1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "sysemu/sev.h" 43 #include "sysemu/balloon.h" 44 #include "qapi/visitor.h" 45 #include "qapi/qapi-types-common.h" 46 #include "qapi/qapi-visit-common.h" 47 #include "sysemu/reset.h" 48 49 #include "hw/boards.h" 50 51 /* This check must be after config-host.h is included */ 52 #ifdef CONFIG_EVENTFD 53 #include <sys/eventfd.h> 54 #endif 55 56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 57 * need to use the real host PAGE_SIZE, as that's what KVM will use. 58 */ 59 #define PAGE_SIZE qemu_real_host_page_size 60 61 //#define DEBUG_KVM 62 63 #ifdef DEBUG_KVM 64 #define DPRINTF(fmt, ...) \ 65 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 66 #else 67 #define DPRINTF(fmt, ...) \ 68 do { } while (0) 69 #endif 70 71 #define KVM_MSI_HASHTAB_SIZE 256 72 73 struct KVMParkedVcpu { 74 unsigned long vcpu_id; 75 int kvm_fd; 76 QLIST_ENTRY(KVMParkedVcpu) node; 77 }; 78 79 struct KVMState 80 { 81 AccelState parent_obj; 82 83 int nr_slots; 84 int fd; 85 int vmfd; 86 int coalesced_mmio; 87 int coalesced_pio; 88 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 89 bool coalesced_flush_in_progress; 90 int vcpu_events; 91 int robust_singlestep; 92 int debugregs; 93 #ifdef KVM_CAP_SET_GUEST_DEBUG 94 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 95 #endif 96 int max_nested_state_len; 97 int many_ioeventfds; 98 int intx_set_mask; 99 int kvm_shadow_mem; 100 bool kernel_irqchip_allowed; 101 bool kernel_irqchip_required; 102 OnOffAuto kernel_irqchip_split; 103 bool sync_mmu; 104 bool manual_dirty_log_protect; 105 /* The man page (and posix) say ioctl numbers are signed int, but 106 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 107 * unsigned, and treating them as signed here can break things */ 108 unsigned irq_set_ioctl; 109 unsigned int sigmask_len; 110 GHashTable *gsimap; 111 #ifdef KVM_CAP_IRQ_ROUTING 112 struct kvm_irq_routing *irq_routes; 113 int nr_allocated_irq_routes; 114 unsigned long *used_gsi_bitmap; 115 unsigned int gsi_count; 116 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 117 #endif 118 KVMMemoryListener memory_listener; 119 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 120 121 /* memory encryption */ 122 void *memcrypt_handle; 123 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 124 125 /* For "info mtree -f" to tell if an MR is registered in KVM */ 126 int nr_as; 127 struct KVMAs { 128 KVMMemoryListener *ml; 129 AddressSpace *as; 130 } *as; 131 }; 132 133 KVMState *kvm_state; 134 bool kvm_kernel_irqchip; 135 bool kvm_split_irqchip; 136 bool kvm_async_interrupts_allowed; 137 bool kvm_halt_in_kernel_allowed; 138 bool kvm_eventfds_allowed; 139 bool kvm_irqfds_allowed; 140 bool kvm_resamplefds_allowed; 141 bool kvm_msi_via_irqfd_allowed; 142 bool kvm_gsi_routing_allowed; 143 bool kvm_gsi_direct_mapping; 144 bool kvm_allowed; 145 bool kvm_readonly_mem_allowed; 146 bool kvm_vm_attributes_allowed; 147 bool kvm_direct_msi_allowed; 148 bool kvm_ioeventfd_any_length_allowed; 149 bool kvm_msi_use_devid; 150 static bool kvm_immediate_exit; 151 static hwaddr kvm_max_slot_size = ~0; 152 153 static const KVMCapabilityInfo kvm_required_capabilites[] = { 154 KVM_CAP_INFO(USER_MEMORY), 155 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 156 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 157 KVM_CAP_LAST_INFO 158 }; 159 160 static NotifierList kvm_irqchip_change_notifiers = 161 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 162 163 struct KVMResampleFd { 164 int gsi; 165 EventNotifier *resample_event; 166 QLIST_ENTRY(KVMResampleFd) node; 167 }; 168 typedef struct KVMResampleFd KVMResampleFd; 169 170 /* 171 * Only used with split irqchip where we need to do the resample fd 172 * kick for the kernel from userspace. 173 */ 174 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 175 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 176 177 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 178 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 179 180 static inline void kvm_resample_fd_remove(int gsi) 181 { 182 KVMResampleFd *rfd; 183 184 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 185 if (rfd->gsi == gsi) { 186 QLIST_REMOVE(rfd, node); 187 g_free(rfd); 188 break; 189 } 190 } 191 } 192 193 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 194 { 195 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 196 197 rfd->gsi = gsi; 198 rfd->resample_event = event; 199 200 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 201 } 202 203 void kvm_resample_fd_notify(int gsi) 204 { 205 KVMResampleFd *rfd; 206 207 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 208 if (rfd->gsi == gsi) { 209 event_notifier_set(rfd->resample_event); 210 trace_kvm_resample_fd_notify(gsi); 211 return; 212 } 213 } 214 } 215 216 int kvm_get_max_memslots(void) 217 { 218 KVMState *s = KVM_STATE(current_accel()); 219 220 return s->nr_slots; 221 } 222 223 bool kvm_memcrypt_enabled(void) 224 { 225 if (kvm_state && kvm_state->memcrypt_handle) { 226 return true; 227 } 228 229 return false; 230 } 231 232 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 233 { 234 if (kvm_state->memcrypt_handle && 235 kvm_state->memcrypt_encrypt_data) { 236 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 237 ptr, len); 238 } 239 240 return 1; 241 } 242 243 /* Called with KVMMemoryListener.slots_lock held */ 244 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 245 { 246 KVMState *s = kvm_state; 247 int i; 248 249 for (i = 0; i < s->nr_slots; i++) { 250 if (kml->slots[i].memory_size == 0) { 251 return &kml->slots[i]; 252 } 253 } 254 255 return NULL; 256 } 257 258 bool kvm_has_free_slot(MachineState *ms) 259 { 260 KVMState *s = KVM_STATE(ms->accelerator); 261 bool result; 262 KVMMemoryListener *kml = &s->memory_listener; 263 264 kvm_slots_lock(kml); 265 result = !!kvm_get_free_slot(kml); 266 kvm_slots_unlock(kml); 267 268 return result; 269 } 270 271 /* Called with KVMMemoryListener.slots_lock held */ 272 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 273 { 274 KVMSlot *slot = kvm_get_free_slot(kml); 275 276 if (slot) { 277 return slot; 278 } 279 280 fprintf(stderr, "%s: no free slot available\n", __func__); 281 abort(); 282 } 283 284 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 285 hwaddr start_addr, 286 hwaddr size) 287 { 288 KVMState *s = kvm_state; 289 int i; 290 291 for (i = 0; i < s->nr_slots; i++) { 292 KVMSlot *mem = &kml->slots[i]; 293 294 if (start_addr == mem->start_addr && size == mem->memory_size) { 295 return mem; 296 } 297 } 298 299 return NULL; 300 } 301 302 /* 303 * Calculate and align the start address and the size of the section. 304 * Return the size. If the size is 0, the aligned section is empty. 305 */ 306 static hwaddr kvm_align_section(MemoryRegionSection *section, 307 hwaddr *start) 308 { 309 hwaddr size = int128_get64(section->size); 310 hwaddr delta, aligned; 311 312 /* kvm works in page size chunks, but the function may be called 313 with sub-page size and unaligned start address. Pad the start 314 address to next and truncate size to previous page boundary. */ 315 aligned = ROUND_UP(section->offset_within_address_space, 316 qemu_real_host_page_size); 317 delta = aligned - section->offset_within_address_space; 318 *start = aligned; 319 if (delta > size) { 320 return 0; 321 } 322 323 return (size - delta) & qemu_real_host_page_mask; 324 } 325 326 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 327 hwaddr *phys_addr) 328 { 329 KVMMemoryListener *kml = &s->memory_listener; 330 int i, ret = 0; 331 332 kvm_slots_lock(kml); 333 for (i = 0; i < s->nr_slots; i++) { 334 KVMSlot *mem = &kml->slots[i]; 335 336 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 337 *phys_addr = mem->start_addr + (ram - mem->ram); 338 ret = 1; 339 break; 340 } 341 } 342 kvm_slots_unlock(kml); 343 344 return ret; 345 } 346 347 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 348 { 349 KVMState *s = kvm_state; 350 struct kvm_userspace_memory_region mem; 351 int ret; 352 353 mem.slot = slot->slot | (kml->as_id << 16); 354 mem.guest_phys_addr = slot->start_addr; 355 mem.userspace_addr = (unsigned long)slot->ram; 356 mem.flags = slot->flags; 357 358 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 359 /* Set the slot size to 0 before setting the slot to the desired 360 * value. This is needed based on KVM commit 75d61fbc. */ 361 mem.memory_size = 0; 362 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 363 if (ret < 0) { 364 goto err; 365 } 366 } 367 mem.memory_size = slot->memory_size; 368 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 369 slot->old_flags = mem.flags; 370 err: 371 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 372 mem.memory_size, mem.userspace_addr, ret); 373 if (ret < 0) { 374 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 375 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 376 __func__, mem.slot, slot->start_addr, 377 (uint64_t)mem.memory_size, strerror(errno)); 378 } 379 return ret; 380 } 381 382 int kvm_destroy_vcpu(CPUState *cpu) 383 { 384 KVMState *s = kvm_state; 385 long mmap_size; 386 struct KVMParkedVcpu *vcpu = NULL; 387 int ret = 0; 388 389 DPRINTF("kvm_destroy_vcpu\n"); 390 391 ret = kvm_arch_destroy_vcpu(cpu); 392 if (ret < 0) { 393 goto err; 394 } 395 396 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 397 if (mmap_size < 0) { 398 ret = mmap_size; 399 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 400 goto err; 401 } 402 403 ret = munmap(cpu->kvm_run, mmap_size); 404 if (ret < 0) { 405 goto err; 406 } 407 408 vcpu = g_malloc0(sizeof(*vcpu)); 409 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 410 vcpu->kvm_fd = cpu->kvm_fd; 411 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 412 err: 413 return ret; 414 } 415 416 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 417 { 418 struct KVMParkedVcpu *cpu; 419 420 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 421 if (cpu->vcpu_id == vcpu_id) { 422 int kvm_fd; 423 424 QLIST_REMOVE(cpu, node); 425 kvm_fd = cpu->kvm_fd; 426 g_free(cpu); 427 return kvm_fd; 428 } 429 } 430 431 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 432 } 433 434 int kvm_init_vcpu(CPUState *cpu) 435 { 436 KVMState *s = kvm_state; 437 long mmap_size; 438 int ret; 439 440 DPRINTF("kvm_init_vcpu\n"); 