1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/hw.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/cpus.h" 33 #include "qemu/bswap.h" 34 #include "exec/memory.h" 35 #include "exec/ram_addr.h" 36 #include "exec/address-spaces.h" 37 #include "qemu/event_notifier.h" 38 #include "trace.h" 39 #include "hw/irq.h" 40 #include "sysemu/sev.h" 41 #include "sysemu/balloon.h" 42 43 #include "hw/boards.h" 44 45 /* This check must be after config-host.h is included */ 46 #ifdef CONFIG_EVENTFD 47 #include <sys/eventfd.h> 48 #endif 49 50 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 51 * need to use the real host PAGE_SIZE, as that's what KVM will use. 52 */ 53 #define PAGE_SIZE getpagesize() 54 55 //#define DEBUG_KVM 56 57 #ifdef DEBUG_KVM 58 #define DPRINTF(fmt, ...) \ 59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 60 #else 61 #define DPRINTF(fmt, ...) \ 62 do { } while (0) 63 #endif 64 65 #define KVM_MSI_HASHTAB_SIZE 256 66 67 struct KVMParkedVcpu { 68 unsigned long vcpu_id; 69 int kvm_fd; 70 QLIST_ENTRY(KVMParkedVcpu) node; 71 }; 72 73 struct KVMState 74 { 75 AccelState parent_obj; 76 77 int nr_slots; 78 int fd; 79 int vmfd; 80 int coalesced_mmio; 81 int coalesced_pio; 82 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 83 bool coalesced_flush_in_progress; 84 int vcpu_events; 85 int robust_singlestep; 86 int debugregs; 87 #ifdef KVM_CAP_SET_GUEST_DEBUG 88 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 89 #endif 90 int max_nested_state_len; 91 int many_ioeventfds; 92 int intx_set_mask; 93 bool sync_mmu; 94 /* The man page (and posix) say ioctl numbers are signed int, but 95 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 96 * unsigned, and treating them as signed here can break things */ 97 unsigned irq_set_ioctl; 98 unsigned int sigmask_len; 99 GHashTable *gsimap; 100 #ifdef KVM_CAP_IRQ_ROUTING 101 struct kvm_irq_routing *irq_routes; 102 int nr_allocated_irq_routes; 103 unsigned long *used_gsi_bitmap; 104 unsigned int gsi_count; 105 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 106 #endif 107 KVMMemoryListener memory_listener; 108 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 109 110 /* memory encryption */ 111 void *memcrypt_handle; 112 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 113 }; 114 115 KVMState *kvm_state; 116 bool kvm_kernel_irqchip; 117 bool kvm_split_irqchip; 118 bool kvm_async_interrupts_allowed; 119 bool kvm_halt_in_kernel_allowed; 120 bool kvm_eventfds_allowed; 121 bool kvm_irqfds_allowed; 122 bool kvm_resamplefds_allowed; 123 bool kvm_msi_via_irqfd_allowed; 124 bool kvm_gsi_routing_allowed; 125 bool kvm_gsi_direct_mapping; 126 bool kvm_allowed; 127 bool kvm_readonly_mem_allowed; 128 bool kvm_vm_attributes_allowed; 129 bool kvm_direct_msi_allowed; 130 bool kvm_ioeventfd_any_length_allowed; 131 bool kvm_msi_use_devid; 132 static bool kvm_immediate_exit; 133 134 static const KVMCapabilityInfo kvm_required_capabilites[] = { 135 KVM_CAP_INFO(USER_MEMORY), 136 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 137 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 138 KVM_CAP_LAST_INFO 139 }; 140 141 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 142 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 143 144 int kvm_get_max_memslots(void) 145 { 146 KVMState *s = KVM_STATE(current_machine->accelerator); 147 148 return s->nr_slots; 149 } 150 151 bool kvm_memcrypt_enabled(void) 152 { 153 if (kvm_state && kvm_state->memcrypt_handle) { 154 return true; 155 } 156 157 return false; 158 } 159 160 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 161 { 162 if (kvm_state->memcrypt_handle && 163 kvm_state->memcrypt_encrypt_data) { 164 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 165 ptr, len); 166 } 167 168 return 1; 169 } 170 171 /* Called with KVMMemoryListener.slots_lock held */ 172 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 173 { 174 KVMState *s = kvm_state; 175 int i; 176 177 for (i = 0; i < s->nr_slots; i++) { 178 if (kml->slots[i].memory_size == 0) { 179 return &kml->slots[i]; 180 } 181 } 182 183 return NULL; 184 } 185 186 bool kvm_has_free_slot(MachineState *ms) 187 { 188 KVMState *s = KVM_STATE(ms->accelerator); 189 bool result; 190 KVMMemoryListener *kml = &s->memory_listener; 191 192 kvm_slots_lock(kml); 193 result = !!kvm_get_free_slot(kml); 194 kvm_slots_unlock(kml); 195 196 return result; 197 } 198 199 /* Called with KVMMemoryListener.slots_lock held */ 200 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 201 { 202 KVMSlot *slot = kvm_get_free_slot(kml); 203 204 if (slot) { 205 return slot; 206 } 207 208 fprintf(stderr, "%s: no free slot available\n", __func__); 209 abort(); 210 } 211 212 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 213 hwaddr start_addr, 214 hwaddr size) 215 { 216 KVMState *s = kvm_state; 217 int i; 218 219 for (i = 0; i < s->nr_slots; i++) { 220 KVMSlot *mem = &kml->slots[i]; 221 222 if (start_addr == mem->start_addr && size == mem->memory_size) { 223 return mem; 224 } 225 } 226 227 return NULL; 228 } 229 230 /* 231 * Calculate and align the start address and the size of the section. 232 * Return the size. If the size is 0, the aligned section is empty. 233 */ 234 static hwaddr kvm_align_section(MemoryRegionSection *section, 235 hwaddr *start) 236 { 237 hwaddr size = int128_get64(section->size); 238 hwaddr delta, aligned; 239 240 /* kvm works in page size chunks, but the function may be called 241 with sub-page size and unaligned start address. Pad the start 242 address to next and truncate size to previous page boundary. */ 243 aligned = ROUND_UP(section->offset_within_address_space, 244 qemu_real_host_page_size); 245 delta = aligned - section->offset_within_address_space; 246 *start = aligned; 247 if (delta > size) { 248 return 0; 249 } 250 251 return (size - delta) & qemu_real_host_page_mask; 252 } 253 254 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 255 hwaddr *phys_addr) 256 { 257 KVMMemoryListener *kml = &s->memory_listener; 258 int i, ret = 0; 259 260 kvm_slots_lock(kml); 261 for (i = 0; i < s->nr_slots; i++) { 262 KVMSlot *mem = &kml->slots[i]; 263 264 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 265 *phys_addr = mem->start_addr + (ram - mem->ram); 266 ret = 1; 267 break; 268 } 269 } 270 kvm_slots_unlock(kml); 271 272 return ret; 273 } 274 275 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 276 { 277 KVMState *s = kvm_state; 278 struct kvm_userspace_memory_region mem; 279 int ret; 280 281 mem.slot = slot->slot | (kml->as_id << 16); 282 mem.guest_phys_addr = slot->start_addr; 283 mem.userspace_addr = (unsigned long)slot->ram; 284 mem.flags = slot->flags; 285 286 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 287 /* Set the slot size to 0 before setting the slot to the desired 288 * value. This is needed based on KVM commit 75d61fbc. */ 289 mem.memory_size = 0; 290 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 291 } 292 mem.memory_size = slot->memory_size; 293 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 294 slot->old_flags = mem.flags; 295 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 296 mem.memory_size, mem.userspace_addr, ret); 297 return ret; 298 } 299 300 int kvm_destroy_vcpu(CPUState *cpu) 301 { 302 KVMState *s = kvm_state; 303 long mmap_size; 304 struct KVMParkedVcpu *vcpu = NULL; 305 int ret = 0; 306 307 DPRINTF("kvm_destroy_vcpu\n"); 308 309 ret = kvm_arch_destroy_vcpu(cpu); 310 if (ret < 0) { 311 goto err; 312 } 313 314 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 315 if (mmap_size < 0) { 316 ret = mmap_size; 317 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 318 goto err; 319 } 320 321 ret = munmap(cpu->kvm_run, mmap_size); 322 if (ret < 0) { 323 goto err; 324 } 325 326 vcpu = g_malloc0(sizeof(*vcpu)); 327 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 328 vcpu->kvm_fd = cpu->kvm_fd; 329 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 330 err: 331 return ret; 332 } 333 334 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 335 { 336 struct KVMParkedVcpu *cpu; 337 338 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 339 if (cpu->vcpu_id == vcpu_id) { 340 int kvm_fd; 341 342 QLIST_REMOVE(cpu, node); 343 kvm_fd = cpu->kvm_fd; 344 g_free(cpu); 345 return kvm_fd; 346 } 347 } 348 349 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 