1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "system/kvm_int.h" 32 #include "system/runstate.h" 33 #include "system/cpus.h" 34 #include "system/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/tswap.h" 37 #include "system/memory.h" 38 #include "system/ram_addr.h" 39 #include "qemu/event_notifier.h" 40 #include "qemu/main-loop.h" 41 #include "trace.h" 42 #include "hw/irq.h" 43 #include "qapi/visitor.h" 44 #include "qapi/qapi-types-common.h" 45 #include "qapi/qapi-visit-common.h" 46 #include "system/reset.h" 47 #include "qemu/guest-random.h" 48 #include "system/hw_accel.h" 49 #include "kvm-cpus.h" 50 #include "system/dirtylimit.h" 51 #include "qemu/range.h" 52 53 #include "hw/boards.h" 54 #include "system/stats.h" 55 56 /* This check must be after config-host.h is included */ 57 #ifdef CONFIG_EVENTFD 58 #include <sys/eventfd.h> 59 #endif 60 61 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) 62 # define KVM_HAVE_MCE_INJECTION 1 63 #endif 64 65 66 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 67 * need to use the real host PAGE_SIZE, as that's what KVM will use. 68 */ 69 #ifdef PAGE_SIZE 70 #undef PAGE_SIZE 71 #endif 72 #define PAGE_SIZE qemu_real_host_page_size() 73 74 #ifndef KVM_GUESTDBG_BLOCKIRQ 75 #define KVM_GUESTDBG_BLOCKIRQ 0 76 #endif 77 78 /* Default num of memslots to be allocated when VM starts */ 79 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 80 /* Default max allowed memslots if kernel reported nothing */ 81 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32 82 83 struct KVMParkedVcpu { 84 unsigned long vcpu_id; 85 int kvm_fd; 86 QLIST_ENTRY(KVMParkedVcpu) node; 87 }; 88 89 KVMState *kvm_state; 90 bool kvm_kernel_irqchip; 91 bool kvm_split_irqchip; 92 bool kvm_async_interrupts_allowed; 93 bool kvm_halt_in_kernel_allowed; 94 bool kvm_resamplefds_allowed; 95 bool kvm_msi_via_irqfd_allowed; 96 bool kvm_gsi_routing_allowed; 97 bool kvm_gsi_direct_mapping; 98 bool kvm_allowed; 99 bool kvm_readonly_mem_allowed; 100 bool kvm_vm_attributes_allowed; 101 bool kvm_msi_use_devid; 102 bool kvm_pre_fault_memory_supported; 103 static bool kvm_has_guest_debug; 104 static int kvm_sstep_flags; 105 static bool kvm_immediate_exit; 106 static uint64_t kvm_supported_memory_attributes; 107 static bool kvm_guest_memfd_supported; 108 static hwaddr kvm_max_slot_size = ~0; 109 110 static const KVMCapabilityInfo kvm_required_capabilites[] = { 111 KVM_CAP_INFO(USER_MEMORY), 112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 114 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 115 KVM_CAP_INFO(IOEVENTFD), 116 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 117 KVM_CAP_LAST_INFO 118 }; 119 120 static NotifierList kvm_irqchip_change_notifiers = 121 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 122 123 struct KVMResampleFd { 124 int gsi; 125 EventNotifier *resample_event; 126 QLIST_ENTRY(KVMResampleFd) node; 127 }; 128 typedef struct KVMResampleFd KVMResampleFd; 129 130 /* 131 * Only used with split irqchip where we need to do the resample fd 132 * kick for the kernel from userspace. 133 */ 134 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 135 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 136 137 static QemuMutex kml_slots_lock; 138 139 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 140 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 141 142 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 143 144 static inline void kvm_resample_fd_remove(int gsi) 145 { 146 KVMResampleFd *rfd; 147 148 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 149 if (rfd->gsi == gsi) { 150 QLIST_REMOVE(rfd, node); 151 g_free(rfd); 152 break; 153 } 154 } 155 } 156 157 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 158 { 159 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 160 161 rfd->gsi = gsi; 162 rfd->resample_event = event; 163 164 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 165 } 166 167 void kvm_resample_fd_notify(int gsi) 168 { 169 KVMResampleFd *rfd; 170 171 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 172 if (rfd->gsi == gsi) { 173 event_notifier_set(rfd->resample_event); 174 trace_kvm_resample_fd_notify(gsi); 175 return; 176 } 177 } 178 } 179 180 /** 181 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 182 * 183 * @kml: The KVMMemoryListener* to grow the slots[] array 184 * @nr_slots_new: The new size of slots[] array 185 * 186 * Returns: True if the array grows larger, false otherwise. 187 */ 188 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 189 { 190 unsigned int i, cur = kml->nr_slots_allocated; 191 KVMSlot *slots; 192 193 if (nr_slots_new > kvm_state->nr_slots_max) { 194 nr_slots_new = kvm_state->nr_slots_max; 195 } 196 197 if (cur >= nr_slots_new) { 198 /* Big enough, no need to grow, or we reached max */ 199 return false; 200 } 201 202 if (cur == 0) { 203 slots = g_new0(KVMSlot, nr_slots_new); 204 } else { 205 assert(kml->slots); 206 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 207 /* 208 * g_renew() doesn't initialize extended buffers, however kvm 209 * memslots require fields to be zero-initialized. E.g. pointers, 210 * memory_size field, etc. 211 */ 212 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 213 } 214 215 for (i = cur; i < nr_slots_new; i++) { 216 slots[i].slot = i; 217 } 218 219 kml->slots = slots; 220 kml->nr_slots_allocated = nr_slots_new; 221 trace_kvm_slots_grow(cur, nr_slots_new); 222 223 return true; 224 } 225 226 static bool kvm_slots_double(KVMMemoryListener *kml) 227 { 228 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 229 } 230 231 unsigned int kvm_get_max_memslots(void) 232 { 233 KVMState *s = KVM_STATE(current_accel()); 234 235 return s->nr_slots_max; 236 } 237 238 unsigned int kvm_get_free_memslots(void) 239 { 240 unsigned int used_slots = 0; 241 KVMState *s = kvm_state; 242 int i; 243 244 kvm_slots_lock(); 245 for (i = 0; i < s->nr_as; i++) { 246 if (!s->as[i].ml) { 247 continue; 248 } 249 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used); 250 } 251 kvm_slots_unlock(); 252 253 return s->nr_slots_max - used_slots; 254 } 255 256 /* Called with KVMMemoryListener.slots_lock held */ 257 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 258 { 259 unsigned int n; 260 int i; 261 262 for (i = 0; i < kml->nr_slots_allocated; i++) { 263 if (kml->slots[i].memory_size == 0) { 264 return &kml->slots[i]; 265 } 266 } 267 268 /* 269 * If no free slots, try to grow first by doubling. Cache the old size 270 * here to avoid another round of search: if the grow succeeded, it 271 * means slots[] now must have the existing "n" slots occupied, 272 * followed by one or more free slots starting from slots[n]. 273 */ 274 n = kml->nr_slots_allocated; 275 if (kvm_slots_double(kml)) { 276 return &kml->slots[n]; 277 } 278 279 return NULL; 280 } 281 282 /* Called with KVMMemoryListener.slots_lock held */ 283 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 284 { 285 KVMSlot *slot = kvm_get_free_slot(kml); 286 287 if (slot) { 288 return slot; 289 } 290 291 fprintf(stderr, "%s: no free slot available\n", __func__); 292 abort(); 293 } 294 295 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 296 hwaddr start_addr, 297 hwaddr size) 298 { 299 int i; 300 301 for (i = 0; i < kml->nr_slots_allocated; i++) { 302 KVMSlot *mem = &kml->slots[i]; 303 304 if (start_addr == mem->start_addr && size == mem->memory_size) { 305 return mem; 306 } 307 } 308 309 return NULL; 310 } 311 312 /* 313 * Calculate and align the start address and the size of the section. 314 * Return the size. If the size is 0, the aligned section is empty. 315 */ 316 static hwaddr kvm_align_section(MemoryRegionSection *section, 317 hwaddr *start) 318 { 319 hwaddr size = int128_get64(section->size); 320 hwaddr delta, aligned; 321 322 /* kvm works in page size chunks, but the function may be called 323 with sub-page size and unaligned start address. Pad the start 324 address to next and truncate size to previous page boundary. */ 325 aligned = ROUND_UP(section->offset_within_address_space, 326 qemu_real_host_page_size()); 327 delta = aligned - section->offset_within_address_space; 328 *start = aligned; 329 if (delta > size) { 330 return 0; 331 } 332 333 return (size - delta) & qemu_real_host_page_mask(); 334 } 335 336 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 337 hwaddr *phys_addr) 338 { 339 KVMMemoryListener *kml = &s->memory_listener; 340 int i, ret = 0; 341 342 kvm_slots_lock(); 343 for (i = 0; i < kml->nr_slots_allocated; i++) { 344 KVMSlot *mem = &kml->slots[i]; 345 346 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 347 *phys_addr = mem->start_addr + (ram - mem->ram); 348 ret = 1; 349 break; 350 } 351 } 352 kvm_slots_unlock(); 353 354 return ret; 355 } 356 357 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 358 { 359 KVMState *s = kvm_state; 360 struct kvm_userspace_memory_region2 mem; 361 int ret; 362 363 mem.slot = slot->slot | (kml->as_id << 16); 364 mem.guest_phys_addr = slot->start_addr; 365 mem.userspace_addr = (unsigned long)slot->ram; 366 mem.flags = slot->flags; 367 mem.guest_memfd = slot->guest_memfd; 368 mem.guest_memfd_offset = slot->guest_memfd_offset; 369 370 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 371 /* Set the slot size to 0 before setting the slot to the desired 372 * value. This is needed based on KVM commit 75d61fbc. */ 373 mem.memory_size = 0; 374 375 if (kvm_guest_memfd_supported) { 376 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 377 } else { 378 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 379 } 380 if (ret < 0) { 381 goto err; 382 } 383 } 384 mem.memory_size = slot->memory_size; 385 if (kvm_guest_memfd_supported) { 386 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 387 } else { 388 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 389 } 390 slot->old_flags = mem.flags; 391 err: 392 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 393 mem.guest_phys_addr, mem.memory_size, 394 mem.userspace_addr, mem.guest_memfd, 395 mem.guest_memfd_offset, ret); 396 if (ret < 0) { 397 if (kvm_guest_memfd_supported) { 398 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 399 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 400 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 401 " guest_memfd_offset=0x%" PRIx64 ": %s", 402 __func__, mem.slot, slot->start_addr, 403 (uint64_t)mem.memory_size, mem.flags, 404 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 405 strerror(errno)); 406 } else { 407 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 408 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 409 __func__, mem.slot, slot->start_addr, 410 (uint64_t)mem.memory_size, strerror(errno)); 411 } 412 } 413 return ret; 414 } 415 416 void kvm_park_vcpu(CPUState *cpu) 417 { 418 struct KVMParkedVcpu *vcpu; 419 420 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 421 422 vcpu = g_malloc0(sizeof(*vcpu)); 423 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 424 vcpu->kvm_fd = cpu->kvm_fd; 425 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 426 } 427 428 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 429 { 430 struct KVMParkedVcpu *cpu; 431 int kvm_fd = -ENOENT; 432 433 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 434 if (cpu->vcpu_id == vcpu_id) { 435 QLIST_REMOVE(cpu, node); 436 kvm_fd = cpu->kvm_fd; 437 g_free(cpu); 438 break; 439 } 440 } 441 442 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 443 444 return kvm_fd; 445 } 446 447 static void kvm_reset_parked_vcpus(KVMState *s) 448 { 449 struct KVMParkedVcpu *cpu; 450 451 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 452 kvm_arch_reset_parked_vcpu(cpu->vcpu_id, cpu->kvm_fd); 453 } 454 } 455 456 /** 457 * kvm_create_vcpu - Gets a parked KVM vCPU or creates a KVM vCPU 458 * @cpu: QOM CPUState object for which KVM vCPU has to be fetched/created. 459 * 460 * @returns: 0 when success, errno (<0) when failed. 461 */ 462 static int kvm_create_vcpu(CPUState *cpu) 463 { 464 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 465 KVMState *s = kvm_state; 466 int kvm_fd; 467 468 /* check if the KVM vCPU already exist but is parked */ 469 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 470 if (kvm_fd < 0) { 471 /* vCPU not parked: create a new KVM vCPU */ 472 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 473 if (kvm_fd < 0) { 474 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 475 return kvm_fd; 476 } 477 } 478 479 cpu->kvm_fd = kvm_fd; 480 cpu->kvm_state = s; 481 if (!s->guest_state_protected) { 482 cpu->vcpu_dirty = true; 483 } 484 cpu->dirty_pages = 0; 485 cpu->throttle_us_per_full = 0; 486 487 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 488 489 return 0; 490 } 491 492 int kvm_create_and_park_vcpu(CPUState *cpu) 493 { 494 int ret = 0; 495 496 ret = kvm_create_vcpu(cpu); 497 if (!ret) { 498 kvm_park_vcpu(cpu); 499 } 500 501 return ret; 502 } 503 504 static int do_kvm_destroy_vcpu(CPUState *cpu) 505 { 506 KVMState *s = kvm_state; 507 int mmap_size; 508 int ret = 0; 509 510 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 511 512 ret = kvm_arch_destroy_vcpu(cpu); 513 if (ret < 0) { 514 goto err; 515 } 516 517 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 518 if (mmap_size < 0) { 519 ret = mmap_size; 520 trace_kvm_failed_get_vcpu_mmap_size(); 521 goto err; 522 } 523 524 ret = munmap(cpu->kvm_run, mmap_size); 525 if (ret < 0) { 526 goto err; 527 } 528 529 if (cpu->kvm_dirty_gfns) { 530 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 531 if (ret < 0) { 532 goto err; 533 } 534 } 535 536 kvm_park_vcpu(cpu); 537 err: 538 return ret; 539 } 540 541 void kvm_destroy_vcpu(CPUState *cpu) 542 { 543 if (do_kvm_destroy_vcpu(cpu) < 0) { 544 error_report("kvm_destroy_vcpu failed"); 545 exit(EXIT_FAILURE); 546 } 547 } 548 549 int kvm_init_vcpu(CPUState *cpu, Error **errp) 550 { 551 KVMState *s = kvm_state; 552 int mmap_size; 553 int ret; 554 555 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 556 557 ret = kvm_arch_pre_create_vcpu(cpu, errp); 558 if (ret < 0) { 559 goto err; 560 } 561 562 ret = kvm_create_vcpu(cpu); 563 if (ret < 0) { 564 error_setg_errno(errp, -ret, 565 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 566 kvm_arch_vcpu_id(cpu)); 567 goto err; 568 } 569 570 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 571 if (mmap_size < 0) { 572 ret = mmap_size; 573 error_setg_errno(errp, -mmap_size, 574 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 575 goto err; 576 } 577 578 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 579 cpu->kvm_fd, 0); 580 if (cpu->kvm_run == MAP_FAILED) { 581 ret = -errno; 582 error_setg_errno(errp, ret, 583 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 584 kvm_arch_vcpu_id(cpu)); 585 goto err; 586 } 587 588 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 589 s->coalesced_mmio_ring = 590 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 591 } 592 593 if (s->kvm_dirty_ring_size) { 594 /* Use MAP_SHARED to share pages with the kernel */ 