 2657 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2658 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2659 return ret ? 0 : 1; 2660 } 2661 2662 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2663 { 2664 struct kvm_device_attr attribute = { 2665 .group = group, 2666 .attr = attr, 2667 .flags = 0, 2668 }; 2669 2670 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2671 } 2672 2673 int kvm_device_access(int fd, int group, uint64_t attr, 2674 void *val, bool write, Error **errp) 2675 { 2676 struct kvm_device_attr kvmattr; 2677 int err; 2678 2679 kvmattr.flags = 0; 2680 kvmattr.group = group; 2681 kvmattr.attr = attr; 2682 kvmattr.addr = (uintptr_t)val; 2683 2684 err = kvm_device_ioctl(fd, 2685 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2686 &kvmattr); 2687 if (err < 0) { 2688 error_setg_errno(errp, -err, 2689 "KVM_%s_DEVICE_ATTR failed: Group %d " 2690 "attr 0x%016" PRIx64, 2691 write ? "SET" : "GET", group, attr); 2692 } 2693 return err; 2694 } 2695 2696 bool kvm_has_sync_mmu(void) 2697 { 2698 return kvm_state->sync_mmu; 2699 } 2700 2701 int kvm_has_vcpu_events(void) 2702 { 2703 return kvm_state->vcpu_events; 2704 } 2705 2706 int kvm_has_robust_singlestep(void) 2707 { 2708 return kvm_state->robust_singlestep; 2709 } 2710 2711 int kvm_has_debugregs(void) 2712 { 2713 return kvm_state->debugregs; 2714 } 2715 2716 int kvm_max_nested_state_length(void) 2717 { 2718 return kvm_state->max_nested_state_len; 2719 } 2720 2721 int kvm_has_many_ioeventfds(void) 2722 { 2723 if (!kvm_enabled()) { 2724 return 0; 2725 } 2726 return kvm_state->many_ioeventfds; 2727 } 2728 2729 int kvm_has_gsi_routing(void) 2730 { 2731 #ifdef KVM_CAP_IRQ_ROUTING 2732 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2733 #else 2734 return false; 2735 #endif 2736 } 2737 2738 int kvm_has_intx_set_mask(void) 2739 { 2740 return kvm_state->intx_set_mask; 2741 } 2742 2743 bool kvm_arm_supports_user_irq(void) 2744 { 2745 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2746 } 2747 2748 #ifdef KVM_CAP_SET_GUEST_DEBUG 2749 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2750 target_ulong pc) 2751 { 2752 struct kvm_sw_breakpoint *bp; 2753 2754 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2755 if (bp->pc == pc) { 2756 return bp; 2757 } 2758 } 2759 return NULL; 2760 } 2761 2762 int kvm_sw_breakpoints_active(CPUState *cpu) 2763 { 2764 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2765 } 2766 2767 struct kvm_set_guest_debug_data { 2768 struct kvm_guest_debug dbg; 2769 int err; 2770 }; 2771 2772 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2773 { 2774 struct kvm_set_guest_debug_data *dbg_data = 2775 (struct kvm_set_guest_debug_data *) data.host_ptr; 2776 2777 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2778 &dbg_data->dbg); 2779 } 2780 2781 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2782 { 2783 struct kvm_set_guest_debug_data data; 2784 2785 data.dbg.control = reinject_trap; 2786 2787 if (cpu->singlestep_enabled) { 2788 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2789 } 2790 kvm_arch_update_guest_debug(cpu, &data.dbg); 2791 2792 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2793 RUN_ON_CPU_HOST_PTR(&data)); 2794 return data.err; 2795 } 2796 2797 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2798 target_ulong len, int type) 2799 { 2800 struct kvm_sw_breakpoint *bp; 2801 int err; 2802 2803 if (type == GDB_BREAKPOINT_SW) { 2804 bp = kvm_find_sw_breakpoint(cpu, addr); 2805 if (bp) { 2806 bp->use_count++; 2807 return 0; 2808 } 2809 2810 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2811 bp->pc = addr; 2812 bp->use_count = 1; 2813 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2814 if (err) { 2815 g_free(bp); 2816 return err; 2817 } 2818 2819 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2820 } else { 2821 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2822 if (err) { 2823 return err; 2824 } 2825 } 2826 2827 CPU_FOREACH(cpu) { 2828 err = kvm_update_guest_debug(cpu, 0); 2829 if (err) { 2830 return err; 2831 } 2832 } 2833 return 0; 2834 } 2835 2836 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2837 target_ulong len, int type) 2838 { 2839 struct kvm_sw_breakpoint *bp; 2840 int err; 2841 2842 if (type == GDB_BREAKPOINT_SW) { 2843 bp = kvm_find_sw_breakpoint(cpu, addr); 2844 if (!bp) { 2845 return -ENOENT; 2846 } 2847 2848 if (bp->use_count > 1) { 2849 bp->use_count--; 2850 return 0; 2851 } 2852 2853 