441 442 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 443 if (ret < 0) { 444 DPRINTF("kvm_create_vcpu failed\n"); 445 goto err; 446 } 447 448 cpu->kvm_fd = ret; 449 cpu->kvm_state = s; 450 cpu->vcpu_dirty = true; 451 452 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 453 if (mmap_size < 0) { 454 ret = mmap_size; 455 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 456 goto err; 457 } 458 459 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 460 cpu->kvm_fd, 0); 461 if (cpu->kvm_run == MAP_FAILED) { 462 ret = -errno; 463 DPRINTF("mmap'ing vcpu state failed\n"); 464 goto err; 465 } 466 467 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 468 s->coalesced_mmio_ring = 469 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 470 } 471 472 ret = kvm_arch_init_vcpu(cpu); 473 err: 474 return ret; 475 } 476 477 /* 478 * dirty pages logging control 479 */ 480 481 static int kvm_mem_flags(MemoryRegion *mr) 482 { 483 bool readonly = mr->readonly || memory_region_is_romd(mr); 484 int flags = 0; 485 486 if (memory_region_get_dirty_log_mask(mr) != 0) { 487 flags |= KVM_MEM_LOG_DIRTY_PAGES; 488 } 489 if (readonly && kvm_readonly_mem_allowed) { 490 flags |= KVM_MEM_READONLY; 491 } 492 return flags; 493 } 494 495 /* Called with KVMMemoryListener.slots_lock held */ 496 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 497 MemoryRegion *mr) 498 { 499 mem->flags = kvm_mem_flags(mr); 500 501 /* If nothing changed effectively, no need to issue ioctl */ 502 if (mem->flags == mem->old_flags) { 503 return 0; 504 } 505 506 return kvm_set_user_memory_region(kml, mem, false); 507 } 508 509 static int kvm_section_update_flags(KVMMemoryListener *kml, 510 MemoryRegionSection *section) 511 { 512 hwaddr start_addr, size, slot_size; 513 KVMSlot *mem; 514 int ret = 0; 515 516 size = kvm_align_section(section, &start_addr); 517 if (!size) { 518 return 0; 519 } 520 521 kvm_slots_lock(kml); 522 523 while (size && !ret) { 524 slot_size = MIN(kvm_max_slot_size, size); 525 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 526 if (!mem) { 527 /* We don't have a slot if we want to trap every access. */ 528 goto out; 529 } 530 531 ret = kvm_slot_update_flags(kml, mem, section->mr); 532 start_addr += slot_size; 533 size -= slot_size; 534 } 535 536 out: 537 kvm_slots_unlock(kml); 538 return ret; 539 } 540 541 static void kvm_log_start(MemoryListener *listener, 542 MemoryRegionSection *section, 543 int old, int new) 544 { 545 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 546 int r; 547 548 if (old != 0) { 549 return; 550 } 551 552 r = kvm_section_update_flags(kml, section); 553 if (r < 0) { 554 abort(); 555 } 556 } 557 558 static void kvm_log_stop(MemoryListener *listener, 559 MemoryRegionSection *section, 560 int old, int new) 561 { 562 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 563 int r; 564 565 if (new != 0) { 566 return; 567 } 568 569 r = kvm_section_update_flags(kml, section); 570 if (r < 0) { 571 abort(); 572 } 573 } 574 575 /* get kvm's dirty pages bitmap and update qemu's */ 576 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 577 unsigned long *bitmap) 578 { 579 ram_addr_t start = section->offset_within_region + 580 memory_region_get_ram_addr(section->mr); 581 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 582 583 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 584 return 0; 585 } 586 587 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 588 589 /* Allocate the dirty bitmap for a slot */ 590 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 591 { 592 /* 593 * XXX bad kernel interface alert 594 * For dirty bitmap, kernel allocates array of size aligned to 595 * bits-per-long. But for case when the kernel is 64bits and 596 * the userspace is 32bits, userspace can't align to the same 597 * bits-per-long, since sizeof(long) is different between kernel 598 * and user space. This way, userspace will provide buffer which 599 * may be 4 bytes less than the kernel will use, resulting in 600 * userspace memory corruption (which is not detectable by valgrind 601 * too, in most cases). 602 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 603 * a hope that sizeof(long) won't become >8 any time soon. 604 */ 605 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 606 /*HOST_LONG_BITS*/ 64) / 8; 607 mem->dirty_bmap = g_malloc0(bitmap_size); 608 } 609 610 /** 611 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 612 * 613 * This function will first try to fetch dirty bitmap from the kernel, 614 * and then updates qemu's dirty bitmap. 615 * 616 * NOTE: caller must be with kml->slots_lock held. 617 * 618 * @kml: the KVM memory listener object 619 * @section: the memory section to sync the dirty bitmap with 620 */ 621 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 622 MemoryRegionSection *section) 623 { 624 KVMState *s = kvm_state; 625 struct kvm_dirty_log d = {}; 626 KVMSlot *mem; 627 hwaddr start_addr, size; 628 hwaddr slot_size, slot_offset = 0; 629 int ret = 0; 630 631 size = kvm_align_section(section, &start_addr); 632 while (size) { 633 MemoryRegionSection subsection = *section; 634 635 slot_size = MIN(kvm_max_slot_size, size); 636 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 637 if (!mem) { 638 /* We don't have a slot if we want to trap every access. */ 639 goto out; 640 } 641 642 if (!mem->dirty_bmap) { 643 /* Allocate on the first log_sync, once and for all */ 644 kvm_memslot_init_dirty_bitmap(mem); 645 } 646 647 d.dirty_bitmap = mem->dirty_bmap; 648 d.slot = mem->slot | (kml->as_id << 16); 649 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 650 DPRINTF("ioctl failed %d\n", errno); 651 ret = -1; 652 goto out; 653 } 654 655 subsection.offset_within_region += slot_offset; 656 subsection.size = int128_make64(slot_size); 657 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 658 659 slot_offset += slot_size; 660 start_addr += slot_size; 661 size -= slot_size; 662 } 663 out: 664 return ret; 665 } 666 667 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 668 #define KVM_CLEAR_LOG_SHIFT 6 669 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 670 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 671 672 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 673 uint64_t size) 674 { 675 KVMState *s = kvm_state; 676 uint64_t end, bmap_start, start_delta, bmap_npages; 677 struct kvm_clear_dirty_log d; 678 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 679 int ret; 680 681 /* 682 * We need to extend either the start or the size or both to 683 * satisfy the KVM interface requirement. Firstly, do the start 684 * page alignment on 64 host pages 685 */ 686 bmap_start = start & KVM_CLEAR_LOG_MASK; 687 start_delta = start - bmap_start; 688 bmap_start /= psize; 689 690 /* 691 * The kernel interface has restriction on the size too, that either: 692 * 693 * (1) the size is 64 host pages aligned (just like the start), or 694 * (2) the size fills up until the end of the KVM memslot. 695 */ 696 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 697 << KVM_CLEAR_LOG_SHIFT; 698 end = mem->memory_size / psize; 699 if (bmap_npages > end - bmap_start) { 700 bmap_npages = end - bmap_start; 701 } 702 start_delta /= psize; 703 704 /* 705 * Prepare the bitmap to clear dirty bits. Here we must guarantee 706 * that we won't clear any unknown dirty bits otherwise we might 707 * accidentally clear some set bits which are not yet synced from 708 * the kernel into QEMU's bitmap, then we'll lose track of the 709 * guest modifications upon those pages (which can directly lead 710 * to guest data loss or panic after migration). 711 * 712 * Layout of the KVMSlot.dirty_bmap: 713 * 714 * |<-------- bmap_npages -----------..>| 715 * [1] 716 * start_delta size 717 * |----------------|-------------|------------------|------------| 718 * ^ ^ ^ ^ 719 * | | | | 720 * start bmap_start (start) end 721 * of memslot of memslot 722 * 723 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 724 */ 725 726 assert(bmap_start % BITS_PER_LONG == 0); 727 /* We should never do log_clear before log_sync */ 728 assert(mem->dirty_bmap); 729 if (start_delta) { 730 /* Slow path - we need to manipulate a temp bitmap */ 731 bmap_clear = bitmap_new(bmap_npages); 732 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 733 bmap_start, start_delta + size / psize); 734 /* 735 * We need to fill the holes at start because that was not 736 * specified by the caller and we extended the bitmap only for 737 * 64 pages alignment 738 */ 739 bitmap_clear(bmap_clear, 0, start_delta); 740 d.dirty_bitmap = bmap_clear; 741 } else { 742 /* Fast path - start address aligns well with BITS_PER_LONG */ 743 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 744 } 745 746 d.first_page = bmap_start; 747 /* It should never overflow. If it happens, say something */ 748 assert(bmap_npages <= UINT32_MAX); 749 d.num_pages = bmap_npages; 750 d.slot = mem->slot | (as_id << 16); 751 752 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 753 ret = -errno; 754 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 755 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 756 __func__, d.slot, (uint64_t)d.first_page, 757 (uint32_t)d.num_pages, ret); 758 } else { 759 ret = 0; 760 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 761 } 762 763 /* 764 * After we have updated the remote dirty bitmap, we update the 765 * cached bitmap as well for the memslot, then if another user 766 * clears the same region we know we shouldn't clear it again on 767 * the remote otherwise it's data loss as well. 768 */ 769 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 770 size / psize); 771 /* This handles the NULL case well */ 772 g_free(bmap_clear); 773 return ret; 774 } 775 776 777 /** 778 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 779 * 780 * NOTE: this will be a no-op if we haven't enabled manual dirty log 781 * protection in the host kernel because in that case this operation 782 * will be done within log_sync(). 