xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 34cc54fb)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 struct KVMParkedVcpu {
73     unsigned long vcpu_id;
74     int kvm_fd;
75     QLIST_ENTRY(KVMParkedVcpu) node;
76 };
77 
78 KVMState *kvm_state;
79 bool kvm_kernel_irqchip;
80 bool kvm_split_irqchip;
81 bool kvm_async_interrupts_allowed;
82 bool kvm_halt_in_kernel_allowed;
83 bool kvm_resamplefds_allowed;
84 bool kvm_msi_via_irqfd_allowed;
85 bool kvm_gsi_routing_allowed;
86 bool kvm_gsi_direct_mapping;
87 bool kvm_allowed;
88 bool kvm_readonly_mem_allowed;
89 bool kvm_vm_attributes_allowed;
90 bool kvm_msi_use_devid;
91 static bool kvm_has_guest_debug;
92 static int kvm_sstep_flags;
93 static bool kvm_immediate_exit;
94 static uint64_t kvm_supported_memory_attributes;
95 static bool kvm_guest_memfd_supported;
96 static hwaddr kvm_max_slot_size = ~0;
97 
98 static const KVMCapabilityInfo kvm_required_capabilites[] = {
99     KVM_CAP_INFO(USER_MEMORY),
100     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
101     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
102     KVM_CAP_INFO(INTERNAL_ERROR_DATA),
103     KVM_CAP_INFO(IOEVENTFD),
104     KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
105     KVM_CAP_LAST_INFO
106 };
107 
108 static NotifierList kvm_irqchip_change_notifiers =
109     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
110 
111 struct KVMResampleFd {
112     int gsi;
113     EventNotifier *resample_event;
114     QLIST_ENTRY(KVMResampleFd) node;
115 };
116 typedef struct KVMResampleFd KVMResampleFd;
117 
118 /*
119  * Only used with split irqchip where we need to do the resample fd
120  * kick for the kernel from userspace.
121  */
122 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
123     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
124 
125 static QemuMutex kml_slots_lock;
126 
127 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
128 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
129 
130 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
131 
132 static inline void kvm_resample_fd_remove(int gsi)
133 {
134     KVMResampleFd *rfd;
135 
136     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
137         if (rfd->gsi == gsi) {
138             QLIST_REMOVE(rfd, node);
139             g_free(rfd);
140             break;
141         }
142     }
143 }
144 
145 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
146 {
147     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
148 
149     rfd->gsi = gsi;
150     rfd->resample_event = event;
151 
152     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
153 }
154 
155 void kvm_resample_fd_notify(int gsi)
156 {
157     KVMResampleFd *rfd;
158 
159     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
160         if (rfd->gsi == gsi) {
161             event_notifier_set(rfd->resample_event);
162             trace_kvm_resample_fd_notify(gsi);
163             return;
164         }
165     }
166 }
167 
168 unsigned int kvm_get_max_memslots(void)
169 {
170     KVMState *s = KVM_STATE(current_accel());
171 
172     return s->nr_slots;
173 }
174 
175 unsigned int kvm_get_free_memslots(void)
176 {
177     unsigned int used_slots = 0;
178     KVMState *s = kvm_state;
179     int i;
180 
181     kvm_slots_lock();
182     for (i = 0; i < s->nr_as; i++) {
183         if (!s->as[i].ml) {
184             continue;
185         }
186         used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
187     }
188     kvm_slots_unlock();
189 
190     return s->nr_slots - used_slots;
191 }
192 
193 /* Called with KVMMemoryListener.slots_lock held */
194 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
195 {
196     KVMState *s = kvm_state;
197     int i;
198 
199     for (i = 0; i < s->nr_slots; i++) {
200         if (kml->slots[i].memory_size == 0) {
201             return &kml->slots[i];
202         }
203     }
204 
205     return NULL;
206 }
207 
208 /* Called with KVMMemoryListener.slots_lock held */
209 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
210 {
211     KVMSlot *slot = kvm_get_free_slot(kml);
212 
213     if (slot) {
214         return slot;
215     }
216 
217     fprintf(stderr, "%s: no free slot available\n", __func__);
218     abort();
219 }
220 
221 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
222                                          hwaddr start_addr,
223                                          hwaddr size)
224 {
225     KVMState *s = kvm_state;
226     int i;
227 
228     for (i = 0; i < s->nr_slots; i++) {
229         KVMSlot *mem = &kml->slots[i];
230 
231         if (start_addr == mem->start_addr && size == mem->memory_size) {
232             return mem;
233         }
234     }
235 
236     return NULL;
237 }
238 
239 /*
240  * Calculate and align the start address and the size of the section.
241  * Return the size. If the size is 0, the aligned section is empty.
242  */
243 static hwaddr kvm_align_section(MemoryRegionSection *section,
244                                 hwaddr *start)
245 {
246     hwaddr size = int128_get64(section->size);
247     hwaddr delta, aligned;
248 
249     /* kvm works in page size chunks, but the function may be called
250        with sub-page size and unaligned start address. Pad the start
251        address to next and truncate size to previous page boundary. */
252     aligned = ROUND_UP(section->offset_within_address_space,
253                        qemu_real_host_page_size());
254     delta = aligned - section->offset_within_address_space;
255     *start = aligned;
256     if (delta > size) {
257         return 0;
258     }
259 
260     return (size - delta) & qemu_real_host_page_mask();
261 }
262 
263 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
264                                        hwaddr *phys_addr)
265 {
266     KVMMemoryListener *kml = &s->memory_listener;
267     int i, ret = 0;
268 
269     kvm_slots_lock();
270     for (i = 0; i < s->nr_slots; i++) {
271         KVMSlot *mem = &kml->slots[i];
272 
273         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
274             *phys_addr = mem->start_addr + (ram - mem->ram);
275             ret = 1;
276             break;
277         }
278     }
279     kvm_slots_unlock();
280 
281     return ret;
282 }
283 
284 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
285 {
286     KVMState *s = kvm_state;
287     struct kvm_userspace_memory_region2 mem;
288     int ret;
289 
290     mem.slot = slot->slot | (kml->as_id << 16);
291     mem.guest_phys_addr = slot->start_addr;
292     mem.userspace_addr = (unsigned long)slot->ram;
293     mem.flags = slot->flags;
294     mem.guest_memfd = slot->guest_memfd;
295     mem.guest_memfd_offset = slot->guest_memfd_offset;
296 
297     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
298         /* Set the slot size to 0 before setting the slot to the desired
299          * value. This is needed based on KVM commit 75d61fbc. */
300         mem.memory_size = 0;
301 
302         if (kvm_guest_memfd_supported) {
303             ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
304         } else {
305             ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
306         }
307         if (ret < 0) {
308             goto err;
309         }
310     }
311     mem.memory_size = slot->memory_size;
312     if (kvm_guest_memfd_supported) {
313         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
314     } else {
315         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
316     }
317     slot->old_flags = mem.flags;
318 err:
319     trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags,
320                               mem.guest_phys_addr, mem.memory_size,
321                               mem.userspace_addr, mem.guest_memfd,
322                               mem.guest_memfd_offset, ret);
323     if (ret < 0) {
324         if (kvm_guest_memfd_supported) {
325                 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d,"
326                         " start=0x%" PRIx64 ", size=0x%" PRIx64 ","
327                         " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 ","
328                         " guest_memfd_offset=0x%" PRIx64 ": %s",
329                         __func__, mem.slot, slot->start_addr,
330                         (uint64_t)mem.memory_size, mem.flags,
331                         mem.guest_memfd, (uint64_t)mem.guest_memfd_offset,
332                         strerror(errno));
333         } else {
334                 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
335                             " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
336                             __func__, mem.slot, slot->start_addr,
337                             (uint64_t)mem.memory_size, strerror(errno));
338         }
339     }
340     return ret;
341 }
342 
343 static int do_kvm_destroy_vcpu(CPUState *cpu)
344 {
345     KVMState *s = kvm_state;
346     long mmap_size;
347     struct KVMParkedVcpu *vcpu = NULL;
348     int ret = 0;
349 
350     trace_kvm_destroy_vcpu();
351 
352     ret = kvm_arch_destroy_vcpu(cpu);
353     if (ret < 0) {
354         goto err;
355     }
356 
357     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
358     if (mmap_size < 0) {
359         ret = mmap_size;
360         trace_kvm_failed_get_vcpu_mmap_size();
361         goto err;
362     }
363 
364     ret = munmap(cpu->kvm_run, mmap_size);
365     if (ret < 0) {
366         goto err;
367     }
368 
369     if (cpu->kvm_dirty_gfns) {
370         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
371         if (ret < 0) {
372             goto err;
373         }
374     }
375 
376     vcpu = g_malloc0(sizeof(*vcpu));
377     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
378     vcpu->kvm_fd = cpu->kvm_fd;
379     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
380 err:
381     return ret;
382 }
383 
384 void kvm_destroy_vcpu(CPUState *cpu)
385 {
386     if (do_kvm_destroy_vcpu(cpu) < 0) {
387         error_report("kvm_destroy_vcpu failed");
388         exit(EXIT_FAILURE);
389     }
390 }
391 
392 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
393 {
394     struct KVMParkedVcpu *cpu;
395 
396     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
397         if (cpu->vcpu_id == vcpu_id) {
398             int kvm_fd;
399 
400             QLIST_REMOVE(cpu, node);
401             kvm_fd = cpu->kvm_fd;
402             g_free(cpu);
403             return kvm_fd;
404         }
405     }
406 
407     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
408 }
409 
410 int kvm_init_vcpu(CPUState *cpu, Error **errp)
411 {
412     KVMState *s = kvm_state;
413     long mmap_size;
414     int ret;
415 
416     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
417 
418     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
419     if (ret < 0) {
420         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
421                          kvm_arch_vcpu_id(cpu));
422         goto err;
423     }
424 
425     cpu->kvm_fd = ret;
426     cpu->kvm_state = s;
427     cpu->vcpu_dirty = true;
428     cpu->dirty_pages = 0;
429     cpu->throttle_us_per_full = 0;
430 
431     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
432     if (mmap_size < 0) {
433         ret = mmap_size;
434         error_setg_errno(errp, -mmap_size,
435                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
436         goto err;
437     }
438 
439     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
440                         cpu->kvm_fd, 0);
441     if (cpu->kvm_run == MAP_FAILED) {
442         ret = -errno;
443         error_setg_errno(errp, ret,
444                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
445                          kvm_arch_vcpu_id(cpu));
446         goto err;
447     }
448 
449     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
450         s->coalesced_mmio_ring =
451             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
452     }
453 
454     if (s->kvm_dirty_ring_size) {
455         /* Use MAP_SHARED to share pages with the kernel */
456         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
457                                    PROT_READ | PROT_WRITE, MAP_SHARED,
458                                    cpu->kvm_fd,
459                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
460         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
461             ret = -errno;
462             goto err;
463         }
464     }
465 
466     ret = kvm_arch_init_vcpu(cpu);
467     if (ret < 0) {
468         error_setg_errno(errp, -ret,
469                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
470                          kvm_arch_vcpu_id(cpu));
471     }
472     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
473 
474 err:
475     return ret;
476 }
477 
478 /*
479  * dirty pages logging control
480  */
481 
482 static int kvm_mem_flags(MemoryRegion *mr)
483 {
484     bool readonly = mr->readonly || memory_region_is_romd(mr);
485     int flags = 0;
486 
487     if (memory_region_get_dirty_log_mask(mr) != 0) {
488         flags |= KVM_MEM_LOG_DIRTY_PAGES;
489     }
490     if (readonly && kvm_readonly_mem_allowed) {
491         flags |= KVM_MEM_READONLY;
492     }
493     if (memory_region_has_guest_memfd(mr)) {
494         assert(kvm_guest_memfd_supported);
495         flags |= KVM_MEM_GUEST_MEMFD;
496     }
497     return flags;
498 }
499 
500 /* Called with KVMMemoryListener.slots_lock held */
501 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
502                                  MemoryRegion *mr)
503 {
504     mem->flags = kvm_mem_flags(mr);
505 
506     /* If nothing changed effectively, no need to issue ioctl */
507     if (mem->flags == mem->old_flags) {
508         return 0;
509     }
510 
511     kvm_slot_init_dirty_bitmap(mem);
512     return kvm_set_user_memory_region(kml, mem, false);
513 }
514 
515 static int kvm_section_update_flags(KVMMemoryListener *kml,
516                                     MemoryRegionSection *section)
517 {
518     hwaddr start_addr, size, slot_size;
519     KVMSlot *mem;
520     int ret = 0;
521 
522     size = kvm_align_section(section, &start_addr);
523     if (!size) {
524         return 0;
525     }
526 
527     kvm_slots_lock();
528 
529     while (size && !ret) {
530         slot_size = MIN(kvm_max_slot_size, size);
531         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
532         if (!mem) {
533             /* We don't have a slot if we want to trap every access. */
534             goto out;
535         }
536 
537         ret = kvm_slot_update_flags(kml, mem, section->mr);
538         start_addr += slot_size;
539         size -= slot_size;
540     }
541 
542 out:
543     kvm_slots_unlock();
544     return ret;
545 }
546 
547 static void kvm_log_start(MemoryListener *listener,
548                           MemoryRegionSection *section,
549                           int old, int new)
550 {
551     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
552     int r;
553 
554     if (old != 0) {
555         return;
556     }
557 
558     r = kvm_section_update_flags(kml, section);
559     if (r < 0) {
560         abort();
561     }
562 }
563 
564 static void kvm_log_stop(MemoryListener *listener,
565                           MemoryRegionSection *section,
566                           int old, int new)
567 {
568     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
569     int r;
570 
571     if (new != 0) {
572         return;
573     }
574 
575     r = kvm_section_update_flags(kml, section);
576     if (r < 0) {
577         abort();
578     }
579 }
580 
581 /* get kvm's dirty pages bitmap and update qemu's */
582 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
583 {
584     ram_addr_t start = slot->ram_start_offset;
585     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
586 
587     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
588 }
589 
590 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
591 {
592     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
593 }
594 
595 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
596 
597 /* Allocate the dirty bitmap for a slot  */
598 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
599 {
600     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
601         return;
602     }
603 
604     /*
605      * XXX bad kernel interface alert
606      * For dirty bitmap, kernel allocates array of size aligned to
607      * bits-per-long.  But for case when the kernel is 64bits and
608      * the userspace is 32bits, userspace can't align to the same
609      * bits-per-long, since sizeof(long) is different between kernel
610      * and user space.  This way, userspace will provide buffer which
611      * may be 4 bytes less than the kernel will use, resulting in
612      * userspace memory corruption (which is not detectable by valgrind
613      * too, in most cases).
