1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 //#define DEBUG_KVM 73 74 #ifdef DEBUG_KVM 75 #define DPRINTF(fmt, ...) \ 76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 77 #else 78 #define DPRINTF(fmt, ...) \ 79 do { } while (0) 80 #endif 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 KVMState *kvm_state; 89 bool kvm_kernel_irqchip; 90 bool kvm_split_irqchip; 91 bool kvm_async_interrupts_allowed; 92 bool kvm_halt_in_kernel_allowed; 93 bool kvm_eventfds_allowed; 94 bool kvm_irqfds_allowed; 95 bool kvm_resamplefds_allowed; 96 bool kvm_msi_via_irqfd_allowed; 97 bool kvm_gsi_routing_allowed; 98 bool kvm_gsi_direct_mapping; 99 bool kvm_allowed; 100 bool kvm_readonly_mem_allowed; 101 bool kvm_vm_attributes_allowed; 102 bool kvm_direct_msi_allowed; 103 bool kvm_ioeventfd_any_length_allowed; 104 bool kvm_msi_use_devid; 105 bool kvm_has_guest_debug; 106 static int kvm_sstep_flags; 107 static bool kvm_immediate_exit; 108 static hwaddr kvm_max_slot_size = ~0; 109 110 static const KVMCapabilityInfo kvm_required_capabilites[] = { 111 KVM_CAP_INFO(USER_MEMORY), 112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 114 KVM_CAP_LAST_INFO 115 }; 116 117 static NotifierList kvm_irqchip_change_notifiers = 118 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 119 120 struct KVMResampleFd { 121 int gsi; 122 EventNotifier *resample_event; 123 QLIST_ENTRY(KVMResampleFd) node; 124 }; 125 typedef struct KVMResampleFd KVMResampleFd; 126 127 /* 128 * Only used with split irqchip where we need to do the resample fd 129 * kick for the kernel from userspace. 130 */ 131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 132 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 133 134 static QemuMutex kml_slots_lock; 135 136 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 137 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 138 139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 140 141 static inline void kvm_resample_fd_remove(int gsi) 142 { 143 KVMResampleFd *rfd; 144 145 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 146 if (rfd->gsi == gsi) { 147 QLIST_REMOVE(rfd, node); 148 g_free(rfd); 149 break; 150 } 151 } 152 } 153 154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 155 { 156 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 157 158 rfd->gsi = gsi; 159 rfd->resample_event = event; 160 161 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 162 } 163 164 void kvm_resample_fd_notify(int gsi) 165 { 166 KVMResampleFd *rfd; 167 168 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 169 if (rfd->gsi == gsi) { 170 event_notifier_set(rfd->resample_event); 171 trace_kvm_resample_fd_notify(gsi); 172 return; 173 } 174 } 175 } 176 177 int kvm_get_max_memslots(void) 178 { 179 KVMState *s = KVM_STATE(current_accel()); 180 181 return s->nr_slots; 182 } 183 184 /* Called with KVMMemoryListener.slots_lock held */ 185 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 186 { 187 KVMState *s = kvm_state; 188 int i; 189 190 for (i = 0; i < s->nr_slots; i++) { 191 if (kml->slots[i].memory_size == 0) { 192 return &kml->slots[i]; 193 } 194 } 195 196 return NULL; 197 } 198 199 bool kvm_has_free_slot(MachineState *ms) 200 { 201 KVMState *s = KVM_STATE(ms->accelerator); 202 bool result; 203 KVMMemoryListener *kml = &s->memory_listener; 204 205 kvm_slots_lock(); 206 result = !!kvm_get_free_slot(kml); 207 kvm_slots_unlock(); 208 209 return result; 210 } 211 212 /* Called with KVMMemoryListener.slots_lock held */ 213 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 214 { 215 KVMSlot *slot = kvm_get_free_slot(kml); 216 217 if (slot) { 218 return slot; 219 } 220 221 fprintf(stderr, "%s: no free slot available\n", __func__); 222 abort(); 223 } 224 225 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 226 hwaddr start_addr, 227 hwaddr size) 228 { 229 KVMState *s = kvm_state; 230 int i; 231 232 for (i = 0; i < s->nr_slots; i++) { 233 KVMSlot *mem = &kml->slots[i]; 234 235 if (start_addr == mem->start_addr && size == mem->memory_size) { 236 return mem; 237 } 238 } 239 240 return NULL; 241 } 242 243 /* 244 * Calculate and align the start address and the size of the section. 245 * Return the size. If the size is 0, the aligned section is empty. 