595 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 596 PROT_READ | PROT_WRITE, MAP_SHARED, 597 cpu->kvm_fd, 598 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 599 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 600 ret = -errno; 601 goto err; 602 } 603 } 604 605 ret = kvm_arch_init_vcpu(cpu); 606 if (ret < 0) { 607 error_setg_errno(errp, -ret, 608 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 609 kvm_arch_vcpu_id(cpu)); 610 } 611 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 612 613 err: 614 return ret; 615 } 616 617 /* 618 * dirty pages logging control 619 */ 620 621 static int kvm_mem_flags(MemoryRegion *mr) 622 { 623 bool readonly = mr->readonly || memory_region_is_romd(mr); 624 int flags = 0; 625 626 if (memory_region_get_dirty_log_mask(mr) != 0) { 627 flags |= KVM_MEM_LOG_DIRTY_PAGES; 628 } 629 if (readonly && kvm_readonly_mem_allowed) { 630 flags |= KVM_MEM_READONLY; 631 } 632 if (memory_region_has_guest_memfd(mr)) { 633 assert(kvm_guest_memfd_supported); 634 flags |= KVM_MEM_GUEST_MEMFD; 635 } 636 return flags; 637 } 638 639 /* Called with KVMMemoryListener.slots_lock held */ 640 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 641 MemoryRegion *mr) 642 { 643 mem->flags = kvm_mem_flags(mr); 644 645 /* If nothing changed effectively, no need to issue ioctl */ 646 if (mem->flags == mem->old_flags) { 647 return 0; 648 } 649 650 kvm_slot_init_dirty_bitmap(mem); 651 return kvm_set_user_memory_region(kml, mem, false); 652 } 653 654 static int kvm_section_update_flags(KVMMemoryListener *kml, 655 MemoryRegionSection *section) 656 { 657 hwaddr start_addr, size, slot_size; 658 KVMSlot *mem; 659 int ret = 0; 660 661 size = kvm_align_section(section, &start_addr); 662 if (!size) { 663 return 0; 664 } 665 666 kvm_slots_lock(); 667 668 while (size && !ret) { 669 slot_size = MIN(kvm_max_slot_size, size); 670 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 671 if (!mem) { 672 /* We don't have a slot if we want to trap every access. */ 673 goto out; 674 } 675 676 ret = kvm_slot_update_flags(kml, mem, section->mr); 677 start_addr += slot_size; 678 size -= slot_size; 679 } 680 681 out: 682 kvm_slots_unlock(); 683 return ret; 684 } 685 686 static void kvm_log_start(MemoryListener *listener, 687 MemoryRegionSection *section, 688 int old, int new) 689 { 690 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 691 int r; 692 693 if (old != 0) { 694 return; 695 } 696 697 r = kvm_section_update_flags(kml, section); 698 if (r < 0) { 699 abort(); 700 } 701 } 702 703 static void kvm_log_stop(MemoryListener *listener, 704 MemoryRegionSection *section, 705 int old, int new) 706 { 707 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 708 int r; 709 710 if (new != 0) { 711 return; 712 } 713 714 r = kvm_section_update_flags(kml, section); 715 if (r < 0) { 716 abort(); 717 } 718 } 719 720 /* get kvm's dirty pages bitmap and update qemu's */ 721 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 722 { 723 ram_addr_t start = slot->ram_start_offset; 724 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 725 726 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 727 } 728 729 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 730 { 731 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 732 } 733 734 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 735 736 /* Allocate the dirty bitmap for a slot */ 737 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 738 { 739 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 740 return; 741 } 742 743 /* 744 * XXX bad kernel interface alert 745 * For dirty bitmap, kernel allocates array of size aligned to 746 * bits-per-long. But for case when the kernel is 64bits and 747 * the userspace is 32bits, userspace can't align to the same 748 * bits-per-long, since sizeof(long) is different between kernel 749 * and user space. This way, userspace will provide buffer which 750 * may be 4 bytes less than the kernel will use, resulting in 751 * userspace memory corruption (which is not detectable by valgrind 752 * too, in most cases). 753 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 754 * a hope that sizeof(long) won't become >8 any time soon. 755 * 756 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 757 * And mem->memory_size is aligned to it (otherwise this mem can't 758 * be registered to KVM). 759 */ 760 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 761 /*HOST_LONG_BITS*/ 64) / 8; 762 mem->dirty_bmap = g_malloc0(bitmap_size); 763 mem->dirty_bmap_size = bitmap_size; 764 } 765 766 /* 767 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 768 * succeeded, false otherwise 769 */ 770 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 771 { 772 struct kvm_dirty_log d = {}; 773 int ret; 774 775 d.dirty_bitmap = slot->dirty_bmap; 776 d.slot = slot->slot | (slot->as_id << 16); 777 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 778 779 if (ret == -ENOENT) { 780 /* kernel does not have dirty bitmap in this slot */ 781 ret = 0; 782 } 783 if (ret) { 784 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 785 __func__, ret); 786 } 787 return ret == 0; 788 } 789 790 /* Should be with all slots_lock held for the address spaces. */ 791 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 792 uint32_t slot_id, uint64_t offset) 793 { 794 KVMMemoryListener *kml; 795 KVMSlot *mem; 796 797 if (as_id >= s->nr_as) { 798 return; 799 } 800 801 kml = s->as[as_id].ml; 802 mem = &kml->slots[slot_id]; 803 804 if (!mem->memory_size || offset >= 805 (mem->memory_size / qemu_real_host_page_size())) { 806 return; 807 } 808 809 set_bit(offset, mem->dirty_bmap); 810 } 811 812 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 813 { 814 /* 815 * Read the flags before the value. Pairs with barrier in 816 * KVM's kvm_dirty_ring_push() function. 817 */ 818 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 819 } 820 821 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 822 { 823 /* 824 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 825 * sees the full content of the ring: 826 * 827 * CPU0 CPU1 CPU2 828 * ------------------------------------------------------------------------------ 829 * fill gfn0 830 * store-rel flags for gfn0 831 * load-acq flags for gfn0 832 * store-rel RESET for gfn0 833 * ioctl(RESET_RINGS) 834 * load-acq flags for gfn0 835 * check if flags have RESET 836 * 837 * The synchronization goes from CPU2 to CPU0 to CPU1. 838 */ 839 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 840 } 841 842 /* 843 * Should be with all slots_lock held for the address spaces. It returns the 844 * dirty page we've collected on this dirty ring. 845 */ 846 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 847 { 848 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 849 uint32_t ring_size = s->kvm_dirty_ring_size; 850 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 851 852 /* 853 * It's possible that we race with vcpu creation code where the vcpu is 854 * put onto the vcpus list but not yet initialized the dirty ring 855 * structures. If so, skip it. 856 */ 857 if (!cpu->created) { 858 return 0; 859 } 860 861 assert(dirty_gfns && ring_size); 862 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 863 864 while (true) { 865 cur = &dirty_gfns[fetch % ring_size]; 866 if (!dirty_gfn_is_dirtied(cur)) { 867 break; 868 } 869 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 870 cur->offset); 871 dirty_gfn_set_collected(cur); 872 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 873 fetch++; 874 count++; 875 } 876 cpu->kvm_fetch_index = fetch; 877 cpu->dirty_pages += count; 878 879 return count; 880 } 881 882 /* Must be with slots_lock held */ 883 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 884 { 885 int ret; 886 uint64_t total = 0; 887 int64_t stamp; 888 889 stamp = get_clock(); 890 891 if (cpu) { 892 total = kvm_dirty_ring_reap_one(s, cpu); 893 } else { 894 CPU_FOREACH(cpu) { 895 total += kvm_dirty_ring_reap_one(s, cpu); 896 } 897 } 898 899 if (total) { 900 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 901 assert(ret == total); 902 } 903 904 stamp = get_clock() - stamp; 905 906 if (total) { 907 trace_kvm_dirty_ring_reap(total, stamp / 1000); 908 } 909 910 return total; 911 } 912 913 /* 914 * Currently for simplicity, we must hold BQL before calling this. We can 915 * consider to drop the BQL if we're clear with all the race conditions. 916 */ 917 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 918 { 919 uint64_t total; 920 921 /* 922 * We need to lock all kvm slots for all address spaces here, 923 * because: 924 * 925 * (1) We need to mark dirty for dirty bitmaps in multiple slots 926 * and for tons of pages, so it's better to take the lock here 927 * once rather than once per page. And more importantly, 928 * 929 * (2) We must _NOT_ publish dirty bits to the other threads 930 * (e.g., the migration thread) via the kvm memory slot dirty 931 * bitmaps before correctly re-protect those dirtied pages. 932 * Otherwise we can have potential risk of data corruption if 933 * the page data is read in the other thread before we do 934 * reset below. 935 */ 936 kvm_slots_lock(); 937 total = kvm_dirty_ring_reap_locked(s, cpu); 938 kvm_slots_unlock(); 939 940 return total; 941 } 942 943 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 944 { 945 /* No need to do anything */ 946 } 947 948 /* 949 * Kick all vcpus out in a synchronized way. When returned, we 950 * guarantee that every vcpu has been kicked and at least returned to 951 * userspace once. 952 */ 953 static void kvm_cpu_synchronize_kick_all(void) 954 { 955 CPUState *cpu; 956 957 CPU_FOREACH(cpu) { 958 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 959 } 960 } 961 962 /* 963 * Flush all the existing dirty pages to the KVM slot buffers. When 964 * this call returns, we guarantee that all the touched dirty pages 965 * before calling this function have been put into the per-kvmslot 966 * dirty bitmap. 967 * 968 * This function must be called with BQL held. 969 */ 970 static void kvm_dirty_ring_flush(void) 971 { 972 trace_kvm_dirty_ring_flush(0); 973 /* 974 * The function needs to be serialized. Since this function 975 * should always be with BQL held, serialization is guaranteed. 976 * However, let's be sure of it. 977 */ 978 assert(bql_locked()); 979 /* 980 * First make sure to flush the hardware buffers by kicking all 981 * vcpus out in a synchronous way. 982 */ 983 kvm_cpu_synchronize_kick_all(); 984 kvm_dirty_ring_reap(kvm_state, NULL); 985 trace_kvm_dirty_ring_flush(1); 986 } 987 988 /** 989 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 990 * 991 * This function will first try to fetch dirty bitmap from the kernel, 992 * and then updates qemu's dirty bitmap. 993 * 994 * NOTE: caller must be with kml->slots_lock held. 995 * 996 * @kml: the KVM memory listener object 997 * @section: the memory section to sync the dirty bitmap with 998 */ 999 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 1000 MemoryRegionSection *section) 1001 { 1002 KVMState *s = kvm_state; 1003 KVMSlot *mem; 1004 hwaddr start_addr, size; 1005 hwaddr slot_size; 1006 1007 size = kvm_align_section(section, &start_addr); 1008 while (size) { 1009 slot_size = MIN(kvm_max_slot_size, size); 1010 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1011 if (!mem) { 1012 /* We don't have a slot if we want to trap every access. */ 1013 return; 1014 } 1015 if (kvm_slot_get_dirty_log(s, mem)) { 1016 kvm_slot_sync_dirty_pages(mem); 1017 } 1018 start_addr += slot_size; 1019 size -= slot_size; 1020 } 1021 } 1022 1023 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 1024 #define KVM_CLEAR_LOG_SHIFT 6 1025 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 1026 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 1027 1028 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 1029 uint64_t size) 1030 { 1031 KVMState *s = kvm_state; 1032 uint64_t end, bmap_start, start_delta, bmap_npages; 1033 struct kvm_clear_dirty_log d; 1034 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1035 int ret; 1036 1037 /* 1038 * We need to extend either the start or the size or both to 1039 * satisfy the KVM interface requirement. Firstly, do the start 1040 * page alignment on 64 host pages 1041 */ 1042 bmap_start = start & KVM_CLEAR_LOG_MASK; 1043 start_delta = start - bmap_start; 1044 bmap_start /= psize; 1045 1046 /* 1047 * The kernel interface has restriction on the size too, that either: 1048 * 1049 * (1) the size is 64 host pages aligned (just like the start), or 1050 * (2) the size fills up until the end of the KVM memslot. 1051 */ 1052 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1053 << KVM_CLEAR_LOG_SHIFT; 1054 end = mem->memory_size / psize; 1055 if (bmap_npages > end - bmap_start) { 1056 bmap_npages = end - bmap_start; 1057 } 1058 start_delta /= psize; 1059 1060 /* 1061 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1062 * that we won't clear any unknown dirty bits otherwise we might 1063 * accidentally clear some set bits which are not yet synced from 1064 * the kernel into QEMU's bitmap, then we'll lose track of the 1065 * guest modifications upon those pages (which can directly lead 1066 * to guest data loss or panic after migration). 1067 * 1068 * Layout of the KVMSlot.dirty_bmap: 1069 * 1070 * |<-------- bmap_npages -----------..>| 1071 * [1] 1072 * start_delta size 1073 * |----------------|-------------|------------------|------------| 1074 * ^ ^ ^ ^ 1075 * | | | | 1076 * start bmap_start (start) end 1077 * of memslot of memslot 1078 * 1079 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1080 */ 1081 1082 assert(bmap_start % BITS_PER_LONG == 0); 1083 /* We should never do log_clear before log_sync */ 1084 assert(mem->dirty_bmap); 1085 if (start_delta || bmap_npages - size / psize) { 1086 /* Slow path - we need to manipulate a temp bitmap */ 1087 bmap_clear = bitmap_new(bmap_npages); 1088 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1089 bmap_start, start_delta + size / psize); 1090 /* 1091 * We need to fill the holes at start because that was not 1092 * specified by the caller and we extended the bitmap only for 1093 * 64 pages alignment 1094 */ 1095 bitmap_clear(bmap_clear, 0, start_delta); 1096 d.dirty_bitmap = bmap_clear; 1097 } else { 1098 /* 1099 * Fast path - both start and size align well with BITS_PER_LONG 1100 * (or the end of memory slot) 1101 */ 1102 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1103 } 1104 1105 d.first_page = bmap_start; 1106 /* It should never overflow. If it happens, say something */ 1107 assert(bmap_npages <= UINT32_MAX); 1108 d.num_pages = bmap_npages; 1109 d.slot = mem->slot | (as_id << 16); 1110 1111 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1112 if (ret < 0 && ret != -ENOENT) { 1113 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1114 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1115 __func__, d.slot, (uint64_t)d.first_page, 1116 (uint32_t)d.num_pages, ret); 1117 } else { 1118 ret = 0; 1119 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1120 } 1121 1122 /* 1123 * After we have updated the remote dirty bitmap, we update the 1124 * cached bitmap as well for the memslot, then if another user 1125 * clears the same region we know we shouldn't clear it again on 1126 * the remote otherwise it's data loss as well. 1127 */ 1128 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1129 size / psize); 1130 /* This handles the NULL case well */ 1131 g_free(bmap_clear); 1132 return ret; 1133 } 1134 1135 1136 /** 1137 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1138 * 1139 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1140 * protection in the host kernel because in that case this operation 1141 * will be done within log_sync(). 