1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu-common.h" 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/hw.h" 28 #include "hw/pci/msi.h" 29 #include "hw/pci/msix.h" 30 #include "hw/s390x/adapter.h" 31 #include "exec/gdbstub.h" 32 #include "sysemu/kvm_int.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 42 #include "hw/boards.h" 43 44 /* This check must be after config-host.h is included */ 45 #ifdef CONFIG_EVENTFD 46 #include <sys/eventfd.h> 47 #endif 48 49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 50 * need to use the real host PAGE_SIZE, as that's what KVM will use. 51 */ 52 #define PAGE_SIZE getpagesize() 53 54 //#define DEBUG_KVM 55 56 #ifdef DEBUG_KVM 57 #define DPRINTF(fmt, ...) \ 58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 59 #else 60 #define DPRINTF(fmt, ...) \ 61 do { } while (0) 62 #endif 63 64 #define KVM_MSI_HASHTAB_SIZE 256 65 66 struct KVMParkedVcpu { 67 unsigned long vcpu_id; 68 int kvm_fd; 69 QLIST_ENTRY(KVMParkedVcpu) node; 70 }; 71 72 struct KVMState 73 { 74 AccelState parent_obj; 75 76 int nr_slots; 77 int fd; 78 int vmfd; 79 int coalesced_mmio; 80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 81 bool coalesced_flush_in_progress; 82 int vcpu_events; 83 int robust_singlestep; 84 int debugregs; 85 #ifdef KVM_CAP_SET_GUEST_DEBUG 86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints; 87 #endif 88 int many_ioeventfds; 89 int intx_set_mask; 90 /* The man page (and posix) say ioctl numbers are signed int, but 91 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 92 * unsigned, and treating them as signed here can break things */ 93 unsigned irq_set_ioctl; 94 unsigned int sigmask_len; 95 GHashTable *gsimap; 96 #ifdef KVM_CAP_IRQ_ROUTING 97 struct kvm_irq_routing *irq_routes; 98 int nr_allocated_irq_routes; 99 unsigned long *used_gsi_bitmap; 100 unsigned int gsi_count; 101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 102 #endif 103 KVMMemoryListener memory_listener; 104 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 105 }; 106 107 KVMState *kvm_state; 108 bool kvm_kernel_irqchip; 109 bool kvm_split_irqchip; 110 bool kvm_async_interrupts_allowed; 111 bool kvm_halt_in_kernel_allowed; 112 bool kvm_eventfds_allowed; 113 bool kvm_irqfds_allowed; 114 bool kvm_resamplefds_allowed; 115 bool kvm_msi_via_irqfd_allowed; 116 bool kvm_gsi_routing_allowed; 117 bool kvm_gsi_direct_mapping; 118 bool kvm_allowed; 119 bool kvm_readonly_mem_allowed; 120 bool kvm_vm_attributes_allowed; 121 bool kvm_direct_msi_allowed; 122 bool kvm_ioeventfd_any_length_allowed; 123 bool kvm_msi_use_devid; 124 static bool kvm_immediate_exit; 125 126 static const KVMCapabilityInfo kvm_required_capabilites[] = { 127 KVM_CAP_INFO(USER_MEMORY), 128 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 129 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 130 KVM_CAP_LAST_INFO 131 }; 132 133 int kvm_get_max_memslots(void) 134 { 135 KVMState *s = KVM_STATE(current_machine->accelerator); 136 137 return s->nr_slots; 138 } 139 140 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 141 { 142 KVMState *s = kvm_state; 143 int i; 144 145 for (i = 0; i < s->nr_slots; i++) { 146 if (kml->slots[i].memory_size == 0) { 147 return &kml->slots[i]; 148 } 149 } 150 151 return NULL; 152 } 153 154 bool kvm_has_free_slot(MachineState *ms) 155 { 156 KVMState *s = KVM_STATE(ms->accelerator); 157 158 return kvm_get_free_slot(&s->memory_listener); 159 } 160 161 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 162 { 163 KVMSlot *slot = kvm_get_free_slot(kml); 164 165 if (slot) { 166 return slot; 167 } 168 169 fprintf(stderr, "%s: no free slot available\n", __func__); 170 abort(); 171 } 172 173 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 174 hwaddr start_addr, 175 hwaddr size) 176 { 177 KVMState *s = kvm_state; 178 int i; 179 180 for (i = 0; i < s->nr_slots; i++) { 181 KVMSlot *mem = &kml->slots[i]; 182 183 if (start_addr == mem->start_addr && size == mem->memory_size) { 184 return mem; 185 } 186 } 187 188 return NULL; 189 } 190 191 /* 192 * Calculate and align the start address and the size of the section. 193 * Return the size. If the size is 0, the aligned section is empty. 194 */ 195 static hwaddr kvm_align_section(MemoryRegionSection *section, 196 hwaddr *start) 197 { 198 hwaddr size = int128_get64(section->size); 199 hwaddr delta; 200 201 *start = section->offset_within_address_space; 202 203 /* kvm works in page size chunks, but the function may be called 204 with sub-page size and unaligned start address. Pad the start 205 address to next and truncate size to previous page boundary. */ 206 delta = qemu_real_host_page_size - (*start & ~qemu_real_host_page_mask); 207 delta &= ~qemu_real_host_page_mask; 208 *start += delta; 209 if (delta > size) { 210 return 0; 211 } 212 size -= delta; 213 size &= qemu_real_host_page_mask; 214 if (*start & ~qemu_real_host_page_mask) { 215 return 0; 216 } 217 218 return size; 219 } 220 221 /* 222 * Find overlapping slot with lowest start address 223 */ 224 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml, 225 hwaddr start_addr, 226 hwaddr end_addr) 227 { 228 KVMState *s = kvm_state; 229 KVMSlot *found = NULL; 230 int i; 231 232 for (i = 0; i < s->nr_slots; i++) { 233 KVMSlot *mem = &kml->slots[i]; 234 235 if (mem->memory_size == 0 || 236 (found && found->start_addr < mem->start_addr)) { 237 continue; 238 } 239 240 if (end_addr > mem->start_addr && 241 start_addr < mem->start_addr + mem->memory_size) { 242 found = mem; 243 } 244 } 245 246 return found; 247 } 248 249 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 250 hwaddr *phys_addr) 251 { 252 KVMMemoryListener *kml = &s->memory_listener; 253 int i; 254 255 for (i = 0; i < s->nr_slots; i++) { 256 KVMSlot *mem = &kml->slots[i]; 257 258 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 259 *phys_addr = mem->start_addr + (ram - mem->ram); 260 return 1; 261 } 262 } 263 264 return 0; 265 } 266 267 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot) 268 { 269 KVMState *s = kvm_state; 270 struct kvm_userspace_memory_region mem; 271 272 mem.slot = slot->slot | (kml->as_id << 16); 273 mem.guest_phys_addr = slot->start_addr; 274 mem.userspace_addr = (unsigned long)slot->ram; 275 mem.flags = slot->flags; 276 277 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { 278 /* Set the slot size to 0 before setting the slot to the desired 279 * value. This is needed based on KVM commit 75d61fbc. */ 280 mem.memory_size = 0; 281 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 282 } 283 mem.memory_size = slot->memory_size; 284 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 285 } 286 287 int kvm_destroy_vcpu(CPUState *cpu) 288 { 289 KVMState *s = kvm_state; 290 long mmap_size; 291 struct KVMParkedVcpu *vcpu = NULL; 292 int ret = 0; 293 294 DPRINTF("kvm_destroy_vcpu\n"); 295 296 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 297 if (mmap_size < 0) { 298 ret = mmap_size; 299 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 300 goto err; 301 } 302 303 ret = munmap(cpu->kvm_run, mmap_size); 304 if (ret < 0) { 305 goto err; 306 } 307 308 vcpu = g_malloc0(sizeof(*vcpu)); 309 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 310 vcpu->kvm_fd = cpu->kvm_fd; 311 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 312 err: 313 return ret; 314 } 315 316 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 317 { 318 struct KVMParkedVcpu *cpu; 319 320 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 321 if (cpu->vcpu_id == vcpu_id) { 322 int kvm_fd; 323 324 QLIST_REMOVE(cpu, node); 325 kvm_fd = cpu->kvm_fd; 326 g_free(cpu); 327 return kvm_fd; 328 } 329 } 330 331 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 332 } 333 334 int kvm_init_vcpu(CPUState *cpu) 335 { 336 KVMState *s = kvm_state; 337 long mmap_size; 338 int ret; 339 340 DPRINTF("kvm_init_vcpu\n"); 341 342 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 343 if (ret < 0) { 344 DPRINTF("kvm_create_vcpu