246 */ 247 static hwaddr kvm_align_section(MemoryRegionSection *section, 248 hwaddr *start) 249 { 250 hwaddr size = int128_get64(section->size); 251 hwaddr delta, aligned; 252 253 /* kvm works in page size chunks, but the function may be called 254 with sub-page size and unaligned start address. Pad the start 255 address to next and truncate size to previous page boundary. */ 256 aligned = ROUND_UP(section->offset_within_address_space, 257 qemu_real_host_page_size()); 258 delta = aligned - section->offset_within_address_space; 259 *start = aligned; 260 if (delta > size) { 261 return 0; 262 } 263 264 return (size - delta) & qemu_real_host_page_mask(); 265 } 266 267 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 268 hwaddr *phys_addr) 269 { 270 KVMMemoryListener *kml = &s->memory_listener; 271 int i, ret = 0; 272 273 kvm_slots_lock(); 274 for (i = 0; i < s->nr_slots; i++) { 275 KVMSlot *mem = &kml->slots[i]; 276 277 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 278 *phys_addr = mem->start_addr + (ram - mem->ram); 279 ret = 1; 280 break; 281 } 282 } 283 kvm_slots_unlock(); 284 285 return ret; 286 } 287 288 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 289 { 290 KVMState *s = kvm_state; 291 struct kvm_userspace_memory_region mem; 292 int ret; 293 294 mem.slot = slot->slot | (kml->as_id << 16); 295 mem.guest_phys_addr = slot->start_addr; 296 mem.userspace_addr = (unsigned long)slot->ram; 297 mem.flags = slot->flags; 298 299 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 300 /* Set the slot size to 0 before setting the slot to the desired 301 * value. This is needed based on KVM commit 75d61fbc. */ 302 mem.memory_size = 0; 303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 304 if (ret < 0) { 305 goto err; 306 } 307 } 308 mem.memory_size = slot->memory_size; 309 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 310 slot->old_flags = mem.flags; 311 err: 312 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 313 mem.memory_size, mem.userspace_addr, ret); 314 if (ret < 0) { 315 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 316 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 317 __func__, mem.slot, slot->start_addr, 318 (uint64_t)mem.memory_size, strerror(errno)); 319 } 320 return ret; 321 } 322 323 static int do_kvm_destroy_vcpu(CPUState *cpu) 324 { 325 KVMState *s = kvm_state; 326 long mmap_size; 327 struct KVMParkedVcpu *vcpu = NULL; 328 int ret = 0; 329 330 DPRINTF("kvm_destroy_vcpu\n"); 331 332 ret = kvm_arch_destroy_vcpu(cpu); 333 if (ret < 0) { 334 goto err; 335 } 336 337 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 338 if (mmap_size < 0) { 339 ret = mmap_size; 340 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 341 goto err; 342 } 343 344 ret = munmap(cpu->kvm_run, mmap_size); 345 if (ret < 0) { 346 goto err; 347 } 348 349 if (cpu->kvm_dirty_gfns) { 350 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 351 if (ret < 0) { 352 goto err; 353 } 354 } 355 356 vcpu = g_malloc0(sizeof(*vcpu)); 357 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 358 vcpu->kvm_fd = cpu->kvm_fd; 359 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 360 err: 361 return ret; 362 } 363 364 void kvm_destroy_vcpu(CPUState *cpu) 365 { 366 if (do_kvm_destroy_vcpu(cpu) < 0) { 367 error_report("kvm_destroy_vcpu failed"); 368 exit(EXIT_FAILURE); 369 } 370 } 371 372 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 373 { 374 struct KVMParkedVcpu *cpu; 375 376 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 377 if (cpu->vcpu_id == vcpu_id) { 378 int kvm_fd; 379 380 QLIST_REMOVE(cpu, node); 381 kvm_fd = cpu->kvm_fd; 382 g_free(cpu); 383 return kvm_fd; 384 } 385 } 386 387 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 388 } 389 390 int kvm_init_vcpu(CPUState *cpu, Error **errp) 391 { 392 KVMState *s = kvm_state; 393 long mmap_size; 394 int ret; 395 396 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 397 398 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 399 if (ret < 0) { 400 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 401 kvm_arch_vcpu_id(cpu)); 402 goto err; 403 } 404 405 cpu->kvm_fd = ret; 406 cpu->kvm_state = s; 407 cpu->vcpu_dirty = true; 408 cpu->dirty_pages = 0; 409 cpu->throttle_us_per_full = 0; 410 411 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 412 if (mmap_size < 0) { 413 ret = mmap_size; 414 error_setg_errno(errp, -mmap_size, 415 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 416 goto err; 417 } 418 419 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 420 cpu->kvm_fd, 0); 421 if (cpu->kvm_run == MAP_FAILED) { 422 ret = -errno; 423 error_setg_errno(errp, ret, 424 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 425 kvm_arch_vcpu_id(cpu)); 426 goto err; 427 } 428 429 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 430 s->coalesced_mmio_ring = 431 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 432 } 433 434 if (s->kvm_dirty_ring_size) { 435 /* Use MAP_SHARED to share pages with the kernel */ 436 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 437 PROT_READ | PROT_WRITE, MAP_SHARED, 438 cpu->kvm_fd, 439 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 440 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 441 ret = -errno; 442 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 443 goto err; 444 } 445 } 446 447 ret = kvm_arch_init_vcpu(cpu); 448 if (ret < 0) { 449 error_setg_errno(errp, -ret, 450 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 451 kvm_arch_vcpu_id(cpu)); 452 } 453 err: 454 return ret; 455 } 456 457 /* 458 * dirty pages logging control 459 */ 460 461 static int kvm_mem_flags(MemoryRegion *mr) 462 { 463 bool readonly = mr->readonly || memory_region_is_romd(mr); 464 int flags = 0; 465 466 if (memory_region_get_dirty_log_mask(mr) != 0) { 467 flags |= KVM_MEM_LOG_DIRTY_PAGES; 468 } 469 if (readonly && kvm_readonly_mem_allowed) { 470 flags |= KVM_MEM_READONLY; 471 } 472 return flags; 473 } 474 475 /* Called with KVMMemoryListener.slots_lock held */ 476 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 477 MemoryRegion *mr) 478 { 479 mem->flags = kvm_mem_flags(mr); 480 481 /* If nothing changed effectively, no need to issue ioctl */ 482 if (mem->flags == mem->old_flags) { 483 return 0; 484 } 485 486 kvm_slot_init_dirty_bitmap(mem); 487 return kvm_set_user_memory_region(kml, mem, false); 488 } 489 490 static int kvm_section_update_flags(KVMMemoryListener *kml, 491 MemoryRegionSection *section) 492 { 493 hwaddr start_addr, size, slot_size; 494 KVMSlot *mem; 495 int ret = 0; 496 497 size = kvm_align_section(section, &start_addr); 498 if (!size) { 499 return 0; 500 } 501 502 kvm_slots_lock(); 503 504 while (size && !ret) { 505 slot_size = MIN(kvm_max_slot_size, size); 506 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 507 if (!mem) { 508 /* We don't have a slot if we want to trap every access. */ 509 goto out; 510 } 511 512 ret = kvm_slot_update_flags(kml, mem, section->mr); 513 start_addr += slot_size; 514 size -= slot_size; 515 } 516 517 out: 518 kvm_slots_unlock(); 519 return ret; 520 } 521 522 static void kvm_log_start(MemoryListener *listener, 523 MemoryRegionSection *section, 524 int old, int new) 525 { 526 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 527 int r; 528 529 if (old != 0) { 530 return; 531 } 532 533 r = kvm_section_update_flags(kml, section); 534 if (r < 0) { 535 abort(); 536 } 537 } 538 539 static void kvm_log_stop(MemoryListener *listener, 540 MemoryRegionSection *section, 541 int old, int new) 542 { 543 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 544 int r; 545 546 if (new != 0) { 547 return; 548 } 549 550 r = kvm_section_update_flags(kml, section); 551 if (r < 0) { 552 abort(); 553 } 554 } 555 556 /* get kvm's dirty pages bitmap and update qemu's */ 557 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 558 { 559 ram_addr_t start = slot->ram_start_offset; 560 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 561 562 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 563 } 564 565 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 566 { 567 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 568 } 569 570 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 571 572 /* Allocate the dirty bitmap for a slot */ 573 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 574 { 575 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 576 return; 577 } 578 579 /* 580 * XXX bad kernel interface alert 581 * For dirty bitmap, kernel allocates array of size aligned to 582 * bits-per-long. But for case when the kernel is 64bits and 583 * the userspace is 32bits, userspace can't align to the same 584 * bits-per-long, since sizeof(long) is different between kernel 585 * and user space. This way, userspace will provide buffer which 586 * may be 4 bytes less than the kernel will use, resulting in 587 * userspace memory corruption (which is not detectable by valgrind 588 * too, in most cases). 