350 } 351 352 int kvm_init_vcpu(CPUState *cpu) 353 { 354 KVMState *s = kvm_state; 355 long mmap_size; 356 int ret; 357 358 DPRINTF("kvm_init_vcpu\n"); 359 360 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 361 if (ret < 0) { 362 DPRINTF("kvm_create_vcpu failed\n"); 363 goto err; 364 } 365 366 cpu->kvm_fd = ret; 367 cpu->kvm_state = s; 368 cpu->vcpu_dirty = true; 369 370 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 371 if (mmap_size < 0) { 372 ret = mmap_size; 373 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 374 goto err; 375 } 376 377 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 378 cpu->kvm_fd, 0); 379 if (cpu->kvm_run == MAP_FAILED) { 380 ret = -errno; 381 DPRINTF("mmap'ing vcpu state failed\n"); 382 goto err; 383 } 384 385 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 386 s->coalesced_mmio_ring = 387 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 388 } 389 390 ret = kvm_arch_init_vcpu(cpu); 391 err: 392 return ret; 393 } 394 395 /* 396 * dirty pages logging control 397 */ 398 399 static int kvm_mem_flags(MemoryRegion *mr) 400 { 401 bool readonly = mr->readonly || memory_region_is_romd(mr); 402 int flags = 0; 403 404 if (memory_region_get_dirty_log_mask(mr) != 0) { 405 flags |= KVM_MEM_LOG_DIRTY_PAGES; 406 } 407 if (readonly && kvm_readonly_mem_allowed) { 408 flags |= KVM_MEM_READONLY; 409 } 410 return flags; 411 } 412 413 /* Called with KVMMemoryListener.slots_lock held */ 414 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 415 MemoryRegion *mr) 416 { 417 mem->flags = kvm_mem_flags(mr); 418 419 /* If nothing changed effectively, no need to issue ioctl */ 420 if (mem->flags == mem->old_flags) { 421 return 0; 422 } 423 424 return kvm_set_user_memory_region(kml, mem, false); 425 } 426 427 static int kvm_section_update_flags(KVMMemoryListener *kml, 428 MemoryRegionSection *section) 429 { 430 hwaddr start_addr, size; 431 KVMSlot *mem; 432 int ret = 0; 433 434 size = kvm_align_section(section, &start_addr); 435 if (!size) { 436 return 0; 437 } 438 439 kvm_slots_lock(kml); 440 441 mem = kvm_lookup_matching_slot(kml, start_addr, size); 442 if (!mem) { 443 /* We don't have a slot if we want to trap every access. */ 444 goto out; 445 } 446 447 ret = kvm_slot_update_flags(kml, mem, section->mr); 448 449 out: 450 kvm_slots_unlock(kml); 451 return ret; 452 } 453 454 static void kvm_log_start(MemoryListener *listener, 455 MemoryRegionSection *section, 456 int old, int new) 457 { 458 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 459 int r; 460 461 if (old != 0) { 462 return; 463 } 464 465 r = kvm_section_update_flags(kml, section); 466 if (r < 0) { 467 abort(); 468 } 469 } 470 471 static void kvm_log_stop(MemoryListener *listener, 472 MemoryRegionSection *section, 473 int old, int new) 474 { 475 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 476 int r; 477 478 if (new != 0) { 479 return; 480 } 481 482 r = kvm_section_update_flags(kml, section); 483 if (r < 0) { 484 abort(); 485 } 486 } 487 488 /* get kvm's dirty pages bitmap and update qemu's */ 489 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 490 unsigned long *bitmap) 491 { 492 ram_addr_t start = section->offset_within_region + 493 memory_region_get_ram_addr(section->mr); 494 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 495 496 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 497 return 0; 498 } 499 500 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 501 502 /** 503 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 504 * 505 * This function will first try to fetch dirty bitmap from the kernel, 506 * and then updates qemu's dirty bitmap. 507 * 508 * NOTE: caller must be with kml->slots_lock held. 509 * 510 * @kml: the KVM memory listener object 511 * @section: the memory section to sync the dirty bitmap with 512 */ 513 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 514 MemoryRegionSection *section) 515 { 516 KVMState *s = kvm_state; 517 struct kvm_dirty_log d = {}; 518 KVMSlot *mem; 519 hwaddr start_addr, size; 520 int ret = 0; 521 522 size = kvm_align_section(section, &start_addr); 523 if (size) { 524 mem = kvm_lookup_matching_slot(kml, start_addr, size); 525 if (!mem) { 526 /* We don't have a slot if we want to trap every access. */ 527 goto out; 528 } 529 530 /* XXX bad kernel interface alert 531 * For dirty bitmap, kernel allocates array of size aligned to 532 * bits-per-long. But for case when the kernel is 64bits and 533 * the userspace is 32bits, userspace can't align to the same 534 * bits-per-long, since sizeof(long) is different between kernel 535 * and user space. This way, userspace will provide buffer which 536 * may be 4 bytes less than the kernel will use, resulting in 537 * userspace memory corruption (which is not detectable by valgrind 538 * too, in most cases). 539 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 540 * a hope that sizeof(long) won't become >8 any time soon. 541 */ 542 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 543 /*HOST_LONG_BITS*/ 64) / 8; 544 if (!mem->dirty_bmap) { 545 /* Allocate on the first log_sync, once and for all */ 546 mem->dirty_bmap = g_malloc0(size); 547 } 548 549 d.dirty_bitmap = mem->dirty_bmap; 550 d.slot = mem->slot | (kml->as_id << 16); 551 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 552 DPRINTF("ioctl failed %d\n", errno); 553 ret = -1; 554 goto out; 555 } 556 557 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 558 } 559 out: 560 return ret; 561 } 562 563 static void kvm_coalesce_mmio_region(MemoryListener *listener, 564 MemoryRegionSection *secion, 565 hwaddr start, hwaddr size) 566 { 567 KVMState *s = kvm_state; 568 569 if (s->coalesced_mmio) { 570 struct kvm_coalesced_mmio_zone zone; 571 572 zone.addr = start; 573 zone.size = size; 574 zone.pad = 0; 575 576 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 577 } 578 } 579 580 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 581 MemoryRegionSection *secion, 582 hwaddr start, hwaddr size) 583 { 584 KVMState *s = kvm_state; 585 586 if (s->coalesced_mmio) { 587 struct kvm_coalesced_mmio_zone zone; 588 589 zone.addr = start; 590 zone.size = size; 591 zone.pad = 0; 592 593 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 594 } 595 } 596 597 static void kvm_coalesce_pio_add(MemoryListener *listener, 598 MemoryRegionSection *section, 599 hwaddr start, hwaddr size) 600 { 601 KVMState *s = kvm_state; 602 603 if (s->coalesced_pio) { 604 struct kvm_coalesced_mmio_zone zone; 605 606 zone.addr = start; 607 zone.size = size; 608 zone.pio = 1; 609 610 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 611 } 612 } 613 614 static void kvm_coalesce_pio_del(MemoryListener *listener, 615 MemoryRegionSection *section, 616 hwaddr start, hwaddr size) 617 { 618 KVMState *s = kvm_state; 619 620 if (s->coalesced_pio) { 621 struct kvm_coalesced_mmio_zone zone; 622 623 zone.addr = start; 624 zone.size = size; 625 zone.pio = 1; 626 627 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 628 } 629 } 630 631 static MemoryListener kvm_coalesced_pio_listener = { 632 .coalesced_io_add = kvm_coalesce_pio_add, 633 .coalesced_io_del = kvm_coalesce_pio_del, 634 }; 635 636 int kvm_check_extension(KVMState *s, unsigned int extension) 637 { 638 int ret; 639 640 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 641 if (ret < 0) { 642 ret = 0; 643 } 644 645 return ret; 646 } 647 648 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 649 { 650 int ret; 651 652 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 653 if (ret < 0) { 654 /* VM wide version not implemented, use global one instead */ 655 ret = kvm_check_extension(s, extension); 656 } 657 658 return ret; 659 } 660 661 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 662 { 663 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 664 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 665 * endianness, but the memory core hands them in target endianness. 