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2854 if (err) { 2855 return err; 2856 } 2857 2858 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2859 g_free(bp); 2860 } else { 2861 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2862 if (err) { 2863 return err; 2864 } 2865 } 2866 2867 CPU_FOREACH(cpu) { 2868 err = kvm_update_guest_debug(cpu, 0); 2869 if (err) { 2870 return err; 2871 } 2872 } 2873 return 0; 2874 } 2875 2876 void kvm_remove_all_breakpoints(CPUState *cpu) 2877 { 2878 struct kvm_sw_breakpoint *bp, *next; 2879 KVMState *s = cpu->kvm_state; 2880 CPUState *tmpcpu; 2881 2882 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2883 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2884 /* Try harder to find a CPU that currently sees the breakpoint. */ 2885 CPU_FOREACH(tmpcpu) { 2886 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2887 break; 2888 } 2889 } 2890 } 2891 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2892 g_free(bp); 2893 } 2894 kvm_arch_remove_all_hw_breakpoints(); 2895 2896 CPU_FOREACH(cpu) { 2897 kvm_update_guest_debug(cpu, 0); 2898 } 2899 } 2900 2901 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2902 2903 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2904 { 2905 return -EINVAL; 2906 } 2907 2908 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2909 target_ulong len, int type) 2910 { 2911 return -EINVAL; 2912 } 2913 2914 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2915 target_ulong len, int type) 2916 { 2917 return -EINVAL; 2918 } 2919 2920 void kvm_remove_all_breakpoints(CPUState *cpu) 2921 { 2922 } 2923 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2924 2925 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2926 { 2927 KVMState *s = kvm_state; 2928 struct kvm_signal_mask *sigmask; 2929 int r; 2930 2931 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2932 2933 sigmask->len = s->sigmask_len; 2934 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2935 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2936 g_free(sigmask); 2937 2938 return r; 2939 } 2940 2941 static void kvm_ipi_signal(int sig) 2942 { 2943 if (current_cpu) { 2944 assert(kvm_immediate_exit); 2945 kvm_cpu_kick(current_cpu); 2946 } 2947 } 2948 2949 void kvm_init_cpu_signals(CPUState *cpu) 2950 { 2951 int r; 2952 sigset_t set; 2953 struct sigaction sigact; 2954 2955 memset(&sigact, 0, sizeof(sigact)); 2956 sigact.sa_handler = kvm_ipi_signal; 2957 sigaction(SIG_IPI, &sigact, NULL); 2958 2959 pthread_sigmask(SIG_BLOCK, NULL, &set); 2960 #if defined KVM_HAVE_MCE_INJECTION 2961 sigdelset(&set, SIGBUS); 2962 pthread_sigmask(SIG_SETMASK, &set, NULL); 2963 #endif 2964 sigdelset(&set, SIG_IPI); 2965 if (kvm_immediate_exit) { 2966 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2967 } else { 2968 r = kvm_set_signal_mask(cpu, &set); 2969 } 2970 if (r) { 2971 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2972 exit(1); 2973 } 2974 } 2975 2976 /* Called asynchronously in VCPU thread. */ 2977 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2978 { 2979 #ifdef KVM_HAVE_MCE_INJECTION 2980 if (have_sigbus_pending) { 2981 return 1; 2982 } 2983 have_sigbus_pending = true; 2984 pending_sigbus_addr = addr; 2985 pending_sigbus_code = code; 2986 qatomic_set(&cpu->exit_request, 1); 2987 return 0; 2988 #else 2989 return 1; 2990 #endif 2991 } 2992 2993 /* Called synchronously (via signalfd) in main thread. */ 2994 int kvm_on_sigbus(int code, void *addr) 2995 { 2996 #ifdef KVM_HAVE_MCE_INJECTION 2997 /* Action required MCE kills the process if SIGBUS is blocked. Because 2998 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2999 * we can only get action optional here. 3000 */ 3001 assert(code != BUS_MCEERR_AR); 3002 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3003 return 0; 3004 #else 3005 return 1; 3006 #endif 3007 } 3008 3009 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3010 { 3011 int ret; 3012 struct kvm_create_device create_dev; 3013 3014 create_dev.type = type; 3015 create_dev.fd = -1; 3016 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3017 3018 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3019 return -ENOTSUP; 3020 } 3021 3022 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3023 if (ret) { 3024 return ret; 3025 } 3026 3027 return test ? 