failed\n"); 345 goto err; 346 } 347 348 cpu->kvm_fd = ret; 349 cpu->kvm_state = s; 350 cpu->vcpu_dirty = true; 351 352 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 353 if (mmap_size < 0) { 354 ret = mmap_size; 355 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 356 goto err; 357 } 358 359 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 360 cpu->kvm_fd, 0); 361 if (cpu->kvm_run == MAP_FAILED) { 362 ret = -errno; 363 DPRINTF("mmap'ing vcpu state failed\n"); 364 goto err; 365 } 366 367 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 368 s->coalesced_mmio_ring = 369 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 370 } 371 372 ret = kvm_arch_init_vcpu(cpu); 373 err: 374 return ret; 375 } 376 377 /* 378 * dirty pages logging control 379 */ 380 381 static int kvm_mem_flags(MemoryRegion *mr) 382 { 383 bool readonly = mr->readonly || memory_region_is_romd(mr); 384 int flags = 0; 385 386 if (memory_region_get_dirty_log_mask(mr) != 0) { 387 flags |= KVM_MEM_LOG_DIRTY_PAGES; 388 } 389 if (readonly && kvm_readonly_mem_allowed) { 390 flags |= KVM_MEM_READONLY; 391 } 392 return flags; 393 } 394 395 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 396 MemoryRegion *mr) 397 { 398 int old_flags; 399 400 old_flags = mem->flags; 401 mem->flags = kvm_mem_flags(mr); 402 403 /* If nothing changed effectively, no need to issue ioctl */ 404 if (mem->flags == old_flags) { 405 return 0; 406 } 407 408 return kvm_set_user_memory_region(kml, mem); 409 } 410 411 static int kvm_section_update_flags(KVMMemoryListener *kml, 412 MemoryRegionSection *section) 413 { 414 hwaddr start_addr, size; 415 KVMSlot *mem; 416 417 size = kvm_align_section(section, &start_addr); 418 if (!size) { 419 return 0; 420 } 421 422 mem = kvm_lookup_matching_slot(kml, start_addr, size); 423 if (!mem) { 424 fprintf(stderr, "%s: error finding slot\n", __func__); 425 abort(); 426 } 427 428 return kvm_slot_update_flags(kml, mem, section->mr); 429 } 430 431 static void kvm_log_start(MemoryListener *listener, 432 MemoryRegionSection *section, 433 int old, int new) 434 { 435 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 436 int r; 437 438 if (old != 0) { 439 return; 440 } 441 442 r = kvm_section_update_flags(kml, section); 443 if (r < 0) { 444 abort(); 445 } 446 } 447 448 static void kvm_log_stop(MemoryListener *listener, 449 MemoryRegionSection *section, 450 int old, int new) 451 { 452 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 453 int r; 454 455 if (new != 0) { 456 return; 457 } 458 459 r = kvm_section_update_flags(kml, section); 460 if (r < 0) { 461 abort(); 462 } 463 } 464 465 /* get kvm's dirty pages bitmap and update qemu's */ 466 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 467 unsigned long *bitmap) 468 { 469 ram_addr_t start = section->offset_within_region + 470 memory_region_get_ram_addr(section->mr); 471 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 472 473 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 474 return 0; 475 } 476 477 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 478 479 /** 480 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space 481 * This function updates qemu's dirty bitmap using 482 * memory_region_set_dirty(). This means all bits are set 483 * to dirty. 484 * 485 * @start_add: start of logged region. 486 * @end_addr: end of logged region. 487 */ 488 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 489 MemoryRegionSection *section) 490 { 491 KVMState *s = kvm_state; 492 unsigned long size, allocated_size = 0; 493 struct kvm_dirty_log d = {}; 494 KVMSlot *mem; 495 int ret = 0; 496 hwaddr start_addr = section->offset_within_address_space; 497 hwaddr end_addr = start_addr + int128_get64(section->size); 498 499 d.dirty_bitmap = NULL; 500 while (start_addr < end_addr) { 501 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr); 502 if (mem == NULL) { 503 break; 504 } 505 506 /* XXX bad kernel interface alert 507 * For dirty bitmap, kernel allocates array of size aligned to 508 * bits-per-long. But for case when the kernel is 64bits and 509 * the userspace is 32bits, userspace can't align to the same 510 * bits-per-long, since sizeof(long) is different between kernel 511 * and user space. This way, userspace will provide buffer which 512 * may be 4 bytes less than the kernel will use, resulting in 513 * userspace memory corruption (which is not detectable by valgrind 514 * too, in most cases). 515 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 516 * a hope that sizeof(long) won't become >8 any time soon. 517 */ 518 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 519 /*HOST_LONG_BITS*/ 64) / 8; 520 if (!d.dirty_bitmap) { 521 d.dirty_bitmap = g_malloc(size); 522 } else if (size > allocated_size) { 523 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); 524 } 525 allocated_size = size; 526 memset(d.dirty_bitmap, 0, allocated_size); 527 528 d.slot = mem->slot | (kml->as_id << 16); 529 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 530 DPRINTF("ioctl failed %d\n", errno); 531 ret = -1; 532 break; 533 } 534 535 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 536 start_addr = mem->start_addr + mem->memory_size; 537 } 538 g_free(d.dirty_bitmap); 539 540 return ret; 541 } 542 543 static void kvm_coalesce_mmio_region(MemoryListener *listener, 544 MemoryRegionSection *secion, 545 hwaddr start, hwaddr size) 546 { 547 KVMState *s = kvm_state; 548 549 if (s->coalesced_mmio) { 550 struct kvm_coalesced_mmio_zone zone; 551 552 zone.addr = start; 553 zone.size = size; 554 zone.pad = 0; 555 556 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 557 } 558 } 559 560 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 561 MemoryRegionSection *secion, 562 hwaddr start, hwaddr size) 563 { 564 KVMState *s = kvm_state; 565 566 if (s->coalesced_mmio) { 567 struct kvm_coalesced_mmio_zone zone; 568 569 zone.addr = start; 570 zone.size = size; 571 zone.pad = 0; 572 573 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 574 } 575 } 576 577 int kvm_check_extension(KVMState *s, unsigned int extension) 578 { 579 int ret; 580 581 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 582 if (ret < 0) { 583 ret = 0; 584 } 585 586 return ret; 587 } 588 589 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 590 { 591 int ret; 592 593 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 594 if (ret < 0) { 595 /* VM wide version not implemented, use global one instead */ 596 ret = kvm_check_extension(s, extension); 597 } 598 599 return ret; 600 } 601 602 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 603 { 604 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 605 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 606 * endianness, but the memory core hands them in target endianness. 607 * For example, PPC is always treated as big-endian even if running 608 * on KVM and on PPC64LE. Correct here. 609 */ 610 switch (size) { 611 case 2: 612 val = bswap16(val); 613 break; 614 case 4: 615 val = bswap32(val); 616 break; 617 } 618 #endif 619 return val; 620 } 621 622 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 623 bool assign, uint32_t size, bool datamatch) 624 { 625 int ret; 626 struct kvm_ioeventfd iofd = { 627 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 628 .addr = addr, 629 .len = size, 630 .flags = 0, 631 .fd = fd, 632 }; 633 634 if (!kvm_enabled()) { 635 return -ENOSYS; 636 } 637 638 if (datamatch) { 639 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 640 } 641 if (!assign) { 642 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 643 } 644 645 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 646 647 if (ret < 0) { 648 return -errno; 649 } 650 651 return 0; 652 } 653 654 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 655 bool assign, uint32_t size, bool datamatch) 656 { 657 struct kvm_ioeventfd kick = { 658 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 659 .addr = addr, 660 .flags = KVM_IOEVENTFD_FLAG_PIO, 661 .len = size, 662 .fd = fd, 663 }; 664 int r; 665 if (!kvm_enabled()) { 666 return -ENOSYS; 667 } 668 if (datamatch) { 669 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 670 } 671 if (!assign) { 672 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 673 } 674 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 675 if (r < 0) { 676 return r; 677 } 678 return 0; 679 } 680 681 682 static int kvm_check_many_ioeventfds(void) 683 { 684 /* Userspace can use ioeventfd for io notification. This requires a host 685 * that supports eventfd(2) and an I/O thread; since eventfd does not 686 * support SIGIO it cannot interrupt the vcpu. 687 * 688 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 689 * can avoid creating too many ioeventfds. 