666 * For example, PPC is always treated as big-endian even if running 667 * on KVM and on PPC64LE. Correct here. 668 */ 669 switch (size) { 670 case 2: 671 val = bswap16(val); 672 break; 673 case 4: 674 val = bswap32(val); 675 break; 676 } 677 #endif 678 return val; 679 } 680 681 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 682 bool assign, uint32_t size, bool datamatch) 683 { 684 int ret; 685 struct kvm_ioeventfd iofd = { 686 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 687 .addr = addr, 688 .len = size, 689 .flags = 0, 690 .fd = fd, 691 }; 692 693 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 694 datamatch); 695 if (!kvm_enabled()) { 696 return -ENOSYS; 697 } 698 699 if (datamatch) { 700 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 701 } 702 if (!assign) { 703 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 704 } 705 706 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 707 708 if (ret < 0) { 709 return -errno; 710 } 711 712 return 0; 713 } 714 715 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 716 bool assign, uint32_t size, bool datamatch) 717 { 718 struct kvm_ioeventfd kick = { 719 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 720 .addr = addr, 721 .flags = KVM_IOEVENTFD_FLAG_PIO, 722 .len = size, 723 .fd = fd, 724 }; 725 int r; 726 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 727 if (!kvm_enabled()) { 728 return -ENOSYS; 729 } 730 if (datamatch) { 731 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 732 } 733 if (!assign) { 734 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 735 } 736 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 737 if (r < 0) { 738 return r; 739 } 740 return 0; 741 } 742 743 744 static int kvm_check_many_ioeventfds(void) 745 { 746 /* Userspace can use ioeventfd for io notification. This requires a host 747 * that supports eventfd(2) and an I/O thread; since eventfd does not 748 * support SIGIO it cannot interrupt the vcpu. 749 * 750 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 751 * can avoid creating too many ioeventfds. 752 */ 753 #if defined(CONFIG_EVENTFD) 754 int ioeventfds[7]; 755 int i, ret = 0; 756 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 757 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 758 if (ioeventfds[i] < 0) { 759 break; 760 } 761 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 762 if (ret < 0) { 763 close(ioeventfds[i]); 764 break; 765 } 766 } 767 768 /* Decide whether many devices are supported or not */ 769 ret = i == ARRAY_SIZE(ioeventfds); 770 771 while (i-- > 0) { 772 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 773 close(ioeventfds[i]); 774 } 775 return ret; 776 #else 777 return 0; 778 #endif 779 } 780 781 static const KVMCapabilityInfo * 782 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 783 { 784 while (list->name) { 785 if (!kvm_check_extension(s, list->value)) { 786 return list; 787 } 788 list++; 789 } 790 return NULL; 791 } 792 793 static void kvm_set_phys_mem(KVMMemoryListener *kml, 794 MemoryRegionSection *section, bool add) 795 { 796 KVMSlot *mem; 797 int err; 798 MemoryRegion *mr = section->mr; 799 bool writeable = !mr->readonly && !mr->rom_device; 800 hwaddr start_addr, size; 801 void *ram; 802 803 if (!memory_region_is_ram(mr)) { 804 if (writeable || !kvm_readonly_mem_allowed) { 805 return; 806 } else if (!mr->romd_mode) { 807 /* If the memory device is not in romd_mode, then we actually want 808 * to remove the kvm memory slot so all accesses will trap. */ 809 add = false; 810 } 811 } 812 813 size = kvm_align_section(section, &start_addr); 814 if (!size) { 815 return; 816 } 817 818 /* use aligned delta to align the ram address */ 819 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 820 (start_addr - section->offset_within_address_space); 821 822 kvm_slots_lock(kml); 823 824 if (!add) { 825 mem = kvm_lookup_matching_slot(kml, start_addr, size); 826 if (!mem) { 827 goto out; 828 } 829 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 830 kvm_physical_sync_dirty_bitmap(kml, section); 831 } 832 833 /* unregister the slot */ 834 g_free(mem->dirty_bmap); 835 mem->dirty_bmap = NULL; 836 mem->memory_size = 0; 837 mem->flags = 0; 838 err = kvm_set_user_memory_region(kml, mem, false); 839 if (err) { 840 fprintf(stderr, "%s: error unregistering slot: %s\n", 841 __func__, strerror(-err)); 842 abort(); 843 } 844 goto out; 845 } 846 847 /* register the new slot */ 848 mem = kvm_alloc_slot(kml); 849 mem->memory_size = size; 850 mem->start_addr = start_addr; 851 mem->ram = ram; 852 mem->flags = kvm_mem_flags(mr); 853 854 err = kvm_set_user_memory_region(kml, mem, true); 855 if (err) { 856 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 857 strerror(-err)); 858 abort(); 859 } 860 861 out: 862 kvm_slots_unlock(kml); 863 } 864 865 static void kvm_region_add(MemoryListener *listener, 866 MemoryRegionSection *section) 867 { 868 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 869 870 memory_region_ref(section->mr); 871 kvm_set_phys_mem(kml, section, true); 872 } 873 874 static void kvm_region_del(MemoryListener *listener, 875 MemoryRegionSection *section) 876 { 877 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 878 879 kvm_set_phys_mem(kml, section, false); 880 memory_region_unref(section->mr); 881 } 882 883 static void kvm_log_sync(MemoryListener *listener, 884 MemoryRegionSection *section) 885 { 886 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 887 int r; 888 889 kvm_slots_lock(kml); 890 r = kvm_physical_sync_dirty_bitmap(kml, section); 891 kvm_slots_unlock(kml); 892 if (r < 0) { 893 abort(); 894 } 895 } 896 897 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 898 MemoryRegionSection *section, 899 bool match_data, uint64_t data, 900 EventNotifier *e) 901 { 902 int fd = event_notifier_get_fd(e); 903 int r; 904 905 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 906 data, true, int128_get64(section->size), 907 match_data); 908 if (r < 0) { 909 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 910 __func__, strerror(-r), -r); 911 abort(); 912 } 913 } 914 915 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 916 MemoryRegionSection *section, 917 bool match_data, uint64_t data, 918 EventNotifier *e) 919 { 920 int fd = event_notifier_get_fd(e); 921 int r; 922 923 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 924 data, false, int128_get64(section->size), 925 match_data); 926 if (r < 0) { 927 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 928 __func__, strerror(-r), -r); 929 abort(); 930 } 931 } 932 933 static void kvm_io_ioeventfd_add(MemoryListener *listener, 934 MemoryRegionSection *section, 935 bool match_data, uint64_t data, 936 EventNotifier *e) 937 { 938 int fd = event_notifier_get_fd(e); 939 int r; 940 941 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 942 data, true, int128_get64(section->size), 943 match_data); 944 if (r < 0) { 945 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 946 __func__, strerror(-r), -r); 947 abort(); 948 } 949 } 950 951 static void kvm_io_ioeventfd_del(MemoryListener *listener, 952 MemoryRegionSection *section, 953 bool match_data, uint64_t data, 954 EventNotifier *e) 955 956 { 957 int fd = event_notifier_get_fd(e); 958 int r; 959 960 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 961 data, false, int128_get64(section->size), 962 match_data); 963 if (r < 0) { 964 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 965 __func__, strerror(-r), -r); 966 abort(); 967 } 968 } 969 970 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 971 AddressSpace *as, int as_id) 972 { 973 int i; 974 975 qemu_mutex_init(&kml->slots_lock); 976 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 977 kml->as_id = as_id; 978 979 for (i = 0; i < s->nr_slots; i++) { 980 kml->slots[i].slot = i; 981 } 982 983 kml->listener.region_add = kvm_region_add; 984 kml->listener.region_del = kvm_region_del; 985 kml->listener.log_start = kvm_log_start; 986 kml->listener.log_stop = kvm_log_stop; 987 kml->listener.log_sync = kvm_log_sync; 988 kml->listener.priority = 10; 989 990 memory_listener_register(&kml->listener, as); 991 } 992 993 static MemoryListener kvm_io_listener = { 994 .eventfd_add = kvm_io_ioeventfd_add, 995 .eventfd_del = kvm_io_ioeventfd_del, 996 .priority = 10, 997 }; 998 999 int kvm_set_irq(KVMState *s, int irq, int level) 1000 { 1001 struct kvm_irq_level event; 1002 int ret; 1003 1004 assert(kvm_async_interrupts_enabled()); 1005 1006 event.level = level; 1007 event.irq = irq; 1008 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1009 if (ret < 0) { 1010 perror("kvm_set_irq"); 1011 abort(); 1012 } 1013 1014 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1015 } 1016 1017 #ifdef KVM_CAP_IRQ_ROUTING 