783 * 784 * @kml: the kvm memory listener 785 * @section: the memory range to clear dirty bitmap 786 */ 787 static int kvm_physical_log_clear(KVMMemoryListener *kml, 788 MemoryRegionSection *section) 789 { 790 KVMState *s = kvm_state; 791 uint64_t start, size, offset, count; 792 KVMSlot *mem; 793 int ret = 0, i; 794 795 if (!s->manual_dirty_log_protect) { 796 /* No need to do explicit clear */ 797 return ret; 798 } 799 800 start = section->offset_within_address_space; 801 size = int128_get64(section->size); 802 803 if (!size) { 804 /* Nothing more we can do... */ 805 return ret; 806 } 807 808 kvm_slots_lock(kml); 809 810 for (i = 0; i < s->nr_slots; i++) { 811 mem = &kml->slots[i]; 812 /* Discard slots that are empty or do not overlap the section */ 813 if (!mem->memory_size || 814 mem->start_addr > start + size - 1 || 815 start > mem->start_addr + mem->memory_size - 1) { 816 continue; 817 } 818 819 if (start >= mem->start_addr) { 820 /* The slot starts before section or is aligned to it. */ 821 offset = start - mem->start_addr; 822 count = MIN(mem->memory_size - offset, size); 823 } else { 824 /* The slot starts after section. */ 825 offset = 0; 826 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 827 } 828 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 829 if (ret < 0) { 830 break; 831 } 832 } 833 834 kvm_slots_unlock(kml); 835 836 return ret; 837 } 838 839 static void kvm_coalesce_mmio_region(MemoryListener *listener, 840 MemoryRegionSection *secion, 841 hwaddr start, hwaddr size) 842 { 843 KVMState *s = kvm_state; 844 845 if (s->coalesced_mmio) { 846 struct kvm_coalesced_mmio_zone zone; 847 848 zone.addr = start; 849 zone.size = size; 850 zone.pad = 0; 851 852 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 853 } 854 } 855 856 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 857 MemoryRegionSection *secion, 858 hwaddr start, hwaddr size) 859 { 860 KVMState *s = kvm_state; 861 862 if (s->coalesced_mmio) { 863 struct kvm_coalesced_mmio_zone zone; 864 865 zone.addr = start; 866 zone.size = size; 867 zone.pad = 0; 868 869 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 870 } 871 } 872 873 static void kvm_coalesce_pio_add(MemoryListener *listener, 874 MemoryRegionSection *section, 875 hwaddr start, hwaddr size) 876 { 877 KVMState *s = kvm_state; 878 879 if (s->coalesced_pio) { 880 struct kvm_coalesced_mmio_zone zone; 881 882 zone.addr = start; 883 zone.size = size; 884 zone.pio = 1; 885 886 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 887 } 888 } 889 890 static void kvm_coalesce_pio_del(MemoryListener *listener, 891 MemoryRegionSection *section, 892 hwaddr start, hwaddr size) 893 { 894 KVMState *s = kvm_state; 895 896 if (s->coalesced_pio) { 897 struct kvm_coalesced_mmio_zone zone; 898 899 zone.addr = start; 900 zone.size = size; 901 zone.pio = 1; 902 903 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 904 } 905 } 906 907 static MemoryListener kvm_coalesced_pio_listener = { 908 .coalesced_io_add = kvm_coalesce_pio_add, 909 .coalesced_io_del = kvm_coalesce_pio_del, 910 }; 911 912 int kvm_check_extension(KVMState *s, unsigned int extension) 913 { 914 int ret; 915 916 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 917 if (ret < 0) { 918 ret = 0; 919 } 920 921 return ret; 922 } 923 924 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 925 { 926 int ret; 927 928 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 929 if (ret < 0) { 930 /* VM wide version not implemented, use global one instead */ 931 ret = kvm_check_extension(s, extension); 932 } 933 934 return ret; 935 } 936 937 typedef struct HWPoisonPage { 938 ram_addr_t ram_addr; 939 QLIST_ENTRY(HWPoisonPage) list; 940 } HWPoisonPage; 941 942 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 943 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 944 945 static void kvm_unpoison_all(void *param) 946 { 947 HWPoisonPage *page, *next_page; 948 949 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 950 QLIST_REMOVE(page, list); 951 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 952 g_free(page); 953 } 954 } 955 956 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 957 { 958 HWPoisonPage *page; 959 960 QLIST_FOREACH(page, &hwpoison_page_list, list) { 961 if (page->ram_addr == ram_addr) { 962 return; 963 } 964 } 965 page = g_new(HWPoisonPage, 1); 966 page->ram_addr = ram_addr; 967 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 968 } 969 970 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 971 { 972 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 973 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 974 * endianness, but the memory core hands them in target endianness. 975 * For example, PPC is always treated as big-endian even if running 976 * on KVM and on PPC64LE. Correct here. 977 */ 978 switch (size) { 979 case 2: 980 val = bswap16(val); 981 break; 982 case 4: 983 val = bswap32(val); 984 break; 985 } 986 #endif 987 return val; 988 } 989 990 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 991 bool assign, uint32_t size, bool datamatch) 992 { 993 int ret; 994 struct kvm_ioeventfd iofd = { 995 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 996 .addr = addr, 997 .len = size, 998 .flags = 0, 999 .fd = fd, 1000 }; 1001 1002 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1003 datamatch); 1004 if (!kvm_enabled()) { 1005 return -ENOSYS; 1006 } 1007 1008 if (datamatch) { 1009 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1010 } 1011 if (!assign) { 1012 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1013 } 1014 1015 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1016 1017 if (ret < 0) { 1018 return -errno; 1019 } 1020 1021 return 0; 1022 } 1023 1024 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1025 bool assign, uint32_t size, bool datamatch) 1026 { 1027 struct kvm_ioeventfd kick = { 1028 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1029 .addr = addr, 1030 .flags = KVM_IOEVENTFD_FLAG_PIO, 1031 .len = size, 1032 .fd = fd, 1033 }; 1034 int r; 1035 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1036 if (!kvm_enabled()) { 1037 return -ENOSYS; 1038 } 1039 if (datamatch) { 1040 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1041 } 1042 if (!assign) { 1043 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1044 } 1045 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1046 if (r < 0) { 1047 return r; 1048 } 1049 return 0; 1050 } 1051 1052 1053 static int kvm_check_many_ioeventfds(void) 1054 { 1055 /* Userspace can use ioeventfd for io notification. This requires a host 1056 * that supports eventfd(2) and an I/O thread; since eventfd does not 1057 * support SIGIO it cannot interrupt the vcpu. 1058 * 1059 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1060 * can avoid creating too many ioeventfds. 1061 */ 1062 #if defined(CONFIG_EVENTFD) 1063 int ioeventfds[7]; 1064 int i, ret = 0; 1065 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1066 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1067 if (ioeventfds[i] < 0) { 1068 break; 1069 } 1070 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1071 if (ret < 0) { 1072 close(ioeventfds[i]); 1073 break; 1074 } 1075 } 1076 1077 /* Decide whether many devices are supported or not */ 1078 ret = i == ARRAY_SIZE(ioeventfds); 1079 1080 while (i-- > 0) { 1081 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1082 close(ioeventfds[i]); 1083 } 1084 return ret; 1085 #else 1086 return 0; 1087 #endif 1088 } 1089 1090 static const KVMCapabilityInfo * 1091 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1092 { 1093 while (list->name) { 1094 if (!kvm_check_extension(s, list->value)) { 1095 return list; 1096 } 1097 list++; 1098 } 1099 return NULL; 1100 } 1101 1102 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1103 { 1104 g_assert( 1105 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1106 ); 1107 kvm_max_slot_size = max_slot_size; 1108 } 1109 1110 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1111 MemoryRegionSection *section, bool add) 1112 { 1113 KVMSlot *mem; 1114 int err; 1115 MemoryRegion *mr = section->mr; 1116 bool writeable = !mr->readonly && !mr->rom_device; 1117 hwaddr start_addr, size, slot_size; 1118 void *ram; 1119 1120 if (!memory_region_is_ram(mr)) { 1121 if (writeable || !kvm_readonly_mem_allowed) { 1122 return; 1123 } else if (!mr->romd_mode) { 1124 /* If the memory device is not in romd_mode, then we actually want 1125 * to remove the kvm memory slot so all accesses will trap. */ 1126 add = false; 1127 } 1128 } 1129 1130 size = kvm_align_section(section, &start_addr); 1131 if (!size) { 1132 return; 1133 } 1134 1135 /* use aligned delta to align the ram address */ 1136 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1137 (start_addr - section->offset_within_address_space); 1138 1139 kvm_slots_lock(kml); 1140 1141 if (!add) { 1142 do { 1143 slot_size = MIN(kvm_max_slot_size, size); 1144 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1145 if (!mem) { 1146 goto out; 1147 } 1148 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1149 kvm_physical_sync_dirty_bitmap(kml, section); 1150 } 1151 1152 /* unregister the slot */ 1153 g_free(mem->dirty_bmap); 1154 mem->dirty_bmap = NULL; 1155 mem->memory_size = 0; 1156 mem->flags = 0; 1157 err = kvm_set_user_memory_region(kml, mem, false); 1158 if (err) { 1159 fprintf(stderr, "%s: error unregistering slot: %s\n", 1160 __func__, strerror(-err)); 1161 abort(); 1162 } 1163 start_addr += slot_size; 1164 size -= slot_size; 1165 } while (size); 1166 goto out; 1167 } 1168 1169 /* register the new slot */ 1170 do { 1171 slot_size = MIN(kvm_max_slot_size, size); 1172 mem = kvm_alloc_slot(kml); 1173 mem->memory_size = slot_size; 1174 mem->start_addr = start_addr; 1175 mem->ram = ram; 1176 mem->flags = kvm_mem_flags(mr); 1177 1178 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1179 /* 1180 * Reallocate the bmap; it means it doesn't disappear in 1181 * middle of a migrate. 