690 */ 691 #if defined(CONFIG_EVENTFD) 692 int ioeventfds[7]; 693 int i, ret = 0; 694 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 695 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 696 if (ioeventfds[i] < 0) { 697 break; 698 } 699 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 700 if (ret < 0) { 701 close(ioeventfds[i]); 702 break; 703 } 704 } 705 706 /* Decide whether many devices are supported or not */ 707 ret = i == ARRAY_SIZE(ioeventfds); 708 709 while (i-- > 0) { 710 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 711 close(ioeventfds[i]); 712 } 713 return ret; 714 #else 715 return 0; 716 #endif 717 } 718 719 static const KVMCapabilityInfo * 720 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 721 { 722 while (list->name) { 723 if (!kvm_check_extension(s, list->value)) { 724 return list; 725 } 726 list++; 727 } 728 return NULL; 729 } 730 731 static void kvm_set_phys_mem(KVMMemoryListener *kml, 732 MemoryRegionSection *section, bool add) 733 { 734 KVMSlot *mem; 735 int err; 736 MemoryRegion *mr = section->mr; 737 bool writeable = !mr->readonly && !mr->rom_device; 738 hwaddr start_addr, size; 739 void *ram; 740 741 if (!memory_region_is_ram(mr)) { 742 if (writeable || !kvm_readonly_mem_allowed) { 743 return; 744 } else if (!mr->romd_mode) { 745 /* If the memory device is not in romd_mode, then we actually want 746 * to remove the kvm memory slot so all accesses will trap. */ 747 add = false; 748 } 749 } 750 751 size = kvm_align_section(section, &start_addr); 752 if (!size) { 753 return; 754 } 755 756 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 757 (section->offset_within_address_space - start_addr); 758 759 mem = kvm_lookup_matching_slot(kml, start_addr, size); 760 if (!add) { 761 if (!mem) { 762 g_assert(!memory_region_is_ram(mr) && !writeable && !mr->romd_mode); 763 return; 764 } 765 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 766 kvm_physical_sync_dirty_bitmap(kml, section); 767 } 768 769 /* unregister the slot */ 770 mem->memory_size = 0; 771 err = kvm_set_user_memory_region(kml, mem); 772 if (err) { 773 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", 774 __func__, strerror(-err)); 775 abort(); 776 } 777 return; 778 } 779 780 if (mem) { 781 /* update the slot */ 782 kvm_slot_update_flags(kml, mem, mr); 783 return; 784 } 785 786 /* register the new slot */ 787 mem = kvm_alloc_slot(kml); 788 mem->memory_size = size; 789 mem->start_addr = start_addr; 790 mem->ram = ram; 791 mem->flags = kvm_mem_flags(mr); 792 793 err = kvm_set_user_memory_region(kml, mem); 794 if (err) { 795 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 796 strerror(-err)); 797 abort(); 798 } 799 } 800 801 static void kvm_region_add(MemoryListener *listener, 802 MemoryRegionSection *section) 803 { 804 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 805 806 memory_region_ref(section->mr); 807 kvm_set_phys_mem(kml, section, true); 808 } 809 810 static void kvm_region_del(MemoryListener *listener, 811 MemoryRegionSection *section) 812 { 813 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 814 815 kvm_set_phys_mem(kml, section, false); 816 memory_region_unref(section->mr); 817 } 818 819 static void kvm_log_sync(MemoryListener *listener, 820 MemoryRegionSection *section) 821 { 822 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 823 int r; 824 825 r = kvm_physical_sync_dirty_bitmap(kml, section); 826 if (r < 0) { 827 abort(); 828 } 829 } 830 831 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 832 MemoryRegionSection *section, 833 bool match_data, uint64_t data, 834 EventNotifier *e) 835 { 836 int fd = event_notifier_get_fd(e); 837 int r; 838 839 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 840 data, true, int128_get64(section->size), 841 match_data); 842 if (r < 0) { 843 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 844 __func__, strerror(-r)); 845 abort(); 846 } 847 } 848 849 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 850 MemoryRegionSection *section, 851 bool match_data, uint64_t data, 852 EventNotifier *e) 853 { 854 int fd = event_notifier_get_fd(e); 855 int r; 856 857 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 858 data, false, int128_get64(section->size), 859 match_data); 860 if (r < 0) { 861 abort(); 862 } 863 } 864 865 static void kvm_io_ioeventfd_add(MemoryListener *listener, 866 MemoryRegionSection *section, 867 bool match_data, uint64_t data, 868 EventNotifier *e) 869 { 870 int fd = event_notifier_get_fd(e); 871 int r; 872 873 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 874 data, true, int128_get64(section->size), 875 match_data); 876 if (r < 0) { 877 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 878 __func__, strerror(-r)); 879 abort(); 880 } 881 } 882 883 static void kvm_io_ioeventfd_del(MemoryListener *listener, 884 MemoryRegionSection *section, 885 bool match_data, uint64_t data, 886 EventNotifier *e) 887 888 { 889 int fd = event_notifier_get_fd(e); 890 int r; 891 892 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 893 data, false, int128_get64(section->size), 894 match_data); 895 if (r < 0) { 896 abort(); 897 } 898 } 899 900 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 901 AddressSpace *as, int as_id) 902 { 903 int i; 904 905 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 906 kml->as_id = as_id; 907 908 for (i = 0; i < s->nr_slots; i++) { 909 kml->slots[i].slot = i; 910 } 911 912 kml->listener.region_add = kvm_region_add; 913 kml->listener.region_del = kvm_region_del; 914 kml->listener.log_start = kvm_log_start; 915 kml->listener.log_stop = kvm_log_stop; 916 kml->listener.log_sync = kvm_log_sync; 917 kml->listener.priority = 10; 918 919 memory_listener_register(&kml->listener, as); 920 } 921 922 static MemoryListener kvm_io_listener = { 923 .eventfd_add = kvm_io_ioeventfd_add, 924 .eventfd_del = kvm_io_ioeventfd_del, 925 .priority = 10, 926 }; 927 928 int kvm_set_irq(KVMState *s, int irq, int level) 929 { 930 struct kvm_irq_level event; 931 int ret; 932 933 assert(kvm_async_interrupts_enabled()); 934 935 event.level = level; 936 event.irq = irq; 937 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 938 if (ret < 0) { 939 perror("kvm_set_irq"); 940 abort(); 941 } 942 943 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 944 } 945 946 #ifdef KVM_CAP_IRQ_ROUTING 947 typedef struct KVMMSIRoute { 948 struct kvm_irq_routing_entry kroute; 949 QTAILQ_ENTRY(KVMMSIRoute) entry; 950 } KVMMSIRoute; 951 952 static void set_gsi(KVMState *s, unsigned int gsi) 953 { 954 set_bit(gsi, s->used_gsi_bitmap); 955 } 956 957 static void clear_gsi(KVMState *s, unsigned int gsi) 958 { 959 clear_bit(gsi, s->used_gsi_bitmap); 960 } 961 962 void kvm_init_irq_routing(KVMState *s) 963 { 964 int gsi_count, i; 965 966 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 967 if (gsi_count > 0) { 968 /* Round up so we can search ints using ffs */ 969 s->used_gsi_bitmap = bitmap_new(gsi_count); 970 s->gsi_count = gsi_count; 971 } 972 973 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 974 s->nr_allocated_irq_routes = 0; 975 976 if (!kvm_direct_msi_allowed) { 977 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 978 QTAILQ_INIT(&s->msi_hashtab[i]); 