614      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
615      * a hope that sizeof(long) won't become >8 any time soon.
616      *
617      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
618      * And mem->memory_size is aligned to it (otherwise this mem can't
619      * be registered to KVM).
620      */
621     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
622                                         /*HOST_LONG_BITS*/ 64) / 8;
623     mem->dirty_bmap = g_malloc0(bitmap_size);
624     mem->dirty_bmap_size = bitmap_size;
625 }
626 
627 /*
628  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
629  * succeeded, false otherwise
630  */
631 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
632 {
633     struct kvm_dirty_log d = {};
634     int ret;
635 
636     d.dirty_bitmap = slot->dirty_bmap;
637     d.slot = slot->slot | (slot->as_id << 16);
638     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
639 
640     if (ret == -ENOENT) {
641         /* kernel does not have dirty bitmap in this slot */
642         ret = 0;
643     }
644     if (ret) {
645         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
646                           __func__, ret);
647     }
648     return ret == 0;
649 }
650 
651 /* Should be with all slots_lock held for the address spaces. */
652 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
653                                      uint32_t slot_id, uint64_t offset)
654 {
655     KVMMemoryListener *kml;
656     KVMSlot *mem;
657 
658     if (as_id >= s->nr_as) {
659         return;
660     }
661 
662     kml = s->as[as_id].ml;
663     mem = &kml->slots[slot_id];
664 
665     if (!mem->memory_size || offset >=
666         (mem->memory_size / qemu_real_host_page_size())) {
667         return;
668     }
669 
670     set_bit(offset, mem->dirty_bmap);
671 }
672 
673 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
674 {
675     /*
676      * Read the flags before the value.  Pairs with barrier in
677      * KVM's kvm_dirty_ring_push() function.
678      */
679     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
680 }
681 
682 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
683 {
684     /*
685      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
686      * sees the full content of the ring:
687      *
688      * CPU0                     CPU1                         CPU2
689      * ------------------------------------------------------------------------------
690      *                                                       fill gfn0
691      *                                                       store-rel flags for gfn0
692      * load-acq flags for gfn0
693      * store-rel RESET for gfn0
694      *                          ioctl(RESET_RINGS)
695      *                            load-acq flags for gfn0
696      *                            check if flags have RESET
697      *
698      * The synchronization goes from CPU2 to CPU0 to CPU1.
699      */
700     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
701 }
702 
703 /*
704  * Should be with all slots_lock held for the address spaces.  It returns the
705  * dirty page we've collected on this dirty ring.
706  */
707 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
708 {
709     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
710     uint32_t ring_size = s->kvm_dirty_ring_size;
711     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
712 
713     /*
714      * It's possible that we race with vcpu creation code where the vcpu is
715      * put onto the vcpus list but not yet initialized the dirty ring
716      * structures.  If so, skip it.
717      */
718     if (!cpu->created) {
719         return 0;
720     }
721 
722     assert(dirty_gfns && ring_size);
723     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
724 
725     while (true) {
726         cur = &dirty_gfns[fetch % ring_size];
727         if (!dirty_gfn_is_dirtied(cur)) {
728             break;
729         }
730         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
731                                  cur->offset);
732         dirty_gfn_set_collected(cur);
733         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
734         fetch++;
735         count++;
736     }
737     cpu->kvm_fetch_index = fetch;
738     cpu->dirty_pages += count;
739 
740     return count;
741 }
742 
743 /* Must be with slots_lock held */
744 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
745 {
746     int ret;
747     uint64_t total = 0;
748     int64_t stamp;
749 
750     stamp = get_clock();
751 
752     if (cpu) {
753         total = kvm_dirty_ring_reap_one(s, cpu);
754     } else {
755         CPU_FOREACH(cpu) {
756             total += kvm_dirty_ring_reap_one(s, cpu);
757         }
758     }
759 
760     if (total) {
761         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
762         assert(ret == total);
763     }
764 
765     stamp = get_clock() - stamp;
766 
767     if (total) {
768         trace_kvm_dirty_ring_reap(total, stamp / 1000);
769     }
770 
771     return total;
772 }
773 
774 /*
775  * Currently for simplicity, we must hold BQL before calling this.  We can
776  * consider to drop the BQL if we're clear with all the race conditions.
777  */
778 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
779 {
780     uint64_t total;
781 
782     /*
783      * We need to lock all kvm slots for all address spaces here,
784      * because:
785      *
786      * (1) We need to mark dirty for dirty bitmaps in multiple slots
787      *     and for tons of pages, so it's better to take the lock here
788      *     once rather than once per page.  And more importantly,
789      *
790      * (2) We must _NOT_ publish dirty bits to the other threads
791      *     (e.g., the migration thread) via the kvm memory slot dirty
792      *     bitmaps before correctly re-protect those dirtied pages.
793      *     Otherwise we can have potential risk of data corruption if
794      *     the page data is read in the other thread before we do
795      *     reset below.
796      */
797     kvm_slots_lock();
798     total = kvm_dirty_ring_reap_locked(s, cpu);
799     kvm_slots_unlock();
800 
801     return total;
802 }
803 
804 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
805 {
806     /* No need to do anything */
807 }
808 
809 /*
810  * Kick all vcpus out in a synchronized way.  When returned, we
811  * guarantee that every vcpu has been kicked and at least returned to
812  * userspace once.
813  */
814 static void kvm_cpu_synchronize_kick_all(void)
815 {
816     CPUState *cpu;
817 
818     CPU_FOREACH(cpu) {
819         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
820     }
821 }
822 
823 /*
824  * Flush all the existing dirty pages to the KVM slot buffers.  When
825  * this call returns, we guarantee that all the touched dirty pages
826  * before calling this function have been put into the per-kvmslot
827  * dirty bitmap.
828  *
829  * This function must be called with BQL held.
830  */
831 static void kvm_dirty_ring_flush(void)
832 {
833     trace_kvm_dirty_ring_flush(0);
834     /*
835      * The function needs to be serialized.  Since this function
836      * should always be with BQL held, serialization is guaranteed.
837      * However, let's be sure of it.
838      */
839     assert(bql_locked());
840     /*
841      * First make sure to flush the hardware buffers by kicking all
842      * vcpus out in a synchronous way.
843      */
844     kvm_cpu_synchronize_kick_all();
845     kvm_dirty_ring_reap(kvm_state, NULL);
846     trace_kvm_dirty_ring_flush(1);
847 }
848 
849 /**
850  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
851  *
852  * This function will first try to fetch dirty bitmap from the kernel,
853  * and then updates qemu's dirty bitmap.
854  *
855  * NOTE: caller must be with kml->slots_lock held.
856  *
857  * @kml: the KVM memory listener object
858  * @section: the memory section to sync the dirty bitmap with
859  */
860 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
861                                            MemoryRegionSection *section)
862 {
863     KVMState *s = kvm_state;
864     KVMSlot *mem;
865     hwaddr start_addr, size;
866     hwaddr slot_size;
867 
868     size = kvm_align_section(section, &start_addr);
869     while (size) {
870         slot_size = MIN(kvm_max_slot_size, size);
871         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
872         if (!mem) {
873             /* We don't have a slot if we want to trap every access. */
874             return;
875         }
876         if (kvm_slot_get_dirty_log(s, mem)) {
877             kvm_slot_sync_dirty_pages(mem);
878         }
879         start_addr += slot_size;
880         size -= slot_size;
881     }
882 }
883 
884 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
885 #define KVM_CLEAR_LOG_SHIFT  6
886 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
887 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
888 
889 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
890                                   uint64_t size)
891 {
892     KVMState *s = kvm_state;
893     uint64_t end, bmap_start, start_delta, bmap_npages;
894     struct kvm_clear_dirty_log d;
895     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
896     int ret;
897 
898     /*
899      * We need to extend either the start or the size or both to
900      * satisfy the KVM interface requirement.  Firstly, do the start
901      * page alignment on 64 host pages
902      */
903     bmap_start = start & KVM_CLEAR_LOG_MASK;
904     start_delta = start - bmap_start;
905     bmap_start /= psize;
906 
907     /*
908      * The kernel interface has restriction on the size too, that either:
909      *
910      * (1) the size is 64 host pages aligned (just like the start), or
911      * (2) the size fills up until the end of the KVM memslot.
912      */
913     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
914         << KVM_CLEAR_LOG_SHIFT;
915     end = mem->memory_size / psize;
916     if (bmap_npages > end - bmap_start) {
917         bmap_npages = end - bmap_start;
918     }
919     start_delta /= psize;
920 
921     /*
922      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
923      * that we won't clear any unknown dirty bits otherwise we might
924      * accidentally clear some set bits which are not yet synced from
925      * the kernel into QEMU's bitmap, then we'll lose track of the
926      * guest modifications upon those pages (which can directly lead
927      * to guest data loss or panic after migration).
928      *
929      * Layout of the KVMSlot.dirty_bmap:
930      *
931      *                   |<-------- bmap_npages -----------..>|
932      *                                                     [1]
933      *                     start_delta         size
934      *  |----------------|-------------|------------------|------------|
935      *  ^                ^             ^                               ^
936      *  |                |             |                               |
937      * start          bmap_start     (start)                         end
938      * of memslot                                             of memslot
939      *
940      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
941      */
942 
943     assert(bmap_start % BITS_PER_LONG == 0);
944     /* We should never do log_clear before log_sync */
945     assert(mem->dirty_bmap);
946     if (start_delta || bmap_npages - size / psize) {
947         /* Slow path - we need to manipulate a temp bitmap */
948         bmap_clear = bitmap_new(bmap_npages);
949         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
950                                     bmap_start, start_delta + size / psize);
951         /*
952          * We need to fill the holes at start because that was not
953          * specified by the caller and we extended the bitmap only for
954          * 64 pages alignment
955          */
956         bitmap_clear(bmap_clear, 0, start_delta);
957         d.dirty_bitmap = bmap_clear;
958     } else {
959         /*
960          * Fast path - both start and size align well with BITS_PER_LONG
961          * (or the end of memory slot)
962          */
963         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
964     }
965 
966     d.first_page = bmap_start;
967     /* It should never overflow.  If it happens, say something */
968     assert(bmap_npages <= UINT32_MAX);
969     d.num_pages = bmap_npages;
970     d.slot = mem->slot | (as_id << 16);
971 
972     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
973     if (ret < 0 && ret != -ENOENT) {
974         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
975                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
976                      __func__, d.slot, (uint64_t)d.first_page,
977                      (uint32_t)d.num_pages, ret);
978     } else {
979         ret = 0;
980         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
981     }
982 
983     /*
984      * After we have updated the remote dirty bitmap, we update the
985      * cached bitmap as well for the memslot, then if another user
986      * clears the same region we know we shouldn't clear it again on
987      * the remote otherwise it's data loss as well.
988      */
989     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
990                  size / psize);
991     /* This handles the NULL case well */
992     g_free(bmap_clear);
993     return ret;
994 }
995 
996 
997 /**
998  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
999  *
1000  * NOTE: this will be a no-op if we haven't enabled manual dirty log
1001  * protection in the host kernel because in that case this operation
1002  * will be done within log_sync().
1003  *
1004  * @kml:     the kvm memory listener
1005  * @section: the memory range to clear dirty bitmap
1006  */
1007 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1008                                   MemoryRegionSection *section)
1009 {
1010     KVMState *s = kvm_state;
1011     uint64_t start, size, offset, count;
1012     KVMSlot *mem;
1013     int ret = 0, i;
1014 
1015     if (!s->manual_dirty_log_protect) {
1016         /* No need to do explicit clear */
1017         return ret;
1018     }
1019 
1020     start = section->offset_within_address_space;
1021     size = int128_get64(section->size);
1022 
1023     if (!size) {
1024         /* Nothing more we can do... */
1025         return ret;
1026     }
1027 
1028     kvm_slots_lock();
1029 
1030     for (i = 0; i < s->nr_slots; i++) {
1031         mem = &kml->slots[i];
1032         /* Discard slots that are empty or do not overlap the section */
1033         if (!mem->memory_size ||
1034             mem->start_addr > start + size - 1 ||
1035             start > mem->start_addr + mem->memory_size - 1) {
1036             continue;
1037         }
1038 
1039         if (start >= mem->start_addr) {
1040             /* The slot starts before section or is aligned to it.  */
1041             offset = start - mem->start_addr;
1042             count = MIN(mem->memory_size - offset, size);
1043         } else {
1044             /* The slot starts after section.  */
1045             offset = 0;
1046             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1047         }
1048         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1049         if (ret < 0) {
1050             break;
1051         }
1052     }
1053 
1054     kvm_slots_unlock();
1055 
1056     return ret;
1057 }
1058 
1059 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1060                                      MemoryRegionSection *secion,
1061                                      hwaddr start, hwaddr size)
1062 {
1063     KVMState *s = kvm_state;
1064 
1065     if (s->coalesced_mmio) {
1066         struct kvm_coalesced_mmio_zone zone;
1067 
1068         zone.addr = start;
1069         zone.size = size;
1070         zone.pad = 0;
1071 
1072         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1073     }
1074 }
1075 
1076 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1077                                        MemoryRegionSection *secion,
1078                                        hwaddr start, hwaddr size)
1079 {
1080     KVMState *s = kvm_state;
1081 
1082     if (s->coalesced_mmio) {
1083         struct kvm_coalesced_mmio_zone zone;
1084 
1085         zone.addr = start;
1086         zone.size = size;
1087         zone.pad = 0;
1088 
1089         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1090     }
1091 }
1092 
1093 static void kvm_coalesce_pio_add(MemoryListener *listener,
1094                                 MemoryRegionSection *section,
1095                                 hwaddr start, hwaddr size)
1096 {
1097     KVMState *s = kvm_state;
1098 
1099     if (s->coalesced_pio) {
1100         struct kvm_coalesced_mmio_zone zone;
1101 
1102         zone.addr = start;
1103         zone.size = size;
1104         zone.pio = 1;
1105 
1106         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1107     }
1108 }
1109 
1110 static void kvm_coalesce_pio_del(MemoryListener *listener,
1111                                 MemoryRegionSection *section,
1112                                 hwaddr start, hwaddr size)
1113 {
1114     KVMState *s = kvm_state;
1115 
1116     if (s->coalesced_pio) {
1117         struct kvm_coalesced_mmio_zone zone;
1118 
1119         zone.addr = start;
1120         zone.size = size;
1121         zone.pio = 1;
1122 
1123         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1124      }
1125 }
1126 
1127 int kvm_check_extension(KVMState *s, unsigned int extension)
1128 {
1129     int ret;
1130 
1131     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1132     if (ret < 0) {
1133         ret = 0;
1134     }
1135 
1136     return ret;
1137 }
1138 
1139 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1140 {
1141     int ret;
1142 
1143     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1144     if (ret < 0) {
1145         /* VM wide version not implemented, use global one instead */
1146         ret = kvm_check_extension(s, extension);
1147     }
1148 
1149     return ret;
1150 }
1151 
1152 /*
1153  * We track the poisoned pages to be able to:
1154  * - replace them on VM reset
1155  * - block a migration for a VM with a poisoned page
1156  */
1157 typedef struct HWPoisonPage {
1158     ram_addr_t ram_addr;
1159     QLIST_ENTRY(HWPoisonPage) list;
1160 } HWPoisonPage;
1161 
1162 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1163     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1164 
1165 static void kvm_unpoison_all(void *param)
1166 {
1167     HWPoisonPage *page, *next_page;
1168 
1169     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1170         QLIST_REMOVE(page, list);
1171         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1172         g_free(page);
1173     }
1174 }
1175 
1176 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1177 {
1178     HWPoisonPage *page;
1179 
1180     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1181         if (page->ram_addr == ram_addr) {
1182             return;
1183         }
1184     }
1185     page = g_new(HWPoisonPage, 1);
1186     page->ram_addr = ram_addr;
1187     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1188 }
1189 
1190 bool kvm_hwpoisoned_mem(void)
1191 {
1192     return !QLIST_EMPTY(&hwpoison_page_list);
1193 }
1194 
1195 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1196 {
1197 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1198     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1199      * endianness, but the memory core hands them in target endianness.