1182 */ 1183 kvm_memslot_init_dirty_bitmap(mem); 1184 } 1185 err = kvm_set_user_memory_region(kml, mem, true); 1186 if (err) { 1187 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1188 strerror(-err)); 1189 abort(); 1190 } 1191 start_addr += slot_size; 1192 ram += slot_size; 1193 size -= slot_size; 1194 } while (size); 1195 1196 out: 1197 kvm_slots_unlock(kml); 1198 } 1199 1200 static void kvm_region_add(MemoryListener *listener, 1201 MemoryRegionSection *section) 1202 { 1203 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1204 1205 memory_region_ref(section->mr); 1206 kvm_set_phys_mem(kml, section, true); 1207 } 1208 1209 static void kvm_region_del(MemoryListener *listener, 1210 MemoryRegionSection *section) 1211 { 1212 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1213 1214 kvm_set_phys_mem(kml, section, false); 1215 memory_region_unref(section->mr); 1216 } 1217 1218 static void kvm_log_sync(MemoryListener *listener, 1219 MemoryRegionSection *section) 1220 { 1221 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1222 int r; 1223 1224 kvm_slots_lock(kml); 1225 r = kvm_physical_sync_dirty_bitmap(kml, section); 1226 kvm_slots_unlock(kml); 1227 if (r < 0) { 1228 abort(); 1229 } 1230 } 1231 1232 static void kvm_log_clear(MemoryListener *listener, 1233 MemoryRegionSection *section) 1234 { 1235 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1236 int r; 1237 1238 r = kvm_physical_log_clear(kml, section); 1239 if (r < 0) { 1240 error_report_once("%s: kvm log clear failed: mr=%s " 1241 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1242 section->mr->name, section->offset_within_region, 1243 int128_get64(section->size)); 1244 abort(); 1245 } 1246 } 1247 1248 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1249 MemoryRegionSection *section, 1250 bool match_data, uint64_t data, 1251 EventNotifier *e) 1252 { 1253 int fd = event_notifier_get_fd(e); 1254 int r; 1255 1256 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1257 data, true, int128_get64(section->size), 1258 match_data); 1259 if (r < 0) { 1260 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1261 __func__, strerror(-r), -r); 1262 abort(); 1263 } 1264 } 1265 1266 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1267 MemoryRegionSection *section, 1268 bool match_data, uint64_t data, 1269 EventNotifier *e) 1270 { 1271 int fd = event_notifier_get_fd(e); 1272 int r; 1273 1274 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1275 data, false, int128_get64(section->size), 1276 match_data); 1277 if (r < 0) { 1278 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1279 __func__, strerror(-r), -r); 1280 abort(); 1281 } 1282 } 1283 1284 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1285 MemoryRegionSection *section, 1286 bool match_data, uint64_t data, 1287 EventNotifier *e) 1288 { 1289 int fd = event_notifier_get_fd(e); 1290 int r; 1291 1292 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1293 data, true, int128_get64(section->size), 1294 match_data); 1295 if (r < 0) { 1296 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1297 __func__, strerror(-r), -r); 1298 abort(); 1299 } 1300 } 1301 1302 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1303 MemoryRegionSection *section, 1304 bool match_data, uint64_t data, 1305 EventNotifier *e) 1306 1307 { 1308 int fd = event_notifier_get_fd(e); 1309 int r; 1310 1311 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1312 data, false, int128_get64(section->size), 1313 match_data); 1314 if (r < 0) { 1315 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1316 __func__, strerror(-r), -r); 1317 abort(); 1318 } 1319 } 1320 1321 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1322 AddressSpace *as, int as_id) 1323 { 1324 int i; 1325 1326 qemu_mutex_init(&kml->slots_lock); 1327 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1328 kml->as_id = as_id; 1329 1330 for (i = 0; i < s->nr_slots; i++) { 1331 kml->slots[i].slot = i; 1332 } 1333 1334 kml->listener.region_add = kvm_region_add; 1335 kml->listener.region_del = kvm_region_del; 1336 kml->listener.log_start = kvm_log_start; 1337 kml->listener.log_stop = kvm_log_stop; 1338 kml->listener.log_sync = kvm_log_sync; 1339 kml->listener.log_clear = kvm_log_clear; 1340 kml->listener.priority = 10; 1341 1342 memory_listener_register(&kml->listener, as); 1343 1344 for (i = 0; i < s->nr_as; ++i) { 1345 if (!s->as[i].as) { 1346 s->as[i].as = as; 1347 s->as[i].ml = kml; 1348 break; 1349 } 1350 } 1351 } 1352 1353 static MemoryListener kvm_io_listener = { 1354 .eventfd_add = kvm_io_ioeventfd_add, 1355 .eventfd_del = kvm_io_ioeventfd_del, 1356 .priority = 10, 1357 }; 1358 1359 int kvm_set_irq(KVMState *s, int irq, int level) 1360 { 1361 struct kvm_irq_level event; 1362 int ret; 1363 1364 assert(kvm_async_interrupts_enabled()); 1365 1366 event.level = level; 1367 event.irq = irq; 1368 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1369 if (ret < 0) { 1370 perror("kvm_set_irq"); 1371 abort(); 1372 } 1373 1374 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1375 } 1376 1377 #ifdef KVM_CAP_IRQ_ROUTING 1378 typedef struct KVMMSIRoute { 1379 struct kvm_irq_routing_entry kroute; 1380 QTAILQ_ENTRY(KVMMSIRoute) entry; 1381 } KVMMSIRoute; 1382 1383 static void set_gsi(KVMState *s, unsigned int gsi) 1384 { 1385 set_bit(gsi, s->used_gsi_bitmap); 1386 } 1387 1388 static void clear_gsi(KVMState *s, unsigned int gsi) 1389 { 1390 clear_bit(gsi, s->used_gsi_bitmap); 1391 } 1392 1393 void kvm_init_irq_routing(KVMState *s) 1394 { 1395 int gsi_count, i; 1396 1397 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1398 if (gsi_count > 0) { 1399 /* Round up so we can search ints using ffs */ 1400 s->used_gsi_bitmap = bitmap_new(gsi_count); 1401 s->gsi_count = gsi_count; 1402 } 1403 1404 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1405 s->nr_allocated_irq_routes = 0; 1406 1407 if (!kvm_direct_msi_allowed) { 1408 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1409 QTAILQ_INIT(&s->msi_hashtab[i]); 1410 } 1411 } 1412 1413 kvm_arch_init_irq_routing(s); 1414 } 1415 1416 void kvm_irqchip_commit_routes(KVMState *s) 1417 { 1418 int ret; 1419 1420 if (kvm_gsi_direct_mapping()) { 1421 return; 1422 } 1423 1424 if (!kvm_gsi_routing_enabled()) { 1425 return; 1426 } 1427 1428 s->irq_routes->flags = 0; 1429 trace_kvm_irqchip_commit_routes(); 1430 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1431 assert(ret == 0); 1432 } 1433 1434 static void kvm_add_routing_entry(KVMState *s, 1435 struct kvm_irq_routing_entry *entry) 1436 { 1437 struct kvm_irq_routing_entry *new; 1438 int n, size; 1439 1440 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1441 n = s->nr_allocated_irq_routes * 2; 1442 if (n < 64) { 1443 n = 64; 1444 } 1445 size = sizeof(struct kvm_irq_routing); 1446 size += n * sizeof(*new); 1447 s->irq_routes = g_realloc(s->irq_routes, size); 1448 s->nr_allocated_irq_routes = n; 1449 } 1450 n = s->irq_routes->nr++; 1451 new = &s->irq_routes->entries[n]; 1452 1453 *new = *entry; 1454 1455 set_gsi(s, entry->gsi); 1456 } 1457 1458 static int kvm_update_routing_entry(KVMState *s, 1459 struct kvm_irq_routing_entry *new_entry) 1460 { 1461 struct kvm_irq_routing_entry *entry; 1462 int n; 1463 1464 for (n = 0; n < s->irq_routes->nr; n++) { 1465 entry = &s->irq_routes->entries[n]; 1466 if (entry->gsi != new_entry->gsi) { 1467 continue; 1468 } 1469 1470 if(!memcmp(entry, new_entry, sizeof *entry)) { 1471 return 0; 1472 } 1473 1474 *entry = *new_entry; 1475 1476 return 0; 1477 } 1478 1479 return -ESRCH; 1480 } 1481 1482 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1483 { 1484 struct kvm_irq_routing_entry e = {}; 1485 1486 assert(pin < s->gsi_count); 1487 1488 e.gsi = irq; 1489 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1490 e.flags = 0; 1491 e.u.irqchip.irqchip = irqchip; 1492 e.u.irqchip.pin = pin; 1493 kvm_add_routing_entry(s, &e); 1494 } 1495 1496 void kvm_irqchip_release_virq(KVMState *s, int virq) 1497 { 1498 struct kvm_irq_routing_entry *e; 1499 int i; 1500 1501 if (kvm_gsi_direct_mapping()) { 1502 return; 1503 } 1504 1505 for (i = 0; i < s->irq_routes->nr; i++) { 1506 e = &s->irq_routes->entries[i]; 1507 if (e->gsi == virq) { 1508 s->irq_routes->nr--; 1509 *e = s->irq_routes->entries[s->irq_routes->nr]; 1510 } 1511 } 1512 clear_gsi(s, virq); 1513 kvm_arch_release_virq_post(virq); 1514 trace_kvm_irqchip_release_virq(virq); 1515 } 1516 1517 void kvm_irqchip_add_change_notifier(Notifier *n) 1518 { 1519 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1520 } 1521 1522 void kvm_irqchip_remove_change_notifier(Notifier *n) 1523 { 1524 notifier_remove(n); 1525 } 1526 1527 void kvm_irqchip_change_notify(void) 1528 { 1529 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1530 } 1531 1532 static unsigned int kvm_hash_msi(uint32_t data) 1533 { 1534 /* This is optimized for IA32 MSI layout. However, no other arch shall 1535 * repeat the mistake of not providing a direct MSI injection API. */ 1536 return data & 0xff; 1537 } 1538 1539 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1540 { 1541 KVMMSIRoute *route, *next; 1542 unsigned int hash; 1543 1544 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1545 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1546 kvm_irqchip_release_virq(s, route->kroute.gsi); 1547 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1548 g_free(route); 1549 } 1550 } 1551 } 1552 1553 static int kvm_irqchip_get_virq(KVMState *s) 1554 { 1555 int next_virq; 1556 1557 /* 1558 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1559 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1560 * number can succeed even though a new route entry cannot be added. 