1142 * 1143 * @kml: the kvm memory listener 1144 * @section: the memory range to clear dirty bitmap 1145 */ 1146 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1147 MemoryRegionSection *section) 1148 { 1149 KVMState *s = kvm_state; 1150 uint64_t start, size, offset, count; 1151 KVMSlot *mem; 1152 int ret = 0, i; 1153 1154 if (!s->manual_dirty_log_protect) { 1155 /* No need to do explicit clear */ 1156 return ret; 1157 } 1158 1159 start = section->offset_within_address_space; 1160 size = int128_get64(section->size); 1161 1162 if (!size) { 1163 /* Nothing more we can do... */ 1164 return ret; 1165 } 1166 1167 kvm_slots_lock(); 1168 1169 for (i = 0; i < kml->nr_slots_allocated; i++) { 1170 mem = &kml->slots[i]; 1171 /* Discard slots that are empty or do not overlap the section */ 1172 if (!mem->memory_size || 1173 mem->start_addr > start + size - 1 || 1174 start > mem->start_addr + mem->memory_size - 1) { 1175 continue; 1176 } 1177 1178 if (start >= mem->start_addr) { 1179 /* The slot starts before section or is aligned to it. */ 1180 offset = start - mem->start_addr; 1181 count = MIN(mem->memory_size - offset, size); 1182 } else { 1183 /* The slot starts after section. */ 1184 offset = 0; 1185 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1186 } 1187 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1188 if (ret < 0) { 1189 break; 1190 } 1191 } 1192 1193 kvm_slots_unlock(); 1194 1195 return ret; 1196 } 1197 1198 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1199 MemoryRegionSection *secion, 1200 hwaddr start, hwaddr size) 1201 { 1202 KVMState *s = kvm_state; 1203 1204 if (s->coalesced_mmio) { 1205 struct kvm_coalesced_mmio_zone zone; 1206 1207 zone.addr = start; 1208 zone.size = size; 1209 zone.pad = 0; 1210 1211 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1212 } 1213 } 1214 1215 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1216 MemoryRegionSection *secion, 1217 hwaddr start, hwaddr size) 1218 { 1219 KVMState *s = kvm_state; 1220 1221 if (s->coalesced_mmio) { 1222 struct kvm_coalesced_mmio_zone zone; 1223 1224 zone.addr = start; 1225 zone.size = size; 1226 zone.pad = 0; 1227 1228 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1229 } 1230 } 1231 1232 static void kvm_coalesce_pio_add(MemoryListener *listener, 1233 MemoryRegionSection *section, 1234 hwaddr start, hwaddr size) 1235 { 1236 KVMState *s = kvm_state; 1237 1238 if (s->coalesced_pio) { 1239 struct kvm_coalesced_mmio_zone zone; 1240 1241 zone.addr = start; 1242 zone.size = size; 1243 zone.pio = 1; 1244 1245 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1246 } 1247 } 1248 1249 static void kvm_coalesce_pio_del(MemoryListener *listener, 1250 MemoryRegionSection *section, 1251 hwaddr start, hwaddr size) 1252 { 1253 KVMState *s = kvm_state; 1254 1255 if (s->coalesced_pio) { 1256 struct kvm_coalesced_mmio_zone zone; 1257 1258 zone.addr = start; 1259 zone.size = size; 1260 zone.pio = 1; 1261 1262 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1263 } 1264 } 1265 1266 int kvm_check_extension(KVMState *s, unsigned int extension) 1267 { 1268 int ret; 1269 1270 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1271 if (ret < 0) { 1272 ret = 0; 1273 } 1274 1275 return ret; 1276 } 1277 1278 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1279 { 1280 int ret; 1281 1282 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1283 if (ret < 0) { 1284 /* VM wide version not implemented, use global one instead */ 1285 ret = kvm_check_extension(s, extension); 1286 } 1287 1288 return ret; 1289 } 1290 1291 /* 1292 * We track the poisoned pages to be able to: 1293 * - replace them on VM reset 1294 * - block a migration for a VM with a poisoned page 1295 */ 1296 typedef struct HWPoisonPage { 1297 ram_addr_t ram_addr; 1298 QLIST_ENTRY(HWPoisonPage) list; 1299 } HWPoisonPage; 1300 1301 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1302 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1303 1304 static void kvm_unpoison_all(void *param) 1305 { 1306 HWPoisonPage *page, *next_page; 1307 1308 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1309 QLIST_REMOVE(page, list); 1310 qemu_ram_remap(page->ram_addr); 1311 g_free(page); 1312 } 1313 } 1314 1315 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1316 { 1317 HWPoisonPage *page; 1318 1319 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1320 if (page->ram_addr == ram_addr) { 1321 return; 1322 } 1323 } 1324 page = g_new(HWPoisonPage, 1); 1325 page->ram_addr = ram_addr; 1326 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1327 } 1328 1329 bool kvm_hwpoisoned_mem(void) 1330 { 1331 return !QLIST_EMPTY(&hwpoison_page_list); 1332 } 1333 1334 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1335 { 1336 if (target_needs_bswap()) { 1337 /* 1338 * The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1339 * endianness, but the memory core hands them in target endianness. 1340 * For example, PPC is always treated as big-endian even if running 1341 * on KVM and on PPC64LE. Correct here, swapping back. 1342 */ 1343 switch (size) { 1344 case 2: 1345 val = bswap16(val); 1346 break; 1347 case 4: 1348 val = bswap32(val); 1349 break; 1350 } 1351 } 1352 return val; 1353 } 1354 1355 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1356 bool assign, uint32_t size, bool datamatch) 1357 { 1358 int ret; 1359 struct kvm_ioeventfd iofd = { 1360 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1361 .addr = addr, 1362 .len = size, 1363 .flags = 0, 1364 .fd = fd, 1365 }; 1366 1367 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1368 datamatch); 1369 if (!kvm_enabled()) { 1370 return -ENOSYS; 1371 } 1372 1373 if (datamatch) { 1374 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1375 } 1376 if (!assign) { 1377 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1378 } 1379 1380 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1381 1382 if (ret < 0) { 1383 return -errno; 1384 } 1385 1386 return 0; 1387 } 1388 1389 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1390 bool assign, uint32_t size, bool datamatch) 1391 { 1392 struct kvm_ioeventfd kick = { 1393 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1394 .addr = addr, 1395 .flags = KVM_IOEVENTFD_FLAG_PIO, 1396 .len = size, 1397 .fd = fd, 1398 }; 1399 int r; 1400 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1401 if (!kvm_enabled()) { 1402 return -ENOSYS; 1403 } 1404 if (datamatch) { 1405 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1406 } 1407 if (!assign) { 1408 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1409 } 1410 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1411 if (r < 0) { 1412 return r; 1413 } 1414 return 0; 1415 } 1416 1417 1418 static const KVMCapabilityInfo * 1419 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1420 { 1421 while (list->name) { 1422 if (!kvm_check_extension(s, list->value)) { 1423 return list; 1424 } 1425 list++; 1426 } 1427 return NULL; 1428 } 1429 1430 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1431 { 1432 g_assert( 1433 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1434 ); 1435 kvm_max_slot_size = max_slot_size; 1436 } 1437 1438 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1439 { 1440 struct kvm_memory_attributes attrs; 1441 int r; 1442 1443 assert((attr & kvm_supported_memory_attributes) == attr); 1444 attrs.attributes = attr; 1445 attrs.address = start; 1446 attrs.size = size; 1447 attrs.flags = 0; 1448 1449 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1450 if (r) { 1451 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1452 "with attr 0x%" PRIx64 " error '%s'", 1453 start, size, attr, strerror(errno)); 1454 } 1455 return r; 1456 } 1457 1458 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1459 { 1460 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1461 } 1462 1463 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1464 { 1465 return kvm_set_memory_attributes(start, size, 0); 1466 } 1467 1468 /* Called with KVMMemoryListener.slots_lock held */ 1469 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1470 MemoryRegionSection *section, bool add) 1471 { 1472 KVMSlot *mem; 1473 int err; 1474 MemoryRegion *mr = section->mr; 1475 bool writable = !mr->readonly && !mr->rom_device; 1476 hwaddr start_addr, size, slot_size, mr_offset; 1477 ram_addr_t ram_start_offset; 1478 void *ram; 1479 1480 if (!memory_region_is_ram(mr)) { 1481 if (writable || !kvm_readonly_mem_allowed) { 1482 return; 1483 } else if (!mr->romd_mode) { 1484 /* If the memory device is not in romd_mode, then we actually want 1485 * to remove the kvm memory slot so all accesses will trap. */ 1486 add = false; 1487 } 1488 } 1489 1490 size = kvm_align_section(section, &start_addr); 1491 if (!size) { 1492 return; 1493 } 1494 1495 /* The offset of the kvmslot within the memory region */ 1496 mr_offset = section->offset_within_region + start_addr - 1497 section->offset_within_address_space; 1498 1499 /* use aligned delta to align the ram address and offset */ 1500 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1501 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1502 1503 if (!add) { 1504 do { 1505 slot_size = MIN(kvm_max_slot_size, size); 1506 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1507 if (!mem) { 1508 return; 1509 } 1510 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1511 /* 1512 * NOTE: We should be aware of the fact that here we're only 1513 * doing a best effort to sync dirty bits. No matter whether 1514 * we're using dirty log or dirty ring, we ignored two facts: 1515 * 1516 * (1) dirty bits can reside in hardware buffers (PML) 1517 * 1518 * (2) after we collected dirty bits here, pages can be dirtied 1519 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1520 * remove the slot. 1521 * 1522 * Not easy. Let's cross the fingers until it's fixed. 1523 */ 1524 if (kvm_state->kvm_dirty_ring_size) { 1525 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1526 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1527 kvm_slot_sync_dirty_pages(mem); 1528 kvm_slot_get_dirty_log(kvm_state, mem); 1529 } 1530 } else { 1531 kvm_slot_get_dirty_log(kvm_state, mem); 1532 } 1533 kvm_slot_sync_dirty_pages(mem); 1534 } 1535 1536 /* unregister the slot */ 1537 g_free(mem->dirty_bmap); 1538 mem->dirty_bmap = NULL; 1539 mem->memory_size = 0; 1540 mem->flags = 0; 1541 err = kvm_set_user_memory_region(kml, mem, false); 1542 if (err) { 1543 fprintf(stderr, "%s: error unregistering slot: %s\n", 1544 __func__, strerror(-err)); 1545 abort(); 1546 } 1547 start_addr += slot_size; 1548 size -= slot_size; 1549 kml->nr_slots_used--; 1550 } while (size); 1551 return; 1552 } 1553 1554 /* register the new slot */ 1555 do { 1556 slot_size = MIN(kvm_max_slot_size, size); 1557 mem = kvm_alloc_slot(kml); 1558 mem->as_id = kml->as_id; 1559 mem->memory_size = slot_size; 1560 mem->start_addr = start_addr; 1561 mem->ram_start_offset = ram_start_offset; 1562 mem->ram = ram; 1563 mem->flags = kvm_mem_flags(mr); 1564 mem->guest_memfd = mr->ram_block->guest_memfd; 1565 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1566 1567 kvm_slot_init_dirty_bitmap(mem); 1568 err = kvm_set_user_memory_region(kml, mem, true); 1569 if (err) { 1570 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1571 strerror(-err)); 1572 abort(); 1573 } 1574 1575 if (memory_region_has_guest_memfd(mr)) { 1576 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1577 if (err) { 1578 error_report("%s: failed to set memory attribute private: %s", 1579 __func__, strerror(-err)); 1580 exit(1); 1581 } 1582 } 1583 1584 start_addr += slot_size; 1585 ram_start_offset += slot_size; 1586 ram += slot_size; 1587 size -= slot_size; 1588 kml->nr_slots_used++; 1589 } while (size); 1590 } 1591 1592 static void *kvm_dirty_ring_reaper_thread(void *data) 1593 { 1594 KVMState *s = data; 1595 struct KVMDirtyRingReaper *r = &s->reaper; 1596 1597 rcu_register_thread(); 1598 1599 trace_kvm_dirty_ring_reaper("init"); 1600 1601 while (true) { 1602 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1603 trace_kvm_dirty_ring_reaper("wait"); 1604 /* 1605 * TODO: provide a smarter timeout rather than a constant? 1606 */ 1607 sleep(1); 1608 1609 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1610 if (dirtylimit_in_service()) { 1611 continue; 1612 } 1613 1614 trace_kvm_dirty_ring_reaper("wakeup"); 1615 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1616 1617 bql_lock(); 1618 kvm_dirty_ring_reap(s, NULL); 1619 bql_unlock(); 1620 1621 r->reaper_iteration++; 1622 } 1623 1624 g_assert_not_reached(); 1625 } 1626 1627 static void kvm_dirty_ring_reaper_init(KVMState *s) 1628 { 1629 struct KVMDirtyRingReaper *r = &s->reaper; 1630 1631 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1632 kvm_dirty_ring_reaper_thread, 1633 s, QEMU_THREAD_JOINABLE); 1634 } 1635 1636 static int kvm_dirty_ring_init(KVMState *s) 1637 { 1638 uint32_t ring_size = s->kvm_dirty_ring_size; 1639 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1640 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1641 int ret; 1642 1643 s->kvm_dirty_ring_size = 0; 1644 s->kvm_dirty_ring_bytes = 0; 1645 1646 /* Bail if the dirty ring size isn't specified */ 1647 if (!ring_size) { 1648 return 0; 1649 } 1650 1651 /* 1652 * Read the max supported pages. Fall back to dirty logging mode 1653 * if the dirty ring isn't supported. 