1200      * For example, PPC is always treated as big-endian even if running
1201      * on KVM and on PPC64LE.  Correct here.
1202      */
1203     switch (size) {
1204     case 2:
1205         val = bswap16(val);
1206         break;
1207     case 4:
1208         val = bswap32(val);
1209         break;
1210     }
1211 #endif
1212     return val;
1213 }
1214 
1215 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1216                                   bool assign, uint32_t size, bool datamatch)
1217 {
1218     int ret;
1219     struct kvm_ioeventfd iofd = {
1220         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1221         .addr = addr,
1222         .len = size,
1223         .flags = 0,
1224         .fd = fd,
1225     };
1226 
1227     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1228                                  datamatch);
1229     if (!kvm_enabled()) {
1230         return -ENOSYS;
1231     }
1232 
1233     if (datamatch) {
1234         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1235     }
1236     if (!assign) {
1237         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1238     }
1239 
1240     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1241 
1242     if (ret < 0) {
1243         return -errno;
1244     }
1245 
1246     return 0;
1247 }
1248 
1249 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1250                                  bool assign, uint32_t size, bool datamatch)
1251 {
1252     struct kvm_ioeventfd kick = {
1253         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1254         .addr = addr,
1255         .flags = KVM_IOEVENTFD_FLAG_PIO,
1256         .len = size,
1257         .fd = fd,
1258     };
1259     int r;
1260     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1261     if (!kvm_enabled()) {
1262         return -ENOSYS;
1263     }
1264     if (datamatch) {
1265         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1266     }
1267     if (!assign) {
1268         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1269     }
1270     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1271     if (r < 0) {
1272         return r;
1273     }
1274     return 0;
1275 }
1276 
1277 
1278 static const KVMCapabilityInfo *
1279 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1280 {
1281     while (list->name) {
1282         if (!kvm_check_extension(s, list->value)) {
1283             return list;
1284         }
1285         list++;
1286     }
1287     return NULL;
1288 }
1289 
1290 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1291 {
1292     g_assert(
1293         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1294     );
1295     kvm_max_slot_size = max_slot_size;
1296 }
1297 
1298 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr)
1299 {
1300     struct kvm_memory_attributes attrs;
1301     int r;
1302 
1303     assert((attr & kvm_supported_memory_attributes) == attr);
1304     attrs.attributes = attr;
1305     attrs.address = start;
1306     attrs.size = size;
1307     attrs.flags = 0;
1308 
1309     r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs);
1310     if (r) {
1311         error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") "
1312                      "with attr 0x%" PRIx64 " error '%s'",
1313                      start, size, attr, strerror(errno));
1314     }
1315     return r;
1316 }
1317 
1318 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size)
1319 {
1320     return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
1321 }
1322 
1323 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size)
1324 {
1325     return kvm_set_memory_attributes(start, size, 0);
1326 }
1327 
1328 /* Called with KVMMemoryListener.slots_lock held */
1329 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1330                              MemoryRegionSection *section, bool add)
1331 {
1332     KVMSlot *mem;
1333     int err;
1334     MemoryRegion *mr = section->mr;
1335     bool writable = !mr->readonly && !mr->rom_device;
1336     hwaddr start_addr, size, slot_size, mr_offset;
1337     ram_addr_t ram_start_offset;
1338     void *ram;
1339 
1340     if (!memory_region_is_ram(mr)) {
1341         if (writable || !kvm_readonly_mem_allowed) {
1342             return;
1343         } else if (!mr->romd_mode) {
1344             /* If the memory device is not in romd_mode, then we actually want
1345              * to remove the kvm memory slot so all accesses will trap. */
1346             add = false;
1347         }
1348     }
1349 
1350     size = kvm_align_section(section, &start_addr);
1351     if (!size) {
1352         return;
1353     }
1354 
1355     /* The offset of the kvmslot within the memory region */
1356     mr_offset = section->offset_within_region + start_addr -
1357         section->offset_within_address_space;
1358 
1359     /* use aligned delta to align the ram address and offset */
1360     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1361     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1362 
1363     if (!add) {
1364         do {
1365             slot_size = MIN(kvm_max_slot_size, size);
1366             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1367             if (!mem) {
1368                 return;
1369             }
1370             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1371                 /*
1372                  * NOTE: We should be aware of the fact that here we're only
1373                  * doing a best effort to sync dirty bits.  No matter whether
1374                  * we're using dirty log or dirty ring, we ignored two facts:
1375                  *
1376                  * (1) dirty bits can reside in hardware buffers (PML)
1377                  *
1378                  * (2) after we collected dirty bits here, pages can be dirtied
1379                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1380                  * remove the slot.
1381                  *
1382                  * Not easy.  Let's cross the fingers until it's fixed.
1383                  */
1384                 if (kvm_state->kvm_dirty_ring_size) {
1385                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1386                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1387                         kvm_slot_sync_dirty_pages(mem);
1388                         kvm_slot_get_dirty_log(kvm_state, mem);
1389                     }
1390                 } else {
1391                     kvm_slot_get_dirty_log(kvm_state, mem);
1392                 }
1393                 kvm_slot_sync_dirty_pages(mem);
1394             }
1395 
1396             /* unregister the slot */
1397             g_free(mem->dirty_bmap);
1398             mem->dirty_bmap = NULL;
1399             mem->memory_size = 0;
1400             mem->flags = 0;
1401             err = kvm_set_user_memory_region(kml, mem, false);
1402             if (err) {
1403                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1404                         __func__, strerror(-err));
1405                 abort();
1406             }
1407             start_addr += slot_size;
1408             size -= slot_size;
1409             kml->nr_used_slots--;
1410         } while (size);
1411         return;
1412     }
1413 
1414     /* register the new slot */
1415     do {
1416         slot_size = MIN(kvm_max_slot_size, size);
1417         mem = kvm_alloc_slot(kml);
1418         mem->as_id = kml->as_id;
1419         mem->memory_size = slot_size;
1420         mem->start_addr = start_addr;
1421         mem->ram_start_offset = ram_start_offset;
1422         mem->ram = ram;
1423         mem->flags = kvm_mem_flags(mr);
1424         mem->guest_memfd = mr->ram_block->guest_memfd;
1425         mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host;
1426 
1427         kvm_slot_init_dirty_bitmap(mem);
1428         err = kvm_set_user_memory_region(kml, mem, true);
1429         if (err) {
1430             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1431                     strerror(-err));
1432             abort();
1433         }
1434 
1435         if (memory_region_has_guest_memfd(mr)) {
1436             err = kvm_set_memory_attributes_private(start_addr, slot_size);
1437             if (err) {
1438                 error_report("%s: failed to set memory attribute private: %s",
1439                              __func__, strerror(-err));
1440                 exit(1);
1441             }
1442         }
1443 
1444         start_addr += slot_size;
1445         ram_start_offset += slot_size;
1446         ram += slot_size;
1447         size -= slot_size;
1448         kml->nr_used_slots++;
1449     } while (size);
1450 }
1451 
1452 static void *kvm_dirty_ring_reaper_thread(void *data)
1453 {
1454     KVMState *s = data;
1455     struct KVMDirtyRingReaper *r = &s->reaper;
1456 
1457     rcu_register_thread();
1458 
1459     trace_kvm_dirty_ring_reaper("init");
1460 
1461     while (true) {
1462         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1463         trace_kvm_dirty_ring_reaper("wait");
1464         /*
1465          * TODO: provide a smarter timeout rather than a constant?
1466          */
1467         sleep(1);
1468 
1469         /* keep sleeping so that dirtylimit not be interfered by reaper */
1470         if (dirtylimit_in_service()) {
1471             continue;
1472         }
1473 
1474         trace_kvm_dirty_ring_reaper("wakeup");
1475         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1476 
1477         bql_lock();
1478         kvm_dirty_ring_reap(s, NULL);
1479         bql_unlock();
1480 
1481         r->reaper_iteration++;
1482     }
1483 
1484     trace_kvm_dirty_ring_reaper("exit");
1485 
1486     rcu_unregister_thread();
1487 
1488     return NULL;
1489 }
1490 
1491 static void kvm_dirty_ring_reaper_init(KVMState *s)
1492 {
1493     struct KVMDirtyRingReaper *r = &s->reaper;
1494 
1495     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1496                        kvm_dirty_ring_reaper_thread,
1497                        s, QEMU_THREAD_JOINABLE);
1498 }
1499 
1500 static int kvm_dirty_ring_init(KVMState *s)
1501 {
1502     uint32_t ring_size = s->kvm_dirty_ring_size;
1503     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1504     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1505     int ret;
1506 
1507     s->kvm_dirty_ring_size = 0;
1508     s->kvm_dirty_ring_bytes = 0;
1509 
1510     /* Bail if the dirty ring size isn't specified */
1511     if (!ring_size) {
1512         return 0;
1513     }
1514 
1515     /*
1516      * Read the max supported pages. Fall back to dirty logging mode
1517      * if the dirty ring isn't supported.
1518      */
1519     ret = kvm_vm_check_extension(s, capability);
1520     if (ret <= 0) {
1521         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1522         ret = kvm_vm_check_extension(s, capability);
1523     }
1524 
1525     if (ret <= 0) {
1526         warn_report("KVM dirty ring not available, using bitmap method");
1527         return 0;
1528     }
1529 
1530     if (ring_bytes > ret) {
1531         error_report("KVM dirty ring size %" PRIu32 " too big "
1532                      "(maximum is %ld).  Please use a smaller value.",
1533                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1534         return -EINVAL;
1535     }
1536 
1537     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1538     if (ret) {
1539         error_report("Enabling of KVM dirty ring failed: %s. "
1540                      "Suggested minimum value is 1024.", strerror(-ret));
1541         return -EIO;
1542     }
1543 
1544     /* Enable the backup bitmap if it is supported */
1545     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1546     if (ret > 0) {
1547         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1548         if (ret) {
1549             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1550                          "%s. ", strerror(-ret));
1551             return -EIO;
1552         }
1553 
1554         s->kvm_dirty_ring_with_bitmap = true;
1555     }
1556 
1557     s->kvm_dirty_ring_size = ring_size;
1558     s->kvm_dirty_ring_bytes = ring_bytes;
1559 
1560     return 0;
1561 }
1562 
1563 static void kvm_region_add(MemoryListener *listener,
1564                            MemoryRegionSection *section)
1565 {
1566     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1567     KVMMemoryUpdate *update;
1568 
1569     update = g_new0(KVMMemoryUpdate, 1);
1570     update->section = *section;
1571 
1572     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1573 }
1574 
1575 static void kvm_region_del(MemoryListener *listener,
1576                            MemoryRegionSection *section)
1577 {
1578     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1579     KVMMemoryUpdate *update;
1580 
1581     update = g_new0(KVMMemoryUpdate, 1);
1582     update->section = *section;
1583 
1584     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1585 }
1586 
1587 static void kvm_region_commit(MemoryListener *listener)
1588 {
1589     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1590                                           listener);
1591     KVMMemoryUpdate *u1, *u2;
1592     bool need_inhibit = false;
1593 
1594     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1595         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1596         return;
1597     }
1598 
1599     /*
1600      * We have to be careful when regions to add overlap with ranges to remove.
1601      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1602      * is currently active.
1603      *
1604      * The lists are order by addresses, so it's easy to find overlaps.
1605      */
1606     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1607     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1608     while (u1 && u2) {
1609         Range r1, r2;
1610 
1611         range_init_nofail(&r1, u1->section.offset_within_address_space,
1612                           int128_get64(u1->section.size));
1613         range_init_nofail(&r2, u2->section.offset_within_address_space,
1614                           int128_get64(u2->section.size));
1615 
1616         if (range_overlaps_range(&r1, &r2)) {
1617             need_inhibit = true;
1618             break;
1619         }
1620         if (range_lob(&r1) < range_lob(&r2)) {
1621             u1 = QSIMPLEQ_NEXT(u1, next);
1622         } else {
1623             u2 = QSIMPLEQ_NEXT(u2, next);
1624         }
1625     }
1626 
1627     kvm_slots_lock();
1628     if (need_inhibit) {
1629         accel_ioctl_inhibit_begin();
1630     }
1631 
1632     /* Remove all memslots before adding the new ones. */
1633     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1634         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1635         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1636 
1637         kvm_set_phys_mem(kml, &u1->section, false);
1638         memory_region_unref(u1->section.mr);
1639 
1640         g_free(u1);
1641     }
1642     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1643         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1644         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1645 
1646         memory_region_ref(u1->section.mr);
1647         kvm_set_phys_mem(kml, &u1->section, true);
1648 
1649         g_free(u1);
1650     }
1651 
1652     if (need_inhibit) {
1653         accel_ioctl_inhibit_end();
1654     }
1655     kvm_slots_unlock();
1656 }
1657 
1658 static void kvm_log_sync(MemoryListener *listener,
1659                          MemoryRegionSection *section)
1660 {
1661     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1662 
1663     kvm_slots_lock();
1664     kvm_physical_sync_dirty_bitmap(kml, section);
1665     kvm_slots_unlock();
1666 }
1667 
1668 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1669 {
1670     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1671     KVMState *s = kvm_state;
1672     KVMSlot *mem;
1673     int i;
1674 
1675     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1676     kvm_dirty_ring_flush();
1677 
1678     /*
1679      * TODO: make this faster when nr_slots is big while there are
1680      * only a few used slots (small VMs).