1561 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1562 */ 1563 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1564 kvm_flush_dynamic_msi_routes(s); 1565 } 1566 1567 /* Return the lowest unused GSI in the bitmap */ 1568 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1569 if (next_virq >= s->gsi_count) { 1570 return -ENOSPC; 1571 } else { 1572 return next_virq; 1573 } 1574 } 1575 1576 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1577 { 1578 unsigned int hash = kvm_hash_msi(msg.data); 1579 KVMMSIRoute *route; 1580 1581 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1582 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1583 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1584 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1585 return route; 1586 } 1587 } 1588 return NULL; 1589 } 1590 1591 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1592 { 1593 struct kvm_msi msi; 1594 KVMMSIRoute *route; 1595 1596 if (kvm_direct_msi_allowed) { 1597 msi.address_lo = (uint32_t)msg.address; 1598 msi.address_hi = msg.address >> 32; 1599 msi.data = le32_to_cpu(msg.data); 1600 msi.flags = 0; 1601 memset(msi.pad, 0, sizeof(msi.pad)); 1602 1603 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1604 } 1605 1606 route = kvm_lookup_msi_route(s, msg); 1607 if (!route) { 1608 int virq; 1609 1610 virq = kvm_irqchip_get_virq(s); 1611 if (virq < 0) { 1612 return virq; 1613 } 1614 1615 route = g_malloc0(sizeof(KVMMSIRoute)); 1616 route->kroute.gsi = virq; 1617 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1618 route->kroute.flags = 0; 1619 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1620 route->kroute.u.msi.address_hi = msg.address >> 32; 1621 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1622 1623 kvm_add_routing_entry(s, &route->kroute); 1624 kvm_irqchip_commit_routes(s); 1625 1626 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1627 entry); 1628 } 1629 1630 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1631 1632 return kvm_set_irq(s, route->kroute.gsi, 1); 1633 } 1634 1635 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1636 { 1637 struct kvm_irq_routing_entry kroute = {}; 1638 int virq; 1639 MSIMessage msg = {0, 0}; 1640 1641 if (pci_available && dev) { 1642 msg = pci_get_msi_message(dev, vector); 1643 } 1644 1645 if (kvm_gsi_direct_mapping()) { 1646 return kvm_arch_msi_data_to_gsi(msg.data); 1647 } 1648 1649 if (!kvm_gsi_routing_enabled()) { 1650 return -ENOSYS; 1651 } 1652 1653 virq = kvm_irqchip_get_virq(s); 1654 if (virq < 0) { 1655 return virq; 1656 } 1657 1658 kroute.gsi = virq; 1659 kroute.type = KVM_IRQ_ROUTING_MSI; 1660 kroute.flags = 0; 1661 kroute.u.msi.address_lo = (uint32_t)msg.address; 1662 kroute.u.msi.address_hi = msg.address >> 32; 1663 kroute.u.msi.data = le32_to_cpu(msg.data); 1664 if (pci_available && kvm_msi_devid_required()) { 1665 kroute.flags = KVM_MSI_VALID_DEVID; 1666 kroute.u.msi.devid = pci_requester_id(dev); 1667 } 1668 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1669 kvm_irqchip_release_virq(s, virq); 1670 return -EINVAL; 1671 } 1672 1673 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1674 vector, virq); 1675 1676 kvm_add_routing_entry(s, &kroute); 1677 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1678 kvm_irqchip_commit_routes(s); 1679 1680 return virq; 1681 } 1682 1683 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1684 PCIDevice *dev) 1685 { 1686 struct kvm_irq_routing_entry kroute = {}; 1687 1688 if (kvm_gsi_direct_mapping()) { 1689 return 0; 1690 } 1691 1692 if (!kvm_irqchip_in_kernel()) { 1693 return -ENOSYS; 1694 } 1695 1696 kroute.gsi = virq; 1697 kroute.type = KVM_IRQ_ROUTING_MSI; 1698 kroute.flags = 0; 1699 kroute.u.msi.address_lo = (uint32_t)msg.address; 1700 kroute.u.msi.address_hi = msg.address >> 32; 1701 kroute.u.msi.data = le32_to_cpu(msg.data); 1702 if (pci_available && kvm_msi_devid_required()) { 1703 kroute.flags = KVM_MSI_VALID_DEVID; 1704 kroute.u.msi.devid = pci_requester_id(dev); 1705 } 1706 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1707 return -EINVAL; 1708 } 1709 1710 trace_kvm_irqchip_update_msi_route(virq); 1711 1712 return kvm_update_routing_entry(s, &kroute); 1713 } 1714 1715 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1716 EventNotifier *resample, int virq, 1717 bool assign) 1718 { 1719 int fd = event_notifier_get_fd(event); 1720 int rfd = resample ? event_notifier_get_fd(resample) : -1; 1721 1722 struct kvm_irqfd irqfd = { 1723 .fd = fd, 1724 .gsi = virq, 1725 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1726 }; 1727 1728 if (rfd != -1) { 1729 assert(assign); 1730 if (kvm_irqchip_is_split()) { 1731 /* 1732 * When the slow irqchip (e.g. IOAPIC) is in the 1733 * userspace, KVM kernel resamplefd will not work because 1734 * the EOI of the interrupt will be delivered to userspace 1735 * instead, so the KVM kernel resamplefd kick will be 1736 * skipped. The userspace here mimics what the kernel 1737 * provides with resamplefd, remember the resamplefd and 1738 * kick it when we receive EOI of this IRQ. 1739 * 1740 * This is hackery because IOAPIC is mostly bypassed 1741 * (except EOI broadcasts) when irqfd is used. However 1742 * this can bring much performance back for split irqchip 1743 * with INTx IRQs (for VFIO, this gives 93% perf of the 1744 * full fast path, which is 46% perf boost comparing to 1745 * the INTx slow path). 1746 */ 1747 kvm_resample_fd_insert(virq, resample); 1748 } else { 1749 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1750 irqfd.resamplefd = rfd; 1751 } 1752 } else if (!assign) { 1753 if (kvm_irqchip_is_split()) { 1754 kvm_resample_fd_remove(virq); 1755 } 1756 } 1757 1758 if (!kvm_irqfds_enabled()) { 1759 return -ENOSYS; 1760 } 1761 1762 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1763 } 1764 1765 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1766 { 1767 struct kvm_irq_routing_entry kroute = {}; 1768 int virq; 1769 1770 if (!kvm_gsi_routing_enabled()) { 1771 return -ENOSYS; 1772 } 1773 1774 virq = kvm_irqchip_get_virq(s); 1775 if (virq < 0) { 1776 return virq; 1777 } 1778 1779 kroute.gsi = virq; 1780 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1781 kroute.flags = 0; 1782 kroute.u.adapter.summary_addr = adapter->summary_addr; 1783 kroute.u.adapter.ind_addr = adapter->ind_addr; 1784 kroute.u.adapter.summary_offset = adapter->summary_offset; 1785 kroute.u.adapter.ind_offset = adapter->ind_offset; 1786 kroute.u.adapter.adapter_id = adapter->adapter_id; 1787 1788 kvm_add_routing_entry(s, &kroute); 1789 1790 return virq; 1791 } 1792 1793 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1794 { 1795 struct kvm_irq_routing_entry kroute = {}; 1796 int virq; 1797 1798 if (!kvm_gsi_routing_enabled()) { 1799 return -ENOSYS; 1800 } 1801 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1802 return -ENOSYS; 1803 } 1804 virq = kvm_irqchip_get_virq(s); 1805 if (virq < 0) { 1806 return virq; 1807 } 1808 1809 kroute.gsi = virq; 1810 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1811 kroute.flags = 0; 1812 kroute.u.hv_sint.vcpu = vcpu; 1813 kroute.u.hv_sint.sint = sint; 1814 1815 kvm_add_routing_entry(s, &kroute); 1816 kvm_irqchip_commit_routes(s); 1817 1818 return virq; 1819 } 1820 1821 #else /* !KVM_CAP_IRQ_ROUTING */ 1822 1823 void kvm_init_irq_routing(KVMState *s) 1824 { 1825 } 1826 1827 void kvm_irqchip_release_virq(KVMState *s, int virq) 1828 { 1829 } 1830 1831 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1832 { 1833 abort(); 1834 } 1835 1836 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1837 { 1838 return -ENOSYS; 1839 } 1840 1841 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1842 { 1843 return -ENOSYS; 1844 } 1845 1846 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1847 { 1848 return -ENOSYS; 1849 } 1850 1851 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1852 EventNotifier *resample, int virq, 1853 bool assign) 1854 { 1855 abort(); 1856 } 1857 1858 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1859 { 1860 return -ENOSYS; 1861 } 1862 #endif /* !KVM_CAP_IRQ_ROUTING */ 1863 1864 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1865 EventNotifier *rn, int virq) 1866 { 1867 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 1868 } 1869 1870 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1871 int virq) 1872 { 1873 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 1874 } 1875 1876 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1877 EventNotifier *rn, qemu_irq irq) 1878 { 1879 gpointer key, gsi; 1880 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1881 1882 if (!found) { 1883 return -ENXIO; 1884 } 1885 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1886 } 1887 1888 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1889 qemu_irq irq) 1890 { 1891 gpointer key, gsi; 1892 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1893 1894 if (!found) { 1895 return -ENXIO; 1896 } 1897 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1898 } 1899 1900 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1901 { 1902 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1903 } 1904 1905 static void kvm_irqchip_create(KVMState *s) 1906 { 1907 int ret; 1908 1909 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 1910 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1911 ; 1912 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1913 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1914 if (ret < 0) { 1915 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1916 exit(1); 1917 } 1918 } else { 1919 return; 1920 } 1921 1922 /* First probe and see if there's a arch-specific hook to create the 1923 * in-kernel irqchip for us */ 1924 ret = kvm_arch_irqchip_create(s); 1925 if (ret == 0) { 1926 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 1927 perror("Split IRQ chip mode not supported."); 1928 exit(1); 1929 } else { 1930 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1931 } 1932 } 1933 if (ret < 0) { 1934 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1935 exit(1); 1936 } 1937 1938 kvm_kernel_irqchip = true; 1939 /* If we have an in-kernel IRQ chip then we must have asynchronous 1940 * interrupt delivery (though the reverse is not necessarily true) 1941 */ 1942 kvm_async_interrupts_allowed = true; 1943 kvm_halt_in_kernel_allowed = true; 1944 1945 kvm_init_irq_routing(s); 1946 1947 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1948 } 1949 1950 /* Find number of supported CPUs using the recommended 1951 * procedure from the kernel API documentation to cope with 1952 * older kernels that may be missing capabilities. 1953 */ 1954 static int kvm_recommended_vcpus(KVMState *s) 1955 { 1956 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1957 return (ret) ? ret : 4; 1958 } 1959 1960 static int kvm_max_vcpus(KVMState *s) 1961 { 1962 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1963 return (ret) ? ret : kvm_recommended_vcpus(s); 1964 } 1965 1966 static int kvm_max_vcpu_id(KVMState *s) 1967 { 1968 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1969 return (ret) ? ret : kvm_max_vcpus(s); 1970 } 1971 1972 bool kvm_vcpu_id_is_valid(int vcpu_id) 1973 { 1974 KVMState *s = KVM_STATE(current_accel()); 1975 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1976 } 1977 1978 static int kvm_init(MachineState *ms) 1979 { 1980 MachineClass *mc = MACHINE_GET_CLASS(ms); 1981 static const char upgrade_note[] = 1982 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1983 "(see http://sourceforge.net/projects/kvm).