589 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 590 * a hope that sizeof(long) won't become >8 any time soon. 591 * 592 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 593 * And mem->memory_size is aligned to it (otherwise this mem can't 594 * be registered to KVM). 595 */ 596 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 597 /*HOST_LONG_BITS*/ 64) / 8; 598 mem->dirty_bmap = g_malloc0(bitmap_size); 599 mem->dirty_bmap_size = bitmap_size; 600 } 601 602 /* 603 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 604 * succeeded, false otherwise 605 */ 606 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 607 { 608 struct kvm_dirty_log d = {}; 609 int ret; 610 611 d.dirty_bitmap = slot->dirty_bmap; 612 d.slot = slot->slot | (slot->as_id << 16); 613 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 614 615 if (ret == -ENOENT) { 616 /* kernel does not have dirty bitmap in this slot */ 617 ret = 0; 618 } 619 if (ret) { 620 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 621 __func__, ret); 622 } 623 return ret == 0; 624 } 625 626 /* Should be with all slots_lock held for the address spaces. */ 627 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 628 uint32_t slot_id, uint64_t offset) 629 { 630 KVMMemoryListener *kml; 631 KVMSlot *mem; 632 633 if (as_id >= s->nr_as) { 634 return; 635 } 636 637 kml = s->as[as_id].ml; 638 mem = &kml->slots[slot_id]; 639 640 if (!mem->memory_size || offset >= 641 (mem->memory_size / qemu_real_host_page_size())) { 642 return; 643 } 644 645 set_bit(offset, mem->dirty_bmap); 646 } 647 648 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 649 { 650 /* 651 * Read the flags before the value. Pairs with barrier in 652 * KVM's kvm_dirty_ring_push() function. 653 */ 654 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 655 } 656 657 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 658 { 659 /* 660 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 661 * sees the full content of the ring: 662 * 663 * CPU0 CPU1 CPU2 664 * ------------------------------------------------------------------------------ 665 * fill gfn0 666 * store-rel flags for gfn0 667 * load-acq flags for gfn0 668 * store-rel RESET for gfn0 669 * ioctl(RESET_RINGS) 670 * load-acq flags for gfn0 671 * check if flags have RESET 672 * 673 * The synchronization goes from CPU2 to CPU0 to CPU1. 674 */ 675 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 676 } 677 678 /* 679 * Should be with all slots_lock held for the address spaces. It returns the 680 * dirty page we've collected on this dirty ring. 681 */ 682 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 683 { 684 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 685 uint32_t ring_size = s->kvm_dirty_ring_size; 686 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 687 688 assert(dirty_gfns && ring_size); 689 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 690 691 while (true) { 692 cur = &dirty_gfns[fetch % ring_size]; 693 if (!dirty_gfn_is_dirtied(cur)) { 694 break; 695 } 696 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 697 cur->offset); 698 dirty_gfn_set_collected(cur); 699 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 700 fetch++; 701 count++; 702 } 703 cpu->kvm_fetch_index = fetch; 704 cpu->dirty_pages += count; 705 706 return count; 707 } 708 709 /* Must be with slots_lock held */ 710 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 711 { 712 int ret; 713 uint64_t total = 0; 714 int64_t stamp; 715 716 stamp = get_clock(); 717 718 if (cpu) { 719 total = kvm_dirty_ring_reap_one(s, cpu); 720 } else { 721 CPU_FOREACH(cpu) { 722 total += kvm_dirty_ring_reap_one(s, cpu); 723 } 724 } 725 726 if (total) { 727 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 728 assert(ret == total); 729 } 730 731 stamp = get_clock() - stamp; 732 733 if (total) { 734 trace_kvm_dirty_ring_reap(total, stamp / 1000); 735 } 736 737 return total; 738 } 739 740 /* 741 * Currently for simplicity, we must hold BQL before calling this. We can 742 * consider to drop the BQL if we're clear with all the race conditions. 