1018 typedef struct KVMMSIRoute { 1019 struct kvm_irq_routing_entry kroute; 1020 QTAILQ_ENTRY(KVMMSIRoute) entry; 1021 } KVMMSIRoute; 1022 1023 static void set_gsi(KVMState *s, unsigned int gsi) 1024 { 1025 set_bit(gsi, s->used_gsi_bitmap); 1026 } 1027 1028 static void clear_gsi(KVMState *s, unsigned int gsi) 1029 { 1030 clear_bit(gsi, s->used_gsi_bitmap); 1031 } 1032 1033 void kvm_init_irq_routing(KVMState *s) 1034 { 1035 int gsi_count, i; 1036 1037 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1038 if (gsi_count > 0) { 1039 /* Round up so we can search ints using ffs */ 1040 s->used_gsi_bitmap = bitmap_new(gsi_count); 1041 s->gsi_count = gsi_count; 1042 } 1043 1044 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1045 s->nr_allocated_irq_routes = 0; 1046 1047 if (!kvm_direct_msi_allowed) { 1048 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1049 QTAILQ_INIT(&s->msi_hashtab[i]); 1050 } 1051 } 1052 1053 kvm_arch_init_irq_routing(s); 1054 } 1055 1056 void kvm_irqchip_commit_routes(KVMState *s) 1057 { 1058 int ret; 1059 1060 if (kvm_gsi_direct_mapping()) { 1061 return; 1062 } 1063 1064 if (!kvm_gsi_routing_enabled()) { 1065 return; 1066 } 1067 1068 s->irq_routes->flags = 0; 1069 trace_kvm_irqchip_commit_routes(); 1070 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1071 assert(ret == 0); 1072 } 1073 1074 static void kvm_add_routing_entry(KVMState *s, 1075 struct kvm_irq_routing_entry *entry) 1076 { 1077 struct kvm_irq_routing_entry *new; 1078 int n, size; 1079 1080 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1081 n = s->nr_allocated_irq_routes * 2; 1082 if (n < 64) { 1083 n = 64; 1084 } 1085 size = sizeof(struct kvm_irq_routing); 1086 size += n * sizeof(*new); 1087 s->irq_routes = g_realloc(s->irq_routes, size); 1088 s->nr_allocated_irq_routes = n; 1089 } 1090 n = s->irq_routes->nr++; 1091 new = &s->irq_routes->entries[n]; 1092 1093 *new = *entry; 1094 1095 set_gsi(s, entry->gsi); 1096 } 1097 1098 static int kvm_update_routing_entry(KVMState *s, 1099 struct kvm_irq_routing_entry *new_entry) 1100 { 1101 struct kvm_irq_routing_entry *entry; 1102 int n; 1103 1104 for (n = 0; n < s->irq_routes->nr; n++) { 1105 entry = &s->irq_routes->entries[n]; 1106 if (entry->gsi != new_entry->gsi) { 1107 continue; 1108 } 1109 1110 if(!memcmp(entry, new_entry, sizeof *entry)) { 1111 return 0; 1112 } 1113 1114 *entry = *new_entry; 1115 1116 return 0; 1117 } 1118 1119 return -ESRCH; 1120 } 1121 1122 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1123 { 1124 struct kvm_irq_routing_entry e = {}; 1125 1126 assert(pin < s->gsi_count); 1127 1128 e.gsi = irq; 1129 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1130 e.flags = 0; 1131 e.u.irqchip.irqchip = irqchip; 1132 e.u.irqchip.pin = pin; 1133 kvm_add_routing_entry(s, &e); 1134 } 1135 1136 void kvm_irqchip_release_virq(KVMState *s, int virq) 1137 { 1138 struct kvm_irq_routing_entry *e; 1139 int i; 1140 1141 if (kvm_gsi_direct_mapping()) { 1142 return; 1143 } 1144 1145 for (i = 0; i < s->irq_routes->nr; i++) { 1146 e = &s->irq_routes->entries[i]; 1147 if (e->gsi == virq) { 1148 s->irq_routes->nr--; 1149 *e = s->irq_routes->entries[s->irq_routes->nr]; 1150 } 1151 } 1152 clear_gsi(s, virq); 1153 kvm_arch_release_virq_post(virq); 1154 trace_kvm_irqchip_release_virq(virq); 1155 } 1156 1157 static unsigned int kvm_hash_msi(uint32_t data) 1158 { 1159 /* This is optimized for IA32 MSI layout. However, no other arch shall 1160 * repeat the mistake of not providing a direct MSI injection API. */ 1161 return data & 0xff; 1162 } 1163 1164 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1165 { 1166 KVMMSIRoute *route, *next; 1167 unsigned int hash; 1168 1169 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1170 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1171 kvm_irqchip_release_virq(s, route->kroute.gsi); 1172 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1173 g_free(route); 1174 } 1175 } 1176 } 1177 1178 static int kvm_irqchip_get_virq(KVMState *s) 1179 { 1180 int next_virq; 1181 1182 /* 1183 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1184 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1185 * number can succeed even though a new route entry cannot be added. 1186 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1187 */ 1188 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1189 kvm_flush_dynamic_msi_routes(s); 1190 } 1191 1192 /* Return the lowest unused GSI in the bitmap */ 1193 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1194 if (next_virq >= s->gsi_count) { 1195 return -ENOSPC; 1196 } else { 1197 return next_virq; 1198 } 1199 } 1200 1201 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1202 { 1203 unsigned int hash = kvm_hash_msi(msg.data); 1204 KVMMSIRoute *route; 1205 1206 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1207 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1208 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1209 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1210 return route; 1211 } 1212 } 1213 return NULL; 1214 } 1215 1216 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1217 { 1218 struct kvm_msi msi; 1219 KVMMSIRoute *route; 1220 1221 if (kvm_direct_msi_allowed) { 1222 msi.address_lo = (uint32_t)msg.address; 1223 msi.address_hi = msg.address >> 32; 1224 msi.data = le32_to_cpu(msg.data); 1225 msi.flags = 0; 1226 memset(msi.pad, 0, sizeof(msi.pad)); 1227 1228 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1229 } 1230 1231 route = kvm_lookup_msi_route(s, msg); 1232 if (!route) { 1233 int virq; 1234 1235 virq = kvm_irqchip_get_virq(s); 1236 if (virq < 0) { 1237 return virq; 1238 } 1239 1240 route = g_malloc0(sizeof(KVMMSIRoute)); 1241 route->kroute.gsi = virq; 1242 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1243 route->kroute.flags = 0; 1244 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1245 route->kroute.u.msi.address_hi = msg.address >> 32; 1246 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1247 1248 kvm_add_routing_entry(s, &route->kroute); 1249 kvm_irqchip_commit_routes(s); 1250 1251 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1252 entry); 1253 } 1254 1255 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1256 1257 return kvm_set_irq(s, route->kroute.gsi, 1); 1258 } 1259 1260 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1261 { 1262 struct kvm_irq_routing_entry kroute = {}; 1263 int virq; 1264 MSIMessage msg = {0, 0}; 1265 1266 if (pci_available && dev) { 1267 msg = pci_get_msi_message(dev, vector); 1268 } 1269 1270 if (kvm_gsi_direct_mapping()) { 1271 return kvm_arch_msi_data_to_gsi(msg.data); 1272 } 1273 1274 if (!kvm_gsi_routing_enabled()) { 1275 return -ENOSYS; 1276 } 1277 1278 virq = kvm_irqchip_get_virq(s); 1279 if (virq < 0) { 1280 return virq; 1281 } 1282 1283 kroute.gsi = virq; 1284 kroute.type = KVM_IRQ_ROUTING_MSI; 1285 kroute.flags = 0; 1286 kroute.u.msi.address_lo = (uint32_t)msg.address; 1287 kroute.u.msi.address_hi = msg.address >> 32; 1288 kroute.u.msi.data = le32_to_cpu(msg.data); 1289 if (pci_available && kvm_msi_devid_required()) { 1290 kroute.flags = KVM_MSI_VALID_DEVID; 1291 kroute.u.msi.devid = pci_requester_id(dev); 1292 } 1293 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1294 kvm_irqchip_release_virq(s, virq); 1295 return -EINVAL; 1296 } 1297 1298 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1299 vector, virq); 1300 1301 kvm_add_routing_entry(s, &kroute); 1302 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1303 kvm_irqchip_commit_routes(s); 1304 1305 return virq; 1306 } 1307 1308 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1309 PCIDevice *dev) 1310 { 1311 struct kvm_irq_routing_entry kroute = {}; 1312 1313 if (kvm_gsi_direct_mapping()) { 1314 return 0; 1315 } 1316 1317 if (!kvm_irqchip_in_kernel()) { 1318 return -ENOSYS; 1319 } 1320 1321 kroute.gsi = virq; 1322 kroute.type = KVM_IRQ_ROUTING_MSI; 1323 kroute.flags = 0; 1324 kroute.u.msi.address_lo = (uint32_t)msg.address; 1325 kroute.u.msi.address_hi = msg.address >> 32; 1326 kroute.u.msi.data = le32_to_cpu(msg.data); 1327 if (pci_available && kvm_msi_devid_required()) { 1328 kroute.flags = KVM_MSI_VALID_DEVID; 1329 kroute.u.msi.devid = pci_requester_id(dev); 1330 } 1331 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1332 return -EINVAL; 1333 } 1334 1335 