1681      */
1682     kvm_slots_lock();
1683     for (i = 0; i < s->nr_slots; i++) {
1684         mem = &kml->slots[i];
1685         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1686             kvm_slot_sync_dirty_pages(mem);
1687 
1688             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1689                 kvm_slot_get_dirty_log(s, mem)) {
1690                 kvm_slot_sync_dirty_pages(mem);
1691             }
1692 
1693             /*
1694              * This is not needed by KVM_GET_DIRTY_LOG because the
1695              * ioctl will unconditionally overwrite the whole region.
1696              * However kvm dirty ring has no such side effect.
1697              */
1698             kvm_slot_reset_dirty_pages(mem);
1699         }
1700     }
1701     kvm_slots_unlock();
1702 }
1703 
1704 static void kvm_log_clear(MemoryListener *listener,
1705                           MemoryRegionSection *section)
1706 {
1707     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1708     int r;
1709 
1710     r = kvm_physical_log_clear(kml, section);
1711     if (r < 0) {
1712         error_report_once("%s: kvm log clear failed: mr=%s "
1713                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1714                           section->mr->name, section->offset_within_region,
1715                           int128_get64(section->size));
1716         abort();
1717     }
1718 }
1719 
1720 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1721                                   MemoryRegionSection *section,
1722                                   bool match_data, uint64_t data,
1723                                   EventNotifier *e)
1724 {
1725     int fd = event_notifier_get_fd(e);
1726     int r;
1727 
1728     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1729                                data, true, int128_get64(section->size),
1730                                match_data);
1731     if (r < 0) {
1732         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1733                 __func__, strerror(-r), -r);
1734         abort();
1735     }
1736 }
1737 
1738 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1739                                   MemoryRegionSection *section,
1740                                   bool match_data, uint64_t data,
1741                                   EventNotifier *e)
1742 {
1743     int fd = event_notifier_get_fd(e);
1744     int r;
1745 
1746     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1747                                data, false, int128_get64(section->size),
1748                                match_data);
1749     if (r < 0) {
1750         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1751                 __func__, strerror(-r), -r);
1752         abort();
1753     }
1754 }
1755 
1756 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1757                                  MemoryRegionSection *section,
1758                                  bool match_data, uint64_t data,
1759                                  EventNotifier *e)
1760 {
1761     int fd = event_notifier_get_fd(e);
1762     int r;
1763 
1764     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1765                               data, true, int128_get64(section->size),
1766                               match_data);
1767     if (r < 0) {
1768         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1769                 __func__, strerror(-r), -r);
1770         abort();
1771     }
1772 }
1773 
1774 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1775                                  MemoryRegionSection *section,
1776                                  bool match_data, uint64_t data,
1777                                  EventNotifier *e)
1778 
1779 {
1780     int fd = event_notifier_get_fd(e);
1781     int r;
1782 
1783     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1784                               data, false, int128_get64(section->size),
1785                               match_data);
1786     if (r < 0) {
1787         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1788                 __func__, strerror(-r), -r);
1789         abort();
1790     }
1791 }
1792 
1793 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1794                                   AddressSpace *as, int as_id, const char *name)
1795 {
1796     int i;
1797 
1798     kml->slots = g_new0(KVMSlot, s->nr_slots);
1799     kml->as_id = as_id;
1800 
1801     for (i = 0; i < s->nr_slots; i++) {
1802         kml->slots[i].slot = i;
1803     }
1804 
1805     QSIMPLEQ_INIT(&kml->transaction_add);
1806     QSIMPLEQ_INIT(&kml->transaction_del);
1807 
1808     kml->listener.region_add = kvm_region_add;
1809     kml->listener.region_del = kvm_region_del;
1810     kml->listener.commit = kvm_region_commit;
1811     kml->listener.log_start = kvm_log_start;
1812     kml->listener.log_stop = kvm_log_stop;
1813     kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1814     kml->listener.name = name;
1815 
1816     if (s->kvm_dirty_ring_size) {
1817         kml->listener.log_sync_global = kvm_log_sync_global;
1818     } else {
1819         kml->listener.log_sync = kvm_log_sync;
1820         kml->listener.log_clear = kvm_log_clear;
1821     }
1822 
1823     memory_listener_register(&kml->listener, as);
1824 
1825     for (i = 0; i < s->nr_as; ++i) {
1826         if (!s->as[i].as) {
1827             s->as[i].as = as;
1828             s->as[i].ml = kml;
1829             break;
1830         }
1831     }
1832 }
1833 
1834 static MemoryListener kvm_io_listener = {
1835     .name = "kvm-io",
1836     .coalesced_io_add = kvm_coalesce_pio_add,
1837     .coalesced_io_del = kvm_coalesce_pio_del,
1838     .eventfd_add = kvm_io_ioeventfd_add,
1839     .eventfd_del = kvm_io_ioeventfd_del,
1840     .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1841 };
1842 
1843 int kvm_set_irq(KVMState *s, int irq, int level)
1844 {
1845     struct kvm_irq_level event;
1846     int ret;
1847 
1848     assert(kvm_async_interrupts_enabled());
1849 
1850     event.level = level;
1851     event.irq = irq;
1852     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1853     if (ret < 0) {
1854         perror("kvm_set_irq");
1855         abort();
1856     }
1857 
1858     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1859 }
1860 
1861 #ifdef KVM_CAP_IRQ_ROUTING
1862 typedef struct KVMMSIRoute {
1863     struct kvm_irq_routing_entry kroute;
1864     QTAILQ_ENTRY(KVMMSIRoute) entry;
1865 } KVMMSIRoute;
1866 
1867 static void set_gsi(KVMState *s, unsigned int gsi)
1868 {
1869     set_bit(gsi, s->used_gsi_bitmap);
1870 }
1871 
1872 static void clear_gsi(KVMState *s, unsigned int gsi)
1873 {
1874     clear_bit(gsi, s->used_gsi_bitmap);
1875 }
1876 
1877 void kvm_init_irq_routing(KVMState *s)
1878 {
1879     int gsi_count;
1880 
1881     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1882     if (gsi_count > 0) {
1883         /* Round up so we can search ints using ffs */
1884         s->used_gsi_bitmap = bitmap_new(gsi_count);
1885         s->gsi_count = gsi_count;
1886     }
1887 
1888     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1889     s->nr_allocated_irq_routes = 0;
1890 
1891     kvm_arch_init_irq_routing(s);
1892 }
1893 
1894 void kvm_irqchip_commit_routes(KVMState *s)
1895 {
1896     int ret;
1897 
1898     if (kvm_gsi_direct_mapping()) {
1899         return;
1900     }
1901 
1902     if (!kvm_gsi_routing_enabled()) {
1903         return;
1904     }
1905 
1906     s->irq_routes->flags = 0;
1907     trace_kvm_irqchip_commit_routes();
1908     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1909     assert(ret == 0);
1910 }
1911 
1912 void kvm_add_routing_entry(KVMState *s,
1913                            struct kvm_irq_routing_entry *entry)
1914 {
1915     struct kvm_irq_routing_entry *new;
1916     int n, size;
1917 
1918     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1919         n = s->nr_allocated_irq_routes * 2;
1920         if (n < 64) {
1921             n = 64;
1922         }
1923         size = sizeof(struct kvm_irq_routing);
1924         size += n * sizeof(*new);
1925         s->irq_routes = g_realloc(s->irq_routes, size);
1926         s->nr_allocated_irq_routes = n;
1927     }
1928     n = s->irq_routes->nr++;
1929     new = &s->irq_routes->entries[n];
1930 
1931     *new = *entry;
1932 
1933     set_gsi(s, entry->gsi);
1934 }
1935 
1936 static int kvm_update_routing_entry(KVMState *s,
1937                                     struct kvm_irq_routing_entry *new_entry)
1938 {
1939     struct kvm_irq_routing_entry *entry;
1940     int n;
1941 
1942     for (n = 0; n < s->irq_routes->nr; n++) {
1943         entry = &s->irq_routes->entries[n];
1944         if (entry->gsi != new_entry->gsi) {
1945             continue;
1946         }
1947 
1948         if(!memcmp(entry, new_entry, sizeof *entry)) {
1949             return 0;
1950         }
1951 
1952         *entry = *new_entry;
1953 
1954         return 0;
1955     }
1956 
1957     return -ESRCH;
1958 }
1959 
1960 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1961 {
1962     struct kvm_irq_routing_entry e = {};
1963 
1964     assert(pin < s->gsi_count);
1965 
1966     e.gsi = irq;
1967     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1968     e.flags = 0;
1969     e.u.irqchip.irqchip = irqchip;
1970     e.u.irqchip.pin = pin;
1971     kvm_add_routing_entry(s, &e);
1972 }
1973 
1974 void kvm_irqchip_release_virq(KVMState *s, int virq)
1975 {
1976     struct kvm_irq_routing_entry *e;
1977     int i;
1978 
1979     if (kvm_gsi_direct_mapping()) {
1980         return;
1981     }
1982 
1983     for (i = 0; i < s->irq_routes->nr; i++) {
1984         e = &s->irq_routes->entries[i];
1985         if (e->gsi == virq) {
1986             s->irq_routes->nr--;
1987             *e = s->irq_routes->entries[s->irq_routes->nr];
1988         }
1989     }
1990     clear_gsi(s, virq);
1991     kvm_arch_release_virq_post(virq);
1992     trace_kvm_irqchip_release_virq(virq);
1993 }
1994 
1995 void kvm_irqchip_add_change_notifier(Notifier *n)
1996 {
1997     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1998 }
1999 
2000 void kvm_irqchip_remove_change_notifier(Notifier *n)
2001 {
2002     notifier_remove(n);
2003 }
2004 
2005 void kvm_irqchip_change_notify(void)
2006 {
2007     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
2008 }
2009 
2010 int kvm_irqchip_get_virq(KVMState *s)
2011 {
2012     int next_virq;
2013 
2014     /* Return the lowest unused GSI in the bitmap */
2015     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
2016     if (next_virq >= s->gsi_count) {
2017         return -ENOSPC;
2018     } else {
2019         return next_virq;
2020     }
2021 }
2022 
2023 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2024 {
2025     struct kvm_msi msi;
2026 
2027     msi.address_lo = (uint32_t)msg.address;
2028     msi.address_hi = msg.address >> 32;
2029     msi.data = le32_to_cpu(msg.data);
2030     msi.flags = 0;
2031     memset(msi.pad, 0, sizeof(msi.pad));
2032 
2033     return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2034 }
2035 
2036 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2037 {
2038     struct kvm_irq_routing_entry kroute = {};
2039     int virq;
2040     KVMState *s = c->s;
2041     MSIMessage msg = {0, 0};
2042 
2043     if (pci_available && dev) {
2044         msg = pci_get_msi_message(dev, vector);
2045     }
2046 
2047     if (kvm_gsi_direct_mapping()) {
2048         return kvm_arch_msi_data_to_gsi(msg.data);
2049     }
2050 
2051     if (!kvm_gsi_routing_enabled()) {
2052         return -ENOSYS;
2053     }
2054 
2055     virq = kvm_irqchip_get_virq(s);
2056     if (virq < 0) {
2057         return virq;
2058     }
2059 
2060     kroute.gsi = virq;
2061     kroute.type = KVM_IRQ_ROUTING_MSI;
2062     kroute.flags = 0;
2063     kroute.u.msi.address_lo = (uint32_t)msg.address;
2064     kroute.u.msi.address_hi = msg.address >> 32;
2065     kroute.u.msi.data = le32_to_cpu(msg.data);
2066     if (pci_available && kvm_msi_devid_required()) {
2067         kroute.flags = KVM_MSI_VALID_DEVID;
2068         kroute.u.msi.devid = pci_requester_id(dev);
2069     }
2070     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2071         kvm_irqchip_release_virq(s, virq);
2072         return -EINVAL;
2073     }
2074 
2075     if (s->irq_routes->nr < s->gsi_count) {
2076         trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2077                                         vector, virq);
2078 
2079         kvm_add_routing_entry(s, &kroute);
2080         kvm_arch_add_msi_route_post(&kroute, vector, dev);
2081         c->changes++;
2082     } else {
2083         kvm_irqchip_release_virq(s, virq);
2084         return -ENOSPC;
2085     }
2086 
2087     return virq;
2088 }
2089 
2090 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2091                                  PCIDevice *dev)
2092 {
2093     struct kvm_irq_routing_entry kroute = {};
2094 
2095     if (kvm_gsi_direct_mapping()) {
2096         return 0;
2097     }
2098 
2099     if (!kvm_irqchip_in_kernel()) {
2100         return -ENOSYS;
2101     }
2102 
2103     kroute.gsi = virq;
2104     kroute.type = KVM_IRQ_ROUTING_MSI;
2105     kroute.flags = 0;
2106     kroute.u.msi.address_lo = (uint32_t)msg.address;
2107     kroute.u.msi.address_hi = msg.address >> 32;
2108     kroute.u.msi.data = le32_to_cpu(msg.data);
2109     if (pci_available && kvm_msi_devid_required()) {
2110         kroute.flags = KVM_MSI_VALID_DEVID;
2111         kroute.u.msi.devid = pci_requester_id(dev);
2112     }
2113     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2114         return -EINVAL;
2115     }
2116 
2117     trace_kvm_irqchip_update_msi_route(virq);
2118 
2119     return kvm_update_routing_entry(s, &kroute);
2120 }
2121 
2122 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2123                                     EventNotifier *resample, int virq,
2124                                     bool assign)
2125 {
2126     int fd = event_notifier_get_fd(event);
2127     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2128 
2129     struct kvm_irqfd irqfd = {
2130         .fd = fd,
2131         .gsi = virq,
2132         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2133     };
2134 
2135     if (rfd != -1) {
2136         assert(assign);
2137         if (kvm_irqchip_is_split()) {
2138             /*
2139              * When the slow irqchip (e.g. IOAPIC) is in the
2140              * userspace, KVM kernel resamplefd will not work because
2141              * the EOI of the interrupt will be delivered to userspace
2142              * instead, so the KVM kernel resamplefd kick will be
2143              * skipped.  The userspace here mimics what the kernel
2144              * provides with resamplefd, remember the resamplefd and
2145              * kick it when we receive EOI of this IRQ.
2146              *
2147              * This is hackery because IOAPIC is mostly bypassed
2148              * (except EOI broadcasts) when irqfd is used.  However
2149              * this can bring much performance back for split irqchip
2150              * with INTx IRQs (for VFIO, this gives 93% perf of the
2151              * full fast path, which is 46% perf boost comparing to
2152              * the INTx slow path).