0 : create_dev.fd; 3028 } 3029 3030 bool kvm_device_supported(int vmfd, uint64_t type) 3031 { 3032 struct kvm_create_device create_dev = { 3033 .type = type, 3034 .fd = -1, 3035 .flags = KVM_CREATE_DEVICE_TEST, 3036 }; 3037 3038 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3039 return false; 3040 } 3041 3042 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3043 } 3044 3045 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3046 { 3047 struct kvm_one_reg reg; 3048 int r; 3049 3050 reg.id = id; 3051 reg.addr = (uintptr_t) source; 3052 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3053 if (r) { 3054 trace_kvm_failed_reg_set(id, strerror(-r)); 3055 } 3056 return r; 3057 } 3058 3059 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3060 { 3061 struct kvm_one_reg reg; 3062 int r; 3063 3064 reg.id = id; 3065 reg.addr = (uintptr_t) target; 3066 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3067 if (r) { 3068 trace_kvm_failed_reg_get(id, strerror(-r)); 3069 } 3070 return r; 3071 } 3072 3073 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3074 hwaddr start_addr, hwaddr size) 3075 { 3076 KVMState *kvm = KVM_STATE(ms->accelerator); 3077 int i; 3078 3079 for (i = 0; i < kvm->nr_as; ++i) { 3080 if (kvm->as[i].as == as && kvm->as[i].ml) { 3081 size = MIN(kvm_max_slot_size, size); 3082 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3083 start_addr, size); 3084 } 3085 } 3086 3087 return false; 3088 } 3089 3090 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3091 const char *name, void *opaque, 3092 Error **errp) 3093 { 3094 KVMState *s = KVM_STATE(obj); 3095 int64_t value = s->kvm_shadow_mem; 3096 3097 visit_type_int(v, name, &value, errp); 3098 } 3099 3100 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3101 const char *name, void *opaque, 3102 Error **errp) 3103 { 3104 KVMState *s = KVM_STATE(obj); 3105 int64_t value; 3106 3107 if (!visit_type_int(v, name, &value, errp)) { 3108 return; 3109 } 3110 3111 s->kvm_shadow_mem = value; 3112 } 3113 3114 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3115 const char *name, void *opaque, 3116 Error **errp) 3117 { 3118 KVMState *s = KVM_STATE(obj); 3119 OnOffSplit mode; 3120 3121 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3122 return; 3123 } 3124 switch (mode) { 3125 case ON_OFF_SPLIT_ON: 3126 s->kernel_irqchip_allowed = true; 3127 s->kernel_irqchip_required = true; 3128 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3129 break; 3130 case ON_OFF_SPLIT_OFF: 3131 s->kernel_irqchip_allowed = false; 3132 s->kernel_irqchip_required = false; 3133 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3134 break; 3135 case ON_OFF_SPLIT_SPLIT: 3136 s->kernel_irqchip_allowed = true; 3137 s->kernel_irqchip_required = true; 3138 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3139 break; 3140 default: 3141 /* The value was checked in visit_type_OnOffSplit() above. If 3142 * we get here, then something is wrong in QEMU. 3143 */ 3144 abort(); 3145 } 3146 } 3147 3148 bool kvm_kernel_irqchip_allowed(void) 3149 { 3150 return kvm_state->kernel_irqchip_allowed; 3151 } 3152 3153 bool kvm_kernel_irqchip_required(void) 3154 { 3155 return kvm_state->kernel_irqchip_required; 3156 } 3157 3158 bool kvm_kernel_irqchip_split(void) 3159 { 3160 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3161 } 3162 3163 static void kvm_accel_instance_init(Object *obj) 3164 { 3165 KVMState *s = KVM_STATE(obj); 3166 3167 s->kvm_shadow_mem = -1; 3168 s->kernel_irqchip_allowed = true; 3169 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3170 } 3171 3172 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3173 { 3174 AccelClass *ac = ACCEL_CLASS(oc); 3175 ac->name = "KVM"; 3176 ac->init_machine = kvm_init; 3177 ac->has_memory = kvm_accel_has_memory; 3178 ac->allowed = &kvm_allowed; 3179 3180 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3181 NULL, kvm_set_kernel_irqchip, 3182 NULL, NULL); 3183 object_class_property_set_description(oc, "kernel-irqchip", 3184 "Configure KVM in-kernel irqchip"); 3185 3186 object_class_property_add(oc, "kvm-shadow-mem", "int", 3187 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3188 NULL, NULL); 3189 object_class_property_set_description(oc, "kvm-shadow-mem", 3190 "KVM shadow MMU size"); 3191 } 3192 3193 static const TypeInfo kvm_accel_type = { 3194 .name = TYPE_KVM_ACCEL, 3195 .parent = TYPE_ACCEL, 3196 .instance_init = kvm_accel_instance_init, 3197 .class_init = kvm_accel_class_init, 3198 .instance_size = sizeof(KVMState), 3199 }; 3200 3201 static void kvm_type_init(void) 3202 { 3203 type_register_static(&kvm_accel_type); 3204 } 3205 3206 type_init(kvm_type_init); 3207