trace_kvm_irqchip_update_msi_route(virq); 1336 1337 return kvm_update_routing_entry(s, &kroute); 1338 } 1339 1340 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1341 bool assign) 1342 { 1343 struct kvm_irqfd irqfd = { 1344 .fd = fd, 1345 .gsi = virq, 1346 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1347 }; 1348 1349 if (rfd != -1) { 1350 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1351 irqfd.resamplefd = rfd; 1352 } 1353 1354 if (!kvm_irqfds_enabled()) { 1355 return -ENOSYS; 1356 } 1357 1358 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1359 } 1360 1361 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1362 { 1363 struct kvm_irq_routing_entry kroute = {}; 1364 int virq; 1365 1366 if (!kvm_gsi_routing_enabled()) { 1367 return -ENOSYS; 1368 } 1369 1370 virq = kvm_irqchip_get_virq(s); 1371 if (virq < 0) { 1372 return virq; 1373 } 1374 1375 kroute.gsi = virq; 1376 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1377 kroute.flags = 0; 1378 kroute.u.adapter.summary_addr = adapter->summary_addr; 1379 kroute.u.adapter.ind_addr = adapter->ind_addr; 1380 kroute.u.adapter.summary_offset = adapter->summary_offset; 1381 kroute.u.adapter.ind_offset = adapter->ind_offset; 1382 kroute.u.adapter.adapter_id = adapter->adapter_id; 1383 1384 kvm_add_routing_entry(s, &kroute); 1385 1386 return virq; 1387 } 1388 1389 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1390 { 1391 struct kvm_irq_routing_entry kroute = {}; 1392 int virq; 1393 1394 if (!kvm_gsi_routing_enabled()) { 1395 return -ENOSYS; 1396 } 1397 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1398 return -ENOSYS; 1399 } 1400 virq = kvm_irqchip_get_virq(s); 1401 if (virq < 0) { 1402 return virq; 1403 } 1404 1405 kroute.gsi = virq; 1406 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1407 kroute.flags = 0; 1408 kroute.u.hv_sint.vcpu = vcpu; 1409 kroute.u.hv_sint.sint = sint; 1410 1411 kvm_add_routing_entry(s, &kroute); 1412 kvm_irqchip_commit_routes(s); 1413 1414 return virq; 1415 } 1416 1417 #else /* !KVM_CAP_IRQ_ROUTING */ 1418 1419 void kvm_init_irq_routing(KVMState *s) 1420 { 1421 } 1422 1423 void kvm_irqchip_release_virq(KVMState *s, int virq) 1424 { 1425 } 1426 1427 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1428 { 1429 abort(); 1430 } 1431 1432 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1433 { 1434 return -ENOSYS; 1435 } 1436 1437 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1438 { 1439 return -ENOSYS; 1440 } 1441 1442 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1443 { 1444 return -ENOSYS; 1445 } 1446 1447 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1448 { 1449 abort(); 1450 } 1451 1452 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1453 { 1454 return -ENOSYS; 1455 } 1456 #endif /* !KVM_CAP_IRQ_ROUTING */ 1457 1458 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1459 EventNotifier *rn, int virq) 1460 { 1461 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1462 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1463 } 1464 1465 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1466 int virq) 1467 { 1468 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1469 false); 1470 } 1471 1472 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1473 EventNotifier *rn, qemu_irq irq) 1474 { 1475 gpointer key, gsi; 1476 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1477 1478 if (!found) { 1479 return -ENXIO; 1480 } 1481 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1482 } 1483 1484 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1485 qemu_irq irq) 1486 { 1487 gpointer key, gsi; 1488 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1489 1490 if (!found) { 1491 return -ENXIO; 1492 } 1493 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1494 } 1495 1496 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1497 { 1498 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1499 } 1500 1501 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1502 { 1503 int ret; 1504 1505 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1506 ; 1507 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1508 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1509 if (ret < 0) { 1510 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1511 exit(1); 1512 } 1513 } else { 1514 return; 1515 } 1516 1517 /* First probe and see if there's a arch-specific hook to create the 1518 * in-kernel irqchip for us */ 1519 ret = kvm_arch_irqchip_create(machine, s); 1520 if (ret == 0) { 1521 if (machine_kernel_irqchip_split(machine)) { 1522 perror("Split IRQ chip mode not supported."); 1523 exit(1); 1524 } else { 1525 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1526 } 1527 } 1528 if (ret < 0) { 1529 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1530 exit(1); 1531 } 1532 1533 kvm_kernel_irqchip = true; 1534 /* If we have an in-kernel IRQ chip then we must have asynchronous 1535 * interrupt delivery (though the reverse is not necessarily true) 1536 */ 1537 kvm_async_interrupts_allowed = true; 1538 kvm_halt_in_kernel_allowed = true; 1539 1540 kvm_init_irq_routing(s); 1541 1542 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1543 } 1544 1545 /* Find number of supported CPUs using the recommended 1546 * procedure from the kernel API documentation to cope with 1547 * older kernels that may be missing capabilities. 1548 */ 1549 static int kvm_recommended_vcpus(KVMState *s) 1550 { 1551 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1552 return (ret) ? ret : 4; 1553 } 1554 1555 static int kvm_max_vcpus(KVMState *s) 1556 { 1557 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1558 return (ret) ? ret : kvm_recommended_vcpus(s); 1559 } 1560 1561 static int kvm_max_vcpu_id(KVMState *s) 1562 { 1563 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1564 return (ret) ? ret : kvm_max_vcpus(s); 1565 } 1566 1567 bool kvm_vcpu_id_is_valid(int vcpu_id) 1568 { 1569 KVMState *s = KVM_STATE(current_machine->accelerator); 1570 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1571 } 1572 1573 static int kvm_init(MachineState *ms) 1574 { 1575 MachineClass *mc = MACHINE_GET_CLASS(ms); 1576 static const char upgrade_note[] = 1577 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1578 "(see http://sourceforge.net/projects/kvm).\n"; 1579 struct { 1580 const char *name; 1581 int num; 1582 } num_cpus[] = { 1583 { "SMP", ms->smp.cpus }, 1584 { "hotpluggable", ms->smp.max_cpus }, 1585 { NULL, } 1586 }, *nc = num_cpus; 1587 int soft_vcpus_limit, hard_vcpus_limit; 1588 KVMState *s; 1589 const KVMCapabilityInfo *missing_cap; 1590 int ret; 1591 int type = 0; 1592 const char *kvm_type; 1593 1594 s = KVM_STATE(ms->accelerator); 1595 1596 /* 1597 * On systems where the kernel can support different base page 1598 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1599 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1600 * page size for the system though. 1601 */ 1602 assert(TARGET_PAGE_SIZE <= getpagesize()); 1603 1604 s->sigmask_len = 8; 1605 1606 #ifdef KVM_CAP_SET_GUEST_DEBUG 1607 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1608 #endif 1609 QLIST_INIT(&s->kvm_parked_vcpus); 1610 s->vmfd = -1; 1611 s->fd = qemu_open("/dev/kvm", O_RDWR); 1612 if (s->fd == -1) { 1613 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1614 ret = -errno; 1615 goto err; 1616 } 1617 1618 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1619 if (ret < KVM_API_VERSION) { 1620 if (ret >= 0) { 1621 ret = -EINVAL; 1622 } 1623 fprintf(stderr, "kvm version too old\n"); 1624 goto err; 1625 } 1626 1627 if (ret > KVM_API_VERSION) { 1628 ret = -EINVAL; 1629 fprintf(stderr, "kvm version not supported\n"); 1630 goto err; 1631 } 1632 1633 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1634 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1635 1636 /* If unspecified, use the default value */ 1637 if (!s->nr_slots) { 1638 s->nr_slots = 32; 1639 } 1640 1641 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1642 if (mc->kvm_type) { 1643 type = mc->kvm_type(ms, kvm_type); 1644 } else if (kvm_type) { 1645 ret = -EINVAL; 1646 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1647 goto err; 1648 } 1649 1650 do { 1651 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1652 } while (ret == -EINTR); 1653 1654 if (ret < 0) { 1655 