979 } 980 } 981 982 kvm_arch_init_irq_routing(s); 983 } 984 985 void kvm_irqchip_commit_routes(KVMState *s) 986 { 987 int ret; 988 989 if (kvm_gsi_direct_mapping()) { 990 return; 991 } 992 993 if (!kvm_gsi_routing_enabled()) { 994 return; 995 } 996 997 s->irq_routes->flags = 0; 998 trace_kvm_irqchip_commit_routes(); 999 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1000 assert(ret == 0); 1001 } 1002 1003 static void kvm_add_routing_entry(KVMState *s, 1004 struct kvm_irq_routing_entry *entry) 1005 { 1006 struct kvm_irq_routing_entry *new; 1007 int n, size; 1008 1009 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1010 n = s->nr_allocated_irq_routes * 2; 1011 if (n < 64) { 1012 n = 64; 1013 } 1014 size = sizeof(struct kvm_irq_routing); 1015 size += n * sizeof(*new); 1016 s->irq_routes = g_realloc(s->irq_routes, size); 1017 s->nr_allocated_irq_routes = n; 1018 } 1019 n = s->irq_routes->nr++; 1020 new = &s->irq_routes->entries[n]; 1021 1022 *new = *entry; 1023 1024 set_gsi(s, entry->gsi); 1025 } 1026 1027 static int kvm_update_routing_entry(KVMState *s, 1028 struct kvm_irq_routing_entry *new_entry) 1029 { 1030 struct kvm_irq_routing_entry *entry; 1031 int n; 1032 1033 for (n = 0; n < s->irq_routes->nr; n++) { 1034 entry = &s->irq_routes->entries[n]; 1035 if (entry->gsi != new_entry->gsi) { 1036 continue; 1037 } 1038 1039 if(!memcmp(entry, new_entry, sizeof *entry)) { 1040 return 0; 1041 } 1042 1043 *entry = *new_entry; 1044 1045 return 0; 1046 } 1047 1048 return -ESRCH; 1049 } 1050 1051 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1052 { 1053 struct kvm_irq_routing_entry e = {}; 1054 1055 assert(pin < s->gsi_count); 1056 1057 e.gsi = irq; 1058 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1059 e.flags = 0; 1060 e.u.irqchip.irqchip = irqchip; 1061 e.u.irqchip.pin = pin; 1062 kvm_add_routing_entry(s, &e); 1063 } 1064 1065 void kvm_irqchip_release_virq(KVMState *s, int virq) 1066 { 1067 struct kvm_irq_routing_entry *e; 1068 int i; 1069 1070 if (kvm_gsi_direct_mapping()) { 1071 return; 1072 } 1073 1074 for (i = 0; i < s->irq_routes->nr; i++) { 1075 e = &s->irq_routes->entries[i]; 1076 if (e->gsi == virq) { 1077 s->irq_routes->nr--; 1078 *e = s->irq_routes->entries[s->irq_routes->nr]; 1079 } 1080 } 1081 clear_gsi(s, virq); 1082 kvm_arch_release_virq_post(virq); 1083 trace_kvm_irqchip_release_virq(virq); 1084 } 1085 1086 static unsigned int kvm_hash_msi(uint32_t data) 1087 { 1088 /* This is optimized for IA32 MSI layout. However, no other arch shall 1089 * repeat the mistake of not providing a direct MSI injection API. */ 1090 return data & 0xff; 1091 } 1092 1093 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1094 { 1095 KVMMSIRoute *route, *next; 1096 unsigned int hash; 1097 1098 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1099 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1100 kvm_irqchip_release_virq(s, route->kroute.gsi); 1101 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1102 g_free(route); 1103 } 1104 } 1105 } 1106 1107 static int kvm_irqchip_get_virq(KVMState *s) 1108 { 1109 int next_virq; 1110 1111 /* 1112 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1113 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1114 * number can succeed even though a new route entry cannot be added. 1115 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1116 */ 1117 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1118 kvm_flush_dynamic_msi_routes(s); 1119 } 1120 1121 /* Return the lowest unused GSI in the bitmap */ 1122 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1123 if (next_virq >= s->gsi_count) { 1124 return -ENOSPC; 1125 } else { 1126 return next_virq; 1127 } 1128 } 1129 1130 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1131 { 1132 unsigned int hash = kvm_hash_msi(msg.data); 1133 KVMMSIRoute *route; 1134 1135 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1136 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1137 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1138 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1139 return route; 1140 } 1141 } 1142 return NULL; 1143 } 1144 1145 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1146 { 1147 struct kvm_msi msi; 1148 KVMMSIRoute *route; 1149 1150 if (kvm_direct_msi_allowed) { 1151 msi.address_lo = (uint32_t)msg.address; 1152 msi.address_hi = msg.address >> 32; 1153 msi.data = le32_to_cpu(msg.data); 1154 msi.flags = 0; 1155 memset(msi.pad, 0, sizeof(msi.pad)); 1156 1157 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1158 } 1159 1160 route = kvm_lookup_msi_route(s, msg); 1161 if (!route) { 1162 int virq; 1163 1164 virq = kvm_irqchip_get_virq(s); 1165 if (virq < 0) { 1166 return virq; 1167 } 1168 1169 route = g_malloc0(sizeof(KVMMSIRoute)); 1170 route->kroute.gsi = virq; 1171 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1172 route->kroute.flags = 0; 1173 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1174 route->kroute.u.msi.address_hi = msg.address >> 32; 1175 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1176 1177 kvm_add_routing_entry(s, &route->kroute); 1178 kvm_irqchip_commit_routes(s); 1179 1180 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1181 entry); 1182 } 1183 1184 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1185 1186 return kvm_set_irq(s, route->kroute.gsi, 1); 1187 } 1188 1189 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1190 { 1191 struct kvm_irq_routing_entry kroute = {}; 1192 int virq; 1193 MSIMessage msg = {0, 0}; 1194 1195 if (pci_available && dev) { 1196 msg = pci_get_msi_message(dev, vector); 1197 } 1198 1199 if (kvm_gsi_direct_mapping()) { 1200 return kvm_arch_msi_data_to_gsi(msg.data); 1201 } 1202 1203 if (!kvm_gsi_routing_enabled()) { 1204 return -ENOSYS; 1205 } 1206 1207 virq = kvm_irqchip_get_virq(s); 1208 if (virq < 0) { 1209 return virq; 1210 } 1211 1212 kroute.gsi = virq; 1213 kroute.type = KVM_IRQ_ROUTING_MSI; 1214 kroute.flags = 0; 1215 kroute.u.msi.address_lo = (uint32_t)msg.address; 1216 kroute.u.msi.address_hi = msg.address >> 32; 1217 kroute.u.msi.data = le32_to_cpu(msg.data); 1218 if (pci_available && kvm_msi_devid_required()) { 1219 kroute.flags = KVM_MSI_VALID_DEVID; 1220 kroute.u.msi.devid = pci_requester_id(dev); 1221 } 1222 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1223 kvm_irqchip_release_virq(s, virq); 1224 return -EINVAL; 1225 } 1226 1227 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1228 vector, virq); 1229 1230 kvm_add_routing_entry(s, &kroute); 1231 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1232 kvm_irqchip_commit_routes(s); 1233 1234 return virq; 1235 } 1236 1237 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1238 PCIDevice *dev) 1239 { 1240 struct kvm_irq_routing_entry kroute = {}; 1241 1242 if (kvm_gsi_direct_mapping()) { 1243 return 0; 1244 } 1245 1246 if (!kvm_irqchip_in_kernel()) { 1247 return -ENOSYS; 1248 } 1249 1250 kroute.gsi = virq; 1251 kroute.type = KVM_IRQ_ROUTING_MSI; 1252 kroute.flags = 0; 1253 kroute.u.msi.address_lo = (uint32_t)msg.address; 1254 kroute.u.msi.address_hi = msg.address >> 32; 1255 kroute.u.msi.data = le32_to_cpu(msg.data); 1256 if (pci_available && kvm_msi_devid_required()) { 1257 kroute.flags = KVM_MSI_VALID_DEVID; 1258 kroute.u.msi.devid = pci_requester_id(dev); 1259 } 1260 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1261 return -EINVAL; 1262 } 1263 1264 trace_kvm_irqchip_update_msi_route(virq); 1265 1266 return kvm_update_routing_entry(s, &kroute); 1267 } 1268 1269 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1270 bool assign) 1271 { 1272 struct kvm_irqfd irqfd = { 1273 .fd = fd, 1274 .gsi = virq, 1275 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1276 }; 1277 1278 if (rfd != -1) { 1279 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1280 irqfd.resamplefd = rfd; 1281 } 1282 1283 if (!kvm_irqfds_enabled()) { 1284 return -ENOSYS; 1285 } 1286 1287 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1288 } 1289 1290 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1291 { 1292 struct kvm_irq_routing_entry kroute = {}; 1293 int virq; 1294 1295 if (!kvm_gsi_routing_enabled()) { 1296 return -ENOSYS; 1297 } 1298 1299 virq = kvm_irqchip_get_virq(s); 1300 if (virq < 0) { 1301 return virq; 1302 } 1303 1304 kroute.gsi = virq; 1305 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1306 kroute.flags = 0; 1307 kroute.u.adapter.summary_addr = adapter->summary_addr; 1308 kroute.u.adapter.ind_addr = adapter->ind_addr; 1309 kroute.u.adapter.summary_offset = adapter->summary_offset; 1310 kroute.u.adapter.ind_offset = adapter->ind_offset; 1311 kroute.u.adapter.adapter_id = adapter->adapter_id; 1312 1313 kvm_add_routing_entry(s, &kroute); 1314 1315 return virq; 1316 } 1317 1318 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1319 { 1320 struct kvm_irq_routing_entry kroute = {}; 1321 int virq; 1322 1323 if (!kvm_gsi_routing_enabled()) { 1324 return -ENOSYS; 1325 } 1326 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1327 return -ENOSYS; 1328 } 1329 virq = kvm_irqchip_get_virq(s); 1330 if (virq < 0) { 1331 return virq; 1332 } 1333 1334 kroute.gsi = virq; 1335 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1336 kroute.flags = 0; 1337 kroute.u.hv_sint.vcpu = vcpu; 1338 kroute.u.hv_sint.sint = sint; 1339 1340 kvm_add_routing_entry(s, &kroute); 1341 kvm_irqchip_commit_routes(s); 1342 1343 return virq; 1344 } 1345 1346 #else /* !KVM_CAP_IRQ_ROUTING */ 1347 1348 void kvm_init_irq_routing(KVMState *s) 1349 { 1350 } 1351 1352 void kvm_irqchip_release_virq(KVMState *s, int virq) 1353 { 1354 } 1355 1356 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1357 { 1358 abort(); 1359 } 1360 1361 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1362 { 1363 return -ENOSYS; 1364 } 1365 1366 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1367 { 1368 return -ENOSYS; 1369 } 1370 1371 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1372 { 1373 return -ENOSYS; 1374 } 1375 1376 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1377 { 1378 abort(); 1379 } 1380 1381 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1382 { 1383 return -ENOSYS; 1384 } 1385 #endif /* !KVM_CAP_IRQ_ROUTING */ 1386 1387 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1388 EventNotifier *rn, int virq) 1389 { 1390 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1391 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1392 } 1393 1394 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1395 int virq) 1396 { 1397 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1398 false); 1399 } 1400 1401 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1402 EventNotifier *rn, qemu_irq irq) 1403 { 1404 gpointer key, gsi; 1405 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1406 1407 if (!found) { 1408 return -ENXIO; 1409 } 1410 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1411 } 1412 1413 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1414 qemu_irq irq) 1415 { 1416 gpointer key, gsi; 1417 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1418 1419 if (!found) { 1420 return -ENXIO; 1421 } 1422 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1423 } 1424 1425 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1426 { 1427 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1428 } 1429 1430 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1431 { 1432 int ret; 1433 1434 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1435 ; 1436 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1437 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1438 if (ret < 0) { 1439 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1440 exit(1); 1441 } 1442 } else { 1443 return; 1444 } 1445 1446 /* First probe and see if there's a arch-specific hook to create the 1447 * in-kernel irqchip for us */ 1448 ret = kvm_arch_irqchip_create(machine, s); 1449 if (ret == 0) { 1450 if (machine_kernel_irqchip_split(machine)) { 1451 perror("Split IRQ chip mode not supported."); 1452 exit(1); 1453 } else { 1454 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1455 } 1456 } 1457 if (ret < 0) { 1458 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1459 exit(1); 1460 } 1461 1462 kvm_kernel_irqchip = true; 1463 /* If we have an in-kernel IRQ chip then we must have asynchronous 1464 * interrupt delivery (though the reverse is not necessarily true) 1465 */ 1466 kvm_async_interrupts_allowed = true; 1467 kvm_halt_in_kernel_allowed = true; 1468 1469 kvm_init_irq_routing(s); 1470 1471 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1472 } 1473 1474 /* Find number of supported CPUs using the recommended 1475 * procedure from the kernel API documentation to cope with 1476 * older kernels that may be missing capabilities. 1477 */ 1478 static int kvm_recommended_vcpus(KVMState *s) 1479 { 1480 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); 1481 return (ret) ? ret : 4; 1482 } 1483 1484 static int kvm_max_vcpus(KVMState *s) 1485 { 1486 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1487 return (ret) ? ret : kvm_recommended_vcpus(s); 1488 } 1489 1490 static int kvm_max_vcpu_id(KVMState *s) 1491 { 1492 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1493 return (ret) ? ret : kvm_max_vcpus(s); 1494 } 1495 1496 bool kvm_vcpu_id_is_valid(int vcpu_id) 1497 { 1498 KVMState *s = KVM_STATE(current_machine->accelerator); 1499 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1500 } 1501 1502 static int kvm_init(MachineState *ms) 1503 { 1504 MachineClass *mc = MACHINE_GET_CLASS(ms); 1505 static const char upgrade_note[] = 1506 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1507 "(see http://sourceforge.net/projects/kvm).\n"; 1508 struct { 1509 const char *name; 1510 int num; 1511 } num_cpus[] = { 1512 { "SMP", smp_cpus }, 1513 { "hotpluggable", max_cpus }, 1514 { NULL, } 1515 }, *nc = num_cpus; 1516 int soft_vcpus_limit, hard_vcpus_limit; 1517 KVMState *s; 1518 const KVMCapabilityInfo *missing_cap; 1519 int ret; 1520 int type = 0; 1521 const char *kvm_type; 1522 1523 s = KVM_STATE(ms->accelerator); 1524 1525 /* 1526 * On systems where the kernel can support different base page 1527 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1528 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1529 * page size for the system though. 1530 */ 1531 assert(TARGET_PAGE_SIZE <= getpagesize()); 1532 1533 s->sigmask_len = 8; 1534 1535 #ifdef KVM_CAP_SET_GUEST_DEBUG 1536 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1537 #endif 1538 QLIST_INIT(&s->kvm_parked_vcpus); 1539 s->vmfd = -1; 1540 s->fd = qemu_open("/dev/kvm", O_RDWR); 1541 if (s->fd == -1) { 1542 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1543 ret = -errno; 1544 goto err; 1545 } 1546 1547 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1548 if (ret < KVM_API_VERSION) { 1549 if (ret >= 0) { 1550 ret = -EINVAL; 1551 } 1552 fprintf(stderr, "kvm version too old\n"); 1553 goto err; 1554 } 1555 1556 if (ret > KVM_API_VERSION) { 1557 ret = -EINVAL; 1558 fprintf(stderr, "kvm version not supported\n"); 1559 goto err; 1560 } 1561 1562 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1563 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1564 1565 /* If unspecified, use the default value */ 1566 if (!s->nr_slots) { 1567 s->nr_slots = 32; 1568 } 1569 1570 /* check the vcpu limits */ 1571 soft_vcpus_limit = kvm_recommended_vcpus(s); 1572 hard_vcpus_limit = kvm_max_vcpus(s); 1573 1574 while (nc->name) { 1575 if (nc->num > soft_vcpus_limit) { 1576 fprintf(stderr, 1577 "Warning: Number of %s cpus requested (%d) exceeds " 1578 "the recommended cpus supported by KVM (%d)\n", 1579 nc->name, nc->num, soft_vcpus_limit); 1580 1581 if (nc->num > hard_vcpus_limit) { 1582 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1583 "the maximum cpus supported by KVM (%d)\n", 1584 nc->name, nc->num, hard_vcpus_limit); 1585 exit(1); 1586 } 1587 } 1588 nc++; 1589 } 1590 1591 