743 */ 744 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 745 { 746 uint64_t total; 747 748 /* 749 * We need to lock all kvm slots for all address spaces here, 750 * because: 751 * 752 * (1) We need to mark dirty for dirty bitmaps in multiple slots 753 * and for tons of pages, so it's better to take the lock here 754 * once rather than once per page. And more importantly, 755 * 756 * (2) We must _NOT_ publish dirty bits to the other threads 757 * (e.g., the migration thread) via the kvm memory slot dirty 758 * bitmaps before correctly re-protect those dirtied pages. 759 * Otherwise we can have potential risk of data corruption if 760 * the page data is read in the other thread before we do 761 * reset below. 762 */ 763 kvm_slots_lock(); 764 total = kvm_dirty_ring_reap_locked(s, cpu); 765 kvm_slots_unlock(); 766 767 return total; 768 } 769 770 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 771 { 772 /* No need to do anything */ 773 } 774 775 /* 776 * Kick all vcpus out in a synchronized way. When returned, we 777 * guarantee that every vcpu has been kicked and at least returned to 778 * userspace once. 779 */ 780 static void kvm_cpu_synchronize_kick_all(void) 781 { 782 CPUState *cpu; 783 784 CPU_FOREACH(cpu) { 785 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 786 } 787 } 788 789 /* 790 * Flush all the existing dirty pages to the KVM slot buffers. When 791 * this call returns, we guarantee that all the touched dirty pages 792 * before calling this function have been put into the per-kvmslot 793 * dirty bitmap. 794 * 795 * This function must be called with BQL held. 796 */ 797 static void kvm_dirty_ring_flush(void) 798 { 799 trace_kvm_dirty_ring_flush(0); 800 /* 801 * The function needs to be serialized. Since this function 802 * should always be with BQL held, serialization is guaranteed. 803 * However, let's be sure of it. 804 */ 805 assert(qemu_mutex_iothread_locked()); 806 /* 807 * First make sure to flush the hardware buffers by kicking all 808 * vcpus out in a synchronous way. 809 */ 810 kvm_cpu_synchronize_kick_all(); 811 kvm_dirty_ring_reap(kvm_state, NULL); 812 trace_kvm_dirty_ring_flush(1); 813 } 814 815 /** 816 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 817 * 818 * This function will first try to fetch dirty bitmap from the kernel, 819 * and then updates qemu's dirty bitmap. 820 * 821 * NOTE: caller must be with kml->slots_lock held. 822 * 823 * @kml: the KVM memory listener object 824 * @section: the memory section to sync the dirty bitmap with 825 */ 826 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 827 MemoryRegionSection *section) 828 { 829 KVMState *s = kvm_state; 830 KVMSlot *mem; 831 hwaddr start_addr, size; 832 hwaddr slot_size; 833 834 size = kvm_align_section(section, &start_addr); 835 while (size) { 836 slot_size = MIN(kvm_max_slot_size, size); 837 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 838 if (!mem) { 839 /* We don't have a slot if we want to trap every access. */ 840 return; 841 } 842 if (kvm_slot_get_dirty_log(s, mem)) { 843 kvm_slot_sync_dirty_pages(mem); 844 } 845 start_addr += slot_size; 846 size -= slot_size; 847 } 848 } 849 850 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 851 #define KVM_CLEAR_LOG_SHIFT 6 852 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 853 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 854 855 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 856 uint64_t size) 857 { 858 KVMState *s = kvm_state; 859 uint64_t end, bmap_start, start_delta, bmap_npages; 860 struct kvm_clear_dirty_log d; 861 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 862 int ret; 863 864 /* 865 * We need to extend either the start or the size or both to 866 * satisfy the KVM interface requirement. Firstly, do the start 867 * page alignment on 64 host pages 868 */ 869 bmap_start = start & KVM_CLEAR_LOG_MASK; 870 start_delta = start - bmap_start; 871 bmap_start /= psize; 872 873 /* 874 * The kernel interface has restriction on the size too, that either: 875 * 876 * (1) the size is 64 host pages aligned (just like the start), or 877 * (2) the size fills up until the end of the KVM memslot. 