1654 */ 1655 ret = kvm_vm_check_extension(s, capability); 1656 if (ret <= 0) { 1657 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1658 ret = kvm_vm_check_extension(s, capability); 1659 } 1660 1661 if (ret <= 0) { 1662 warn_report("KVM dirty ring not available, using bitmap method"); 1663 return 0; 1664 } 1665 1666 if (ring_bytes > ret) { 1667 error_report("KVM dirty ring size %" PRIu32 " too big " 1668 "(maximum is %ld). Please use a smaller value.", 1669 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1670 return -EINVAL; 1671 } 1672 1673 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1674 if (ret) { 1675 error_report("Enabling of KVM dirty ring failed: %s. " 1676 "Suggested minimum value is 1024.", strerror(-ret)); 1677 return -EIO; 1678 } 1679 1680 /* Enable the backup bitmap if it is supported */ 1681 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1682 if (ret > 0) { 1683 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1684 if (ret) { 1685 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1686 "%s. ", strerror(-ret)); 1687 return -EIO; 1688 } 1689 1690 s->kvm_dirty_ring_with_bitmap = true; 1691 } 1692 1693 s->kvm_dirty_ring_size = ring_size; 1694 s->kvm_dirty_ring_bytes = ring_bytes; 1695 1696 return 0; 1697 } 1698 1699 static void kvm_region_add(MemoryListener *listener, 1700 MemoryRegionSection *section) 1701 { 1702 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1703 KVMMemoryUpdate *update; 1704 1705 update = g_new0(KVMMemoryUpdate, 1); 1706 update->section = *section; 1707 1708 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1709 } 1710 1711 static void kvm_region_del(MemoryListener *listener, 1712 MemoryRegionSection *section) 1713 { 1714 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1715 KVMMemoryUpdate *update; 1716 1717 update = g_new0(KVMMemoryUpdate, 1); 1718 update->section = *section; 1719 1720 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1721 } 1722 1723 static void kvm_region_commit(MemoryListener *listener) 1724 { 1725 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1726 listener); 1727 KVMMemoryUpdate *u1, *u2; 1728 bool need_inhibit = false; 1729 1730 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1731 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1732 return; 1733 } 1734 1735 /* 1736 * We have to be careful when regions to add overlap with ranges to remove. 1737 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1738 * is currently active. 1739 * 1740 * The lists are order by addresses, so it's easy to find overlaps. 1741 */ 1742 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1743 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1744 while (u1 && u2) { 1745 Range r1, r2; 1746 1747 range_init_nofail(&r1, u1->section.offset_within_address_space, 1748 int128_get64(u1->section.size)); 1749 range_init_nofail(&r2, u2->section.offset_within_address_space, 1750 int128_get64(u2->section.size)); 1751 1752 if (range_overlaps_range(&r1, &r2)) { 1753 need_inhibit = true; 1754 break; 1755 } 1756 if (range_lob(&r1) < range_lob(&r2)) { 1757 u1 = QSIMPLEQ_NEXT(u1, next); 1758 } else { 1759 u2 = QSIMPLEQ_NEXT(u2, next); 1760 } 1761 } 1762 1763 kvm_slots_lock(); 1764 if (need_inhibit) { 1765 accel_ioctl_inhibit_begin(); 1766 } 1767 1768 /* Remove all memslots before adding the new ones. */ 1769 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1770 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1771 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1772 1773 kvm_set_phys_mem(kml, &u1->section, false); 1774 memory_region_unref(u1->section.mr); 1775 1776 g_free(u1); 1777 } 1778 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1779 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1780 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1781 1782 memory_region_ref(u1->section.mr); 1783 kvm_set_phys_mem(kml, &u1->section, true); 1784 1785 g_free(u1); 1786 } 1787 1788 if (need_inhibit) { 1789 accel_ioctl_inhibit_end(); 1790 } 1791 kvm_slots_unlock(); 1792 } 1793 1794 static void kvm_log_sync(MemoryListener *listener, 1795 MemoryRegionSection *section) 1796 { 1797 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1798 1799 kvm_slots_lock(); 1800 kvm_physical_sync_dirty_bitmap(kml, section); 1801 kvm_slots_unlock(); 1802 } 1803 1804 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1805 { 1806 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1807 KVMState *s = kvm_state; 1808 KVMSlot *mem; 1809 int i; 1810 1811 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1812 kvm_dirty_ring_flush(); 1813 1814 kvm_slots_lock(); 1815 for (i = 0; i < kml->nr_slots_allocated; i++) { 1816 mem = &kml->slots[i]; 1817 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1818 kvm_slot_sync_dirty_pages(mem); 1819 1820 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1821 kvm_slot_get_dirty_log(s, mem)) { 1822 kvm_slot_sync_dirty_pages(mem); 1823 } 1824 1825 /* 1826 * This is not needed by KVM_GET_DIRTY_LOG because the 1827 * ioctl will unconditionally overwrite the whole region. 1828 * However kvm dirty ring has no such side effect. 1829 */ 1830 kvm_slot_reset_dirty_pages(mem); 1831 } 1832 } 1833 kvm_slots_unlock(); 1834 } 1835 1836 static void kvm_log_clear(MemoryListener *listener, 1837 MemoryRegionSection *section) 1838 { 1839 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1840 int r; 1841 1842 r = kvm_physical_log_clear(kml, section); 1843 if (r < 0) { 1844 error_report_once("%s: kvm log clear failed: mr=%s " 1845 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1846 section->mr->name, section->offset_within_region, 1847 int128_get64(section->size)); 1848 abort(); 1849 } 1850 } 1851 1852 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1853 MemoryRegionSection *section, 1854 bool match_data, uint64_t data, 1855 EventNotifier *e) 1856 { 1857 int fd = event_notifier_get_fd(e); 1858 int r; 1859 1860 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1861 data, true, int128_get64(section->size), 1862 match_data); 1863 if (r < 0) { 1864 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1865 __func__, strerror(-r), -r); 1866 abort(); 1867 } 1868 } 1869 1870 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1871 MemoryRegionSection *section, 1872 bool match_data, uint64_t data, 1873 EventNotifier *e) 1874 { 1875 int fd = event_notifier_get_fd(e); 1876 int r; 1877 1878 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1879 data, false, int128_get64(section->size), 1880 match_data); 1881 if (r < 0) { 1882 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1883 __func__, strerror(-r), -r); 1884 abort(); 1885 } 1886 } 1887 1888 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1889 MemoryRegionSection *section, 1890 bool match_data, uint64_t data, 1891 EventNotifier *e) 1892 { 1893 int fd = event_notifier_get_fd(e); 1894 int r; 1895 1896 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1897 data, true, int128_get64(section->size), 1898 match_data); 1899 if (r < 0) { 1900 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1901 __func__, strerror(-r), -r); 1902 abort(); 1903 } 1904 } 1905 1906 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1907 MemoryRegionSection *section, 1908 bool match_data, uint64_t data, 1909 EventNotifier *e) 1910 1911 { 1912 int fd = event_notifier_get_fd(e); 1913 int r; 1914 1915 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1916 data, false, int128_get64(section->size), 1917 match_data); 1918 if (r < 0) { 1919 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1920 __func__, strerror(-r), -r); 1921 abort(); 1922 } 1923 } 1924 1925 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1926 AddressSpace *as, int as_id, const char *name) 1927 { 1928 int i; 1929 1930 kml->as_id = as_id; 1931 1932 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1933 1934 QSIMPLEQ_INIT(&kml->transaction_add); 1935 QSIMPLEQ_INIT(&kml->transaction_del); 1936 1937 kml->listener.region_add = kvm_region_add; 1938 kml->listener.region_del = kvm_region_del; 1939 kml->listener.commit = kvm_region_commit; 1940 kml->listener.log_start = kvm_log_start; 1941 kml->listener.log_stop = kvm_log_stop; 1942 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1943 kml->listener.name = name; 1944 1945 if (s->kvm_dirty_ring_size) { 1946 kml->listener.log_sync_global = kvm_log_sync_global; 1947 } else { 1948 kml->listener.log_sync = kvm_log_sync; 1949 kml->listener.log_clear = kvm_log_clear; 1950 } 1951 1952 memory_listener_register(&kml->listener, as); 1953 1954 for (i = 0; i < s->nr_as; ++i) { 1955 if (!s->as[i].as) { 1956 s->as[i].as = as; 1957 s->as[i].ml = kml; 1958 break; 1959 } 1960 } 1961 } 1962 1963 static MemoryListener kvm_io_listener = { 1964 .name = "kvm-io", 1965 .coalesced_io_add = kvm_coalesce_pio_add, 1966 .coalesced_io_del = kvm_coalesce_pio_del, 1967 .eventfd_add = kvm_io_ioeventfd_add, 1968 .eventfd_del = kvm_io_ioeventfd_del, 1969 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1970 }; 1971 1972 int kvm_set_irq(KVMState *s, int irq, int level) 1973 { 1974 struct kvm_irq_level event; 1975 int ret; 1976 1977 assert(kvm_async_interrupts_enabled()); 1978 1979 event.level = level; 1980 event.irq = irq; 1981 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1982 if (ret < 0) { 1983 perror("kvm_set_irq"); 1984 abort(); 1985 } 1986 1987 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1988 } 1989 1990 #ifdef KVM_CAP_IRQ_ROUTING 1991 typedef struct KVMMSIRoute { 1992 struct kvm_irq_routing_entry kroute; 1993 QTAILQ_ENTRY(KVMMSIRoute) entry; 1994 } KVMMSIRoute; 1995 1996 static void set_gsi(KVMState *s, unsigned int gsi) 1997 { 1998 set_bit(gsi, s->used_gsi_bitmap); 1999 } 2000 2001 static void clear_gsi(KVMState *s, unsigned int gsi) 2002 { 2003 clear_bit(gsi, s->used_gsi_bitmap); 2004 } 2005 2006 void kvm_init_irq_routing(KVMState *s) 2007 { 2008 int gsi_count; 2009 2010 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 2011 if (gsi_count > 0) { 2012 /* Round up so we can search ints using ffs */ 2013 s->used_gsi_bitmap = bitmap_new(gsi_count); 2014 s->gsi_count = gsi_count; 2015 } 2016 2017 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 2018 s->nr_allocated_irq_routes = 0; 2019 2020 kvm_arch_init_irq_routing(s); 2021 } 2022 2023 void kvm_irqchip_commit_routes(KVMState *s) 2024 { 2025 int ret; 2026 2027 if (kvm_gsi_direct_mapping()) { 2028 return; 2029 } 2030 2031 if (!kvm_gsi_routing_enabled()) { 2032 return; 2033 } 2034 2035 s->irq_routes->flags = 0; 2036 trace_kvm_irqchip_commit_routes(); 2037 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2038 assert(ret == 0); 2039 } 2040 2041 void kvm_add_routing_entry(KVMState *s, 2042 struct kvm_irq_routing_entry *entry) 2043 { 2044 struct kvm_irq_routing_entry *new; 2045 int n, size; 2046 2047 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2048 n = s->nr_allocated_irq_routes * 2; 2049 if (n < 64) { 2050 n = 64; 2051 } 2052 size = sizeof(struct kvm_irq_routing); 2053 size += n * sizeof(*new); 2054 s->irq_routes = g_realloc(s->irq_routes, size); 2055 s->nr_allocated_irq_routes = n; 2056 } 2057 n = s->irq_routes->nr++; 2058 new = &s->irq_routes->entries[n]; 2059 2060 *new = *entry; 2061 2062 set_gsi(s, entry->gsi); 2063 } 2064 2065 static int kvm_update_routing_entry(KVMState *s, 2066 struct kvm_irq_routing_entry *new_entry) 2067 { 2068 struct kvm_irq_routing_entry *entry; 2069 int n; 2070 2071 for (n = 0; n < s->irq_routes->nr; n++) { 2072 entry = &s->irq_routes->entries[n]; 2073 if (entry->gsi != new_entry->gsi) { 2074 continue; 2075 } 2076 2077 if(!memcmp(entry, new_entry, sizeof *entry)) { 2078 return 0; 2079 } 2080 2081 *entry = *new_entry; 2082 2083 return 0; 2084 } 2085 2086 return -ESRCH; 2087 } 2088 2089 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2090 { 2091 struct kvm_irq_routing_entry e = {}; 2092 2093 assert(pin < s->gsi_count); 2094 2095 e.gsi = irq; 2096 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2097 e.flags = 0; 2098 e.u.irqchip.irqchip = irqchip; 2099 e.u.irqchip.pin = pin; 2100 kvm_add_routing_entry(s, &e); 2101 } 2102 2103 void kvm_irqchip_release_virq(KVMState *s, int virq) 2104 { 2105 struct kvm_irq_routing_entry *e; 2106 int i; 2107 2108 if (kvm_gsi_direct_mapping()) { 2109 return; 2110 } 2111 2112 for (i = 0; i < s->irq_routes->nr; i++) { 2113 e = &s->irq_routes->entries[i]; 2114 if (e->gsi == virq) { 2115 s->irq_routes->nr--; 2116 *e = s->irq_routes->entries[s->irq_routes->nr]; 2117 } 2118 } 2119 clear_gsi(s, virq); 2120 kvm_arch_release_virq_post(virq); 2121 trace_kvm_irqchip_release_virq(virq); 2122 } 2123 2124 void kvm_irqchip_add_change_notifier(Notifier *n) 2125 { 2126 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2127 } 2128 2129 void kvm_irqchip_remove_change_notifier(Notifier *n) 2130 { 2131 notifier_remove(n); 2132 } 2133 2134 void kvm_irqchip_change_notify(void) 2135 { 2136 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2137 } 2138 2139 int kvm_irqchip_get_virq(KVMState *s) 2140 { 2141 int next_virq; 2142 2143 /* Return the lowest unused GSI in the bitmap */ 2144 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2145 if (next_virq >= s->gsi_count) { 2146 return -ENOSPC; 2147 } else { 2148 return next_virq; 2149 } 2150 } 2151 2152 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2153 { 2154 struct kvm_msi msi; 2155 2156 msi.address_lo = (uint32_t)msg.address; 2157 msi.address_hi = msg.address >> 32; 2158 msi.data = le32_to_cpu(msg.data); 2159 msi.flags = 0; 2160 memset(msi.pad, 0, sizeof(msi.pad)); 2161 2162 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2163 } 2164 2165 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2166 { 2167 struct kvm_irq_routing_entry kroute = {}; 2168 int virq; 2169 KVMState *s = c->s; 2170 MSIMessage msg = {0, 0}; 2171 2172 if (pci_available && dev) { 2173 msg = pci_get_msi_message(dev, vector); 2174 } 2175 2176 if (kvm_gsi_direct_mapping()) { 2177 return kvm_arch_msi_data_to_gsi(msg.data); 2178 } 2179 2180 if (!kvm_gsi_routing_enabled()) { 2181 return -ENOSYS; 2182 } 2183 2184 virq = kvm_irqchip_get_virq(s); 2185 if (virq < 0) { 2186 return virq; 2187 } 2188 2189 kroute.gsi = virq; 2190 kroute.type = KVM_IRQ_ROUTING_MSI; 2191 kroute.flags = 0; 2192 kroute.u.msi.address_lo = (uint32_t)msg.address; 2193 kroute.u.msi.address_hi = msg.address >> 32; 2194 kroute.u.msi.data = le32_to_cpu(msg.data); 2195 if (pci_available && kvm_msi_devid_required()) { 2196 kroute.flags = KVM_MSI_VALID_DEVID; 2197 kroute.u.msi.devid = pci_requester_id(dev); 2198 } 2199 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2200 kvm_irqchip_release_virq(s, virq); 2201 return -EINVAL; 2202 } 2203 2204 if (s->irq_routes->nr < s->gsi_count) { 2205 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2206 vector, virq); 2207 2208 kvm_add_routing_entry(s, &kroute); 2209 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2210 c->changes++; 2211 } else { 2212 kvm_irqchip_release_virq(s, virq); 2213 return -ENOSPC; 2214 } 2215 2216 return virq; 2217 } 2218 2219 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2220 PCIDevice *dev) 2221 { 2222 struct kvm_irq_routing_entry kroute = {}; 2223 2224 if (kvm_gsi_direct_mapping()) { 2225 return 0; 2226 } 2227 2228 if (!kvm_irqchip_in_kernel()) { 2229 return -ENOSYS; 2230 } 2231 2232 kroute.gsi = virq; 2233 kroute.type = KVM_IRQ_ROUTING_MSI; 2234 kroute.flags = 0; 2235 kroute.u.msi.address_lo = (uint32_t)msg.address; 2236 kroute.u.msi.address_hi = msg.address >> 32; 2237 kroute.u.msi.data = le32_to_cpu(msg.data); 2238 if (pci_available && kvm_msi_devid_required()) { 2239 kroute.flags = KVM_MSI_VALID_DEVID; 2240 kroute.u.msi.devid = pci_requester_id(dev); 2241 } 2242 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2243 return -EINVAL; 2244 } 2245 2246 trace_kvm_irqchip_update_msi_route(virq); 2247 2248 return kvm_update_routing_entry(s, &kroute); 2249 } 2250 2251 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2252 EventNotifier *resample, int virq, 2253 bool assign) 2254 { 2255 int fd = event_notifier_get_fd(event); 2256 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2257 2258 struct kvm_irqfd irqfd = { 2259 .fd = fd, 2260 .gsi = virq, 2261 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2262 }; 2263 2264 if (rfd != -1) { 2265 assert(assign); 2266 if (kvm_irqchip_is_split()) { 2267 /* 2268 * When the slow irqchip (e.g. IOAPIC) is in the 2269 * userspace, KVM kernel resamplefd will not work because 2270 * the EOI of the interrupt will be delivered to userspace 2271 * instead, so the KVM kernel resamplefd kick will be 2272 * skipped. The userspace here mimics what the kernel 2273 * provides with resamplefd, remember the resamplefd and 2274 * kick it when we receive EOI of this IRQ. 2275 * 2276 * This is hackery because IOAPIC is mostly bypassed 2277 * (except EOI broadcasts) when irqfd is used. However 2278 * this can bring much performance back for split irqchip 2279 * with INTx IRQs (for VFIO, this gives 93% perf of the 2280 * full fast path, which is 46% perf boost comparing to 2281 * the INTx slow path). 