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1592 if (mc->kvm_type) { 1593 type = mc->kvm_type(kvm_type); 1594 } else if (kvm_type) { 1595 ret = -EINVAL; 1596 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1597 goto err; 1598 } 1599 1600 do { 1601 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1602 } while (ret == -EINTR); 1603 1604 if (ret < 0) { 1605 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1606 strerror(-ret)); 1607 1608 #ifdef TARGET_S390X 1609 if (ret == -EINVAL) { 1610 fprintf(stderr, 1611 "Host kernel setup problem detected. Please verify:\n"); 1612 fprintf(stderr, "- for kernels supporting the switch_amode or" 1613 " user_mode parameters, whether\n"); 1614 fprintf(stderr, 1615 " user space is running in primary address space\n"); 1616 fprintf(stderr, 1617 "- for kernels supporting the vm.allocate_pgste sysctl, " 1618 "whether it is enabled\n"); 1619 } 1620 #endif 1621 goto err; 1622 } 1623 1624 s->vmfd = ret; 1625 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1626 if (!missing_cap) { 1627 missing_cap = 1628 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1629 } 1630 if (missing_cap) { 1631 ret = -EINVAL; 1632 fprintf(stderr, "kvm does not support %s\n%s", 1633 missing_cap->name, upgrade_note); 1634 goto err; 1635 } 1636 1637 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1638 1639 #ifdef KVM_CAP_VCPU_EVENTS 1640 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1641 #endif 1642 1643 s->robust_singlestep = 1644 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1645 1646 #ifdef KVM_CAP_DEBUGREGS 1647 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1648 #endif 1649 1650 #ifdef KVM_CAP_IRQ_ROUTING 1651 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1652 #endif 1653 1654 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1655 1656 s->irq_set_ioctl = KVM_IRQ_LINE; 1657 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1658 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1659 } 1660 1661 #ifdef KVM_CAP_READONLY_MEM 1662 kvm_readonly_mem_allowed = 1663 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1664 #endif 1665 1666 kvm_eventfds_allowed = 1667 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1668 1669 kvm_irqfds_allowed = 1670 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1671 1672 kvm_resamplefds_allowed = 1673 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1674 1675 kvm_vm_attributes_allowed = 1676 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1677 1678 kvm_ioeventfd_any_length_allowed = 1679 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1680 1681 kvm_state = s; 1682 1683 ret = kvm_arch_init(ms, s); 1684 if (ret < 0) { 1685 goto err; 1686 } 1687 1688 if (machine_kernel_irqchip_allowed(ms)) { 1689 kvm_irqchip_create(ms, s); 1690 } 1691 1692 if (kvm_eventfds_allowed) { 1693 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1694 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1695 } 1696 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; 1697 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; 1698 1699 kvm_memory_listener_register(s, &s->memory_listener, 1700 &address_space_memory, 0); 1701 memory_listener_register(&kvm_io_listener, 1702 &address_space_io); 1703 1704 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1705 1706 return 0; 1707 1708 err: 1709 assert(ret < 0); 1710 if (s->vmfd >= 0) { 1711 close(s->vmfd); 1712 } 1713 if (s->fd != -1) { 1714 close(s->fd); 1715 } 1716 g_free(s->memory_listener.slots); 1717 1718 return ret; 1719 } 1720 1721 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1722 { 1723 s->sigmask_len = sigmask_len; 1724 } 1725 1726 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1727 int size, uint32_t count) 1728 { 1729 int i; 1730 uint8_t *ptr = data; 1731 1732 for (i = 0; i < count; i++) { 1733 address_space_rw(&address_space_io, port, attrs, 1734 ptr, size, 1735 direction == KVM_EXIT_IO_OUT); 1736 ptr += size; 1737 } 1738 } 1739 1740 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1741 { 1742 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1743 run->internal.suberror); 1744 1745 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1746 int i; 1747 1748 for (i = 0; i < run->internal.ndata; ++i) { 1749 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1750 i, (uint64_t)run->internal.data[i]); 1751 } 1752 } 1753 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1754 fprintf(stderr, "emulation failure\n"); 1755 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1756 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 1757 return EXCP_INTERRUPT; 1758 } 1759 } 1760 /* FIXME: Should trigger a qmp message to let management know 1761 * something went wrong. 1762 */ 1763 return -1; 1764 } 1765 1766 void kvm_flush_coalesced_mmio_buffer(void) 1767 { 1768 KVMState *s = kvm_state; 1769 1770 if (s->coalesced_flush_in_progress) { 1771 return; 1772 } 1773 1774 s->coalesced_flush_in_progress = true; 1775 1776 if (s->coalesced_mmio_ring) { 1777 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1778 while (ring->first != ring->last) { 1779 struct kvm_coalesced_mmio *ent; 1780 1781 ent = &ring->coalesced_mmio[ring->first]; 1782 1783 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1784 smp_wmb(); 1785 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1786 } 1787 } 1788 1789 s->coalesced_flush_in_progress = false; 1790 } 1791 1792 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1793 { 1794 if (!cpu->vcpu_dirty) { 1795 kvm_arch_get_registers(cpu); 1796 cpu->vcpu_dirty = true; 1797 } 1798 } 1799 1800 void kvm_cpu_synchronize_state(CPUState *cpu) 1801 { 1802 if (!cpu->vcpu_dirty) { 1803 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1804 } 1805 } 1806 1807 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1808 { 1809 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1810 cpu->vcpu_dirty = false; 1811 } 1812 1813 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1814 { 1815 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1816 } 1817 1818 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1819 { 1820 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1821 cpu->vcpu_dirty = false; 1822 } 1823 1824 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1825 { 1826 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1827 } 1828 1829 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1830 { 1831 cpu->vcpu_dirty = true; 1832 } 1833 1834 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1835 { 1836 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1837 } 1838 1839 #ifdef KVM_HAVE_MCE_INJECTION 1840 static __thread void *pending_sigbus_addr; 1841 static __thread int pending_sigbus_code; 1842 static __thread bool have_sigbus_pending; 1843 #endif 1844 1845 static void kvm_cpu_kick(CPUState *cpu) 1846 { 1847 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1848 } 1849 1850 static void kvm_cpu_kick_self(void) 1851 { 1852 if (kvm_immediate_exit) { 1853 kvm_cpu_kick(current_cpu); 1854 } else { 1855 qemu_cpu_kick_self(); 1856 } 1857 } 1858 1859 static void kvm_eat_signals(CPUState *cpu) 1860 { 1861 struct timespec ts = { 0, 0 }; 1862 siginfo_t siginfo; 1863 sigset_t waitset; 1864 sigset_t chkset; 1865 int r; 1866 1867 if (kvm_immediate_exit) { 1868 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1869 /* Write kvm_run->immediate_exit before the cpu->exit_request 1870 * write in kvm_cpu_exec. 1871 */ 1872 smp_wmb(); 1873 return; 1874 } 1875 1876 sigemptyset(&waitset); 1877 sigaddset(&waitset, SIG_IPI); 1878 1879 do { 1880 r = sigtimedwait(&waitset, &siginfo, &ts); 1881 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1882 perror("sigtimedwait"); 1883 exit(1); 1884 } 1885 1886 r = sigpending(&chkset); 1887 if (r == -1) { 1888 perror("sigpending"); 1889 exit(1); 1890 } 1891 } while (sigismember(&chkset, SIG_IPI)); 1892 } 1893 1894 int kvm_cpu_exec(CPUState *cpu) 1895 { 1896 struct kvm_run *run = cpu->kvm_run; 1897 int ret, run_ret; 1898 1899 DPRINTF("kvm_cpu_exec()\n"); 1900 1901 if (kvm_arch_process_async_events(cpu)) { 1902 atomic_set(&cpu->exit_request, 0); 1903 return EXCP_HLT; 1904 } 1905 1906 qemu_mutex_unlock_iothread(); 1907 cpu_exec_start(cpu); 1908 1909 do { 1910 MemTxAttrs attrs; 1911 1912 if (cpu->vcpu_dirty) { 1913 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 1914 cpu->vcpu_dirty = false; 1915 } 1916 1917 kvm_arch_pre_run(cpu, run); 1918 if (atomic_read(&cpu->exit_request)) { 1919 DPRINTF("interrupt exit requested\n"); 1920 /* 1921 * KVM requires us to reenter the kernel after IO exits to complete 1922 * instruction emulation. This self-signal will ensure that we 1923 * leave ASAP again. 