2153              */
2154             kvm_resample_fd_insert(virq, resample);
2155         } else {
2156             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2157             irqfd.resamplefd = rfd;
2158         }
2159     } else if (!assign) {
2160         if (kvm_irqchip_is_split()) {
2161             kvm_resample_fd_remove(virq);
2162         }
2163     }
2164 
2165     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2166 }
2167 
2168 #else /* !KVM_CAP_IRQ_ROUTING */
2169 
2170 void kvm_init_irq_routing(KVMState *s)
2171 {
2172 }
2173 
2174 void kvm_irqchip_release_virq(KVMState *s, int virq)
2175 {
2176 }
2177 
2178 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2179 {
2180     abort();
2181 }
2182 
2183 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2184 {
2185     return -ENOSYS;
2186 }
2187 
2188 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2189 {
2190     return -ENOSYS;
2191 }
2192 
2193 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2194 {
2195     return -ENOSYS;
2196 }
2197 
2198 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2199                                     EventNotifier *resample, int virq,
2200                                     bool assign)
2201 {
2202     abort();
2203 }
2204 
2205 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2206 {
2207     return -ENOSYS;
2208 }
2209 #endif /* !KVM_CAP_IRQ_ROUTING */
2210 
2211 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2212                                        EventNotifier *rn, int virq)
2213 {
2214     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2215 }
2216 
2217 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2218                                           int virq)
2219 {
2220     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2221 }
2222 
2223 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2224                                    EventNotifier *rn, qemu_irq irq)
2225 {
2226     gpointer key, gsi;
2227     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2228 
2229     if (!found) {
2230         return -ENXIO;
2231     }
2232     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2233 }
2234 
2235 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2236                                       qemu_irq irq)
2237 {
2238     gpointer key, gsi;
2239     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2240 
2241     if (!found) {
2242         return -ENXIO;
2243     }
2244     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2245 }
2246 
2247 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2248 {
2249     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2250 }
2251 
2252 static void kvm_irqchip_create(KVMState *s)
2253 {
2254     int ret;
2255 
2256     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2257     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2258         ;
2259     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2260         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2261         if (ret < 0) {
2262             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2263             exit(1);
2264         }
2265     } else {
2266         return;
2267     }
2268 
2269     if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2270         fprintf(stderr, "kvm: irqfd not implemented\n");
2271         exit(1);
2272     }
2273 
2274     /* First probe and see if there's a arch-specific hook to create the
2275      * in-kernel irqchip for us */
2276     ret = kvm_arch_irqchip_create(s);
2277     if (ret == 0) {
2278         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2279             error_report("Split IRQ chip mode not supported.");
2280             exit(1);
2281         } else {
2282             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2283         }
2284     }
2285     if (ret < 0) {
2286         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2287         exit(1);
2288     }
2289 
2290     kvm_kernel_irqchip = true;
2291     /* If we have an in-kernel IRQ chip then we must have asynchronous
2292      * interrupt delivery (though the reverse is not necessarily true)
2293      */
2294     kvm_async_interrupts_allowed = true;
2295     kvm_halt_in_kernel_allowed = true;
2296 
2297     kvm_init_irq_routing(s);
2298 
2299     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2300 }
2301 
2302 /* Find number of supported CPUs using the recommended
2303  * procedure from the kernel API documentation to cope with
2304  * older kernels that may be missing capabilities.
2305  */
2306 static int kvm_recommended_vcpus(KVMState *s)
2307 {
2308     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2309     return (ret) ? ret : 4;
2310 }
2311 
2312 static int kvm_max_vcpus(KVMState *s)
2313 {
2314     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2315     return (ret) ? ret : kvm_recommended_vcpus(s);
2316 }
2317 
2318 static int kvm_max_vcpu_id(KVMState *s)
2319 {
2320     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2321     return (ret) ? ret : kvm_max_vcpus(s);
2322 }
2323 
2324 bool kvm_vcpu_id_is_valid(int vcpu_id)
2325 {
2326     KVMState *s = KVM_STATE(current_accel());
2327     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2328 }
2329 
2330 bool kvm_dirty_ring_enabled(void)
2331 {
2332     return kvm_state->kvm_dirty_ring_size ? true : false;
2333 }
2334 
2335 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2336                            strList *names, strList *targets, Error **errp);
2337 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2338 
2339 uint32_t kvm_dirty_ring_size(void)
2340 {
2341     return kvm_state->kvm_dirty_ring_size;
2342 }
2343 
2344 static int kvm_init(MachineState *ms)
2345 {
2346     MachineClass *mc = MACHINE_GET_CLASS(ms);
2347     static const char upgrade_note[] =
2348         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2349         "(see http://sourceforge.net/projects/kvm).\n";
2350     const struct {
2351         const char *name;
2352         int num;
2353     } num_cpus[] = {
2354         { "SMP",          ms->smp.cpus },
2355         { "hotpluggable", ms->smp.max_cpus },
2356         { /* end of list */ }
2357     }, *nc = num_cpus;
2358     int soft_vcpus_limit, hard_vcpus_limit;
2359     KVMState *s;
2360     const KVMCapabilityInfo *missing_cap;
2361     int ret;
2362     int type;
2363     uint64_t dirty_log_manual_caps;
2364 
2365     qemu_mutex_init(&kml_slots_lock);
2366 
2367     s = KVM_STATE(ms->accelerator);
2368 
2369     /*
2370      * On systems where the kernel can support different base page
2371      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2372      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2373      * page size for the system though.
2374      */
2375     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2376 
2377     s->sigmask_len = 8;
2378     accel_blocker_init();
2379 
2380 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2381     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2382 #endif
2383     QLIST_INIT(&s->kvm_parked_vcpus);
2384     s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
2385     if (s->fd == -1) {
2386         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2387         ret = -errno;
2388         goto err;
2389     }
2390 
2391     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2392     if (ret < KVM_API_VERSION) {
2393         if (ret >= 0) {
2394             ret = -EINVAL;
2395         }
2396         fprintf(stderr, "kvm version too old\n");
2397         goto err;
2398     }
2399 
2400     if (ret > KVM_API_VERSION) {
2401         ret = -EINVAL;
2402         fprintf(stderr, "kvm version not supported\n");
2403         goto err;
2404     }
2405 
2406     kvm_supported_memory_attributes = kvm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES);
2407     kvm_guest_memfd_supported =
2408         kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) &&
2409         kvm_check_extension(s, KVM_CAP_USER_MEMORY2) &&
2410         (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE);
2411 
2412     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2413     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2414 
2415     /* If unspecified, use the default value */
2416     if (!s->nr_slots) {
2417         s->nr_slots = 32;
2418     }
2419 
2420     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2421     if (s->nr_as <= 1) {
2422         s->nr_as = 1;
2423     }
2424     s->as = g_new0(struct KVMAs, s->nr_as);
2425 
2426     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2427         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2428                                                             "kvm-type",
2429                                                             &error_abort);
2430         type = mc->kvm_type(ms, kvm_type);
2431     } else if (mc->kvm_type) {
2432         type = mc->kvm_type(ms, NULL);
2433     } else {
2434         type = kvm_arch_get_default_type(ms);
2435     }
2436 
2437     if (type < 0) {
2438         ret = -EINVAL;
2439         goto err;
2440     }
2441 
2442     do {
2443         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2444     } while (ret == -EINTR);
2445 
2446     if (ret < 0) {
2447         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2448                 strerror(-ret));
2449 
2450 #ifdef TARGET_S390X
2451         if (ret == -EINVAL) {
2452             fprintf(stderr,
2453                     "Host kernel setup problem detected. Please verify:\n");
2454             fprintf(stderr, "- for kernels supporting the switch_amode or"
2455                     " user_mode parameters, whether\n");
2456             fprintf(stderr,
2457                     "  user space is running in primary address space\n");
2458             fprintf(stderr,
2459                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2460                     "whether it is enabled\n");
2461         }
2462 #elif defined(TARGET_PPC)
2463         if (ret == -EINVAL) {
2464             fprintf(stderr,
2465                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2466                     (type == 2) ? "pr" : "hv");
2467         }
2468 #endif
2469         goto err;
2470     }
2471 
2472     s->vmfd = ret;
2473 
2474     /* check the vcpu limits */
2475     soft_vcpus_limit = kvm_recommended_vcpus(s);
2476     hard_vcpus_limit = kvm_max_vcpus(s);
2477 
2478     while (nc->name) {
2479         if (nc->num > soft_vcpus_limit) {
2480             warn_report("Number of %s cpus requested (%d) exceeds "
2481                         "the recommended cpus supported by KVM (%d)",
2482                         nc->name, nc->num, soft_vcpus_limit);
2483 
2484             if (nc->num > hard_vcpus_limit) {
2485                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2486                         "the maximum cpus supported by KVM (%d)\n",
2487                         nc->name, nc->num, hard_vcpus_limit);
2488                 exit(1);
2489             }
2490         }
2491         nc++;
2492     }
2493 
2494     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2495     if (!missing_cap) {
2496         missing_cap =
2497             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2498     }
2499     if (missing_cap) {
2500         ret = -EINVAL;
2501         fprintf(stderr, "kvm does not support %s\n%s",
2502                 missing_cap->name, upgrade_note);
2503         goto err;
2504     }
2505 
2506     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2507     s->coalesced_pio = s->coalesced_mmio &&
2508                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2509 
2510     /*
2511      * Enable KVM dirty ring if supported, otherwise fall back to
2512      * dirty logging mode
2513      */
2514     ret = kvm_dirty_ring_init(s);
2515     if (ret < 0) {
2516         goto err;
2517     }
2518 
2519     /*
2520      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2521      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2522      * page is wr-protected initially, which is against how kvm dirty ring is
2523      * usage - kvm dirty ring requires all pages are wr-protected at the very
2524      * beginning.  Enabling this feature for dirty ring causes data corruption.
2525      *
2526      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2527      * we may expect a higher stall time when starting the migration.  In the
2528      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2529      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2530      * guest pages.
2531      */
2532     if (!s->kvm_dirty_ring_size) {
2533         dirty_log_manual_caps =
2534             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2535         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2536                                   KVM_DIRTY_LOG_INITIALLY_SET);
2537         s->manual_dirty_log_protect = dirty_log_manual_caps;
2538         if (dirty_log_manual_caps) {
2539             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2540                                     dirty_log_manual_caps);
2541             if (ret) {
2542                 warn_report("Trying to enable capability %"PRIu64" of "
2543                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2544                             "Falling back to the legacy mode. ",
2545                             dirty_log_manual_caps);
2546                 s->manual_dirty_log_protect = 0;
2547             }
2548         }
2549     }
2550 
2551 #ifdef KVM_CAP_VCPU_EVENTS
2552     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2553 #endif
2554     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2555 
2556     s->irq_set_ioctl = KVM_IRQ_LINE;
2557     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2558         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2559     }
2560 
2561     kvm_readonly_mem_allowed =
2562         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2563 
2564     kvm_resamplefds_allowed =
2565         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2566 
2567     kvm_vm_attributes_allowed =
2568         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2569 
2570 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2571     kvm_has_guest_debug =
2572         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2573 #endif
2574 
2575     kvm_sstep_flags = 0;
2576     if (kvm_has_guest_debug) {
2577         kvm_sstep_flags = SSTEP_ENABLE;
2578 
2579 #if defined TARGET_KVM_HAVE_GUEST_DEBUG
2580         int guest_debug_flags =
2581             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2582 
2583         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2584             kvm_sstep_flags |= SSTEP_NOIRQ;
2585         }
2586 #endif
2587     }
2588 
2589     kvm_state = s;
2590 
2591     ret = kvm_arch_init(ms, s);
2592     if (ret < 0) {
2593         goto err;
2594     }
2595 
2596     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2597         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2598     }
2599 
2600     qemu_register_reset(kvm_unpoison_all, NULL);
2601 
2602     if (s->kernel_irqchip_allowed) {
2603         kvm_irqchip_create(s);
2604     }
2605 
2606     s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2607     s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2608     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2609     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2610 
2611     kvm_memory_listener_register(s, &s->memory_listener,
2612                                  &address_space_memory, 0, "kvm-memory");
2613     memory_listener_register(&kvm_io_listener,
2614                              &address_space_io);
2615 
2616     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2617     if (!s->sync_mmu) {
2618         ret = ram_block_discard_disable(true);
2619         assert(!ret);
2620     }
2621 
2622     if (s->kvm_dirty_ring_size) {
2623         kvm_dirty_ring_reaper_init(s);
2624     }
2625 
2626     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2627         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2628                             query_stats_schemas_cb);
2629     }
2630 
2631     return 0;
2632 
2633 err:
2634     assert(ret < 0);
2635     if (s->vmfd >= 0) {
2636         close(s->vmfd);
2637     }
2638     if (s->fd != -1) {
2639         close(s->fd);
2640     }
2641     g_free(s->as);
2642     g_free(s->memory_listener.slots);
2643 
2644     return ret;
2645 }
2646 
2647 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2648 {
2649     s->sigmask_len = sigmask_len;
2650 }
2651 
2652 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2653                           int size, uint32_t count)
2654 {
2655     int i;
2656     uint8_t *ptr = data;
2657 
2658     for (i = 0; i < count; i++) {
2659         address_space_rw(&address_space_io, port, attrs,
2660                          ptr, size,
2661                          direction == KVM_EXIT_IO_OUT);
2662         ptr += size;
2663     }
2664 }
2665 
2666 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2667 {
2668     int i;
2669 
2670     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2671             run->internal.suberror);
2672 
2673     for (i = 0; i < run->internal.ndata; ++i) {
2674         fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2675                 i, (uint64_t)run->internal.data[i]);
2676     }
2677     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2678         fprintf(stderr, "emulation failure\n");
2679         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2680             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2681             return EXCP_INTERRUPT;
2682         }
2683     }
2684     /* FIXME: Should trigger a qmp message to let management know
2685      * something went wrong.