2282 */ 2283 kvm_resample_fd_insert(virq, resample); 2284 } else { 2285 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2286 irqfd.resamplefd = rfd; 2287 } 2288 } else if (!assign) { 2289 if (kvm_irqchip_is_split()) { 2290 kvm_resample_fd_remove(virq); 2291 } 2292 } 2293 2294 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2295 } 2296 2297 #else /* !KVM_CAP_IRQ_ROUTING */ 2298 2299 void kvm_init_irq_routing(KVMState *s) 2300 { 2301 } 2302 2303 void kvm_irqchip_release_virq(KVMState *s, int virq) 2304 { 2305 } 2306 2307 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2308 { 2309 abort(); 2310 } 2311 2312 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2313 { 2314 return -ENOSYS; 2315 } 2316 2317 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2318 { 2319 return -ENOSYS; 2320 } 2321 2322 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2323 { 2324 return -ENOSYS; 2325 } 2326 2327 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2328 EventNotifier *resample, int virq, 2329 bool assign) 2330 { 2331 abort(); 2332 } 2333 2334 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2335 { 2336 return -ENOSYS; 2337 } 2338 #endif /* !KVM_CAP_IRQ_ROUTING */ 2339 2340 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2341 EventNotifier *rn, int virq) 2342 { 2343 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2344 } 2345 2346 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2347 int virq) 2348 { 2349 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2350 } 2351 2352 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2353 EventNotifier *rn, qemu_irq irq) 2354 { 2355 gpointer key, gsi; 2356 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2357 2358 if (!found) { 2359 return -ENXIO; 2360 } 2361 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2362 } 2363 2364 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2365 qemu_irq irq) 2366 { 2367 gpointer key, gsi; 2368 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2369 2370 if (!found) { 2371 return -ENXIO; 2372 } 2373 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2374 } 2375 2376 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2377 { 2378 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2379 } 2380 2381 static void kvm_irqchip_create(KVMState *s) 2382 { 2383 int ret; 2384 2385 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2386 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2387 ; 2388 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2389 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2390 if (ret < 0) { 2391 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2392 exit(1); 2393 } 2394 } else { 2395 return; 2396 } 2397 2398 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2399 fprintf(stderr, "kvm: irqfd not implemented\n"); 2400 exit(1); 2401 } 2402 2403 /* First probe and see if there's a arch-specific hook to create the 2404 * in-kernel irqchip for us */ 2405 ret = kvm_arch_irqchip_create(s); 2406 if (ret == 0) { 2407 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2408 error_report("Split IRQ chip mode not supported."); 2409 exit(1); 2410 } else { 2411 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2412 } 2413 } 2414 if (ret < 0) { 2415 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2416 exit(1); 2417 } 2418 2419 kvm_kernel_irqchip = true; 2420 /* If we have an in-kernel IRQ chip then we must have asynchronous 2421 * interrupt delivery (though the reverse is not necessarily true) 2422 */ 2423 kvm_async_interrupts_allowed = true; 2424 kvm_halt_in_kernel_allowed = true; 2425 2426 kvm_init_irq_routing(s); 2427 2428 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2429 } 2430 2431 /* Find number of supported CPUs using the recommended 2432 * procedure from the kernel API documentation to cope with 2433 * older kernels that may be missing capabilities. 2434 */ 2435 static int kvm_recommended_vcpus(KVMState *s) 2436 { 2437 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2438 return (ret) ? ret : 4; 2439 } 2440 2441 static int kvm_max_vcpus(KVMState *s) 2442 { 2443 int ret = kvm_vm_check_extension(s, KVM_CAP_MAX_VCPUS); 2444 return (ret) ? ret : kvm_recommended_vcpus(s); 2445 } 2446 2447 static int kvm_max_vcpu_id(KVMState *s) 2448 { 2449 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2450 return (ret) ? ret : kvm_max_vcpus(s); 2451 } 2452 2453 bool kvm_vcpu_id_is_valid(int vcpu_id) 2454 { 2455 KVMState *s = KVM_STATE(current_accel()); 2456 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2457 } 2458 2459 bool kvm_dirty_ring_enabled(void) 2460 { 2461 return kvm_state && kvm_state->kvm_dirty_ring_size; 2462 } 2463 2464 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2465 strList *names, strList *targets, Error **errp); 2466 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2467 2468 uint32_t kvm_dirty_ring_size(void) 2469 { 2470 return kvm_state->kvm_dirty_ring_size; 2471 } 2472 2473 static int do_kvm_create_vm(MachineState *ms, int type) 2474 { 2475 KVMState *s; 2476 int ret; 2477 2478 s = KVM_STATE(ms->accelerator); 2479 2480 do { 2481 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2482 } while (ret == -EINTR); 2483 2484 if (ret < 0) { 2485 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret)); 2486 2487 #ifdef TARGET_S390X 2488 if (ret == -EINVAL) { 2489 error_printf("Host kernel setup problem detected." 2490 " Please verify:\n"); 2491 error_printf("- for kernels supporting the" 2492 " switch_amode or user_mode parameters, whether"); 2493 error_printf(" user space is running in primary address space\n"); 2494 error_printf("- for kernels supporting the vm.allocate_pgste" 2495 " sysctl, whether it is enabled\n"); 2496 } 2497 #elif defined(TARGET_PPC) 2498 if (ret == -EINVAL) { 2499 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2500 (type == 2) ? "pr" : "hv"); 2501 } 2502 #endif 2503 } 2504 2505 return ret; 2506 } 2507 2508 static int find_kvm_machine_type(MachineState *ms) 2509 { 2510 MachineClass *mc = MACHINE_GET_CLASS(ms); 2511 int type; 2512 2513 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2514 g_autofree char *kvm_type; 2515 kvm_type = object_property_get_str(OBJECT(current_machine), 2516 "kvm-type", 2517 &error_abort); 2518 type = mc->kvm_type(ms, kvm_type); 2519 } else if (mc->kvm_type) { 2520 type = mc->kvm_type(ms, NULL); 2521 } else { 2522 type = kvm_arch_get_default_type(ms); 2523 } 2524 return type; 2525 } 2526 2527 static int kvm_setup_dirty_ring(KVMState *s) 2528 { 2529 uint64_t dirty_log_manual_caps; 2530 int ret; 2531 2532 /* 2533 * Enable KVM dirty ring if supported, otherwise fall back to 2534 * dirty logging mode 2535 */ 2536 ret = kvm_dirty_ring_init(s); 2537 if (ret < 0) { 2538 return ret; 2539 } 2540 2541 /* 2542 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2543 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2544 * page is wr-protected initially, which is against how kvm dirty ring is 2545 * usage - kvm dirty ring requires all pages are wr-protected at the very 2546 * beginning. Enabling this feature for dirty ring causes data corruption. 2547 * 2548 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2549 * we may expect a higher stall time when starting the migration. In the 2550 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2551 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2552 * guest pages. 2553 */ 2554 if (!s->kvm_dirty_ring_size) { 2555 dirty_log_manual_caps = 2556 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2557 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2558 KVM_DIRTY_LOG_INITIALLY_SET); 2559 s->manual_dirty_log_protect = dirty_log_manual_caps; 2560 if (dirty_log_manual_caps) { 2561 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2562 dirty_log_manual_caps); 2563 if (ret) { 2564 warn_report("Trying to enable capability %"PRIu64" of " 2565 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2566 "Falling back to the legacy mode. ", 2567 dirty_log_manual_caps); 2568 s->manual_dirty_log_protect = 0; 2569 } 2570 } 2571 } 2572 2573 return 0; 2574 } 2575 2576 static int kvm_init(MachineState *ms) 2577 { 2578 MachineClass *mc = MACHINE_GET_CLASS(ms); 2579 static const char upgrade_note[] = 2580 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2581 "(see http://sourceforge.net/projects/kvm).\n"; 2582 const struct { 2583 const char *name; 2584 int num; 2585 } num_cpus[] = { 2586 { "SMP", ms->smp.cpus }, 2587 { "hotpluggable", ms->smp.max_cpus }, 2588 { /* end of list */ } 2589 }, *nc = num_cpus; 2590 int soft_vcpus_limit, hard_vcpus_limit; 2591 KVMState *s; 2592 const KVMCapabilityInfo *missing_cap; 2593 int ret; 2594 int type; 2595 2596 qemu_mutex_init(&kml_slots_lock); 2597 2598 s = KVM_STATE(ms->accelerator); 2599 2600 /* 2601 * On systems where the kernel can support different base page 2602 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2603 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2604 * page size for the system though. 2605 */ 2606 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2607 2608 s->sigmask_len = 8; 2609 accel_blocker_init(); 2610 2611 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2612 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2613 #endif 2614 QLIST_INIT(&s->kvm_parked_vcpus); 2615 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2616 if (s->fd == -1) { 2617 error_report("Could not access KVM kernel module: %m"); 2618 ret = -errno; 2619 goto err; 2620 } 2621 2622 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2623 if (ret < KVM_API_VERSION) { 2624 if (ret >= 0) { 2625 ret = -EINVAL; 2626 } 2627 error_report("kvm version too old"); 2628 goto err; 2629 } 2630 2631 if (ret > KVM_API_VERSION) { 2632 ret = -EINVAL; 2633 error_report("kvm version not supported"); 2634 goto err; 2635 } 2636 2637 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2638 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2639 2640 /* If unspecified, use the default value */ 2641 if (!s->nr_slots_max) { 2642 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT; 2643 } 2644 2645 type = find_kvm_machine_type(ms); 2646 if (type < 0) { 2647 ret = -EINVAL; 2648 goto err; 2649 } 2650 2651 ret = do_kvm_create_vm(ms, type); 2652 if (ret < 0) { 2653 goto err; 2654 } 2655 2656 s->vmfd = ret; 2657 2658 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2659 if (s->nr_as <= 1) { 2660 s->nr_as = 1; 2661 } 2662 s->as = g_new0(struct KVMAs, s->nr_as); 2663 2664 /* check the vcpu limits */ 2665 soft_vcpus_limit = kvm_recommended_vcpus(s); 2666 hard_vcpus_limit = kvm_max_vcpus(s); 2667 2668 while (nc->name) { 2669 if (nc->num > soft_vcpus_limit) { 2670 warn_report("Number of %s cpus requested (%d) exceeds " 2671 "the recommended cpus supported by KVM (%d)", 2672 nc->name, nc->num, soft_vcpus_limit); 2673 2674 if (nc->num > hard_vcpus_limit) { 2675 error_report("Number of %s cpus requested (%d) exceeds " 2676 "the maximum cpus supported by KVM (%d)", 2677 nc->name, nc->num, hard_vcpus_limit); 2678 exit(1); 2679 } 2680 } 2681 nc++; 2682 } 2683 2684 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2685 if (!missing_cap) { 2686 missing_cap = 2687 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2688 } 2689 if (missing_cap) { 2690 ret = -EINVAL; 2691 error_report("kvm does not support %s", missing_cap->name); 2692 error_printf("%s", upgrade_note); 2693 goto err; 2694 } 2695 2696 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2697 s->coalesced_pio = s->coalesced_mmio && 2698 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2699 2700 ret = kvm_setup_dirty_ring(s); 2701 if (ret < 0) { 2702 goto err; 2703 } 2704 2705 #ifdef KVM_CAP_VCPU_EVENTS 2706 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2707 #endif 2708 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2709 2710 s->irq_set_ioctl = KVM_IRQ_LINE; 2711 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2712 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2713 } 2714 2715 kvm_readonly_mem_allowed = 2716 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2717 2718 kvm_resamplefds_allowed = 2719 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2720 2721 kvm_vm_attributes_allowed = 2722 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2723 2724 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2725 kvm_has_guest_debug = 2726 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2727 #endif 2728 2729 kvm_sstep_flags = 0; 2730 if (kvm_has_guest_debug) { 2731 kvm_sstep_flags = SSTEP_ENABLE; 2732 2733 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2734 int guest_debug_flags = 2735 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2736 2737 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2738 kvm_sstep_flags |= SSTEP_NOIRQ; 2739 } 2740 #endif 2741 } 2742 2743 kvm_state = s; 2744 2745 ret = kvm_arch_init(ms, s); 2746 if (ret < 0) { 2747 goto err; 2748 } 2749 2750 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2751 kvm_guest_memfd_supported = 2752 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2753 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2754 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2755 kvm_pre_fault_memory_supported = kvm_vm_check_extension(s, KVM_CAP_PRE_FAULT_MEMORY); 2756 2757 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2758 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2759 } 2760 2761 qemu_register_reset(kvm_unpoison_all, NULL); 2762 2763 if (s->kernel_irqchip_allowed) { 2764 kvm_irqchip_create(s); 2765 } 2766 2767 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2768 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2769 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2770 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2771 2772 kvm_memory_listener_register(s, &s->memory_listener, 2773 &address_space_memory, 0, "kvm-memory"); 2774 memory_listener_register(&kvm_io_listener, 2775 &address_space_io); 2776 2777 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2778 if (!s->sync_mmu) { 2779 ret = ram_block_discard_disable(true); 2780 assert(!ret); 2781 } 2782 2783 if (s->kvm_dirty_ring_size) { 2784 kvm_dirty_ring_reaper_init(s); 2785 } 2786 2787 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2788 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2789 query_stats_schemas_cb); 2790 } 2791 2792 return 0; 2793 2794 err: 2795 assert(ret < 0); 2796 if (s->vmfd >= 0) { 2797 close(s->vmfd); 2798 } 2799 if (s->fd != -1) { 2800 close(s->fd); 2801 } 2802 g_free(s->as); 2803 g_free(s->memory_listener.slots); 2804 2805 return ret; 2806 } 2807 2808 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2809 { 2810 s->sigmask_len = sigmask_len; 2811 } 2812 2813 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2814 int size, uint32_t count) 2815 { 2816 int i; 2817 uint8_t *ptr = data; 2818 2819 for (i = 0; i < count; i++) { 2820 address_space_rw(&address_space_io, port, attrs, 2821 ptr, size, 2822 direction == KVM_EXIT_IO_OUT); 2823 ptr += size; 2824 } 2825 } 2826 2827 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2828 { 2829 int i; 2830 2831 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2832 run->internal.suberror); 2833 2834 for (i = 0; i < run->internal.ndata; ++i) { 2835 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2836 i, (uint64_t)run->internal.data[i]); 2837 } 2838 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2839 fprintf(stderr, "emulation failure\n"); 2840 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2841 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2842 return EXCP_INTERRUPT; 2843 } 2844 } 2845 /* FIXME: Should trigger a qmp message to let management know 2846 * something went wrong. 