\n"; 1984 struct { 1985 const char *name; 1986 int num; 1987 } num_cpus[] = { 1988 { "SMP", ms->smp.cpus }, 1989 { "hotpluggable", ms->smp.max_cpus }, 1990 { NULL, } 1991 }, *nc = num_cpus; 1992 int soft_vcpus_limit, hard_vcpus_limit; 1993 KVMState *s; 1994 const KVMCapabilityInfo *missing_cap; 1995 int ret; 1996 int type = 0; 1997 const char *kvm_type; 1998 1999 s = KVM_STATE(ms->accelerator); 2000 2001 /* 2002 * On systems where the kernel can support different base page 2003 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2004 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2005 * page size for the system though. 2006 */ 2007 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2008 2009 s->sigmask_len = 8; 2010 2011 #ifdef KVM_CAP_SET_GUEST_DEBUG 2012 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2013 #endif 2014 QLIST_INIT(&s->kvm_parked_vcpus); 2015 s->vmfd = -1; 2016 s->fd = qemu_open("/dev/kvm", O_RDWR); 2017 if (s->fd == -1) { 2018 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2019 ret = -errno; 2020 goto err; 2021 } 2022 2023 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2024 if (ret < KVM_API_VERSION) { 2025 if (ret >= 0) { 2026 ret = -EINVAL; 2027 } 2028 fprintf(stderr, "kvm version too old\n"); 2029 goto err; 2030 } 2031 2032 if (ret > KVM_API_VERSION) { 2033 ret = -EINVAL; 2034 fprintf(stderr, "kvm version not supported\n"); 2035 goto err; 2036 } 2037 2038 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2039 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2040 2041 /* If unspecified, use the default value */ 2042 if (!s->nr_slots) { 2043 s->nr_slots = 32; 2044 } 2045 2046 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2047 if (s->nr_as <= 1) { 2048 s->nr_as = 1; 2049 } 2050 s->as = g_new0(struct KVMAs, s->nr_as); 2051 2052 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 2053 if (mc->kvm_type) { 2054 type = mc->kvm_type(ms, kvm_type); 2055 } else if (kvm_type) { 2056 ret = -EINVAL; 2057 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 2058 goto err; 2059 } 2060 2061 do { 2062 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2063 } while (ret == -EINTR); 2064 2065 if (ret < 0) { 2066 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2067 strerror(-ret)); 2068 2069 #ifdef TARGET_S390X 2070 if (ret == -EINVAL) { 2071 fprintf(stderr, 2072 "Host kernel setup problem detected. Please verify:\n"); 2073 fprintf(stderr, "- for kernels supporting the switch_amode or" 2074 " user_mode parameters, whether\n"); 2075 fprintf(stderr, 2076 " user space is running in primary address space\n"); 2077 fprintf(stderr, 2078 "- for kernels supporting the vm.allocate_pgste sysctl, " 2079 "whether it is enabled\n"); 2080 } 2081 #endif 2082 goto err; 2083 } 2084 2085 s->vmfd = ret; 2086 2087 /* check the vcpu limits */ 2088 soft_vcpus_limit = kvm_recommended_vcpus(s); 2089 hard_vcpus_limit = kvm_max_vcpus(s); 2090 2091 while (nc->name) { 2092 if (nc->num > soft_vcpus_limit) { 2093 warn_report("Number of %s cpus requested (%d) exceeds " 2094 "the recommended cpus supported by KVM (%d)", 2095 nc->name, nc->num, soft_vcpus_limit); 2096 2097 if (nc->num > hard_vcpus_limit) { 2098 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2099 "the maximum cpus supported by KVM (%d)\n", 2100 nc->name, nc->num, hard_vcpus_limit); 2101 exit(1); 2102 } 2103 } 2104 nc++; 2105 } 2106 2107 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2108 if (!missing_cap) { 2109 missing_cap = 2110 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2111 } 2112 if (missing_cap) { 2113 ret = -EINVAL; 2114 fprintf(stderr, "kvm does not support %s\n%s", 2115 missing_cap->name, upgrade_note); 2116 goto err; 2117 } 2118 2119 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2120 s->coalesced_pio = s->coalesced_mmio && 2121 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2122 2123 s->manual_dirty_log_protect = 2124 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2125 if (s->manual_dirty_log_protect) { 2126 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1); 2127 if (ret) { 2128 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 " 2129 "but failed. Falling back to the legacy mode. "); 2130 s->manual_dirty_log_protect = false; 2131 } 2132 } 2133 2134 #ifdef KVM_CAP_VCPU_EVENTS 2135 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2136 #endif 2137 2138 s->robust_singlestep = 2139 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2140 2141 #ifdef KVM_CAP_DEBUGREGS 2142 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2143 #endif 2144 2145 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2146 2147 #ifdef KVM_CAP_IRQ_ROUTING 2148 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2149 #endif 2150 2151 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2152 2153 s->irq_set_ioctl = KVM_IRQ_LINE; 2154 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2155 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2156 } 2157 2158 kvm_readonly_mem_allowed = 2159 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2160 2161 kvm_eventfds_allowed = 2162 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2163 2164 kvm_irqfds_allowed = 2165 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2166 2167 kvm_resamplefds_allowed = 2168 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2169 2170 kvm_vm_attributes_allowed = 2171 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2172 2173 kvm_ioeventfd_any_length_allowed = 2174 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2175 2176 kvm_state = s; 2177 2178 /* 2179 * if memory encryption object is specified then initialize the memory 2180 * encryption context. 2181 */ 2182 if (ms->memory_encryption) { 2183 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 2184 if (!kvm_state->memcrypt_handle) { 2185 ret = -1; 2186 goto err; 2187 } 2188 2189 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 2190 } 2191 2192 ret = kvm_arch_init(ms, s); 2193 if (ret < 0) { 2194 goto err; 2195 } 2196 2197 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2198 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2199 } 2200 2201 qemu_register_reset(kvm_unpoison_all, NULL); 2202 2203 if (s->kernel_irqchip_allowed) { 2204 kvm_irqchip_create(s); 2205 } 2206 2207 if (kvm_eventfds_allowed) { 2208 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2209 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2210 } 2211 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2212 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2213 2214 kvm_memory_listener_register(s, &s->memory_listener, 2215 &address_space_memory, 0); 2216 memory_listener_register(&kvm_io_listener, 2217 &address_space_io); 2218 memory_listener_register(&kvm_coalesced_pio_listener, 2219 &address_space_io); 2220 2221 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2222 2223 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2224 if (!s->sync_mmu) { 2225 qemu_balloon_inhibit(true); 2226 } 2227 2228 return 0; 2229 2230 err: 2231 assert(ret < 0); 2232 if (s->vmfd >= 0) { 2233 close(s->vmfd); 2234 } 2235 if (s->fd != -1) { 2236 close(s->fd); 2237 } 2238 g_free(s->memory_listener.slots); 2239 2240 return ret; 2241 } 2242 2243 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2244 { 2245 s->sigmask_len = sigmask_len; 2246 } 2247 2248 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2249 int size, uint32_t count) 2250 { 2251 int i; 2252 uint8_t *ptr = data; 2253 2254 for (i = 0; i < count; i++) { 2255 address_space_rw(&address_space_io, port, attrs, 2256 ptr, size, 2257 direction == KVM_EXIT_IO_OUT); 2258 ptr += size; 2259 } 2260 } 2261 2262 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2263 { 2264 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2265 run->internal.suberror); 2266 2267 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2268 int i; 2269 2270 for (i = 0; i < run->internal.ndata; ++i) { 2271 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2272 i, (uint64_t)run->internal.data[i]); 2273 } 2274 } 2275 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2276 fprintf(stderr, "emulation failure\n"); 2277 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2278 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2279 return EXCP_INTERRUPT; 2280 } 2281 } 2282 /* FIXME: Should trigger a qmp message to let management know 2283 * something went wrong. 2284 */ 2285 return -1; 2286 } 2287 2288 void kvm_flush_coalesced_mmio_buffer(void) 2289 { 2290 KVMState *s = kvm_state; 2291 2292 if (s->coalesced_flush_in_progress) { 2293 return; 2294 } 2295 2296 s->coalesced_flush_in_progress = true; 2297 2298 if (s->coalesced_mmio_ring) { 2299 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2300 while (ring->first != ring->last) { 2301 struct kvm_coalesced_mmio *ent; 2302 2303 ent = &ring->coalesced_mmio[ring->first]; 2304 2305 if (ent->pio == 1) { 2306 address_space_write(&address_space_io, ent->phys_addr, 2307 MEMTXATTRS_UNSPECIFIED, ent->data, 2308 ent->len); 2309 } else { 2310 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2311 } 2312 smp_wmb(); 2313 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2314 } 2315 } 2316 2317 s->coalesced_flush_in_progress = false; 2318 } 2319 2320 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2321 { 2322 if (!cpu->vcpu_dirty) { 2323 kvm_arch_get_registers(cpu); 2324 cpu->vcpu_dirty = true; 2325 } 2326 } 2327 2328 void kvm_cpu_synchronize_state(CPUState *cpu) 2329 { 2330 if (!cpu->vcpu_dirty) { 2331 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2332 } 2333 } 2334 2335 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2336 { 2337 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2338 cpu->vcpu_dirty = false; 2339 } 2340 2341 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2342 { 2343 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2344 } 2345 2346 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2347 { 2348 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2349 cpu->vcpu_dirty = false; 2350 } 2351 2352 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2353 { 2354 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2355 } 2356 2357 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2358 { 2359 cpu->vcpu_dirty = true; 2360 } 2361 2362 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2363 { 2364 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2365 } 2366 2367 #ifdef KVM_HAVE_MCE_INJECTION 2368 static __thread void *pending_sigbus_addr; 2369 static __thread int pending_sigbus_code; 2370 static __thread bool have_sigbus_pending; 2371 #endif 2372 2373 static void kvm_cpu_kick(CPUState *cpu) 2374 { 2375 atomic_set(&cpu->kvm_run->immediate_exit, 1); 2376 } 2377 2378 static void kvm_cpu_kick_self(void) 2379 { 2380 if (kvm_immediate_exit) { 2381 kvm_cpu_kick(current_cpu); 2382 } else { 2383 qemu_cpu_kick_self(); 2384 } 2385 } 2386 2387 static void kvm_eat_signals(CPUState *cpu) 2388 { 2389 struct timespec ts = { 0, 0 }; 2390 siginfo_t siginfo; 2391 sigset_t waitset; 2392 sigset_t chkset; 2393 int r; 2394 2395 if (kvm_immediate_exit) { 2396 atomic_set(&cpu->kvm_run->immediate_exit, 0); 2397 /* Write kvm_run->immediate_exit before the cpu->exit_request 2398 * write in kvm_cpu_exec. 2399 */ 2400 smp_wmb(); 2401 return; 2402 } 2403 2404 sigemptyset(&waitset); 2405 sigaddset(&waitset, SIG_IPI); 2406 2407 do { 2408 r = sigtimedwait(&waitset, &siginfo, &ts); 2409 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2410 perror("sigtimedwait"); 2411 exit(1); 2412 } 2413 2414 r = sigpending(&chkset); 2415 if (r == -1) { 2416 perror("sigpending"); 2417 exit(1); 2418 } 2419 } while (sigismember(&chkset, SIG_IPI)); 2420 } 2421 2422 int kvm_cpu_exec(CPUState *cpu) 2423 { 2424 struct kvm_run *run = cpu->kvm_run; 2425 int ret, run_ret; 2426 2427 DPRINTF("kvm_cpu_exec()\n"); 2428 2429 if (kvm_arch_process_async_events(cpu)) { 2430 atomic_set(&cpu->exit_request, 0); 2431 return EXCP_HLT; 2432 } 2433 2434 qemu_mutex_unlock_iothread(); 2435 cpu_exec_start(cpu); 2436 2437 do { 2438 MemTxAttrs attrs; 2439 2440 if (cpu->vcpu_dirty) { 2441 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2442 cpu->vcpu_dirty = false; 2443 } 2444 2445 kvm_arch_pre_run(cpu, run); 2446 if (atomic_read(&cpu->exit_request)) { 2447 DPRINTF("interrupt exit requested\n"); 2448 /* 2449 * KVM requires us to reenter the kernel after IO exits to complete 2450 * instruction emulation. This self-signal will ensure that we 2451 * leave ASAP again. 2452 */ 2453 kvm_cpu_kick_self(); 2454 } 2455 2456 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2457 * Matching barrier in kvm_eat_signals. 2458 */ 2459 smp_rmb(); 2460 2461 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2462 2463 attrs = kvm_arch_post_run(cpu, run); 2464 2465 #ifdef KVM_HAVE_MCE_INJECTION 2466 if (unlikely(have_sigbus_pending)) { 2467 qemu_mutex_lock_iothread(); 2468 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2469 pending_sigbus_addr); 2470 have_sigbus_pending = false; 2471 qemu_mutex_unlock_iothread(); 2472 } 2473 #endif 2474 2475 if (run_ret < 0) { 2476 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2477 DPRINTF("io window exit\n"); 2478 kvm_eat_signals(cpu); 2479 ret = EXCP_INTERRUPT; 2480 break; 2481 } 2482 fprintf(stderr, "error: kvm run failed %s\n", 2483 strerror(-run_ret)); 2484 #ifdef TARGET_PPC 2485 if (run_ret == -EBUSY) { 2486 fprintf(stderr, 2487 "This is probably because your SMT is enabled.\n" 2488 "VCPU can only run on primary threads with all " 2489 "secondary threads offline.\n"); 2490 } 2491 #endif 2492 ret = -1; 2493 break; 2494 } 2495 2496 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2497 switch (run->exit_reason) { 2498 case KVM_EXIT_IO: 2499 DPRINTF("handle_io\n"); 2500 /* Called outside BQL */ 2501 kvm_handle_io(run->io.port, attrs, 2502 (uint8_t *)run + run->io.data_offset, 2503 run->io.direction, 2504 run->io.size, 2505 run->io.count); 2506 ret = 0; 2507 break; 2508 case KVM_EXIT_MMIO: 2509 DPRINTF("handle_mmio\n"); 2510 /* Called outside BQL */ 2511 address_space_rw(&address_space_memory, 2512 run->mmio.phys_addr, attrs, 2513 run->mmio.data, 2514 run->mmio.len, 2515 run->mmio.is_write); 2516 ret = 0; 2517 break; 2518 case KVM_EXIT_IRQ_WINDOW_OPEN: 2519 DPRINTF("irq_window_open\n"); 2520 ret = EXCP_INTERRUPT; 2521 break; 2522 case KVM_EXIT_SHUTDOWN: 2523 DPRINTF("shutdown\n"); 2524 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2525 ret = EXCP_INTERRUPT; 2526 break; 2527 case KVM_EXIT_UNKNOWN: 2528 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2529 (uint64_t)run->hw.hardware_exit_reason); 2530 ret = -1; 2531 break; 2532 case KVM_EXIT_INTERNAL_ERROR: 2533 ret = kvm_handle_internal_error(cpu, run); 2534 break; 2535 case KVM_EXIT_SYSTEM_EVENT: 2536 switch (run->system_event.type) { 2537 case KVM_SYSTEM_EVENT_SHUTDOWN: 2538 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2539 ret = EXCP_INTERRUPT; 2540 break; 2541 case KVM_SYSTEM_EVENT_RESET: 2542 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2543 ret = EXCP_INTERRUPT; 2544 break; 2545 case KVM_SYSTEM_EVENT_CRASH: 2546 kvm_cpu_synchronize_state(cpu); 2547 qemu_mutex_lock_iothread(); 2548 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2549 qemu_mutex_unlock_iothread(); 2550 ret = 0; 2551 break; 2552 default: 2553 DPRINTF("kvm_arch_handle_exit\n"); 2554 ret = kvm_arch_handle_exit(cpu, run); 2555 break; 2556 } 2557 break; 2558 default: 2559 DPRINTF("kvm_arch_handle_exit\n"); 2560 ret = kvm_arch_handle_exit(cpu, run); 2561 break; 2562 } 2563 } while (ret == 0); 2564 2565 cpu_exec_end(cpu); 2566 qemu_mutex_lock_iothread(); 2567 2568 if (ret < 0) { 2569 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2570 vm_stop(RUN_STATE_INTERNAL_ERROR); 2571 } 2572 2573 atomic_set(&cpu->exit_request, 0); 2574 return ret; 2575 } 2576 2577 int kvm_ioctl(KVMState *s, int type, ...) 2578 { 2579 int ret; 2580 void *arg; 2581 va_list ap; 2582 2583 va_start(ap, type); 2584 arg = va_arg(ap, void *); 2585 va_end(ap); 2586 2587 trace_kvm_ioctl(type, arg); 2588 ret = ioctl(s->fd, type, arg); 2589 if (ret == -1) { 2590 ret = -errno; 2591 } 2592 return ret; 2593 } 2594 2595 int kvm_vm_ioctl(KVMState *s, int type, ...) 2596 { 2597 int ret; 2598 void *arg; 2599 va_list ap; 2600 2601 va_start(ap, type); 2602 arg = va_arg(ap, void *); 2603 va_end(ap); 2604 2605 trace_kvm_vm_ioctl(type, arg); 2606 ret = ioctl(s->vmfd, type, arg); 2607 if (ret == -1) { 2608 ret = -errno; 2609 } 2610 return ret; 2611 } 2612 2613 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2614 { 2615 int ret; 2616 void *arg; 2617 va_list ap; 2618 2619 va_start(ap, type); 2620 arg = va_arg(ap, void *); 2621 va_end(ap); 2622 2623 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2624 ret = ioctl(cpu->kvm_fd, type, arg); 2625 if (ret == -1) { 2626 ret = -errno; 2627 } 2628 return ret; 2629 } 2630 2631 int kvm_device_ioctl(int fd, int type, ...) 2632 { 2633 int ret; 2634 void *arg; 2635 va_list ap; 2636 2637 va_start(ap, type); 2638 arg = va_arg(ap, void *); 2639 va_end(ap); 2640 2641 trace_kvm_device_ioctl(fd, type, arg); 2642 ret = ioctl(fd, type, arg); 2643 if (ret == -1) { 2644 ret = -errno; 2645 } 2646 return ret; 2647 } 2648 2649 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2650 { 2651 int ret; 2652 struct kvm_device_attr attribute = { 2653 .group = group, 2654 .attr = attr, 2655 }; 2656 2657 if (!kvm_vm_attributes_allowed) { 2658 return 0; 2659 } 2660 2661 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2662 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2663 return ret ? 0 : 1; 2664 } 2665 2666 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2667 { 2668 struct kvm_device_attr attribute = { 2669 .group = group, 2670 .attr = attr, 2671 .flags = 0, 2672 }; 2673 2674 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2675 } 2676 2677 int kvm_device_access(int fd, int group, uint64_t attr, 2678 void *val, bool write, Error **errp) 2679 { 2680 struct kvm_device_attr kvmattr; 2681 int err; 2682 2683 kvmattr.flags = 0; 2684 kvmattr.group = group; 2685 kvmattr.attr = attr; 2686 kvmattr.addr = (uintptr_t)val; 2687 2688 err = kvm_device_ioctl(fd, 2689 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2690 &kvmattr); 2691 if (err < 0) { 2692 error_setg_errno(errp, -err, 2693 "KVM_%s_DEVICE_ATTR failed: Group %d " 2694 "attr 0x%016" PRIx64, 2695 write ? "SET" : "GET", group, attr); 2696 } 2697 return err; 2698 } 2699 2700 bool kvm_has_sync_mmu(void) 2701 { 2702 return kvm_state->sync_mmu; 2703 } 2704 2705 int kvm_has_vcpu_events(void) 2706 { 2707 return kvm_state->vcpu_events; 2708 } 2709 2710 int kvm_has_robust_singlestep(void) 2711 { 2712 return kvm_state->robust_singlestep; 2713 } 2714 2715 int kvm_has_debugregs(void) 2716 { 2717 return kvm_state->debugregs; 2718 } 2719 2720 int kvm_max_nested_state_length(void) 2721 { 2722 return kvm_state->max_nested_state_len; 2723 } 2724 2725 int kvm_has_many_ioeventfds(void) 2726 { 2727 if (!kvm_enabled()) { 2728 return 0; 2729 } 2730 return kvm_state->many_ioeventfds; 2731 } 2732 2733 int kvm_has_gsi_routing(void) 2734 { 2735 #ifdef KVM_CAP_IRQ_ROUTING 2736 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2737 #else 2738 return false; 2739 #endif 2740 } 2741 2742 int kvm_has_intx_set_mask(void) 2743 { 2744 return kvm_state->intx_set_mask; 2745 } 2746 2747 bool kvm_arm_supports_user_irq(void) 2748 { 2749 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2750 } 2751 2752 #ifdef KVM_CAP_SET_GUEST_DEBUG 2753 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2754 target_ulong pc) 2755 { 2756 struct kvm_sw_breakpoint *bp; 2757 2758 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2759 if (bp->pc == pc) { 2760 return bp; 2761 } 2762 } 2763 return NULL; 2764 } 2765 2766 int kvm_sw_breakpoints_active(CPUState *cpu) 2767 { 2768 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2769 } 2770 2771 struct kvm_set_guest_debug_data { 2772 struct kvm_guest_debug dbg; 2773 int err; 2774 }; 2775 2776 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2777 { 2778 struct kvm_set_guest_debug_data *dbg_data = 2779 (struct kvm_set_guest_debug_data *) data.host_ptr; 2780 2781 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2782 &dbg_data->dbg); 2783 } 2784 2785 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2786 { 2787 struct kvm_set_guest_debug_data data; 2788 2789 data.dbg.control = reinject_trap; 2790 2791 if (cpu->singlestep_enabled) { 2792 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2793 } 2794 kvm_arch_update_guest_debug(cpu, &data.dbg); 2795 2796 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2797 RUN_ON_CPU_HOST_PTR(&data)); 2798 return data.err; 2799 } 2800 2801 