1924 */ 1925 kvm_cpu_kick_self(); 1926 } 1927 1928 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 1929 * Matching barrier in kvm_eat_signals. 1930 */ 1931 smp_rmb(); 1932 1933 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 1934 1935 attrs = kvm_arch_post_run(cpu, run); 1936 1937 #ifdef KVM_HAVE_MCE_INJECTION 1938 if (unlikely(have_sigbus_pending)) { 1939 qemu_mutex_lock_iothread(); 1940 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 1941 pending_sigbus_addr); 1942 have_sigbus_pending = false; 1943 qemu_mutex_unlock_iothread(); 1944 } 1945 #endif 1946 1947 if (run_ret < 0) { 1948 if (run_ret == -EINTR || run_ret == -EAGAIN) { 1949 DPRINTF("io window exit\n"); 1950 kvm_eat_signals(cpu); 1951 ret = EXCP_INTERRUPT; 1952 break; 1953 } 1954 fprintf(stderr, "error: kvm run failed %s\n", 1955 strerror(-run_ret)); 1956 #ifdef TARGET_PPC 1957 if (run_ret == -EBUSY) { 1958 fprintf(stderr, 1959 "This is probably because your SMT is enabled.\n" 1960 "VCPU can only run on primary threads with all " 1961 "secondary threads offline.\n"); 1962 } 1963 #endif 1964 ret = -1; 1965 break; 1966 } 1967 1968 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 1969 switch (run->exit_reason) { 1970 case KVM_EXIT_IO: 1971 DPRINTF("handle_io\n"); 1972 /* Called outside BQL */ 1973 kvm_handle_io(run->io.port, attrs, 1974 (uint8_t *)run + run->io.data_offset, 1975 run->io.direction, 1976 run->io.size, 1977 run->io.count); 1978 ret = 0; 1979 break; 1980 case KVM_EXIT_MMIO: 1981 DPRINTF("handle_mmio\n"); 1982 /* Called outside BQL */ 1983 address_space_rw(&address_space_memory, 1984 run->mmio.phys_addr, attrs, 1985 run->mmio.data, 1986 run->mmio.len, 1987 run->mmio.is_write); 1988 ret = 0; 1989 break; 1990 case KVM_EXIT_IRQ_WINDOW_OPEN: 1991 DPRINTF("irq_window_open\n"); 1992 ret = EXCP_INTERRUPT; 1993 break; 1994 case KVM_EXIT_SHUTDOWN: 1995 DPRINTF("shutdown\n"); 1996 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1997 ret = EXCP_INTERRUPT; 1998 break; 1999 case KVM_EXIT_UNKNOWN: 2000 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2001 (uint64_t)run->hw.hardware_exit_reason); 2002 ret = -1; 2003 break; 2004 case KVM_EXIT_INTERNAL_ERROR: 2005 ret = kvm_handle_internal_error(cpu, run); 2006 break; 2007 case KVM_EXIT_SYSTEM_EVENT: 2008 switch (run->system_event.type) { 2009 case KVM_SYSTEM_EVENT_SHUTDOWN: 2010 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2011 ret = EXCP_INTERRUPT; 2012 break; 2013 case KVM_SYSTEM_EVENT_RESET: 2014 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2015 ret = EXCP_INTERRUPT; 2016 break; 2017 case KVM_SYSTEM_EVENT_CRASH: 2018 kvm_cpu_synchronize_state(cpu); 2019 qemu_mutex_lock_iothread(); 2020 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2021 qemu_mutex_unlock_iothread(); 2022 ret = 0; 2023 break; 2024 default: 2025 DPRINTF("kvm_arch_handle_exit\n"); 2026 ret = kvm_arch_handle_exit(cpu, run); 2027 break; 2028 } 2029 break; 2030 default: 2031 DPRINTF("kvm_arch_handle_exit\n"); 2032 ret = kvm_arch_handle_exit(cpu, run); 2033 break; 2034 } 2035 } while (ret == 0); 2036 2037 cpu_exec_end(cpu); 2038 qemu_mutex_lock_iothread(); 2039 2040 if (ret < 0) { 2041 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 2042 vm_stop(RUN_STATE_INTERNAL_ERROR); 2043 } 2044 2045 atomic_set(&cpu->exit_request, 0); 2046 return ret; 2047 } 2048 2049 int kvm_ioctl(KVMState *s, int type, ...) 2050 { 2051 int ret; 2052 void *arg; 2053 va_list ap; 2054 2055 va_start(ap, type); 2056 arg = va_arg(ap, void *); 2057 va_end(ap); 2058 2059 trace_kvm_ioctl(type, arg); 2060 ret = ioctl(s->fd, type, arg); 2061 if (ret == -1) { 2062 ret = -errno; 2063 } 2064 return ret; 2065 } 2066 2067 int kvm_vm_ioctl(KVMState *s, int type, ...) 2068 { 2069 int ret; 2070 void *arg; 2071 va_list ap; 2072 2073 va_start(ap, type); 2074 arg = va_arg(ap, void *); 2075 va_end(ap); 2076 2077 trace_kvm_vm_ioctl(type, arg); 2078 ret = ioctl(s->vmfd, type, arg); 2079 if (ret == -1) { 2080 ret = -errno; 2081 } 2082 return ret; 2083 } 2084 2085 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2086 { 2087 int ret; 2088 void *arg; 2089 va_list ap; 2090 2091 va_start(ap, type); 2092 arg = va_arg(ap, void *); 2093 va_end(ap); 2094 2095 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2096 ret = ioctl(cpu->kvm_fd, type, arg); 2097 if (ret == -1) { 2098 ret = -errno; 2099 } 2100 return ret; 2101 } 2102 2103 int kvm_device_ioctl(int fd, int type, ...) 2104 { 2105 int ret; 2106 void *arg; 2107 va_list ap; 2108 2109 va_start(ap, type); 2110 arg = va_arg(ap, void *); 2111 va_end(ap); 2112 2113 trace_kvm_device_ioctl(fd, type, arg); 2114 ret = ioctl(fd, type, arg); 2115 if (ret == -1) { 2116 ret = -errno; 2117 } 2118 return ret; 2119 } 2120 2121 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2122 { 2123 int ret; 2124 struct kvm_device_attr attribute = { 2125 .group = group, 2126 .attr = attr, 2127 }; 2128 2129 if (!kvm_vm_attributes_allowed) { 2130 return 0; 2131 } 2132 2133 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2134 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2135 return ret ? 0 : 1; 2136 } 2137 2138 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2139 { 2140 struct kvm_device_attr attribute = { 2141 .group = group, 2142 .attr = attr, 2143 .flags = 0, 2144 }; 2145 2146 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2147 } 2148 2149 int kvm_device_access(int fd, int group, uint64_t attr, 2150 void *val, bool write, Error **errp) 2151 { 2152 struct kvm_device_attr kvmattr; 2153 int err; 2154 2155 kvmattr.flags = 0; 2156 kvmattr.group = group; 2157 kvmattr.attr = attr; 2158 kvmattr.addr = (uintptr_t)val; 2159 2160 err = kvm_device_ioctl(fd, 2161 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2162 &kvmattr); 2163 if (err < 0) { 2164 error_setg_errno(errp, -err, 2165 "KVM_%s_DEVICE_ATTR failed: Group %d " 2166 "attr 0x%016" PRIx64, 2167 write ? "SET" : "GET", group, attr); 2168 } 2169 return err; 2170 } 2171 2172 /* Return 1 on success, 0 on failure */ 2173 int kvm_has_sync_mmu(void) 2174 { 2175 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2176 } 2177 2178 int kvm_has_vcpu_events(void) 2179 { 2180 return kvm_state->vcpu_events; 2181 } 2182 2183 int kvm_has_robust_singlestep(void) 2184 { 2185 return kvm_state->robust_singlestep; 2186 } 2187 2188 int kvm_has_debugregs(void) 2189 { 2190 return kvm_state->debugregs; 2191 } 2192 2193 int kvm_has_many_ioeventfds(void) 2194 { 2195 if (!kvm_enabled()) { 2196 return 0; 2197 } 2198 return kvm_state->many_ioeventfds; 2199 } 2200 2201 int kvm_has_gsi_routing(void) 2202 { 2203 #ifdef KVM_CAP_IRQ_ROUTING 2204 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2205 #else 2206 return false; 2207 #endif 2208 } 2209 2210 int kvm_has_intx_set_mask(void) 2211 { 2212 return kvm_state->intx_set_mask; 2213 } 2214 2215 bool kvm_arm_supports_user_irq(void) 2216 { 2217 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2218 } 2219 2220 #ifdef KVM_CAP_SET_GUEST_DEBUG 2221 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2222 target_ulong pc) 2223 { 2224 struct kvm_sw_breakpoint *bp; 2225 2226 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2227 if (bp->pc == pc) { 2228 return bp; 2229 } 2230 } 2231 return NULL; 2232 } 2233 2234 int kvm_sw_breakpoints_active(CPUState *cpu) 2235 { 2236 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2237 } 2238 2239 struct kvm_set_guest_debug_data { 2240 struct kvm_guest_debug dbg; 2241 int err; 2242 }; 2243 2244 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2245 { 2246 struct kvm_set_guest_debug_data *dbg_data = 2247 (struct kvm_set_guest_debug_data *) data.host_ptr; 2248 2249 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2250 &dbg_data->dbg); 2251 } 2252 2253 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2254 { 2255 struct kvm_set_guest_debug_data data; 2256 2257 data.dbg.control = reinject_trap; 2258 2259 if (cpu->singlestep_enabled) { 2260 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2261 } 2262 kvm_arch_update_guest_debug(cpu, &data.dbg); 2263 2264 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2265 RUN_ON_CPU_HOST_PTR(&data)); 2266 return data.err; 2267 } 2268 2269 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2270 target_ulong len, int type) 2271 { 2272 struct kvm_sw_breakpoint *bp; 2273 int err; 2274 2275 if (type == GDB_BREAKPOINT_SW) { 2276 bp = kvm_find_sw_breakpoint(cpu, addr); 2277 if (bp) { 2278 bp->use_count++; 2279 return 0; 2280 } 2281 2282 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2283 bp->pc = addr; 2284 bp->use_count = 1; 2285 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2286 if (err) { 2287 g_free(bp); 2288 return err; 2289 } 2290 2291 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2292 } else { 2293 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2294 if (err) { 2295 return err; 2296 } 2297 } 2298 2299 CPU_FOREACH(cpu) { 2300 err = kvm_update_guest_debug(cpu, 0); 2301 if (err) { 2302 return err; 2303 } 2304 } 2305 return 0; 2306 } 2307 2308 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2309 target_ulong len, int type) 2310 { 2311 struct kvm_sw_breakpoint *bp; 2312 int err; 2313 2314 if (type == GDB_BREAKPOINT_SW) { 2315 bp = kvm_find_sw_breakpoint(cpu, addr); 2316 if (!bp) { 2317 return -ENOENT; 2318 } 2319 2320 if (bp->use_count > 1) { 2321 bp->use_count--; 2322 return 0; 2323 } 2324 2325 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2326 if (err) { 2327 return err; 2328 } 2329 2330 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2331 g_free(bp); 2332 } else { 2333 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2334 if (err) { 2335 return err; 2336 } 2337 } 2338 2339 CPU_FOREACH(cpu) { 2340 err = kvm_update_guest_debug(cpu, 0); 2341 if (err) { 2342 return err; 2343 } 2344 } 2345 return 0; 2346 } 2347 2348 void kvm_remove_all_breakpoints(CPUState *cpu) 2349 { 2350 struct kvm_sw_breakpoint *bp, *next; 2351 KVMState *s = cpu->kvm_state; 2352 CPUState *tmpcpu; 2353 2354 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2355 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2356 /* Try harder to find a CPU that currently sees the breakpoint. */ 2357 CPU_FOREACH(tmpcpu) { 2358 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2359 break; 2360 } 2361 } 2362 } 2363 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2364 g_free(bp); 2365 } 2366 kvm_arch_remove_all_hw_breakpoints(); 2367 2368 CPU_FOREACH(cpu) { 2369 kvm_update_guest_debug(cpu, 0); 2370 } 2371 } 2372 2373 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2374 2375 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2376 { 2377 return -EINVAL; 2378 } 2379 2380 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2381 target_ulong len, int type) 2382 { 2383 return -EINVAL; 2384 } 2385 2386 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2387 target_ulong len, int type) 2388 { 2389 return -EINVAL; 2390 } 2391 2392 void kvm_remove_all_breakpoints(CPUState *cpu) 2393 { 2394 } 2395 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2396 2397 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2398 { 2399 KVMState *s = kvm_state; 2400 struct kvm_signal_mask *sigmask; 2401 int r; 2402 2403 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2404 2405 sigmask->len = s->sigmask_len; 2406 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2407 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2408 g_free(sigmask); 2409 2410 return r; 2411 } 2412 2413 static void kvm_ipi_signal(int sig) 2414 { 2415 if (current_cpu) { 2416 assert(kvm_immediate_exit); 2417 kvm_cpu_kick(current_cpu); 2418 } 2419 } 2420 2421 void kvm_init_cpu_signals(CPUState *cpu) 2422 { 2423 int r; 2424 sigset_t set; 2425 struct sigaction sigact; 2426 2427 memset(&sigact, 0, sizeof(sigact)); 2428 sigact.sa_handler = kvm_ipi_signal; 2429 sigaction(SIG_IPI, &sigact, NULL); 2430 2431 pthread_sigmask(SIG_BLOCK, NULL, &set); 2432 #if defined KVM_HAVE_MCE_INJECTION 2433 sigdelset(&set, SIGBUS); 2434 pthread_sigmask(SIG_SETMASK, &set, NULL); 2435 #endif 2436 sigdelset(&set, SIG_IPI); 2437 if (kvm_immediate_exit) { 2438 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2439 } else { 2440 r = kvm_set_signal_mask(cpu, &set); 2441 } 2442 if (r) { 2443 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2444 exit(1); 2445 } 2446 } 2447 2448 /* Called asynchronously in VCPU thread. */ 2449 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2450 { 2451 #ifdef KVM_HAVE_MCE_INJECTION 2452 if (have_sigbus_pending) { 2453 return 1; 2454 } 2455 have_sigbus_pending = true; 2456 pending_sigbus_addr = addr; 2457 pending_sigbus_code = code; 2458 atomic_set(&cpu->exit_request, 1); 2459 return 0; 2460 #else 2461 return 1; 2462 #endif 2463 } 2464 2465 /* Called synchronously (via signalfd) in main thread. */ 2466 int kvm_on_sigbus(int code, void *addr) 2467 { 2468 #ifdef KVM_HAVE_MCE_INJECTION 2469 /* Action required MCE kills the process if SIGBUS is blocked. Because 2470 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2471 * we can only get action optional here. 2472 */ 2473 assert(code != BUS_MCEERR_AR); 2474 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2475 return 0; 2476 #else 2477 return 1; 2478 #endif 2479 } 2480 2481 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2482 { 2483 int ret; 2484 struct kvm_create_device create_dev; 2485 2486 create_dev.type = type; 2487 create_dev.fd = -1; 2488 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2489 2490 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2491 return -ENOTSUP; 2492 } 2493 2494 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2495 if (ret) { 2496 return ret; 2497 } 2498 2499 return test ? 0 : create_dev.fd; 2500 } 2501 2502 bool kvm_device_supported(int vmfd, uint64_t type) 2503 { 2504 struct kvm_create_device create_dev = { 2505 .type = type, 2506 .fd = -1, 2507 .flags = KVM_CREATE_DEVICE_TEST, 2508 }; 2509 2510 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2511 return false; 2512 } 2513 2514 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2515 } 2516 2517 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2518 { 2519 struct kvm_one_reg reg; 2520 int r; 2521 2522 reg.id = id; 2523 reg.addr = (uintptr_t) source; 2524 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2525 if (r) { 2526 trace_kvm_failed_reg_set(id, strerror(-r)); 2527 } 2528 return r; 2529 } 2530 2531 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2532 { 2533 struct kvm_one_reg reg; 2534 int r; 2535 2536 reg.id = id; 2537 reg.addr = (uintptr_t) target; 2538 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2539 if (r) { 2540 trace_kvm_failed_reg_get(id, strerror(-r)); 2541 } 2542 return r; 2543 } 2544 2545 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2546 { 2547 AccelClass *ac = ACCEL_CLASS(oc); 2548 ac->name = "KVM"; 2549 ac->init_machine = kvm_init; 2550 ac->allowed = &kvm_allowed; 2551 } 2552 2553 static const TypeInfo kvm_accel_type = { 2554 .name = TYPE_KVM_ACCEL, 2555 .parent = TYPE_ACCEL, 2556 .class_init = kvm_accel_class_init, 2557 .instance_size = sizeof(KVMState), 2558 }; 2559 2560 static void kvm_type_init(void) 2561 { 2562 type_register_static(&kvm_accel_type); 2563 } 2564 2565 type_init(kvm_type_init); 2566