2847 */ 2848 return -1; 2849 } 2850 2851 void kvm_flush_coalesced_mmio_buffer(void) 2852 { 2853 KVMState *s = kvm_state; 2854 2855 if (!s || s->coalesced_flush_in_progress) { 2856 return; 2857 } 2858 2859 s->coalesced_flush_in_progress = true; 2860 2861 if (s->coalesced_mmio_ring) { 2862 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2863 while (ring->first != ring->last) { 2864 struct kvm_coalesced_mmio *ent; 2865 2866 ent = &ring->coalesced_mmio[ring->first]; 2867 2868 if (ent->pio == 1) { 2869 address_space_write(&address_space_io, ent->phys_addr, 2870 MEMTXATTRS_UNSPECIFIED, ent->data, 2871 ent->len); 2872 } else { 2873 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2874 } 2875 smp_wmb(); 2876 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2877 } 2878 } 2879 2880 s->coalesced_flush_in_progress = false; 2881 } 2882 2883 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2884 { 2885 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2886 Error *err = NULL; 2887 int ret = kvm_arch_get_registers(cpu, &err); 2888 if (ret) { 2889 if (err) { 2890 error_reportf_err(err, "Failed to synchronize CPU state: "); 2891 } else { 2892 error_report("Failed to get registers: %s", strerror(-ret)); 2893 } 2894 2895 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2896 vm_stop(RUN_STATE_INTERNAL_ERROR); 2897 } 2898 2899 cpu->vcpu_dirty = true; 2900 } 2901 } 2902 2903 void kvm_cpu_synchronize_state(CPUState *cpu) 2904 { 2905 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2906 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2907 } 2908 } 2909 2910 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2911 { 2912 Error *err = NULL; 2913 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err); 2914 if (ret) { 2915 if (err) { 2916 error_reportf_err(err, "Restoring resisters after reset: "); 2917 } else { 2918 error_report("Failed to put registers after reset: %s", 2919 strerror(-ret)); 2920 } 2921 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2922 vm_stop(RUN_STATE_INTERNAL_ERROR); 2923 } 2924 2925 cpu->vcpu_dirty = false; 2926 } 2927 2928 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2929 { 2930 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2931 2932 if (cpu == first_cpu) { 2933 kvm_reset_parked_vcpus(kvm_state); 2934 } 2935 } 2936 2937 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2938 { 2939 Error *err = NULL; 2940 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err); 2941 if (ret) { 2942 if (err) { 2943 error_reportf_err(err, "Putting registers after init: "); 2944 } else { 2945 error_report("Failed to put registers after init: %s", 2946 strerror(-ret)); 2947 } 2948 exit(1); 2949 } 2950 2951 cpu->vcpu_dirty = false; 2952 } 2953 2954 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2955 { 2956 if (!kvm_state->guest_state_protected) { 2957 /* 2958 * This runs before the machine_init_done notifiers, and is the last 2959 * opportunity to synchronize the state of confidential guests. 2960 */ 2961 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2962 } 2963 } 2964 2965 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2966 { 2967 cpu->vcpu_dirty = true; 2968 } 2969 2970 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2971 { 2972 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2973 } 2974 2975 #ifdef KVM_HAVE_MCE_INJECTION 2976 static __thread void *pending_sigbus_addr; 2977 static __thread int pending_sigbus_code; 2978 static __thread bool have_sigbus_pending; 2979 #endif 2980 2981 static void kvm_cpu_kick(CPUState *cpu) 2982 { 2983 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2984 } 2985 2986 static void kvm_cpu_kick_self(void) 2987 { 2988 if (kvm_immediate_exit) { 2989 kvm_cpu_kick(current_cpu); 2990 } else { 2991 qemu_cpu_kick_self(); 2992 } 2993 } 2994 2995 static void kvm_eat_signals(CPUState *cpu) 2996 { 2997 struct timespec ts = { 0, 0 }; 2998 siginfo_t siginfo; 2999 sigset_t waitset; 3000 sigset_t chkset; 3001 int r; 3002 3003 if (kvm_immediate_exit) { 3004 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 3005 /* Write kvm_run->immediate_exit before the cpu->exit_request 3006 * write in kvm_cpu_exec. 3007 */ 3008 smp_wmb(); 3009 return; 3010 } 3011 3012 sigemptyset(&waitset); 3013 sigaddset(&waitset, SIG_IPI); 3014 3015 do { 3016 r = sigtimedwait(&waitset, &siginfo, &ts); 3017 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 3018 perror("sigtimedwait"); 3019 exit(1); 3020 } 3021 3022 r = sigpending(&chkset); 3023 if (r == -1) { 3024 perror("sigpending"); 3025 exit(1); 3026 } 3027 } while (sigismember(&chkset, SIG_IPI)); 3028 } 3029 3030 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 3031 { 3032 MemoryRegionSection section; 3033 ram_addr_t offset; 3034 MemoryRegion *mr; 3035 RAMBlock *rb; 3036 void *addr; 3037 int ret = -EINVAL; 3038 3039 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 3040 3041 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 3042 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 3043 return ret; 3044 } 3045 3046 if (!size) { 3047 return ret; 3048 } 3049 3050 section = memory_region_find(get_system_memory(), start, size); 3051 mr = section.mr; 3052 if (!mr) { 3053 /* 3054 * Ignore converting non-assigned region to shared. 3055 * 3056 * TDX requires vMMIO region to be shared to inject #VE to guest. 3057 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 3058 * and vIO-APIC 0xFEC00000 4K page. 3059 * OVMF assigns 32bit PCI MMIO region to 3060 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 3061 */ 3062 if (!to_private) { 3063 return 0; 3064 } 3065 return ret; 3066 } 3067 3068 if (!memory_region_has_guest_memfd(mr)) { 3069 /* 3070 * Because vMMIO region must be shared, guest TD may convert vMMIO 3071 * region to shared explicitly. Don't complain such case. See 3072 * memory_region_type() for checking if the region is MMIO region. 3073 */ 3074 if (!to_private && 3075 !memory_region_is_ram(mr) && 3076 !memory_region_is_ram_device(mr) && 3077 !memory_region_is_rom(mr) && 3078 !memory_region_is_romd(mr)) { 3079 ret = 0; 3080 } else { 3081 error_report("Convert non guest_memfd backed memory region " 3082 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3083 start, size, to_private ? "private" : "shared"); 3084 } 3085 goto out_unref; 3086 } 3087 3088 if (to_private) { 3089 ret = kvm_set_memory_attributes_private(start, size); 3090 } else { 3091 ret = kvm_set_memory_attributes_shared(start, size); 3092 } 3093 if (ret) { 3094 goto out_unref; 3095 } 3096 3097 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3098 rb = qemu_ram_block_from_host(addr, false, &offset); 3099 3100 ret = ram_block_attributes_state_change(RAM_BLOCK_ATTRIBUTES(mr->rdm), 3101 offset, size, to_private); 3102 if (ret) { 3103 error_report("Failed to notify the listener the state change of " 3104 "(0x%"HWADDR_PRIx" + 0x%"HWADDR_PRIx") to %s", 3105 start, size, to_private ? "private" : "shared"); 3106 goto out_unref; 3107 } 3108 3109 if (to_private) { 3110 if (rb->page_size != qemu_real_host_page_size()) { 3111 /* 3112 * shared memory is backed by hugetlb, which is supposed to be 3113 * pre-allocated and doesn't need to be discarded 3114 */ 3115 goto out_unref; 3116 } 3117 ret = ram_block_discard_range(rb, offset, size); 3118 } else { 3119 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3120 } 3121 3122 out_unref: 3123 memory_region_unref(mr); 3124 return ret; 3125 } 3126 3127 int kvm_cpu_exec(CPUState *cpu) 3128 { 3129 struct kvm_run *run = cpu->kvm_run; 3130 int ret, run_ret; 3131 3132 trace_kvm_cpu_exec(); 3133 3134 if (kvm_arch_process_async_events(cpu)) { 3135 qatomic_set(&cpu->exit_request, 0); 3136 return EXCP_HLT; 3137 } 3138 3139 bql_unlock(); 3140 cpu_exec_start(cpu); 3141 3142 do { 3143 MemTxAttrs attrs; 3144 3145 if (cpu->vcpu_dirty) { 3146 Error *err = NULL; 3147 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err); 3148 if (ret) { 3149 if (err) { 3150 error_reportf_err(err, "Putting registers after init: "); 3151 } else { 3152 error_report("Failed to put registers after init: %s", 3153 strerror(-ret)); 3154 } 3155 ret = -1; 3156 break; 3157 } 3158 3159 cpu->vcpu_dirty = false; 3160 } 3161 3162 kvm_arch_pre_run(cpu, run); 3163 if (qatomic_read(&cpu->exit_request)) { 3164 trace_kvm_interrupt_exit_request(); 3165 /* 3166 * KVM requires us to reenter the kernel after IO exits to complete 3167 * instruction emulation. This self-signal will ensure that we 3168 * leave ASAP again. 3169 */ 3170 kvm_cpu_kick_self(); 3171 } 3172 3173 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3174 * Matching barrier in kvm_eat_signals. 3175 */ 3176 smp_rmb(); 3177 3178 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3179 3180 attrs = kvm_arch_post_run(cpu, run); 3181 3182 #ifdef KVM_HAVE_MCE_INJECTION 3183 if (unlikely(have_sigbus_pending)) { 3184 bql_lock(); 3185 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3186 pending_sigbus_addr); 3187 have_sigbus_pending = false; 3188 bql_unlock(); 3189 } 3190 #endif 3191 3192 if (run_ret < 0) { 3193 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3194 trace_kvm_io_window_exit(); 3195 kvm_eat_signals(cpu); 3196 ret = EXCP_INTERRUPT; 3197 break; 3198 } 3199 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3200 fprintf(stderr, "error: kvm run failed %s\n", 3201 strerror(-run_ret)); 3202 #ifdef TARGET_PPC 3203 if (run_ret == -EBUSY) { 3204 fprintf(stderr, 3205 "This is probably because your SMT is enabled.\n" 3206 "VCPU can only run on primary threads with all " 3207 "secondary threads offline.\n"); 3208 } 3209 #endif 3210 ret = -1; 3211 break; 3212 } 3213 } 3214 3215 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3216 switch (run->exit_reason) { 3217 case KVM_EXIT_IO: 3218 /* Called outside BQL */ 3219 kvm_handle_io(run->io.port, attrs, 3220 (uint8_t *)run + run->io.data_offset, 3221 run->io.direction, 3222 run->io.size, 3223 run->io.count); 3224 ret = 0; 3225 break; 3226 case KVM_EXIT_MMIO: 3227 /* Called outside BQL */ 3228 address_space_rw(&address_space_memory, 3229 run->mmio.phys_addr, attrs, 3230 run->mmio.data, 3231 run->mmio.len, 3232 run->mmio.is_write); 3233 ret = 0; 3234 break; 3235 case KVM_EXIT_IRQ_WINDOW_OPEN: 3236 ret = EXCP_INTERRUPT; 3237 break; 3238 case KVM_EXIT_SHUTDOWN: 3239 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3240 ret = EXCP_INTERRUPT; 3241 break; 3242 case KVM_EXIT_UNKNOWN: 3243 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3244 (uint64_t)run->hw.hardware_exit_reason); 3245 ret = -1; 3246 break; 3247 case KVM_EXIT_INTERNAL_ERROR: 3248 ret = kvm_handle_internal_error(cpu, run); 3249 break; 3250 case KVM_EXIT_DIRTY_RING_FULL: 3251 /* 3252 * We shouldn't continue if the dirty ring of this vcpu is 3253 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3254 */ 3255 trace_kvm_dirty_ring_full(cpu->cpu_index); 3256 bql_lock(); 3257 /* 3258 * We throttle vCPU by making it sleep once it exit from kernel 3259 * due to dirty ring full. In the dirtylimit scenario, reaping 3260 * all vCPUs after a single vCPU dirty ring get full result in 3261 * the miss of sleep, so just reap the ring-fulled vCPU. 3262 */ 3263 if (dirtylimit_in_service()) { 3264 kvm_dirty_ring_reap(kvm_state, cpu); 3265 } else { 3266 kvm_dirty_ring_reap(kvm_state, NULL); 3267 } 3268 bql_unlock(); 3269 dirtylimit_vcpu_execute(cpu); 3270 ret = 0; 3271 break; 3272 case KVM_EXIT_SYSTEM_EVENT: 3273 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3274 switch (run->system_event.type) { 3275 case KVM_SYSTEM_EVENT_SHUTDOWN: 3276 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3277 ret = EXCP_INTERRUPT; 3278 break; 3279 case KVM_SYSTEM_EVENT_RESET: 3280 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3281 ret = EXCP_INTERRUPT; 3282 break; 3283 case KVM_SYSTEM_EVENT_CRASH: 3284 kvm_cpu_synchronize_state(cpu); 3285 bql_lock(); 3286 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3287 bql_unlock(); 3288 ret = 0; 3289 break; 3290 default: 3291 ret = kvm_arch_handle_exit(cpu, run); 3292 break; 3293 } 3294 break; 3295 case KVM_EXIT_MEMORY_FAULT: 3296 trace_kvm_memory_fault(run->memory_fault.gpa, 3297 run->memory_fault.size, 3298 run->memory_fault.flags); 3299 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3300 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3301 (uint64_t)run->memory_fault.flags); 3302 ret = -1; 3303 break; 3304 } 3305 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3306 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3307 break; 3308 default: 3309 ret = kvm_arch_handle_exit(cpu, run); 3310 break; 3311 } 3312 } while (ret == 0); 3313 3314 cpu_exec_end(cpu); 3315 bql_lock(); 3316 3317 if (ret < 0) { 3318 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3319 vm_stop(RUN_STATE_INTERNAL_ERROR); 3320 } 3321 3322 qatomic_set(&cpu->exit_request, 0); 3323 return ret; 3324 } 3325 3326 int kvm_ioctl(KVMState *s, unsigned long type, ...) 3327 { 3328 int ret; 3329 void *arg; 3330 va_list ap; 3331 3332 va_start(ap, type); 3333 arg = va_arg(ap, void *); 3334 va_end(ap); 3335 3336 trace_kvm_ioctl(type, arg); 3337 ret = ioctl(s->fd, type, arg); 3338 if (ret == -1) { 3339 ret = -errno; 3340 } 3341 return ret; 3342 } 3343 3344 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...) 