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2802 target_ulong len, int type) 2803 { 2804 struct kvm_sw_breakpoint *bp; 2805 int err; 2806 2807 if (type == GDB_BREAKPOINT_SW) { 2808 bp = kvm_find_sw_breakpoint(cpu, addr); 2809 if (bp) { 2810 bp->use_count++; 2811 return 0; 2812 } 2813 2814 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2815 bp->pc = addr; 2816 bp->use_count = 1; 2817 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2818 if (err) { 2819 g_free(bp); 2820 return err; 2821 } 2822 2823 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2824 } else { 2825 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2826 if (err) { 2827 return err; 2828 } 2829 } 2830 2831 CPU_FOREACH(cpu) { 2832 err = kvm_update_guest_debug(cpu, 0); 2833 if (err) { 2834 return err; 2835 } 2836 } 2837 return 0; 2838 } 2839 2840 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2841 target_ulong len, int type) 2842 { 2843 struct kvm_sw_breakpoint *bp; 2844 int err; 2845 2846 if (type == GDB_BREAKPOINT_SW) { 2847 bp = kvm_find_sw_breakpoint(cpu, addr); 2848 if (!bp) { 2849 return -ENOENT; 2850 } 2851 2852 if (bp->use_count > 1) { 2853 bp->use_count--; 2854 return 0; 2855 } 2856 2857 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2858 if (err) { 2859 return err; 2860 } 2861 2862 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2863 g_free(bp); 2864 } else { 2865 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2866 if (err) { 2867 return err; 2868 } 2869 } 2870 2871 CPU_FOREACH(cpu) { 2872 err = kvm_update_guest_debug(cpu, 0); 2873 if (err) { 2874 return err; 2875 } 2876 } 2877 return 0; 2878 } 2879 2880 void kvm_remove_all_breakpoints(CPUState *cpu) 2881 { 2882 struct kvm_sw_breakpoint *bp, *next; 2883 KVMState *s = cpu->kvm_state; 2884 CPUState *tmpcpu; 2885 2886 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2887 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2888 /* Try harder to find a CPU that currently sees the breakpoint. */ 2889 CPU_FOREACH(tmpcpu) { 2890 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2891 break; 2892 } 2893 } 2894 } 2895 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2896 g_free(bp); 2897 } 2898 kvm_arch_remove_all_hw_breakpoints(); 2899 2900 CPU_FOREACH(cpu) { 2901 kvm_update_guest_debug(cpu, 0); 2902 } 2903 } 2904 2905 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2906 2907 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2908 { 2909 return -EINVAL; 2910 } 2911 2912 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2913 target_ulong len, int type) 2914 { 2915 return -EINVAL; 2916 } 2917 2918 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2919 target_ulong len, int type) 2920 { 2921 return -EINVAL; 2922 } 2923 2924 void kvm_remove_all_breakpoints(CPUState *cpu) 2925 { 2926 } 2927 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2928 2929 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2930 { 2931 KVMState *s = kvm_state; 2932 struct kvm_signal_mask *sigmask; 2933 int r; 2934 2935 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2936 2937 sigmask->len = s->sigmask_len; 2938 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2939 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2940 g_free(sigmask); 2941 2942 return r; 2943 } 2944 2945 static void kvm_ipi_signal(int sig) 2946 { 2947 if (current_cpu) { 2948 assert(kvm_immediate_exit); 2949 kvm_cpu_kick(current_cpu); 2950 } 2951 } 2952 2953 void kvm_init_cpu_signals(CPUState *cpu) 2954 { 2955 int r; 2956 sigset_t set; 2957 struct sigaction sigact; 2958 2959 memset(&sigact, 0, sizeof(sigact)); 2960 sigact.sa_handler = kvm_ipi_signal; 2961 sigaction(SIG_IPI, &sigact, NULL); 2962 2963 pthread_sigmask(SIG_BLOCK, NULL, &set); 2964 #if defined KVM_HAVE_MCE_INJECTION 2965 sigdelset(&set, SIGBUS); 2966 pthread_sigmask(SIG_SETMASK, &set, NULL); 2967 #endif 2968 sigdelset(&set, SIG_IPI); 2969 if (kvm_immediate_exit) { 2970 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2971 } else { 2972 r = kvm_set_signal_mask(cpu, &set); 2973 } 2974 if (r) { 2975 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2976 exit(1); 2977 } 2978 } 2979 2980 /* Called asynchronously in VCPU thread. */ 2981 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2982 { 2983 #ifdef KVM_HAVE_MCE_INJECTION 2984 if (have_sigbus_pending) { 2985 return 1; 2986 } 2987 have_sigbus_pending = true; 2988 pending_sigbus_addr = addr; 2989 pending_sigbus_code = code; 2990 atomic_set(&cpu->exit_request, 1); 2991 return 0; 2992 #else 2993 return 1; 2994 #endif 2995 } 2996 2997 /* Called synchronously (via signalfd) in main thread. */ 2998 int kvm_on_sigbus(int code, void *addr) 2999 { 3000 #ifdef KVM_HAVE_MCE_INJECTION 3001 /* Action required MCE kills the process if SIGBUS is blocked. Because 3002 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3003 * we can only get action optional here. 3004 */ 3005 assert(code != BUS_MCEERR_AR); 3006 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3007 return 0; 3008 #else 3009 return 1; 3010 #endif 3011 } 3012 3013 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3014 { 3015 int ret; 3016 struct kvm_create_device create_dev; 3017 3018 create_dev.type = type; 3019 create_dev.fd = -1; 3020 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3021 3022 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3023 return -ENOTSUP; 3024 } 3025 3026 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3027 if (ret) { 3028 return ret; 3029 } 3030 3031 return test ? 0 : create_dev.fd; 3032 } 3033 3034 bool kvm_device_supported(int vmfd, uint64_t type) 3035 { 3036 struct kvm_create_device create_dev = { 3037 .type = type, 3038 .fd = -1, 3039 .flags = KVM_CREATE_DEVICE_TEST, 3040 }; 3041 3042 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3043 return false; 3044 } 3045 3046 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3047 } 3048 3049 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3050 { 3051 struct kvm_one_reg reg; 3052 int r; 3053 3054 reg.id = id; 3055 reg.addr = (uintptr_t) source; 3056 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3057 if (r) { 3058 trace_kvm_failed_reg_set(id, strerror(-r)); 3059 } 3060 return r; 3061 } 3062 3063 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3064 { 3065 struct kvm_one_reg reg; 3066 int r; 3067 3068 reg.id = id; 3069 reg.addr = (uintptr_t) target; 3070 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3071 if (r) { 3072 trace_kvm_failed_reg_get(id, strerror(-r)); 3073 } 3074 return r; 3075 } 3076 3077 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3078 hwaddr start_addr, hwaddr size) 3079 { 3080 KVMState *kvm = KVM_STATE(ms->accelerator); 3081 int i; 3082 3083 for (i = 0; i < kvm->nr_as; ++i) { 3084 if (kvm->as[i].as == as && kvm->as[i].ml) { 3085 size = MIN(kvm_max_slot_size, size); 3086 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3087 start_addr, size); 3088 } 3089 } 3090 3091 return false; 3092 } 3093 3094 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3095 const char *name, void *opaque, 3096 Error **errp) 3097 { 3098 KVMState *s = KVM_STATE(obj); 3099 int64_t value = s->kvm_shadow_mem; 3100 3101 visit_type_int(v, name, &value, errp); 3102 } 3103 3104 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3105 const char *name, void *opaque, 3106 Error **errp) 3107 { 3108 KVMState *s = KVM_STATE(obj); 3109 Error *error = NULL; 3110 int64_t value; 3111 3112 visit_type_int(v, name, &value, &error); 3113 if (error) { 3114 error_propagate(errp, error); 3115 return; 3116 } 3117 3118 s->kvm_shadow_mem = value; 3119 } 3120 3121 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3122 const char *name, void *opaque, 3123 Error **errp) 3124 { 3125 Error *err = NULL; 3126 KVMState *s = KVM_STATE(obj); 3127 OnOffSplit mode; 3128 3129 visit_type_OnOffSplit(v, name, &mode, &err); 3130 if (err) { 3131 error_propagate(errp, err); 3132 return; 3133 } else { 3134 switch (mode) { 3135 case ON_OFF_SPLIT_ON: 3136 s->kernel_irqchip_allowed = true; 3137 s->kernel_irqchip_required = true; 3138 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3139 break; 3140 case ON_OFF_SPLIT_OFF: 3141 s->kernel_irqchip_allowed = false; 3142 s->kernel_irqchip_required = false; 3143 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3144 break; 3145 case ON_OFF_SPLIT_SPLIT: 3146 s->kernel_irqchip_allowed = true; 3147 s->kernel_irqchip_required = true; 3148 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3149 break; 3150 default: 3151 /* The value was checked in visit_type_OnOffSplit() above. If 3152 * we get here, then something is wrong in QEMU. 3153 */ 3154 abort(); 3155 } 3156 } 3157 } 3158 3159 bool kvm_kernel_irqchip_allowed(void) 3160 { 3161 return kvm_state->kernel_irqchip_allowed; 3162 } 3163 3164 bool kvm_kernel_irqchip_required(void) 3165 { 3166 return kvm_state->kernel_irqchip_required; 3167 } 3168 3169 bool kvm_kernel_irqchip_split(void) 3170 { 3171 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3172 } 3173 3174 static void kvm_accel_instance_init(Object *obj) 3175 { 3176 KVMState *s = KVM_STATE(obj); 3177 3178 s->kvm_shadow_mem = -1; 3179 s->kernel_irqchip_allowed = true; 3180 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3181 } 3182 3183 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3184 { 3185 AccelClass *ac = ACCEL_CLASS(oc); 3186 ac->name = "KVM"; 3187 ac->init_machine = kvm_init; 3188 ac->has_memory = kvm_accel_has_memory; 3189 ac->allowed = &kvm_allowed; 3190 3191 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3192 NULL, kvm_set_kernel_irqchip, 3193 NULL, NULL); 3194 object_class_property_set_description(oc, "kernel-irqchip", 3195 "Configure KVM in-kernel irqchip"); 3196 3197 object_class_property_add(oc, "kvm-shadow-mem", "int", 3198 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3199 NULL, NULL); 3200 object_class_property_set_description(oc, "kvm-shadow-mem", 3201 "KVM shadow MMU size"); 3202 } 3203 3204 static const TypeInfo kvm_accel_type = { 3205 .name = TYPE_KVM_ACCEL, 3206 .parent = TYPE_ACCEL, 3207 .instance_init = kvm_accel_instance_init, 3208 .class_init = kvm_accel_class_init, 3209 .instance_size = sizeof(KVMState), 3210 }; 3211 3212 static void kvm_type_init(void) 3213 { 3214 type_register_static(&kvm_accel_type); 3215 } 3216 3217 type_init(kvm_type_init); 3218