2686      */
2687     return -1;
2688 }
2689 
2690 void kvm_flush_coalesced_mmio_buffer(void)
2691 {
2692     KVMState *s = kvm_state;
2693 
2694     if (!s || s->coalesced_flush_in_progress) {
2695         return;
2696     }
2697 
2698     s->coalesced_flush_in_progress = true;
2699 
2700     if (s->coalesced_mmio_ring) {
2701         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2702         while (ring->first != ring->last) {
2703             struct kvm_coalesced_mmio *ent;
2704 
2705             ent = &ring->coalesced_mmio[ring->first];
2706 
2707             if (ent->pio == 1) {
2708                 address_space_write(&address_space_io, ent->phys_addr,
2709                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2710                                     ent->len);
2711             } else {
2712                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2713             }
2714             smp_wmb();
2715             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2716         }
2717     }
2718 
2719     s->coalesced_flush_in_progress = false;
2720 }
2721 
2722 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2723 {
2724     if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2725         int ret = kvm_arch_get_registers(cpu);
2726         if (ret) {
2727             error_report("Failed to get registers: %s", strerror(-ret));
2728             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2729             vm_stop(RUN_STATE_INTERNAL_ERROR);
2730         }
2731 
2732         cpu->vcpu_dirty = true;
2733     }
2734 }
2735 
2736 void kvm_cpu_synchronize_state(CPUState *cpu)
2737 {
2738     if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2739         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2740     }
2741 }
2742 
2743 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2744 {
2745     int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2746     if (ret) {
2747         error_report("Failed to put registers after reset: %s", strerror(-ret));
2748         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2749         vm_stop(RUN_STATE_INTERNAL_ERROR);
2750     }
2751 
2752     cpu->vcpu_dirty = false;
2753 }
2754 
2755 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2756 {
2757     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2758 }
2759 
2760 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2761 {
2762     int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2763     if (ret) {
2764         error_report("Failed to put registers after init: %s", strerror(-ret));
2765         exit(1);
2766     }
2767 
2768     cpu->vcpu_dirty = false;
2769 }
2770 
2771 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2772 {
2773     if (!kvm_state->guest_state_protected) {
2774         /*
2775          * This runs before the machine_init_done notifiers, and is the last
2776          * opportunity to synchronize the state of confidential guests.
2777          */
2778         run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2779     }
2780 }
2781 
2782 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2783 {
2784     cpu->vcpu_dirty = true;
2785 }
2786 
2787 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2788 {
2789     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2790 }
2791 
2792 #ifdef KVM_HAVE_MCE_INJECTION
2793 static __thread void *pending_sigbus_addr;
2794 static __thread int pending_sigbus_code;
2795 static __thread bool have_sigbus_pending;
2796 #endif
2797 
2798 static void kvm_cpu_kick(CPUState *cpu)
2799 {
2800     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2801 }
2802 
2803 static void kvm_cpu_kick_self(void)
2804 {
2805     if (kvm_immediate_exit) {
2806         kvm_cpu_kick(current_cpu);
2807     } else {
2808         qemu_cpu_kick_self();
2809     }
2810 }
2811 
2812 static void kvm_eat_signals(CPUState *cpu)
2813 {
2814     struct timespec ts = { 0, 0 };
2815     siginfo_t siginfo;
2816     sigset_t waitset;
2817     sigset_t chkset;
2818     int r;
2819 
2820     if (kvm_immediate_exit) {
2821         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2822         /* Write kvm_run->immediate_exit before the cpu->exit_request
2823          * write in kvm_cpu_exec.
2824          */
2825         smp_wmb();
2826         return;
2827     }
2828 
2829     sigemptyset(&waitset);
2830     sigaddset(&waitset, SIG_IPI);
2831 
2832     do {
2833         r = sigtimedwait(&waitset, &siginfo, &ts);
2834         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2835             perror("sigtimedwait");
2836             exit(1);
2837         }
2838 
2839         r = sigpending(&chkset);
2840         if (r == -1) {
2841             perror("sigpending");
2842             exit(1);
2843         }
2844     } while (sigismember(&chkset, SIG_IPI));
2845 }
2846 
2847 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private)
2848 {
2849     MemoryRegionSection section;
2850     ram_addr_t offset;
2851     MemoryRegion *mr;
2852     RAMBlock *rb;
2853     void *addr;
2854     int ret = -1;
2855 
2856     trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared");
2857 
2858     if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) ||
2859         !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) {
2860         return -1;
2861     }
2862 
2863     if (!size) {
2864         return -1;
2865     }
2866 
2867     section = memory_region_find(get_system_memory(), start, size);
2868     mr = section.mr;
2869     if (!mr) {
2870         /*
2871          * Ignore converting non-assigned region to shared.
2872          *
2873          * TDX requires vMMIO region to be shared to inject #VE to guest.
2874          * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region,
2875          * and vIO-APIC 0xFEC00000 4K page.
2876          * OVMF assigns 32bit PCI MMIO region to
2877          * [top of low memory: typically 2GB=0xC000000,  0xFC00000)
2878          */
2879         if (!to_private) {
2880             return 0;
2881         }
2882         return -1;
2883     }
2884 
2885     if (!memory_region_has_guest_memfd(mr)) {
2886         /*
2887          * Because vMMIO region must be shared, guest TD may convert vMMIO
2888          * region to shared explicitly.  Don't complain such case.  See
2889          * memory_region_type() for checking if the region is MMIO region.
2890          */
2891         if (!to_private &&
2892             !memory_region_is_ram(mr) &&
2893             !memory_region_is_ram_device(mr) &&
2894             !memory_region_is_rom(mr) &&
2895             !memory_region_is_romd(mr)) {
2896             ret = 0;
2897         } else {
2898             error_report("Convert non guest_memfd backed memory region "
2899                         "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s",
2900                         start, size, to_private ? "private" : "shared");
2901         }
2902         goto out_unref;
2903     }
2904 
2905     if (to_private) {
2906         ret = kvm_set_memory_attributes_private(start, size);
2907     } else {
2908         ret = kvm_set_memory_attributes_shared(start, size);
2909     }
2910     if (ret) {
2911         goto out_unref;
2912     }
2913 
2914     addr = memory_region_get_ram_ptr(mr) + section.offset_within_region;
2915     rb = qemu_ram_block_from_host(addr, false, &offset);
2916 
2917     if (to_private) {
2918         if (rb->page_size != qemu_real_host_page_size()) {
2919             /*
2920              * shared memory is backed by hugetlb, which is supposed to be
2921              * pre-allocated and doesn't need to be discarded
2922              */
2923             goto out_unref;
2924         }
2925         ret = ram_block_discard_range(rb, offset, size);
2926     } else {
2927         ret = ram_block_discard_guest_memfd_range(rb, offset, size);
2928     }
2929 
2930 out_unref:
2931     memory_region_unref(mr);
2932     return ret;
2933 }
2934 
2935 int kvm_cpu_exec(CPUState *cpu)
2936 {
2937     struct kvm_run *run = cpu->kvm_run;
2938     int ret, run_ret;
2939 
2940     trace_kvm_cpu_exec();
2941 
2942     if (kvm_arch_process_async_events(cpu)) {
2943         qatomic_set(&cpu->exit_request, 0);
2944         return EXCP_HLT;
2945     }
2946 
2947     bql_unlock();
2948     cpu_exec_start(cpu);
2949 
2950     do {
2951         MemTxAttrs attrs;
2952 
2953         if (cpu->vcpu_dirty) {
2954             ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2955             if (ret) {
2956                 error_report("Failed to put registers after init: %s",
2957                              strerror(-ret));
2958                 ret = -1;
2959                 break;
2960             }
2961 
2962             cpu->vcpu_dirty = false;
2963         }
2964 
2965         kvm_arch_pre_run(cpu, run);
2966         if (qatomic_read(&cpu->exit_request)) {
2967             trace_kvm_interrupt_exit_request();
2968             /*
2969              * KVM requires us to reenter the kernel after IO exits to complete
2970              * instruction emulation. This self-signal will ensure that we
2971              * leave ASAP again.
2972              */
2973             kvm_cpu_kick_self();
2974         }
2975 
2976         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2977          * Matching barrier in kvm_eat_signals.
2978          */
2979         smp_rmb();
2980 
2981         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2982 
2983         attrs = kvm_arch_post_run(cpu, run);
2984 
2985 #ifdef KVM_HAVE_MCE_INJECTION
2986         if (unlikely(have_sigbus_pending)) {
2987             bql_lock();
2988             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2989                                     pending_sigbus_addr);
2990             have_sigbus_pending = false;
2991             bql_unlock();
2992         }
2993 #endif
2994 
2995         if (run_ret < 0) {
2996             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2997                 trace_kvm_io_window_exit();
2998                 kvm_eat_signals(cpu);
2999                 ret = EXCP_INTERRUPT;
3000                 break;
3001             }
3002             if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) {
3003                 fprintf(stderr, "error: kvm run failed %s\n",
3004                         strerror(-run_ret));
3005 #ifdef TARGET_PPC
3006                 if (run_ret == -EBUSY) {
3007                     fprintf(stderr,
3008                             "This is probably because your SMT is enabled.\n"
3009                             "VCPU can only run on primary threads with all "
3010                             "secondary threads offline.\n");
3011                 }
3012 #endif
3013                 ret = -1;
3014                 break;
3015             }
3016         }
3017 
3018         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3019         switch (run->exit_reason) {
3020         case KVM_EXIT_IO:
3021             /* Called outside BQL */
3022             kvm_handle_io(run->io.port, attrs,
3023                           (uint8_t *)run + run->io.data_offset,
3024                           run->io.direction,
3025                           run->io.size,
3026                           run->io.count);
3027             ret = 0;
3028             break;
3029         case KVM_EXIT_MMIO:
3030             /* Called outside BQL */
3031             address_space_rw(&address_space_memory,
3032                              run->mmio.phys_addr, attrs,
3033                              run->mmio.data,
3034                              run->mmio.len,
3035                              run->mmio.is_write);
3036             ret = 0;
3037             break;
3038         case KVM_EXIT_IRQ_WINDOW_OPEN:
3039             ret = EXCP_INTERRUPT;
3040             break;
3041         case KVM_EXIT_SHUTDOWN:
3042             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3043             ret = EXCP_INTERRUPT;
3044             break;
3045         case KVM_EXIT_UNKNOWN:
3046             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3047                     (uint64_t)run->hw.hardware_exit_reason);
3048             ret = -1;
3049             break;
3050         case KVM_EXIT_INTERNAL_ERROR:
3051             ret = kvm_handle_internal_error(cpu, run);
3052             break;
3053         case KVM_EXIT_DIRTY_RING_FULL:
3054             /*
3055              * We shouldn't continue if the dirty ring of this vcpu is
3056              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
3057              */
3058             trace_kvm_dirty_ring_full(cpu->cpu_index);
3059             bql_lock();
3060             /*
3061              * We throttle vCPU by making it sleep once it exit from kernel
3062              * due to dirty ring full. In the dirtylimit scenario, reaping
3063              * all vCPUs after a single vCPU dirty ring get full result in
3064              * the miss of sleep, so just reap the ring-fulled vCPU.
3065              */
3066             if (dirtylimit_in_service()) {
3067                 kvm_dirty_ring_reap(kvm_state, cpu);
3068             } else {
3069                 kvm_dirty_ring_reap(kvm_state, NULL);
3070             }
3071             bql_unlock();
3072             dirtylimit_vcpu_execute(cpu);
3073             ret = 0;
3074             break;
3075         case KVM_EXIT_SYSTEM_EVENT:
3076             trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
3077             switch (run->system_event.type) {
3078             case KVM_SYSTEM_EVENT_SHUTDOWN:
3079                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3080                 ret = EXCP_INTERRUPT;
3081                 break;
3082             case KVM_SYSTEM_EVENT_RESET:
3083                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3084                 ret = EXCP_INTERRUPT;
3085                 break;
3086             case KVM_SYSTEM_EVENT_CRASH:
3087                 kvm_cpu_synchronize_state(cpu);
3088                 bql_lock();
3089                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3090                 bql_unlock();
3091                 ret = 0;
3092                 break;
3093             default:
3094                 ret = kvm_arch_handle_exit(cpu, run);
3095                 break;
3096             }
3097             break;
3098         case KVM_EXIT_MEMORY_FAULT:
3099             trace_kvm_memory_fault(run->memory_fault.gpa,
3100                                    run->memory_fault.size,
3101                                    run->memory_fault.flags);
3102             if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) {
3103                 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64,
3104                              (uint64_t)run->memory_fault.flags);
3105                 ret = -1;
3106                 break;
3107             }
3108             ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size,
3109                                      run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE);
3110             break;
3111         default:
3112             ret = kvm_arch_handle_exit(cpu, run);
3113             break;
3114         }
3115     } while (ret == 0);
3116 
3117     cpu_exec_end(cpu);
3118     bql_lock();
3119 
3120     if (ret < 0) {
3121         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3122         vm_stop(RUN_STATE_INTERNAL_ERROR);
3123     }
3124 
3125     qatomic_set(&cpu->exit_request, 0);
3126     return ret;
3127 }
3128 
3129 int kvm_ioctl(KVMState *s, int type, ...)
3130 {
3131     int ret;
3132     void *arg;
3133     va_list ap;
3134 
3135     va_start(ap, type);
3136     arg = va_arg(ap, void *);
3137     va_end(ap);
3138 
3139     trace_kvm_ioctl(type, arg);
3140     ret = ioctl(s->fd, type, arg);
3141     if (ret == -1) {
3142         ret = -errno;
3143     }
3144     return ret;
3145 }
3146 
3147 int kvm_vm_ioctl(KVMState *s, int type, ...)
3148 {
3149     int ret;
3150     void *arg;
3151     va_list ap;
3152 
3153     va_start(ap, type);
3154     arg = va_arg(ap, void *);
3155     va_end(ap);
3156 
3157     trace_kvm_vm_ioctl(type, arg);
3158     accel_ioctl_begin();
3159     ret = ioctl(s->vmfd, type, arg);
3160     accel_ioctl_end();
3161     if (ret == -1) {
3162         ret = -errno;
3163     }
3164     return ret;
3165 }
3166 
3167 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3168 {
3169     int ret;
3170     void *arg;
3171     va_list ap;
3172 
3173     va_start(ap, type);
3174     arg = va_arg(ap, void *);
3175     va_end(ap);
3176 
3177     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3178     accel_cpu_ioctl_begin(cpu);
3179     ret = ioctl(cpu->kvm_fd, type, arg);
3180     accel_cpu_ioctl_end(cpu);
3181     if (ret == -1) {
3182         ret = -errno;
3183     }
3184     return ret;
3185 }
3186 
3187 int kvm_device_ioctl(int fd, int type, ...)