3345 { 3346 int ret; 3347 void *arg; 3348 va_list ap; 3349 3350 va_start(ap, type); 3351 arg = va_arg(ap, void *); 3352 va_end(ap); 3353 3354 trace_kvm_vm_ioctl(type, arg); 3355 accel_ioctl_begin(); 3356 ret = ioctl(s->vmfd, type, arg); 3357 accel_ioctl_end(); 3358 if (ret == -1) { 3359 ret = -errno; 3360 } 3361 return ret; 3362 } 3363 3364 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...) 3365 { 3366 int ret; 3367 void *arg; 3368 va_list ap; 3369 3370 va_start(ap, type); 3371 arg = va_arg(ap, void *); 3372 va_end(ap); 3373 3374 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3375 accel_cpu_ioctl_begin(cpu); 3376 ret = ioctl(cpu->kvm_fd, type, arg); 3377 accel_cpu_ioctl_end(cpu); 3378 if (ret == -1) { 3379 ret = -errno; 3380 } 3381 return ret; 3382 } 3383 3384 int kvm_device_ioctl(int fd, unsigned long type, ...) 3385 { 3386 int ret; 3387 void *arg; 3388 va_list ap; 3389 3390 va_start(ap, type); 3391 arg = va_arg(ap, void *); 3392 va_end(ap); 3393 3394 trace_kvm_device_ioctl(fd, type, arg); 3395 accel_ioctl_begin(); 3396 ret = ioctl(fd, type, arg); 3397 accel_ioctl_end(); 3398 if (ret == -1) { 3399 ret = -errno; 3400 } 3401 return ret; 3402 } 3403 3404 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3405 { 3406 int ret; 3407 struct kvm_device_attr attribute = { 3408 .group = group, 3409 .attr = attr, 3410 }; 3411 3412 if (!kvm_vm_attributes_allowed) { 3413 return 0; 3414 } 3415 3416 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3417 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3418 return ret ? 0 : 1; 3419 } 3420 3421 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3422 { 3423 struct kvm_device_attr attribute = { 3424 .group = group, 3425 .attr = attr, 3426 .flags = 0, 3427 }; 3428 3429 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3430 } 3431 3432 int kvm_device_access(int fd, int group, uint64_t attr, 3433 void *val, bool write, Error **errp) 3434 { 3435 struct kvm_device_attr kvmattr; 3436 int err; 3437 3438 kvmattr.flags = 0; 3439 kvmattr.group = group; 3440 kvmattr.attr = attr; 3441 kvmattr.addr = (uintptr_t)val; 3442 3443 err = kvm_device_ioctl(fd, 3444 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3445 &kvmattr); 3446 if (err < 0) { 3447 error_setg_errno(errp, -err, 3448 "KVM_%s_DEVICE_ATTR failed: Group %d " 3449 "attr 0x%016" PRIx64, 3450 write ? "SET" : "GET", group, attr); 3451 } 3452 return err; 3453 } 3454 3455 bool kvm_has_sync_mmu(void) 3456 { 3457 return kvm_state->sync_mmu; 3458 } 3459 3460 int kvm_has_vcpu_events(void) 3461 { 3462 return kvm_state->vcpu_events; 3463 } 3464 3465 int kvm_max_nested_state_length(void) 3466 { 3467 return kvm_state->max_nested_state_len; 3468 } 3469 3470 int kvm_has_gsi_routing(void) 3471 { 3472 #ifdef KVM_CAP_IRQ_ROUTING 3473 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3474 #else 3475 return false; 3476 #endif 3477 } 3478 3479 bool kvm_arm_supports_user_irq(void) 3480 { 3481 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3482 } 3483 3484 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3485 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3486 { 3487 struct kvm_sw_breakpoint *bp; 3488 3489 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3490 if (bp->pc == pc) { 3491 return bp; 3492 } 3493 } 3494 return NULL; 3495 } 3496 3497 int kvm_sw_breakpoints_active(CPUState *cpu) 3498 { 3499 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3500 } 3501 3502 struct kvm_set_guest_debug_data { 3503 struct kvm_guest_debug dbg; 3504 int err; 3505 }; 3506 3507 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3508 { 3509 struct kvm_set_guest_debug_data *dbg_data = 3510 (struct kvm_set_guest_debug_data *) data.host_ptr; 3511 3512 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3513 &dbg_data->dbg); 3514 } 3515 3516 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3517 { 3518 struct kvm_set_guest_debug_data data; 3519 3520 data.dbg.control = reinject_trap; 3521 3522 if (cpu->singlestep_enabled) { 3523 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3524 3525 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3526 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3527 } 3528 } 3529 kvm_arch_update_guest_debug(cpu, &data.dbg); 3530 3531 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3532 RUN_ON_CPU_HOST_PTR(&data)); 3533 return data.err; 3534 } 3535 3536 bool kvm_supports_guest_debug(void) 3537 { 3538 /* probed during kvm_init() */ 3539 return kvm_has_guest_debug; 3540 } 3541 3542 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3543 { 3544 struct kvm_sw_breakpoint *bp; 3545 int err; 3546 3547 if (type == GDB_BREAKPOINT_SW) { 3548 bp = kvm_find_sw_breakpoint(cpu, addr); 3549 if (bp) { 3550 bp->use_count++; 3551 return 0; 3552 } 3553 3554 bp = g_new(struct kvm_sw_breakpoint, 1); 3555 bp->pc = addr; 3556 bp->use_count = 1; 3557 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3558 if (err) { 3559 g_free(bp); 3560 return err; 3561 } 3562 3563 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3564 } else { 3565 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3566 if (err) { 3567 return err; 3568 } 3569 } 3570 3571 CPU_FOREACH(cpu) { 3572 err = kvm_update_guest_debug(cpu, 0); 3573 if (err) { 3574 return err; 3575 } 3576 } 3577 return 0; 3578 } 3579 3580 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3581 { 3582 struct kvm_sw_breakpoint *bp; 3583 int err; 3584 3585 if (type == GDB_BREAKPOINT_SW) { 3586 bp = kvm_find_sw_breakpoint(cpu, addr); 3587 if (!bp) { 3588 return -ENOENT; 3589 } 3590 3591 if (bp->use_count > 1) { 3592 bp->use_count--; 3593 return 0; 3594 } 3595 3596 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3597 if (err) { 3598 return err; 3599 } 3600 3601 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3602 g_free(bp); 3603 } else { 3604 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3605 if (err) { 3606 return err; 3607 } 3608 } 3609 3610 CPU_FOREACH(cpu) { 3611 err = kvm_update_guest_debug(cpu, 0); 3612 if (err) { 3613 return err; 3614 } 3615 } 3616 return 0; 3617 } 3618 3619 void kvm_remove_all_breakpoints(CPUState *cpu) 3620 { 3621 struct kvm_sw_breakpoint *bp, *next; 3622 KVMState *s = cpu->kvm_state; 3623 CPUState *tmpcpu; 3624 3625 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3626 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3627 /* Try harder to find a CPU that currently sees the breakpoint. */ 3628 CPU_FOREACH(tmpcpu) { 3629 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3630 break; 3631 } 3632 } 3633 } 3634 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3635 g_free(bp); 3636 } 3637 kvm_arch_remove_all_hw_breakpoints(); 3638 3639 CPU_FOREACH(cpu) { 3640 kvm_update_guest_debug(cpu, 0); 3641 } 3642 } 3643 3644 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3645 3646 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3647 { 3648 KVMState *s = kvm_state; 3649 struct kvm_signal_mask *sigmask; 3650 int r; 3651 3652 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3653 3654 sigmask->len = s->sigmask_len; 3655 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3656 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3657 g_free(sigmask); 3658 3659 return r; 3660 } 3661 3662 static void kvm_ipi_signal(int sig) 3663 { 3664 if (current_cpu) { 3665 assert(kvm_immediate_exit); 3666 kvm_cpu_kick(current_cpu); 3667 } 3668 } 3669 3670 void kvm_init_cpu_signals(CPUState *cpu) 3671 { 3672 int r; 3673 sigset_t set; 3674 struct sigaction sigact; 3675 3676 memset(&sigact, 0, sizeof(sigact)); 3677 sigact.sa_handler = kvm_ipi_signal; 3678 sigaction(SIG_IPI, &sigact, NULL); 3679 3680 pthread_sigmask(SIG_BLOCK, NULL, &set); 3681 #if defined KVM_HAVE_MCE_INJECTION 3682 sigdelset(&set, SIGBUS); 3683 pthread_sigmask(SIG_SETMASK, &set, NULL); 3684 #endif 3685 sigdelset(&set, SIG_IPI); 3686 if (kvm_immediate_exit) { 3687 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3688 } else { 3689 r = kvm_set_signal_mask(cpu, &set); 3690 } 3691 if (r) { 3692 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3693 exit(1); 3694 } 3695 } 3696 3697 /* Called asynchronously in VCPU thread. */ 3698 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3699 { 3700 #ifdef KVM_HAVE_MCE_INJECTION 3701 if (have_sigbus_pending) { 3702 return 1; 3703 } 3704 have_sigbus_pending = true; 3705 pending_sigbus_addr = addr; 3706 pending_sigbus_code = code; 3707 qatomic_set(&cpu->exit_request, 1); 3708 return 0; 3709 #else 3710 return 1; 3711 #endif 3712 } 3713 3714 /* Called synchronously (via signalfd) in main thread. */ 3715 int kvm_on_sigbus(int code, void *addr) 3716 { 3717 #ifdef KVM_HAVE_MCE_INJECTION 3718 /* Action required MCE kills the process if SIGBUS is blocked. Because 3719 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3720 * we can only get action optional here. 3721 */ 3722 assert(code != BUS_MCEERR_AR); 3723 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3724 return 0; 3725 #else 3726 return 1; 3727 #endif 3728 } 3729 3730 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3731 { 3732 int ret; 3733 struct kvm_create_device create_dev; 3734 3735 create_dev.type = type; 3736 create_dev.fd = -1; 3737 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3738 3739 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3740 return -ENOTSUP; 3741 } 3742 3743 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3744 if (ret) { 3745 return ret; 3746 } 3747 3748 return test ? 0 : create_dev.fd; 3749 } 3750 3751 bool kvm_device_supported(int vmfd, uint64_t type) 3752 { 3753 struct kvm_create_device create_dev = { 3754 .type = type, 3755 .fd = -1, 3756 .flags = KVM_CREATE_DEVICE_TEST, 3757 }; 3758 3759 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3760 return false; 3761 } 3762 3763 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3764 } 3765 3766 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3767 { 3768 struct kvm_one_reg reg; 3769 int r; 3770 3771 reg.id = id; 3772 reg.addr = (uintptr_t) source; 3773 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3774 if (r) { 3775 trace_kvm_failed_reg_set(id, strerror(-r)); 3776 } 3777 return r; 3778 } 3779 3780 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3781 { 3782 struct kvm_one_reg reg; 3783 int r; 3784 3785 reg.id = id; 3786 reg.addr = (uintptr_t) target; 3787 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3788 if (r) { 3789 trace_kvm_failed_reg_get(id, strerror(-r)); 3790 } 3791 return r; 3792 } 3793 3794 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3795 hwaddr start_addr, hwaddr size) 3796 { 3797 KVMState *kvm = KVM_STATE(ms->accelerator); 3798 int i; 3799 3800 for (i = 0; i < kvm->nr_as; ++i) { 3801 if (kvm->as[i].as == as && kvm->as[i].ml) { 3802 size = MIN(kvm_max_slot_size, size); 3803 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3804 start_addr, size); 3805 } 3806 } 3807 3808 return false; 3809 } 3810 3811 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3812 const char *name, void *opaque, 3813 Error **errp) 3814 { 3815 KVMState *s = KVM_STATE(obj); 3816 int64_t value = s->kvm_shadow_mem; 3817 3818 visit_type_int(v, name, &value, errp); 3819 } 3820 3821 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3822 const char *name, void *opaque, 3823 Error **errp) 3824 { 3825 KVMState *s = KVM_STATE(obj); 3826 int64_t value; 3827 3828 if (s->fd != -1) { 3829 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3830 return; 3831 } 3832 3833 if (!visit_type_int(v, name, &value, errp)) { 3834 return; 3835 } 3836 3837 s->kvm_shadow_mem = value; 3838 } 3839 3840 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3841 const char *name, void *opaque, 3842 Error **errp) 3843 { 3844 KVMState *s = KVM_STATE(obj); 3845 OnOffSplit mode; 3846 3847 if (s->fd != -1) { 3848 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3849 return; 3850 } 3851 3852 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3853 return; 3854 } 3855 switch (mode) { 3856 case ON_OFF_SPLIT_ON: 3857 s->kernel_irqchip_allowed = true; 3858 s->kernel_irqchip_required = true; 3859 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3860 break; 3861 case ON_OFF_SPLIT_OFF: 3862 s->kernel_irqchip_allowed = false; 3863 s->kernel_irqchip_required = false; 3864 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3865 break; 3866 case ON_OFF_SPLIT_SPLIT: 3867 s->kernel_irqchip_allowed = true; 3868 s->kernel_irqchip_required = true; 3869 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3870 break; 3871 default: 3872 /* The value was checked in visit_type_OnOffSplit() above. If 3873 * we get here, then something is wrong in QEMU. 3874 */ 3875 abort(); 3876 } 3877 } 3878 3879 bool kvm_kernel_irqchip_allowed(void) 3880 { 3881 return kvm_state->kernel_irqchip_allowed; 3882 } 3883 3884 bool kvm_kernel_irqchip_required(void) 3885 { 3886 return kvm_state->kernel_irqchip_required; 3887 } 3888 3889 bool kvm_kernel_irqchip_split(void) 3890 { 3891 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3892 } 3893 3894 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3895 const char *name, void *opaque, 3896 Error **errp) 3897 { 3898 KVMState *s = KVM_STATE(obj); 3899 uint32_t value = s->kvm_dirty_ring_size; 3900 3901 visit_type_uint32(v, name, &value, errp); 3902 } 3903 3904 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3905 const char *name, void *opaque, 3906 Error **errp) 3907 { 3908 KVMState *s = KVM_STATE(obj); 3909 uint32_t value; 3910 3911 if (s->fd != -1) { 3912 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3913 return; 3914 } 3915 3916 if (!visit_type_uint32(v, name, &value, errp)) { 3917 return; 3918 } 3919 if (value & (value - 1)) { 3920 error_setg(errp, "dirty-ring-size must be a power of two."); 3921 return; 3922 } 3923 3924 s->kvm_dirty_ring_size = value; 3925 } 3926 3927 static char *kvm_get_device(Object *obj, 3928 Error **errp G_GNUC_UNUSED) 3929 { 3930 KVMState *s = KVM_STATE(obj); 3931 3932 return g_strdup(s->device); 3933 } 3934 3935 static void kvm_set_device(Object *obj, 3936 const char *value, 3937 Error **errp G_GNUC_UNUSED) 3938 { 3939 KVMState *s = KVM_STATE(obj); 3940 3941 g_free(s->device); 3942 s->device = g_strdup(value); 3943 } 3944 3945 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3946 { 3947 KVMState *s = KVM_STATE(obj); 3948 s->msr_energy.enable = value; 3949 } 3950 3951 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3952 const char *str, 3953 Error **errp) 3954 { 3955 KVMState *s = KVM_STATE(obj); 3956 g_free(s->msr_energy.socket_path); 3957 s->msr_energy.socket_path = g_strdup(str); 3958 } 3959 3960 static void kvm_accel_instance_init(Object *obj) 3961 { 3962 KVMState *s = KVM_STATE(obj); 3963 3964 s->fd = -1; 3965 s->vmfd = -1; 3966 s->kvm_shadow_mem = -1; 3967 s->kernel_irqchip_allowed = true; 3968 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3969 /* KVM dirty ring is by default