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1656 strerror(-ret)); 1657 1658 #ifdef TARGET_S390X 1659 if (ret == -EINVAL) { 1660 fprintf(stderr, 1661 "Host kernel setup problem detected. Please verify:\n"); 1662 fprintf(stderr, "- for kernels supporting the switch_amode or" 1663 " user_mode parameters, whether\n"); 1664 fprintf(stderr, 1665 " user space is running in primary address space\n"); 1666 fprintf(stderr, 1667 "- for kernels supporting the vm.allocate_pgste sysctl, " 1668 "whether it is enabled\n"); 1669 } 1670 #endif 1671 goto err; 1672 } 1673 1674 s->vmfd = ret; 1675 1676 /* check the vcpu limits */ 1677 soft_vcpus_limit = kvm_recommended_vcpus(s); 1678 hard_vcpus_limit = kvm_max_vcpus(s); 1679 1680 while (nc->name) { 1681 if (nc->num > soft_vcpus_limit) { 1682 warn_report("Number of %s cpus requested (%d) exceeds " 1683 "the recommended cpus supported by KVM (%d)", 1684 nc->name, nc->num, soft_vcpus_limit); 1685 1686 if (nc->num > hard_vcpus_limit) { 1687 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1688 "the maximum cpus supported by KVM (%d)\n", 1689 nc->name, nc->num, hard_vcpus_limit); 1690 exit(1); 1691 } 1692 } 1693 nc++; 1694 } 1695 1696 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1697 if (!missing_cap) { 1698 missing_cap = 1699 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1700 } 1701 if (missing_cap) { 1702 ret = -EINVAL; 1703 fprintf(stderr, "kvm does not support %s\n%s", 1704 missing_cap->name, upgrade_note); 1705 goto err; 1706 } 1707 1708 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1709 s->coalesced_pio = s->coalesced_mmio && 1710 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1711 1712 #ifdef KVM_CAP_VCPU_EVENTS 1713 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1714 #endif 1715 1716 s->robust_singlestep = 1717 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1718 1719 #ifdef KVM_CAP_DEBUGREGS 1720 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1721 #endif 1722 1723 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 1724 1725 #ifdef KVM_CAP_IRQ_ROUTING 1726 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1727 #endif 1728 1729 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1730 1731 s->irq_set_ioctl = KVM_IRQ_LINE; 1732 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1733 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1734 } 1735 1736 kvm_readonly_mem_allowed = 1737 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1738 1739 kvm_eventfds_allowed = 1740 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1741 1742 kvm_irqfds_allowed = 1743 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1744 1745 kvm_resamplefds_allowed = 1746 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1747 1748 kvm_vm_attributes_allowed = 1749 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1750 1751 kvm_ioeventfd_any_length_allowed = 1752 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1753 1754 kvm_state = s; 1755 1756 /* 1757 * if memory encryption object is specified then initialize the memory 1758 * encryption context. 1759 */ 1760 if (ms->memory_encryption) { 1761 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 1762 if (!kvm_state->memcrypt_handle) { 1763 ret = -1; 1764 goto err; 1765 } 1766 1767 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 1768 } 1769 1770 ret = kvm_arch_init(ms, s); 1771 if (ret < 0) { 1772 goto err; 1773 } 1774 1775 if (machine_kernel_irqchip_allowed(ms)) { 1776 kvm_irqchip_create(ms, s); 1777 } 1778 1779 if (kvm_eventfds_allowed) { 1780 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1781 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1782 } 1783 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 1784 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 1785 1786 kvm_memory_listener_register(s, &s->memory_listener, 1787 &address_space_memory, 0); 1788 memory_listener_register(&kvm_io_listener, 1789 &address_space_io); 1790 memory_listener_register(&kvm_coalesced_pio_listener, 1791 &address_space_io); 1792 1793 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1794 1795 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 1796 if (!s->sync_mmu) { 1797 qemu_balloon_inhibit(true); 1798 } 1799 1800 return 0; 1801 1802 err: 1803 assert(ret < 0); 1804 if (s->vmfd >= 0) { 1805 close(s->vmfd); 1806 } 1807 if (s->fd != -1) { 1808 close(s->fd); 1809 } 1810 g_free(s->memory_listener.slots); 1811 1812 return ret; 1813 } 1814 1815 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1816 { 1817 s->sigmask_len = sigmask_len; 1818 } 1819 1820 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1821 int size, uint32_t count) 1822 { 1823 int i; 1824 uint8_t *ptr = data; 1825 1826 for (i = 0; i < count; i++) { 1827 address_space_rw(&address_space_io, port, attrs, 1828 ptr, size, 1829 direction == KVM_EXIT_IO_OUT); 1830 ptr += size; 1831 } 1832 } 1833 1834 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1835 { 1836 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1837 run->internal.suberror); 1838 1839 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1840 int i; 1841 1842 for (i = 0; i < run->internal.ndata; ++i) { 1843 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1844 i, (uint64_t)run->internal.data[i]); 1845 } 1846 } 1847 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1848 fprintf(stderr, "emulation failure\n"); 1849 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1850 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 1851 return EXCP_INTERRUPT; 1852 } 1853 } 1854 /* FIXME: Should trigger a qmp message to let management know 1855 * something went wrong. 1856 */ 1857 return -1; 1858 } 1859 1860 void kvm_flush_coalesced_mmio_buffer(void) 1861 { 1862 KVMState *s = kvm_state; 1863 1864 if (s->coalesced_flush_in_progress) { 1865 return; 1866 } 1867 1868 s->coalesced_flush_in_progress = true; 1869 1870 if (s->coalesced_mmio_ring) { 1871 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1872 while (ring->first != ring->last) { 1873 struct kvm_coalesced_mmio *ent; 1874 1875 ent = &ring->coalesced_mmio[ring->first]; 1876 1877 if (ent->pio == 1) { 1878 address_space_rw(&address_space_io, ent->phys_addr, 1879 MEMTXATTRS_UNSPECIFIED, ent->data, 1880 ent->len, true); 1881 } else { 1882 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1883 } 1884 smp_wmb(); 1885 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1886 } 1887 } 1888 1889 s->coalesced_flush_in_progress = false; 1890 } 1891 1892 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1893 { 1894 if (!cpu->vcpu_dirty) { 1895 kvm_arch_get_registers(cpu); 1896 cpu->vcpu_dirty = true; 1897 } 1898 } 1899 1900 void kvm_cpu_synchronize_state(CPUState *cpu) 1901 { 1902 if (!cpu->vcpu_dirty) { 1903 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1904 } 1905 } 1906 1907 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1908 { 1909 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1910 cpu->vcpu_dirty = false; 1911 } 1912 1913 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1914 { 1915 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1916 } 1917 1918 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1919 { 1920 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1921 cpu->vcpu_dirty = false; 1922 } 1923 1924 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1925 { 1926 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1927 } 1928 1929 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1930 { 1931 cpu->vcpu_dirty = true; 1932 } 1933 1934 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1935 { 1936 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1937 } 1938 1939 #ifdef KVM_HAVE_MCE_INJECTION 1940 static __thread void *pending_sigbus_addr; 1941 static __thread int pending_sigbus_code; 1942 static __thread bool have_sigbus_pending; 1943 #endif 1944 1945 static void kvm_cpu_kick(CPUState *cpu) 1946 { 1947 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1948 } 1949 1950 static void kvm_cpu_kick_self(void) 1951 { 1952 if (kvm_immediate_exit) { 1953 kvm_cpu_kick(current_cpu); 1954 } else { 1955 qemu_cpu_kick_self(); 1956 } 1957 } 1958 1959 static void kvm_eat_signals(CPUState *cpu) 1960 { 1961 struct timespec ts = { 0, 0 }; 1962 siginfo_t siginfo; 1963 sigset_t waitset; 1964 sigset_t chkset; 1965 int r; 1966 1967 if (kvm_immediate_exit) { 