878 */ 879 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 880 << KVM_CLEAR_LOG_SHIFT; 881 end = mem->memory_size / psize; 882 if (bmap_npages > end - bmap_start) { 883 bmap_npages = end - bmap_start; 884 } 885 start_delta /= psize; 886 887 /* 888 * Prepare the bitmap to clear dirty bits. Here we must guarantee 889 * that we won't clear any unknown dirty bits otherwise we might 890 * accidentally clear some set bits which are not yet synced from 891 * the kernel into QEMU's bitmap, then we'll lose track of the 892 * guest modifications upon those pages (which can directly lead 893 * to guest data loss or panic after migration). 894 * 895 * Layout of the KVMSlot.dirty_bmap: 896 * 897 * |<-------- bmap_npages -----------..>| 898 * [1] 899 * start_delta size 900 * |----------------|-------------|------------------|------------| 901 * ^ ^ ^ ^ 902 * | | | | 903 * start bmap_start (start) end 904 * of memslot of memslot 905 * 906 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 907 */ 908 909 assert(bmap_start % BITS_PER_LONG == 0); 910 /* We should never do log_clear before log_sync */ 911 assert(mem->dirty_bmap); 912 if (start_delta || bmap_npages - size / psize) { 913 /* Slow path - we need to manipulate a temp bitmap */ 914 bmap_clear = bitmap_new(bmap_npages); 915 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 916 bmap_start, start_delta + size / psize); 917 /* 918 * We need to fill the holes at start because that was not 919 * specified by the caller and we extended the bitmap only for 920 * 64 pages alignment 921 */ 922 bitmap_clear(bmap_clear, 0, start_delta); 923 d.dirty_bitmap = bmap_clear; 924 } else { 925 /* 926 * Fast path - both start and size align well with BITS_PER_LONG 927 * (or the end of memory slot) 928 */ 929 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 930 } 931 932 d.first_page = bmap_start; 933 /* It should never overflow. If it happens, say something */ 934 assert(bmap_npages <= UINT32_MAX); 935 d.num_pages = bmap_npages; 936 d.slot = mem->slot | (as_id << 16); 937 938 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 939 if (ret < 0 && ret != -ENOENT) { 940 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 941 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 942 __func__, d.slot, (uint64_t)d.first_page, 943 (uint32_t)d.num_pages, ret); 944 } else { 945 ret = 0; 946 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 947 } 948 949 /* 950 * After we have updated the remote dirty bitmap, we update the 951 * cached bitmap as well for the memslot, then if another user 952 * clears the same region we know we shouldn't clear it again on 953 * the remote otherwise it's data loss as well. 954 */ 955 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 956 size / psize); 957 /* This handles the NULL case well */ 958 g_free(bmap_clear); 959 return ret; 960 } 961 962 963 /** 964 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 965 * 966 * NOTE: this will be a no-op if we haven't enabled manual dirty log 967 * protection in the host kernel because in that case this operation 968 * will be done within log_sync(). 969 * 970 * @kml: the kvm memory listener 971 * @section: the memory range to clear dirty bitmap 972 */ 973 static int kvm_physical_log_clear(KVMMemoryListener *kml, 974 MemoryRegionSection *section) 975 { 976 KVMState *s = kvm_state; 977 uint64_t start, size, offset, count; 978 KVMSlot *mem; 979 int ret = 0, i; 980 981 if (!s->manual_dirty_log_protect) { 982 /* No need to do explicit clear */ 983 return ret; 984 } 985 986 start = section->offset_within_address_space; 987 size = int128_get64(section->size); 988 989 if (!size) { 990 /* Nothing more we can do... */ 991 return ret; 992 } 993 994 kvm_slots_lock(); 995 996 for (i = 0; i < s->nr_slots; i++) { 997 mem = &kml->slots[i]; 998 /* Discard slots that are empty or do not overlap the section */ 999 if (!mem->memory_size || 1000 mem->start_addr > start + size - 1 || 1001 start > mem->start_addr + mem->memory_size - 1) { 1002 continue; 1003 } 1004 1005 if (start >= mem->start_addr) { 1006 /* The slot starts before section or is aligned to it. */ 1007 offset = start - mem->start_addr; 1008 count = MIN(mem->memory_size - offset, size); 1009 } else { 1010 /* The slot starts after section. */ 1011 