off */ 3970 s->kvm_dirty_ring_size = 0; 3971 s->kvm_dirty_ring_with_bitmap = false; 3972 s->kvm_eager_split_size = 0; 3973 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3974 s->notify_window = 0; 3975 s->xen_version = 0; 3976 s->xen_gnttab_max_frames = 64; 3977 s->xen_evtchn_max_pirq = 256; 3978 s->device = NULL; 3979 s->msr_energy.enable = false; 3980 } 3981 3982 /** 3983 * kvm_gdbstub_sstep_flags(): 3984 * 3985 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3986 * support is probed during kvm_init() 3987 */ 3988 static int kvm_gdbstub_sstep_flags(void) 3989 { 3990 return kvm_sstep_flags; 3991 } 3992 3993 static void kvm_accel_class_init(ObjectClass *oc, const void *data) 3994 { 3995 AccelClass *ac = ACCEL_CLASS(oc); 3996 ac->name = "KVM"; 3997 ac->init_machine = kvm_init; 3998 ac->has_memory = kvm_accel_has_memory; 3999 ac->allowed = &kvm_allowed; 4000 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 4001 4002 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 4003 NULL, kvm_set_kernel_irqchip, 4004 NULL, NULL); 4005 object_class_property_set_description(oc, "kernel-irqchip", 4006 "Configure KVM in-kernel irqchip"); 4007 4008 object_class_property_add(oc, "kvm-shadow-mem", "int", 4009 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 4010 NULL, NULL); 4011 object_class_property_set_description(oc, "kvm-shadow-mem", 4012 "KVM shadow MMU size"); 4013 4014 object_class_property_add(oc, "dirty-ring-size", "uint32", 4015 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 4016 NULL, NULL); 4017 object_class_property_set_description(oc, "dirty-ring-size", 4018 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 4019 4020 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 4021 object_class_property_set_description(oc, "device", 4022 "Path to the device node to use (default: /dev/kvm)"); 4023 4024 object_class_property_add_bool(oc, "rapl", 4025 NULL, 4026 kvm_set_kvm_rapl); 4027 object_class_property_set_description(oc, "rapl", 4028 "Allow energy related MSRs for RAPL interface in Guest"); 4029 4030 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 4031 kvm_set_kvm_rapl_socket_path); 4032 object_class_property_set_description(oc, "rapl-helper-socket", 4033 "Socket Path for comminucating with the Virtual MSR helper daemon"); 4034 4035 kvm_arch_accel_class_init(oc); 4036 } 4037 4038 static const TypeInfo kvm_accel_type = { 4039 .name = TYPE_KVM_ACCEL, 4040 .parent = TYPE_ACCEL, 4041 .instance_init = kvm_accel_instance_init, 4042 .class_init = kvm_accel_class_init, 4043 .instance_size = sizeof(KVMState), 4044 }; 4045 4046 static void kvm_type_init(void) 4047 { 4048 type_register_static(&kvm_accel_type); 4049 } 4050 4051 type_init(kvm_type_init); 4052 4053 typedef struct StatsArgs { 4054 union StatsResultsType { 4055 StatsResultList **stats; 4056 StatsSchemaList **schema; 4057 } result; 4058 strList *names; 4059 Error **errp; 4060 } StatsArgs; 4061 4062 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 4063 uint64_t *stats_data, 4064 StatsList *stats_list, 4065 Error **errp) 4066 { 4067 4068 Stats *stats; 4069 uint64List *val_list = NULL; 4070 4071 /* Only add stats that we understand. */ 4072 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4073 case KVM_STATS_TYPE_CUMULATIVE: 4074 case KVM_STATS_TYPE_INSTANT: 4075 case KVM_STATS_TYPE_PEAK: 4076 case KVM_STATS_TYPE_LINEAR_HIST: 4077 case KVM_STATS_TYPE_LOG_HIST: 4078 break; 4079 default: 4080 return stats_list; 4081 } 4082 4083 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4084 case KVM_STATS_UNIT_NONE: 4085 case KVM_STATS_UNIT_BYTES: 4086 case KVM_STATS_UNIT_CYCLES: 4087 case KVM_STATS_UNIT_SECONDS: 4088 case KVM_STATS_UNIT_BOOLEAN: 4089 break; 4090 default: 4091 return stats_list; 4092 } 4093 4094 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4095 case KVM_STATS_BASE_POW10: 4096 case KVM_STATS_BASE_POW2: 4097 break; 4098 default: 4099 return stats_list; 4100 } 4101 4102 /* Alloc and populate data list */ 4103 stats = g_new0(Stats, 1); 4104 stats->name = g_strdup(pdesc->name); 4105 stats->value = g_new0(StatsValue, 1); 4106 4107 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4108 stats->value->u.boolean = *stats_data; 4109 stats->value->type = QTYPE_QBOOL; 4110 } else if (pdesc->size == 1) { 4111 stats->value->u.scalar = *stats_data; 4112 stats->value->type = QTYPE_QNUM; 4113 } else { 4114 int i; 4115 for (i = 0; i < pdesc->size; i++) { 4116 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4117 } 4118 stats->value->u.list = val_list; 4119 stats->value->type = QTYPE_QLIST; 4120 } 4121 4122 QAPI_LIST_PREPEND(stats_list, stats); 4123 return stats_list; 4124 } 4125 4126 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4127 StatsSchemaValueList *list, 4128 Error **errp) 4129 { 4130 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4131 schema_entry->value = g_new0(StatsSchemaValue, 1); 4132 4133 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4134 case KVM_STATS_TYPE_CUMULATIVE: 4135 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4136 break; 4137 case KVM_STATS_TYPE_INSTANT: 4138 schema_entry->value->type = STATS_TYPE_INSTANT; 4139 break; 4140 case KVM_STATS_TYPE_PEAK: 4141 schema_entry->value->type = STATS_TYPE_PEAK; 4142 break; 4143 case KVM_STATS_TYPE_LINEAR_HIST: 4144 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4145 schema_entry->value->bucket_size = pdesc->bucket_size; 4146 schema_entry->value->has_bucket_size = true; 4147 break; 4148 case KVM_STATS_TYPE_LOG_HIST: 4149 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4150 break; 4151 default: 4152 goto exit; 4153 } 4154 4155 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4156 case KVM_STATS_UNIT_NONE: 4157 break; 4158 case KVM_STATS_UNIT_BOOLEAN: 4159 schema_entry->value->has_unit = true; 4160 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4161 break; 4162 case KVM_STATS_UNIT_BYTES: 4163 schema_entry->value->has_unit = true; 4164 schema_entry->value->unit = STATS_UNIT_BYTES; 4165 break; 4166 case KVM_STATS_UNIT_CYCLES: 4167 schema_entry->value->has_unit = true; 4168 schema_entry->value->unit = STATS_UNIT_CYCLES; 4169 break; 4170 case KVM_STATS_UNIT_SECONDS: 4171 schema_entry->value->has_unit = true; 4172 schema_entry->value->unit = STATS_UNIT_SECONDS; 4173 break; 4174 default: 4175 goto exit; 4176 } 4177 4178 schema_entry->value->exponent = pdesc->exponent; 4179 if (pdesc->exponent) { 4180 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4181 case KVM_STATS_BASE_POW10: 4182 schema_entry->value->has_base = true; 4183 schema_entry->value->base = 10; 4184 break; 4185 case KVM_STATS_BASE_POW2: 4186 schema_entry->value->has_base = true; 4187 schema_entry->value->base = 2; 4188 break; 4189 default: 4190 goto exit; 4191 } 4192 } 4193 4194 schema_entry->value->name = g_strdup(pdesc->name); 4195 schema_entry->next = list; 4196 return schema_entry; 4197 exit: 4198 g_free(schema_entry->value); 4199 g_free(schema_entry); 4200 return list; 4201 } 4202 4203 /* Cached stats descriptors */ 4204 typedef struct StatsDescriptors { 4205 const char *ident; /* cache key, currently the StatsTarget */ 4206 struct kvm_stats_desc *kvm_stats_desc; 4207 struct kvm_stats_header kvm_stats_header; 4208 QTAILQ_ENTRY(StatsDescriptors) next; 4209 } StatsDescriptors; 4210 4211 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4212 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4213 4214 /* 4215 * Return the descriptors for 'target', that either have already been read 4216 * or are retrieved from 'stats_fd'. 4217 */ 4218 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4219 Error **errp) 4220 { 4221 StatsDescriptors *descriptors; 4222 const char *ident; 4223 struct kvm_stats_desc *kvm_stats_desc; 4224 struct kvm_stats_header *kvm_stats_header; 4225 size_t size_desc; 4226 ssize_t ret; 4227 4228 ident = StatsTarget_str(target); 4229 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4230 if (g_str_equal(descriptors->ident, ident)) { 4231 return descriptors; 4232 } 4233 } 4234 4235 descriptors = g_new0(StatsDescriptors, 1); 4236 4237 /* Read stats header */ 4238 kvm_stats_header = &descriptors->kvm_stats_header; 4239 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4240 if (ret != sizeof(*kvm_stats_header)) { 4241 error_setg(errp, "KVM stats: failed to read stats header: " 4242 "expected %zu actual %zu", 4243 sizeof(*kvm_stats_header), ret); 4244 g_free(descriptors); 4245 return NULL; 4246 } 4247 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4248 4249 /* Read stats descriptors */ 4250 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4251 ret = pread(stats_fd, kvm_stats_desc, 4252 size_desc * kvm_stats_header->num_desc, 4253 kvm_stats_header->desc_offset); 4254 4255 if (ret != size_desc * kvm_stats_header->num_desc) { 4256 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4257 "expected %zu actual %zu", 4258 size_desc * kvm_stats_header->num_desc, ret); 4259 g_free(descriptors); 4260 g_free(kvm_stats_desc); 4261 return NULL; 4262 } 4263 descriptors->kvm_stats_desc = kvm_stats_desc; 4264 descriptors->ident = ident; 4265 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4266 return descriptors; 4267 } 4268 4269 static void query_stats(StatsResultList **result, StatsTarget target, 4270 strList *names, int stats_fd, CPUState *cpu, 4271 Error **errp) 4272 { 4273 struct kvm_stats_desc *kvm_stats_desc; 4274 struct kvm_stats_header *kvm_stats_header; 4275 StatsDescriptors *descriptors; 4276 g_autofree uint64_t *stats_data = NULL; 4277 struct kvm_stats_desc *pdesc; 4278 StatsList *stats_list = NULL; 4279 size_t size_desc, size_data = 0; 4280 ssize_t ret; 4281 int i; 4282 4283 descriptors = find_stats_descriptors(target, stats_fd, errp); 4284 if (!descriptors) { 4285 return; 4286 } 4287 4288 kvm_stats_header = &descriptors->kvm_stats_header; 4289 kvm_stats_desc = descriptors->kvm_stats_desc; 4290 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4291 4292 /* Tally the total data size; read schema data */ 4293 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4294 pdesc = (void *)kvm_stats_desc + i * size_desc; 4295 size_data += pdesc->size * sizeof(*stats_data); 4296 } 4297 4298 stats_data = g_malloc0(size_data); 4299 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4300 4301 if (ret != size_data) { 4302 error_setg(errp, "KVM stats: failed to read data: " 4303 "expected %zu actual %zu", size_data, ret); 4304 return; 4305 } 4306 4307 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4308 uint64_t *stats; 4309 pdesc = (void *)kvm_stats_desc + i * size_desc; 4310 4311 /* Add entry to the list */ 4312 stats = (void *)stats_data + pdesc->offset; 4313 if (!apply_str_list_filter(pdesc->name, names)) { 4314 continue; 4315 } 4316 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4317 } 4318 4319 if (!stats_list) { 4320 return; 4321 } 4322 4323 switch (target) { 4324 case STATS_TARGET_VM: 4325 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4326 break; 4327 case STATS_TARGET_VCPU: 4328 add_stats_entry(result, STATS_PROVIDER_KVM, 4329 cpu->parent_obj.canonical_path, 4330 stats_list); 4331 break; 4332 default: 4333 g_assert_not_reached(); 4334 } 4335 } 4336 4337 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4338 int stats_fd, Error **errp) 4339 { 4340 struct kvm_stats_desc *kvm_stats_desc; 4341 struct kvm_stats_header *kvm_stats_header; 4342 StatsDescriptors *descriptors; 4343 struct kvm_stats_desc *pdesc; 4344 StatsSchemaValueList *stats_list = NULL; 4345 size_t size_desc; 4346 int i; 4347 4348 descriptors = find_stats_descriptors(target, stats_fd, errp); 4349 if (!descriptors) { 4350 return; 4351 } 4352 4353 kvm_stats_header = &descriptors->kvm_stats_header; 4354 kvm_stats_desc = descriptors->kvm_stats_desc; 4355 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4356 4357 /* Tally the total data size; read schema data */ 4358 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4359 pdesc = (void *)kvm_stats_desc + i * size_desc; 4360 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4361 } 4362 4363 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4364 } 4365 4366 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4367 { 4368 int stats_fd = cpu->kvm_vcpu_stats_fd; 4369 Error *local_err = NULL; 4370 4371 if (stats_fd == -1) { 4372 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4373 error_propagate(kvm_stats_args->errp, local_err); 4374 return; 4375 } 4376 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4377 kvm_stats_args->names, stats_fd, cpu, 4378 kvm_stats_args->errp); 4379 } 4380 4381 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4382 { 4383 int stats_fd = cpu->kvm_vcpu_stats_fd; 4384 Error *local_err = NULL; 4385 4386 if (stats_fd == -1) { 4387 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4388 error_propagate(kvm_stats_args->errp, local_err); 4389 return; 4390 } 4391 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4392 kvm_stats_args->errp); 4393 } 4394 4395 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4396 strList *names, strList *targets, Error **errp) 4397 { 4398 KVMState *s = kvm_state; 4399 CPUState *cpu; 4400 int stats_fd; 4401 4402 switch (target) { 4403 case STATS_TARGET_VM: 4404 { 4405 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4406 if (stats_fd == -1) { 4407 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4408 return; 4409 } 4410 query_stats(result, target, names, stats_fd, NULL, errp); 4411 close(stats_fd); 4412 break; 4413 } 4414 case STATS_TARGET_VCPU: 4415 { 4416 StatsArgs stats_args; 4417 stats_args.result.stats = result; 4418 stats_args.names = names; 4419 stats_args.errp = errp; 4420 CPU_FOREACH(cpu) { 4421 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4422 continue; 4423 } 4424 query_stats_vcpu(cpu, &stats_args); 4425 } 4426 break; 4427 } 4428 default: 4429 break; 4430 } 4431 } 4432 4433 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4434 { 4435 StatsArgs stats_args; 4436 KVMState *s = kvm_state; 4437 int stats_fd; 4438 4439 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4440 if (stats_fd == -1) { 4441 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4442 return; 4443 } 4444 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4445 close(stats_fd); 4446 4447 if (first_cpu) { 4448 stats_args.result.schema = result; 4449 stats_args.errp = errp; 4450 query_stats_schema_vcpu(first_cpu, &stats_args); 4451 } 4452 } 4453 4454 void kvm_mark_guest_state_protected(void) 4455 { 4456 kvm_state->guest_state_protected = true; 4457 } 4458 4459 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4460 { 4461 int fd; 4462 struct kvm_create_guest_memfd guest_memfd = { 4463 .size = size, 4464 .flags = flags, 4465 }; 4466 4467 if (!kvm_guest_memfd_supported) { 4468 error_setg(errp, "KVM does not support guest_memfd"); 4469 return -1; 4470 } 4471 4472 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4473 if (fd < 0) { 4474 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4475 return -1; 4476 } 4477 4478 return fd; 4479 } 4480