1968 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1969 /* Write kvm_run->immediate_exit before the cpu->exit_request 1970 * write in kvm_cpu_exec. 1971 */ 1972 smp_wmb(); 1973 return; 1974 } 1975 1976 sigemptyset(&waitset); 1977 sigaddset(&waitset, SIG_IPI); 1978 1979 do { 1980 r = sigtimedwait(&waitset, &siginfo, &ts); 1981 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1982 perror("sigtimedwait"); 1983 exit(1); 1984 } 1985 1986 r = sigpending(&chkset); 1987 if (r == -1) { 1988 perror("sigpending"); 1989 exit(1); 1990 } 1991 } while (sigismember(&chkset, SIG_IPI)); 1992 } 1993 1994 int kvm_cpu_exec(CPUState *cpu) 1995 { 1996 struct kvm_run *run = cpu->kvm_run; 1997 int ret, run_ret; 1998 1999 DPRINTF("kvm_cpu_exec()\n"); 2000 2001 if (kvm_arch_process_async_events(cpu)) { 2002 atomic_set(&cpu->exit_request, 0); 2003 return EXCP_HLT; 2004 } 2005 2006 qemu_mutex_unlock_iothread(); 2007 cpu_exec_start(cpu); 2008 2009 do { 2010 MemTxAttrs attrs; 2011 2012 if (cpu->vcpu_dirty) { 2013 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2014 cpu->vcpu_dirty = false; 2015 } 2016 2017 kvm_arch_pre_run(cpu, run); 2018 if (atomic_read(&cpu->exit_request)) { 2019 DPRINTF("interrupt exit requested\n"); 2020 /* 2021 * KVM requires us to reenter the kernel after IO exits to complete 2022 * instruction emulation. This self-signal will ensure that we 2023 * leave ASAP again. 2024 */ 2025 kvm_cpu_kick_self(); 2026 } 2027 2028 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2029 * Matching barrier in kvm_eat_signals. 2030 */ 2031 smp_rmb(); 2032 2033 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2034 2035 attrs = kvm_arch_post_run(cpu, run); 2036 2037 #ifdef KVM_HAVE_MCE_INJECTION 2038 if (unlikely(have_sigbus_pending)) { 2039 qemu_mutex_lock_iothread(); 2040 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2041 pending_sigbus_addr); 2042 have_sigbus_pending = false; 2043 qemu_mutex_unlock_iothread(); 2044 } 2045 #endif 2046 2047 if (run_ret < 0) { 2048 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2049 DPRINTF("io window exit\n"); 2050 kvm_eat_signals(cpu); 2051 ret = EXCP_INTERRUPT; 2052 break; 2053 } 2054 fprintf(stderr, "error: kvm run failed %s\n", 2055 strerror(-run_ret)); 2056 #ifdef TARGET_PPC 2057 if (run_ret == -EBUSY) { 2058 fprintf(stderr, 2059 "This is probably because your SMT is enabled.\n" 2060 "VCPU can only run on primary threads with all " 2061 "secondary threads offline.\n"); 2062 } 2063 #endif 2064 ret = -1; 2065 break; 2066 } 2067 2068 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2069 switch (run->exit_reason) { 2070 case KVM_EXIT_IO: 2071 DPRINTF("handle_io\n"); 2072 /* Called outside BQL */ 2073 kvm_handle_io(run->io.port, attrs, 2074 (uint8_t *)run + run->io.data_offset, 2075 run->io.direction, 2076 run->io.size, 2077 run->io.count); 2078 ret = 0; 2079 break; 2080 case KVM_EXIT_MMIO: 2081 DPRINTF("handle_mmio\n"); 2082 /* Called outside BQL */ 2083 address_space_rw(&address_space_memory, 2084 run->mmio.phys_addr, attrs, 2085 run->mmio.data, 2086 run->mmio.len, 2087 run->mmio.is_write); 2088 ret = 0; 2089 break; 2090 case KVM_EXIT_IRQ_WINDOW_OPEN: 2091 DPRINTF("irq_window_open\n"); 2092 ret = EXCP_INTERRUPT; 2093 break; 2094 case KVM_EXIT_SHUTDOWN: 2095 DPRINTF("shutdown\n"); 2096 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2097 ret = EXCP_INTERRUPT; 2098 break; 2099 case KVM_EXIT_UNKNOWN: 2100 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2101 (uint64_t)run->hw.hardware_exit_reason); 2102 ret = -1; 2103 break; 2104 case KVM_EXIT_INTERNAL_ERROR: 2105 ret = kvm_handle_internal_error(cpu, run); 2106 break; 2107 case KVM_EXIT_SYSTEM_EVENT: 2108 switch (run->system_event.type) { 2109 case KVM_SYSTEM_EVENT_SHUTDOWN: 2110 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2111 ret = EXCP_INTERRUPT; 2112 break; 2113 case KVM_SYSTEM_EVENT_RESET: 2114 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2115 ret = EXCP_INTERRUPT; 2116 break; 2117 case KVM_SYSTEM_EVENT_CRASH: 2118 kvm_cpu_synchronize_state(cpu); 2119 qemu_mutex_lock_iothread(); 2120 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2121 qemu_mutex_unlock_iothread(); 2122 ret = 0; 2123 break; 2124 default: 2125 DPRINTF("kvm_arch_handle_exit\n"); 2126 ret = kvm_arch_handle_exit(cpu, run); 2127 break; 2128 } 2129 break; 2130 default: 2131 DPRINTF("kvm_arch_handle_exit\n"); 2132 ret = kvm_arch_handle_exit(cpu, run); 2133 break; 2134 } 2135 } while (ret == 0); 2136 2137 cpu_exec_end(cpu); 2138 qemu_mutex_lock_iothread(); 2139 2140 if (ret < 0) { 2141 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2142 vm_stop(RUN_STATE_INTERNAL_ERROR); 2143 } 2144 2145 atomic_set(&cpu->exit_request, 0); 2146 return ret; 2147 } 2148 2149 int kvm_ioctl(KVMState *s, int type, ...) 2150 { 2151 int ret; 2152 void *arg; 2153 va_list ap; 2154 2155 va_start(ap, type); 2156 arg = va_arg(ap, void *); 2157 va_end(ap); 2158 2159 trace_kvm_ioctl(type, arg); 2160 ret = ioctl(s->fd, type, arg); 2161 if (ret == -1) { 2162 ret = -errno; 2163 } 2164 return ret; 2165 } 2166 2167 int kvm_vm_ioctl(KVMState *s, int type, ...) 2168 { 2169 int ret; 2170 void *arg; 2171 va_list ap; 2172 2173 va_start(ap, type); 2174 arg = va_arg(ap, void *); 2175 va_end(ap); 2176 2177 trace_kvm_vm_ioctl(type, arg); 2178 ret = ioctl(s->vmfd, type, arg); 2179 if (ret == -1) { 2180 ret = -errno; 2181 } 2182 return ret; 2183 } 2184 2185 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2186 { 2187 int ret; 2188 void *arg; 2189 va_list ap; 2190 2191 va_start(ap, type); 2192 arg = va_arg(ap, void *); 2193 va_end(ap); 2194 2195 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2196 ret = ioctl(cpu->kvm_fd, type, arg); 2197 if (ret == -1) { 2198 ret = -errno; 2199 } 2200 return ret; 2201 } 2202 2203 int kvm_device_ioctl(int fd, int type, ...) 2204 { 2205 int ret; 2206 void *arg; 2207 va_list ap; 2208 2209 va_start(ap, type); 2210 arg = va_arg(ap, void *); 2211 va_end(ap); 2212 2213 trace_kvm_device_ioctl(fd, type, arg); 2214 ret = ioctl(fd, type, arg); 2215 if (ret == -1) { 2216 ret = -errno; 2217 } 2218 return ret; 2219 } 2220 2221 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2222 { 2223 int ret; 2224 struct kvm_device_attr attribute = { 2225 .group = group, 2226 .attr = attr, 2227 }; 2228 2229 if (!kvm_vm_attributes_allowed) { 2230 return 0; 2231 } 2232 2233 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2234 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2235 return ret ? 0 : 1; 2236 } 2237 2238 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2239 { 2240 struct kvm_device_attr attribute = { 2241 .group = group, 2242 .attr = attr, 2243 .flags = 0, 2244 }; 2245 2246 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2247 } 2248 2249 int kvm_device_access(int fd, int group, uint64_t attr, 2250 void *val, bool write, Error **errp) 2251 { 2252 struct kvm_device_attr kvmattr; 2253 int err; 2254 2255 kvmattr.flags = 0; 2256 kvmattr.group = group; 2257 kvmattr.attr = attr; 2258 kvmattr.addr = (uintptr_t)val; 2259 2260 err = kvm_device_ioctl(fd, 2261 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2262 &kvmattr); 2263 if (err < 0) { 2264 error_setg_errno(errp, -err, 2265 "KVM_%s_DEVICE_ATTR failed: Group %d " 2266 "attr 0x%016" PRIx64, 2267 write ? "SET" : "GET", group, attr); 2268 } 2269 return err; 2270 } 2271 2272 bool kvm_has_sync_mmu(void) 2273 { 2274 return kvm_state->sync_mmu; 2275 } 2276 2277 int kvm_has_vcpu_events(void) 2278 { 2279 return kvm_state->vcpu_events; 2280 } 2281 2282 int kvm_has_robust_singlestep(void) 2283 { 2284 return kvm_state->robust_singlestep; 2285 } 2286 2287 int kvm_has_debugregs(void) 2288 { 2289 return kvm_state->debugregs; 2290 } 2291 2292 int kvm_max_nested_state_length(void) 2293 { 2294 return kvm_state->max_nested_state_len; 2295 } 2296 2297 int kvm_has_many_ioeventfds(void) 2298 { 2299 if (!kvm_enabled()) { 2300 return 0; 2301 } 2302 return kvm_state->many_ioeventfds; 2303 } 2304 2305 int kvm_has_gsi_routing(void) 2306 { 2307 #ifdef KVM_CAP_IRQ_ROUTING 2308 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2309 #else 2310 return false; 2311 #endif 2312 } 2313 2314 int kvm_has_intx_set_mask(void) 2315 { 2316 return kvm_state->intx_set_mask; 2317 } 2318 2319 bool kvm_arm_supports_user_irq(void) 2320 { 2321 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2322 } 2323 2324 #ifdef KVM_CAP_SET_GUEST_DEBUG 2325 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2326 target_ulong pc) 2327 { 2328 struct kvm_sw_breakpoint *bp; 2329 2330 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2331 if (bp->pc == pc) { 2332 return bp; 2333 } 2334 } 2335 return NULL; 2336 } 2337 2338 int kvm_sw_breakpoints_active(CPUState *cpu) 2339 { 2340 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2341 } 2342 2343 struct kvm_set_guest_debug_data { 2344 struct kvm_guest_debug dbg; 2345 int err; 2346 }; 2347 2348 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2349 { 2350 struct kvm_set_guest_debug_data *dbg_data = 2351 (struct kvm_set_guest_debug_data *) data.host_ptr; 2352 2353 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2354 &dbg_data->dbg); 2355 } 2356 2357 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2358 { 2359 struct kvm_set_guest_debug_data data; 2360 2361 data.dbg.control = reinject_trap; 2362 2363 if (cpu->singlestep_enabled) { 2364 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2365 } 2366 kvm_arch_update_guest_debug(cpu, &data.dbg); 2367 2368 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2369 RUN_ON_CPU_HOST_PTR(&data)); 2370 return data.err; 2371 } 2372 2373 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2374 target_ulong len, int type) 2375 { 2376 struct kvm_sw_breakpoint *bp; 2377 int err; 2378 2379 if (type == GDB_BREAKPOINT_SW) { 2380 bp = kvm_find_sw_breakpoint(cpu, addr); 2381 if (bp) { 2382 bp->use_count++; 2383 return 0; 2384 } 2385 2386 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2387 bp->pc = addr; 2388 bp->use_count = 1; 2389 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2390 if (err) { 2391 g_free(bp); 2392 return err; 2393 } 2394 2395 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2396 } else { 2397 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2398 if (err) { 2399 return err; 2400 } 2401 } 2402 2403 CPU_FOREACH(cpu) { 2404 err = kvm_update_guest_debug(cpu, 0); 2405 if (err) { 2406 return err; 2407 } 2408 } 2409 return 0; 2410 } 2411 2412 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2413 target_ulong len, int type) 2414 { 2415 struct kvm_sw_breakpoint *bp; 2416 int err; 2417 2418 if (type == GDB_BREAKPOINT_SW) { 2419 bp = kvm_find_sw_breakpoint(cpu, addr); 2420 if (!bp) { 2421 return -ENOENT; 2422 } 2423 2424 if (bp->use_count > 1) { 2425 bp->use_count--; 2426 return 0; 2427 } 2428 2429 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2430 if (err) { 2431 return err; 2432 } 2433 2434 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2435 g_free(bp); 2436 } else { 2437 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2438 if (err) { 2439 return err; 2440 } 2441 } 2442 2443 CPU_FOREACH(cpu) { 2444 err = kvm_update_guest_debug(cpu, 0); 2445 if (err) { 2446 return err; 2447 } 2448 } 2449 return 0; 2450 } 2451 2452 void kvm_remove_all_breakpoints(CPUState *cpu) 2453 { 2454 struct kvm_sw_breakpoint *bp, *next; 2455 KVMState *s = cpu->kvm_state; 2456 CPUState *tmpcpu; 2457 2458 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2459 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2460 /* Try harder to find a CPU that currently sees the breakpoint. */ 2461 CPU_FOREACH(tmpcpu) { 2462 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2463 break; 2464 } 2465 } 2466 } 2467 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2468 g_free(bp); 2469 } 2470 kvm_arch_remove_all_hw_breakpoints(); 2471 2472 CPU_FOREACH(cpu) { 2473 kvm_update_guest_debug(cpu, 0); 2474 } 2475 } 2476 2477 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2478 2479 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2480 { 2481 return -EINVAL; 2482 } 2483 2484 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2485 target_ulong len, int type) 2486 { 2487 return -EINVAL; 2488 } 2489 2490 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2491 target_ulong len, int type) 2492 { 2493 return -EINVAL; 2494 } 2495 2496 void kvm_remove_all_breakpoints(CPUState *cpu) 2497 { 2498 } 2499 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2500 2501 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2502 { 2503 KVMState *s = kvm_state; 2504 struct kvm_signal_mask *sigmask; 2505 int r; 2506 2507 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2508 2509 sigmask->len = s->sigmask_len; 2510 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2511 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2512 g_free(sigmask); 2513 2514 return r; 2515 } 2516 2517 static void kvm_ipi_signal(int sig) 2518 { 2519 if (current_cpu) { 2520 assert(kvm_immediate_exit); 2521 kvm_cpu_kick(current_cpu); 2522 } 2523 } 2524 2525 void kvm_init_cpu_signals(CPUState *cpu) 2526 { 2527 int r; 2528 sigset_t set; 2529 struct sigaction sigact; 2530 2531 memset(&sigact, 0, sizeof(sigact)); 2532 sigact.sa_handler = kvm_ipi_signal; 2533 sigaction(SIG_IPI, &sigact, NULL); 2534 2535 pthread_sigmask(SIG_BLOCK, NULL, &set); 2536 #if defined KVM_HAVE_MCE_INJECTION 2537 sigdelset(&set, SIGBUS); 2538 pthread_sigmask(SIG_SETMASK, &set, NULL); 2539 #endif 2540 sigdelset(&set, SIG_IPI); 2541 if (kvm_immediate_exit) { 2542 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2543 } else { 2544 r = kvm_set_signal_mask(cpu, &set); 2545 } 2546 if (r) { 2547 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2548 exit(1); 2549 } 2550 } 2551 2552 /* Called asynchronously in VCPU thread. */ 2553 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2554 { 2555 #ifdef KVM_HAVE_MCE_INJECTION 2556 if (have_sigbus_pending) { 2557 return 1; 2558 } 2559 have_sigbus_pending = true; 2560 pending_sigbus_addr = addr; 2561 pending_sigbus_code = code; 2562 atomic_set(&cpu->exit_request, 1); 2563 return 0; 2564 #else 2565 return 1; 2566 #endif 2567 } 2568 2569 /* Called synchronously (via signalfd) in main thread. */ 2570 int kvm_on_sigbus(int code, void *addr) 2571 { 2572 #ifdef KVM_HAVE_MCE_INJECTION 2573 /* Action required MCE kills the process if SIGBUS is blocked. Because 2574 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2575 * we can only get action optional here. 2576 */ 2577 assert(code != BUS_MCEERR_AR); 2578 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2579 return 0; 2580 #else 2581 return 1; 2582 #endif 2583 } 2584 2585 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2586 { 2587 int ret; 2588 struct kvm_create_device create_dev; 2589 2590 create_dev.type = type; 2591 create_dev.fd = -1; 2592 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2593 2594 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2595 return -ENOTSUP; 2596 } 2597 2598 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2599 if (ret) { 2600 return ret; 2601 } 2602 2603 return test ? 0 : create_dev.fd; 2604 } 2605 2606 bool kvm_device_supported(int vmfd, uint64_t type) 2607 { 2608 struct kvm_create_device create_dev = { 2609 .type = type, 2610 .fd = -1, 2611 .flags = KVM_CREATE_DEVICE_TEST, 2612 }; 2613 2614 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2615 return false; 2616 } 2617 2618 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2619 } 2620 2621 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2622 { 2623 struct kvm_one_reg reg; 2624 int r; 2625 2626 reg.id = id; 2627 reg.addr = (uintptr_t) source; 2628 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2629 if (r) { 2630 trace_kvm_failed_reg_set(id, strerror(-r)); 2631 } 2632 return r; 2633 } 2634 2635 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2636 { 2637 struct kvm_one_reg reg; 2638 int r; 2639 2640 reg.id = id; 2641 reg.addr = (uintptr_t) target; 2642 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2643 if (r) { 2644 trace_kvm_failed_reg_get(id, strerror(-r)); 2645 } 2646 return r; 2647 } 2648 2649 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2650 { 2651 AccelClass *ac = ACCEL_CLASS(oc); 2652 ac->name = "KVM"; 2653 ac->init_machine = kvm_init; 2654 ac->allowed = &kvm_allowed; 2655 } 2656 2657 static const TypeInfo kvm_accel_type = { 2658 .name = TYPE_KVM_ACCEL, 2659 .parent = TYPE_ACCEL, 2660 .class_init = kvm_accel_class_init, 2661 .instance_size = sizeof(KVMState), 2662 }; 2663 2664 static void kvm_type_init(void) 2665 { 2666 type_register_static(&kvm_accel_type); 2667 } 2668 2669 type_init(kvm_type_init); 2670