3188 {
3189     int ret;
3190     void *arg;
3191     va_list ap;
3192 
3193     va_start(ap, type);
3194     arg = va_arg(ap, void *);
3195     va_end(ap);
3196 
3197     trace_kvm_device_ioctl(fd, type, arg);
3198     accel_ioctl_begin();
3199     ret = ioctl(fd, type, arg);
3200     accel_ioctl_end();
3201     if (ret == -1) {
3202         ret = -errno;
3203     }
3204     return ret;
3205 }
3206 
3207 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3208 {
3209     int ret;
3210     struct kvm_device_attr attribute = {
3211         .group = group,
3212         .attr = attr,
3213     };
3214 
3215     if (!kvm_vm_attributes_allowed) {
3216         return 0;
3217     }
3218 
3219     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3220     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3221     return ret ? 0 : 1;
3222 }
3223 
3224 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3225 {
3226     struct kvm_device_attr attribute = {
3227         .group = group,
3228         .attr = attr,
3229         .flags = 0,
3230     };
3231 
3232     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3233 }
3234 
3235 int kvm_device_access(int fd, int group, uint64_t attr,
3236                       void *val, bool write, Error **errp)
3237 {
3238     struct kvm_device_attr kvmattr;
3239     int err;
3240 
3241     kvmattr.flags = 0;
3242     kvmattr.group = group;
3243     kvmattr.attr = attr;
3244     kvmattr.addr = (uintptr_t)val;
3245 
3246     err = kvm_device_ioctl(fd,
3247                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3248                            &kvmattr);
3249     if (err < 0) {
3250         error_setg_errno(errp, -err,
3251                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3252                          "attr 0x%016" PRIx64,
3253                          write ? "SET" : "GET", group, attr);
3254     }
3255     return err;
3256 }
3257 
3258 bool kvm_has_sync_mmu(void)
3259 {
3260     return kvm_state->sync_mmu;
3261 }
3262 
3263 int kvm_has_vcpu_events(void)
3264 {
3265     return kvm_state->vcpu_events;
3266 }
3267 
3268 int kvm_max_nested_state_length(void)
3269 {
3270     return kvm_state->max_nested_state_len;
3271 }
3272 
3273 int kvm_has_gsi_routing(void)
3274 {
3275 #ifdef KVM_CAP_IRQ_ROUTING
3276     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3277 #else
3278     return false;
3279 #endif
3280 }
3281 
3282 bool kvm_arm_supports_user_irq(void)
3283 {
3284     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3285 }
3286 
3287 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
3288 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3289 {
3290     struct kvm_sw_breakpoint *bp;
3291 
3292     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3293         if (bp->pc == pc) {
3294             return bp;
3295         }
3296     }
3297     return NULL;
3298 }
3299 
3300 int kvm_sw_breakpoints_active(CPUState *cpu)
3301 {
3302     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3303 }
3304 
3305 struct kvm_set_guest_debug_data {
3306     struct kvm_guest_debug dbg;
3307     int err;
3308 };
3309 
3310 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3311 {
3312     struct kvm_set_guest_debug_data *dbg_data =
3313         (struct kvm_set_guest_debug_data *) data.host_ptr;
3314 
3315     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3316                                    &dbg_data->dbg);
3317 }
3318 
3319 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3320 {
3321     struct kvm_set_guest_debug_data data;
3322 
3323     data.dbg.control = reinject_trap;
3324 
3325     if (cpu->singlestep_enabled) {
3326         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3327 
3328         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3329             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3330         }
3331     }
3332     kvm_arch_update_guest_debug(cpu, &data.dbg);
3333 
3334     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3335                RUN_ON_CPU_HOST_PTR(&data));
3336     return data.err;
3337 }
3338 
3339 bool kvm_supports_guest_debug(void)
3340 {
3341     /* probed during kvm_init() */
3342     return kvm_has_guest_debug;
3343 }
3344 
3345 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3346 {
3347     struct kvm_sw_breakpoint *bp;
3348     int err;
3349 
3350     if (type == GDB_BREAKPOINT_SW) {
3351         bp = kvm_find_sw_breakpoint(cpu, addr);
3352         if (bp) {
3353             bp->use_count++;
3354             return 0;
3355         }
3356 
3357         bp = g_new(struct kvm_sw_breakpoint, 1);
3358         bp->pc = addr;
3359         bp->use_count = 1;
3360         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3361         if (err) {
3362             g_free(bp);
3363             return err;
3364         }
3365 
3366         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3367     } else {
3368         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3369         if (err) {
3370             return err;
3371         }
3372     }
3373 
3374     CPU_FOREACH(cpu) {
3375         err = kvm_update_guest_debug(cpu, 0);
3376         if (err) {
3377             return err;
3378         }
3379     }
3380     return 0;
3381 }
3382 
3383 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3384 {
3385     struct kvm_sw_breakpoint *bp;
3386     int err;
3387 
3388     if (type == GDB_BREAKPOINT_SW) {
3389         bp = kvm_find_sw_breakpoint(cpu, addr);
3390         if (!bp) {
3391             return -ENOENT;
3392         }
3393 
3394         if (bp->use_count > 1) {
3395             bp->use_count--;
3396             return 0;
3397         }
3398 
3399         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3400         if (err) {
3401             return err;
3402         }
3403 
3404         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3405         g_free(bp);
3406     } else {
3407         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3408         if (err) {
3409             return err;
3410         }
3411     }
3412 
3413     CPU_FOREACH(cpu) {
3414         err = kvm_update_guest_debug(cpu, 0);
3415         if (err) {
3416             return err;
3417         }
3418     }
3419     return 0;
3420 }
3421 
3422 void kvm_remove_all_breakpoints(CPUState *cpu)
3423 {
3424     struct kvm_sw_breakpoint *bp, *next;
3425     KVMState *s = cpu->kvm_state;
3426     CPUState *tmpcpu;
3427 
3428     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3429         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3430             /* Try harder to find a CPU that currently sees the breakpoint. */
3431             CPU_FOREACH(tmpcpu) {
3432                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3433                     break;
3434                 }
3435             }
3436         }
3437         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3438         g_free(bp);
3439     }
3440     kvm_arch_remove_all_hw_breakpoints();
3441 
3442     CPU_FOREACH(cpu) {
3443         kvm_update_guest_debug(cpu, 0);
3444     }
3445 }
3446 
3447 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */
3448 
3449 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3450 {
3451     KVMState *s = kvm_state;
3452     struct kvm_signal_mask *sigmask;
3453     int r;
3454 
3455     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3456 
3457     sigmask->len = s->sigmask_len;
3458     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3459     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3460     g_free(sigmask);
3461 
3462     return r;
3463 }
3464 
3465 static void kvm_ipi_signal(int sig)
3466 {
3467     if (current_cpu) {
3468         assert(kvm_immediate_exit);
3469         kvm_cpu_kick(current_cpu);
3470     }
3471 }
3472 
3473 void kvm_init_cpu_signals(CPUState *cpu)
3474 {
3475     int r;
3476     sigset_t set;
3477     struct sigaction sigact;
3478 
3479     memset(&sigact, 0, sizeof(sigact));
3480     sigact.sa_handler = kvm_ipi_signal;
3481     sigaction(SIG_IPI, &sigact, NULL);
3482 
3483     pthread_sigmask(SIG_BLOCK, NULL, &set);
3484 #if defined KVM_HAVE_MCE_INJECTION
3485     sigdelset(&set, SIGBUS);
3486     pthread_sigmask(SIG_SETMASK, &set, NULL);
3487 #endif
3488     sigdelset(&set, SIG_IPI);
3489     if (kvm_immediate_exit) {
3490         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3491     } else {
3492         r = kvm_set_signal_mask(cpu, &set);
3493     }
3494     if (r) {
3495         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3496         exit(1);
3497     }
3498 }
3499 
3500 /* Called asynchronously in VCPU thread.  */
3501 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3502 {
3503 #ifdef KVM_HAVE_MCE_INJECTION
3504     if (have_sigbus_pending) {
3505         return 1;
3506     }
3507     have_sigbus_pending = true;
3508     pending_sigbus_addr = addr;
3509     pending_sigbus_code = code;
3510     qatomic_set(&cpu->exit_request, 1);
3511     return 0;
3512 #else
3513     return 1;
3514 #endif
3515 }
3516 
3517 /* Called synchronously (via signalfd) in main thread.  */
3518 int kvm_on_sigbus(int code, void *addr)
3519 {
3520 #ifdef KVM_HAVE_MCE_INJECTION
3521     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3522      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3523      * we can only get action optional here.
3524      */
3525     assert(code != BUS_MCEERR_AR);
3526     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3527     return 0;
3528 #else
3529     return 1;
3530 #endif
3531 }
3532 
3533 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3534 {
3535     int ret;
3536     struct kvm_create_device create_dev;
3537 
3538     create_dev.type = type;
3539     create_dev.fd = -1;
3540     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3541 
3542     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3543         return -ENOTSUP;
3544     }
3545 
3546     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3547     if (ret) {
3548         return ret;
3549     }
3550 
3551     return test ? 0 : create_dev.fd;
3552 }
3553 
3554 bool kvm_device_supported(int vmfd, uint64_t type)
3555 {
3556     struct kvm_create_device create_dev = {
3557         .type = type,
3558         .fd = -1,
3559         .flags = KVM_CREATE_DEVICE_TEST,
3560     };
3561 
3562     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3563         return false;
3564     }
3565 
3566     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3567 }
3568 
3569 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3570 {
3571     struct kvm_one_reg reg;
3572     int r;
3573 
3574     reg.id = id;
3575     reg.addr = (uintptr_t) source;
3576     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3577     if (r) {
3578         trace_kvm_failed_reg_set(id, strerror(-r));
3579     }
3580     return r;
3581 }
3582 
3583 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3584 {
3585     struct kvm_one_reg reg;
3586     int r;
3587 
3588     reg.id = id;
3589     reg.addr = (uintptr_t) target;
3590     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3591     if (r) {
3592         trace_kvm_failed_reg_get(id, strerror(-r));
3593     }
3594     return r;
3595 }
3596 
3597 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3598                                  hwaddr start_addr, hwaddr size)
3599 {
3600     KVMState *kvm = KVM_STATE(ms->accelerator);
3601     int i;
3602 
3603     for (i = 0; i < kvm->nr_as; ++i) {
3604         if (kvm->as[i].as == as && kvm->as[i].ml) {
3605             size = MIN(kvm_max_slot_size, size);
3606             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3607                                                     start_addr, size);
3608         }
3609     }
3610 
3611     return false;
3612 }
3613 
3614 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3615                                    const char *name, void *opaque,
3616                                    Error **errp)
3617 {
3618     KVMState *s = KVM_STATE(obj);
3619     int64_t value = s->kvm_shadow_mem;
3620 
3621     visit_type_int(v, name, &value, errp);
3622 }
3623 
3624 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3625                                    const char *name, void *opaque,
3626                                    Error **errp)
3627 {
3628     KVMState *s = KVM_STATE(obj);
3629     int64_t value;
3630 
3631     if (s->fd != -1) {
3632         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3633         return;
3634     }
3635 
3636     if (!visit_type_int(v, name, &value, errp)) {
3637         return;
3638     }
3639 
3640     s->kvm_shadow_mem = value;
3641 }
3642 
3643 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3644                                    const char *name, void *opaque,
3645                                    Error **errp)
3646 {
3647     KVMState *s = KVM_STATE(obj);
3648     OnOffSplit mode;
3649 
3650     if (s->fd != -1) {
3651         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3652         return;
3653     }
3654 
3655     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3656         return;
3657     }
3658     switch (mode) {
3659     case ON_OFF_SPLIT_ON:
3660         s->kernel_irqchip_allowed = true;
3661         s->kernel_irqchip_required = true;
3662         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3663         break;
3664     case ON_OFF_SPLIT_OFF:
3665         s->kernel_irqchip_allowed = false;
3666         s->kernel_irqchip_required = false;
3667         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3668         break;
3669     case ON_OFF_SPLIT_SPLIT:
3670         s->kernel_irqchip_allowed = true;
3671         s->kernel_irqchip_required = true;
3672         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3673         break;
3674     default:
3675         /* The value was checked in visit_type_OnOffSplit() above. If
3676          * we get here, then something is wrong in QEMU.
3677          */
3678         abort();
3679     }
3680 }
3681 
3682 bool kvm_kernel_irqchip_allowed(void)
3683 {
3684     return kvm_state->kernel_irqchip_allowed;
3685 }
3686 
3687 bool kvm_kernel_irqchip_required(void)
3688 {
3689     return kvm_state->kernel_irqchip_required;
3690 }
3691 
3692 bool kvm_kernel_irqchip_split(void)
3693 {
3694     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3695 }
3696 
3697 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3698                                     const char *name, void *opaque,
3699                                     Error **errp)
3700 {
3701     KVMState *s = KVM_STATE(obj);
3702     uint32_t value = s->kvm_dirty_ring_size;
3703 
3704     visit_type_uint32(v, name, &value, errp);
3705 }
3706 
3707 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3708                                     const char *name, void *opaque,
3709                                     Error **errp)
3710 {
3711     KVMState *s = KVM_STATE(obj);
3712     uint32_t value;
3713 
3714     if (s->fd != -1) {
3715         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3716         return;
3717     }
3718 
3719     if (!visit_type_uint32(v, name, &value, errp)) {
3720         return;
3721     }
3722     if (value & (value - 1)) {
3723         error_setg(errp, "dirty-ring-size must be a power of two.");
3724         return;
3725     }
3726 
3727     s->kvm_dirty_ring_size = value;
3728 }
3729 
3730 static char *kvm_get_device(Object *obj,
3731                             Error **errp G_GNUC_UNUSED)
3732 {
3733     KVMState *s = KVM_STATE(obj);
3734 
3735     return g_strdup(s->device);
3736 }
3737 
3738 static void kvm_set_device(Object *obj,
3739                            const char *value,
3740                            Error **errp G_GNUC_UNUSED)
3741 {
3742     KVMState *s = KVM_STATE(obj);
3743 
3744     g_free(s->device);
3745     s->device = g_strdup(value);
3746 }
3747 
3748 static void kvm_accel_instance_init(Object *obj)
3749 {
3750     KVMState *s = KVM_STATE(obj);
3751 
3752     s->fd = -1;
3753     s->vmfd = -1;
3754     s->kvm_shadow_mem = -1;
3755     s->kernel_irqchip_allowed = true;
3756     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3757     /* KVM dirty ring is by default off */
3758     s->kvm_dirty_ring_size = 0;
3759     s->kvm_dirty_ring_with_bitmap = false;
3760     s->kvm_eager_split_size = 0;
3761     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3762     s->notify_window = 0;
3763     s->xen_version = 0;
3764     s->xen_gnttab_max_frames = 64;
3765     s->xen_evtchn_max_pirq = 256;
3766     s->device = NULL;
3767 }
3768 
3769 /**
3770  * kvm_gdbstub_sstep_flags():
3771  *
3772  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3773  * support is probed during kvm_init()
3774  */
3775 static int kvm_gdbstub_sstep_flags(void)
3776 {
3777     return kvm_sstep_flags;
3778 }
3779 
3780 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3781 {
3782     AccelClass *ac = ACCEL_CLASS(oc);
3783     ac->name = "KVM";
3784     ac->init_machine = kvm_init;
3785     ac->has_memory = kvm_accel_has_memory;
3786     ac->allowed = &kvm_allowed;
3787     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3788 
3789     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3790         NULL, kvm_set_kernel_irqchip,
3791         NULL, NULL);
3792     object_class_property_set_description(oc, "kernel-irqchip",
3793         "Configure KVM in-kernel irqchip");
3794 
3795     object_class_property_add(oc, "kvm-shadow-mem", "int",
3796         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3797         NULL, NULL);
3798     object_class_property_set_description(oc, "kvm-shadow-mem",
3799         "KVM shadow MMU size");
3800 
3801     object_class_property_add(oc, "dirty-ring-size", "uint32",
3802         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3803         NULL, NULL);
3804     object_class_property_set_description(oc, "dirty-ring-size",
3805         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3806 
3807     object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
3808     object_class_property_set_description(oc, "device",
3809         "Path to the device node to use (default: /dev/kvm)");
3810 
3811     kvm_arch_accel_class_init(oc);
3812 }
3813 
3814 static const TypeInfo kvm_accel_type = {
3815     .name = TYPE_KVM_ACCEL,
3816     .parent = TYPE_ACCEL,
3817     .instance_init = kvm_accel_instance_init,
3818     .class_init = kvm_accel_class_init,
3819     .instance_size = sizeof(KVMState),
3820 };
3821 
3822 static void kvm_type_init(void)
3823 {
3824     type_register_static(&kvm_accel_type);
3825 }
3826 
3827 type_init(kvm_type_init);
3828 
3829 typedef struct StatsArgs {
3830     union StatsResultsType {
3831         StatsResultList **stats;
3832         StatsSchemaList **schema;
3833     } result;
3834     strList *names;
3835     Error **errp;
3836 } StatsArgs;
3837 
3838 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3839                                     uint64_t *stats_data,
3840                                     StatsList *stats_list,
3841                                     Error **errp)
3842 {
3843 
3844     Stats *stats;
3845     uint64List *val_list = NULL;
3846 
3847     /* Only add stats that we understand.  */
3848     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3849     case KVM_STATS_TYPE_CUMULATIVE:
3850     case KVM_STATS_TYPE_INSTANT:
3851     case KVM_STATS_TYPE_PEAK:
3852     case KVM_STATS_TYPE_LINEAR_HIST:
3853     case KVM_STATS_TYPE_LOG_HIST:
3854         break;
3855     default:
3856         return stats_list;
3857     }
3858 
3859     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3860     case KVM_STATS_UNIT_NONE:
3861     case KVM_STATS_UNIT_BYTES:
3862     case KVM_STATS_UNIT_CYCLES:
3863     case KVM_STATS_UNIT_SECONDS:
3864     case KVM_STATS_UNIT_BOOLEAN:
3865         break;
3866     default:
3867         return stats_list;
3868     }
3869 
3870     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3871     case KVM_STATS_BASE_POW10:
3872     case KVM_STATS_BASE_POW2:
3873         break;
3874     default:
3875         return stats_list;
3876     }
3877 
3878     /* Alloc and populate data list */
3879     stats = g_new0(Stats, 1);
3880     stats->name = g_strdup(pdesc->name);
3881     stats->value = g_new0(StatsValue, 1);;
3882 
3883     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3884         stats->value->u.boolean = *stats_data;
3885         stats->value->type = QTYPE_QBOOL;
3886     } else if (pdesc->size == 1) {
3887         stats->value->u.scalar = *stats_data;
3888         stats->value->type = QTYPE_QNUM;
3889     } else {
3890         int i;
3891         for (i = 0; i < pdesc->size; i++) {
3892             QAPI_LIST_PREPEND(val_list, stats_data[i]);
3893         }
3894         stats->value->u.list = val_list;
3895         stats->value->type = QTYPE_QLIST;
3896     }
3897 
3898     QAPI_LIST_PREPEND(stats_list, stats);
3899     return stats_list;
3900 }
3901 
3902 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3903                                                  StatsSchemaValueList *list,
3904                                                  Error **errp)
3905 {
3906     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3907     schema_entry->value = g_new0(StatsSchemaValue, 1);
3908 
3909     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3910     case KVM_STATS_TYPE_CUMULATIVE:
3911         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3912         break;
3913     case KVM_STATS_TYPE_INSTANT:
3914         schema_entry->value->type = STATS_TYPE_INSTANT;
3915         break;
3916     case KVM_STATS_TYPE_PEAK:
3917         schema_entry->value->type = STATS_TYPE_PEAK;
3918         break;
3919     case KVM_STATS_TYPE_LINEAR_HIST:
3920         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3921         schema_entry->value->bucket_size = pdesc->bucket_size;
3922         schema_entry->value->has_bucket_size = true;
3923         break;
3924     case KVM_STATS_TYPE_LOG_HIST:
3925         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3926         break;
3927     default:
3928         goto exit;
3929     }
3930 
3931     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3932     case KVM_STATS_UNIT_NONE:
3933         break;
3934     case KVM_STATS_UNIT_BOOLEAN:
3935         schema_entry->value->has_unit = true;
3936         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3937         break;
3938     case KVM_STATS_UNIT_BYTES:
3939         schema_entry->value->has_unit = true;
3940         schema_entry->value->unit = STATS_UNIT_BYTES;
3941         break;
3942     case KVM_STATS_UNIT_CYCLES:
3943         schema_entry->value->has_unit = true;
3944         schema_entry->value->unit = STATS_UNIT_CYCLES;
3945         break;
3946     case KVM_STATS_UNIT_SECONDS:
3947         schema_entry->value->has_unit = true;
3948         schema_entry->value->unit = STATS_UNIT_SECONDS;
3949         break;
3950     default:
3951         goto exit;
3952     }
3953 
3954     schema_entry->value->exponent = pdesc->exponent;
3955     if (pdesc->exponent) {
3956         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3957         case KVM_STATS_BASE_POW10:
3958             schema_entry->value->has_base = true;
3959             schema_entry->value->base = 10;
3960             break;
3961         case KVM_STATS_BASE_POW2:
3962             schema_entry->value->has_base = true;
3963             schema_entry->value->base = 2;
3964             break;
3965         default:
3966             goto exit;
3967         }
3968     }
3969 
3970     schema_entry->value->name = g_strdup(pdesc->name);
3971     schema_entry->next = list;
3972     return schema_entry;
3973 exit:
3974     g_free(schema_entry->value);
3975     g_free(schema_entry);
3976     return list;
3977 }
3978 
3979 /* Cached stats descriptors */
3980 typedef struct StatsDescriptors {
3981     const char *ident; /* cache key, currently the StatsTarget */
3982     struct kvm_stats_desc *kvm_stats_desc;
3983     struct kvm_stats_header kvm_stats_header;
3984     QTAILQ_ENTRY(StatsDescriptors) next;
3985 } StatsDescriptors;
3986 
3987 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3988     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3989 
3990 /*
3991  * Return the descriptors for 'target', that either have already been read
3992  * or are retrieved from 'stats_fd'.
3993  */
3994 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3995                                                 Error **errp)
3996 {
3997     StatsDescriptors *descriptors;
3998     const char *ident;
3999     struct kvm_stats_desc *kvm_stats_desc;
4000     struct kvm_stats_header *kvm_stats_header;
4001     size_t size_desc;
4002     ssize_t ret;
4003 
4004     ident = StatsTarget_str(target);
4005     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
4006         if (g_str_equal(descriptors->ident, ident)) {
4007             return descriptors;
4008         }
4009     }
4010 
4011     descriptors = g_new0(StatsDescriptors, 1);
4012 
4013     /* Read stats header */
4014     kvm_stats_header = &descriptors->kvm_stats_header;
4015     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
4016     if (ret != sizeof(*kvm_stats_header)) {
4017         error_setg(errp, "KVM stats: failed to read stats header: "
4018                    "expected %zu actual %zu",
4019                    sizeof(*kvm_stats_header), ret);
4020         g_free(descriptors);
4021         return NULL;
4022     }
4023     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4024 
4025     /* Read stats descriptors */
4026     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4027     ret = pread(stats_fd, kvm_stats_desc,
4028                 size_desc * kvm_stats_header->num_desc,
4029                 kvm_stats_header->desc_offset);
4030 
4031     if (ret != size_desc * kvm_stats_header->num_desc) {
4032         error_setg(errp, "KVM stats: failed to read stats descriptors: "
4033                    "expected %zu actual %zu",
4034                    size_desc * kvm_stats_header->num_desc, ret);
4035         g_free(descriptors);
4036         g_free(kvm_stats_desc);
4037         return NULL;
4038     }
4039     descriptors->kvm_stats_desc = kvm_stats_desc;
4040     descriptors->ident = ident;
4041     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4042     return descriptors;
4043 }
4044 
4045 static void query_stats(StatsResultList **result, StatsTarget target,
4046                         strList *names, int stats_fd, CPUState *cpu,
4047                         Error **errp)
4048 {
4049     struct kvm_stats_desc *kvm_stats_desc;
4050     struct kvm_stats_header *kvm_stats_header;
4051     StatsDescriptors *descriptors;
4052     g_autofree uint64_t *stats_data = NULL;
4053     struct kvm_stats_desc *pdesc;
4054     StatsList *stats_list = NULL;
4055     size_t size_desc, size_data = 0;
4056     ssize_t ret;
4057     int i;
4058 
4059     descriptors = find_stats_descriptors(target, stats_fd, errp);
4060     if (!descriptors) {
4061         return;
4062     }
4063 
4064     kvm_stats_header = &descriptors->kvm_stats_header;
4065     kvm_stats_desc = descriptors->kvm_stats_desc;
4066     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4067 
4068     /* Tally the total data size; read schema data */
4069     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4070         pdesc = (void *)kvm_stats_desc + i * size_desc;
4071         size_data += pdesc->size * sizeof(*stats_data);
4072     }
4073 
4074     stats_data = g_malloc0(size_data);
4075     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4076 
4077     if (ret != size_data) {
4078         error_setg(errp, "KVM stats: failed to read data: "
4079                    "expected %zu actual %zu", size_data, ret);
4080         return;
4081     }
4082 
4083     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4084         uint64_t *stats;
4085         pdesc = (void *)kvm_stats_desc + i * size_desc;
4086 
4087         /* Add entry to the list */
4088         stats = (void *)stats_data + pdesc->offset;
4089         if (!apply_str_list_filter(pdesc->name, names)) {
4090             continue;
4091         }
4092         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4093     }
4094 
4095     if (!stats_list) {
4096         return;
4097     }
4098 
4099     switch (target) {
4100     case STATS_TARGET_VM:
4101         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4102         break;
4103     case STATS_TARGET_VCPU:
4104         add_stats_entry(result, STATS_PROVIDER_KVM,
4105                         cpu->parent_obj.canonical_path,
4106                         stats_list);
4107         break;
4108     default:
4109         g_assert_not_reached();
4110     }
4111 }
4112 
4113 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4114                                int stats_fd, Error **errp)
4115 {
4116     struct kvm_stats_desc *kvm_stats_desc;
4117     struct kvm_stats_header *kvm_stats_header;
4118     StatsDescriptors *descriptors;
4119     struct kvm_stats_desc *pdesc;
4120     StatsSchemaValueList *stats_list = NULL;
4121     size_t size_desc;
4122     int i;
4123 
4124     descriptors = find_stats_descriptors(target, stats_fd, errp);
4125     if (!descriptors) {
4126         return;
4127     }
4128 
4129     kvm_stats_header = &descriptors->kvm_stats_header;
4130     kvm_stats_desc = descriptors->kvm_stats_desc;
4131     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4132 
4133     /* Tally the total data size; read schema data */
4134     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4135         pdesc = (void *)kvm_stats_desc + i * size_desc;
4136         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4137     }
4138 
4139     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4140 }
4141 
4142 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4143 {
4144     int stats_fd = cpu->kvm_vcpu_stats_fd;
4145     Error *local_err = NULL;
4146 
4147     if (stats_fd == -1) {
4148         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4149         error_propagate(kvm_stats_args->errp, local_err);
4150         return;
4151     }
4152     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4153                 kvm_stats_args->names, stats_fd, cpu,
4154                 kvm_stats_args->errp);
4155 }
4156 
4157 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4158 {
4159     int stats_fd = cpu->kvm_vcpu_stats_fd;
4160     Error *local_err = NULL;
4161 
4162     if (stats_fd == -1) {
4163         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4164         error_propagate(kvm_stats_args->errp, local_err);
4165         return;
4166     }
4167     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4168                        kvm_stats_args->errp);
4169 }
4170 
4171 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4172                            strList *names, strList *targets, Error **errp)
4173 {
4174     KVMState *s = kvm_state;
4175     CPUState *cpu;
4176     int stats_fd;
4177 
4178     switch (target) {
4179     case STATS_TARGET_VM:
4180     {
4181         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4182         if (stats_fd == -1) {
4183             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4184             return;
4185         }
4186         query_stats(result, target, names, stats_fd, NULL, errp);
4187         close(stats_fd);
4188         break;
4189     }
4190     case STATS_TARGET_VCPU:
4191     {
4192         StatsArgs stats_args;
4193         stats_args.result.stats = result;
4194         stats_args.names = names;
4195         stats_args.errp = errp;
4196         CPU_FOREACH(cpu) {
4197             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4198                 continue;
4199             }
4200             query_stats_vcpu(cpu, &stats_args);
4201         }
4202         break;
4203     }
4204     default:
4205         break;
4206     }
4207 }
4208 
4209 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4210 {
4211     StatsArgs stats_args;
4212     KVMState *s = kvm_state;
4213     int stats_fd;
4214 
4215     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4216     if (stats_fd == -1) {
4217         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4218         return;
4219     }
4220     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4221     close(stats_fd);
4222 
4223     if (first_cpu) {
4224         stats_args.result.schema = result;
4225         stats_args.errp = errp;
4226         query_stats_schema_vcpu(first_cpu, &stats_args);
4227     }
4228 }
4229 
4230 void kvm_mark_guest_state_protected(void)
4231 {
4232     kvm_state->guest_state_protected = true;
4233 }
4234 
4235 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp)
4236 {
4237     int fd;
4238     struct kvm_create_guest_memfd guest_memfd = {
4239         .size = size,
4240         .flags = flags,
4241     };
4242 
4243     if (!kvm_guest_memfd_supported) {
4244         error_setg(errp, "KVM does not support guest_memfd");
4245         return -1;
4246     }
4247 
4248     fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
4249     if (fd < 0) {
4250         error_setg_errno(errp, errno, "Error creating KVM guest_memfd");
4251         return -1;
4252     }
4253 
4254     return fd;
4255 }
4256