offset = 0; 1012 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1013 } 1014 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1015 if (ret < 0) { 1016 break; 1017 } 1018 } 1019 1020 kvm_slots_unlock(); 1021 1022 return ret; 1023 } 1024 1025 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1026 MemoryRegionSection *secion, 1027 hwaddr start, hwaddr size) 1028 { 1029 KVMState *s = kvm_state; 1030 1031 if (s->coalesced_mmio) { 1032 struct kvm_coalesced_mmio_zone zone; 1033 1034 zone.addr = start; 1035 zone.size = size; 1036 zone.pad = 0; 1037 1038 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1039 } 1040 } 1041 1042 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1043 MemoryRegionSection *secion, 1044 hwaddr start, hwaddr size) 1045 { 1046 KVMState *s = kvm_state; 1047 1048 if (s->coalesced_mmio) { 1049 struct kvm_coalesced_mmio_zone zone; 1050 1051 zone.addr = start; 1052 zone.size = size; 1053 zone.pad = 0; 1054 1055 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1056 } 1057 } 1058 1059 static void kvm_coalesce_pio_add(MemoryListener *listener, 1060 MemoryRegionSection *section, 1061 hwaddr start, hwaddr size) 1062 { 1063 KVMState *s = kvm_state; 1064 1065 if (s->coalesced_pio) { 1066 struct kvm_coalesced_mmio_zone zone; 1067 1068 zone.addr = start; 1069 zone.size = size; 1070 zone.pio = 1; 1071 1072 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1073 } 1074 } 1075 1076 static void kvm_coalesce_pio_del(MemoryListener *listener, 1077 MemoryRegionSection *section, 1078 hwaddr start, hwaddr size) 1079 { 1080 KVMState *s = kvm_state; 1081 1082 if (s->coalesced_pio) { 1083 struct kvm_coalesced_mmio_zone zone; 1084 1085 zone.addr = start; 1086 zone.size = size; 1087 zone.pio = 1; 1088 1089 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1090 } 1091 } 1092 1093 static MemoryListener kvm_coalesced_pio_listener = { 1094 .name = "kvm-coalesced-pio", 1095 .coalesced_io_add = kvm_coalesce_pio_add, 1096 .coalesced_io_del = kvm_coalesce_pio_del, 1097 }; 1098 1099 int kvm_check_extension(KVMState *s, unsigned int extension) 1100 { 1101 int ret; 1102 1103 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1104 if (ret < 0) { 1105 ret = 0; 1106 } 1107 1108 return ret; 1109 } 1110 1111 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1112 { 1113 int ret; 1114 1115 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1116 if (ret < 0) { 1117 /* VM wide version not implemented, use global one instead */ 1118 ret = kvm_check_extension(s, extension); 1119 } 1120 1121 return ret; 1122 } 1123 1124 typedef struct HWPoisonPage { 1125 ram_addr_t ram_addr; 1126 QLIST_ENTRY(HWPoisonPage) list; 1127 } HWPoisonPage; 1128 1129 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1130 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1131 1132 static void kvm_unpoison_all(void *param) 1133 { 1134 HWPoisonPage *page, *next_page; 1135 1136 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1137 QLIST_REMOVE(page, list); 1138 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1139 g_free(page); 1140 } 1141 } 1142 1143 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1144 { 1145 HWPoisonPage *page; 1146 1147 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1148 if (page->ram_addr == ram_addr) { 1149 return; 1150 } 1151 } 1152 page = g_new(HWPoisonPage, 1); 1153 page->ram_addr = ram_addr; 1154 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1155 } 1156 1157 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1158 { 1159 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1160 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1161 * endianness, but the memory core hands them in target endianness. 1162 * For example, PPC is always treated as big-endian even if running 1163 * on KVM and on PPC64LE. Correct here. 1164 */ 1165 switch (size) { 1166 case 2: 1167 val = bswap16(val); 1168 break; 1169 case 4: 1170 val = bswap32(val); 1171 break; 1172 } 1173 #endif 1174 return val; 1175 } 1176 1177 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1178 bool assign, uint32_t size, bool datamatch) 1179 { 1180 int ret; 1181 struct kvm_ioeventfd iofd = { 1182 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1183 .addr = addr, 1184 .len = size, 1185 .flags = 0, 1186 .fd = fd, 1187 }; 1188 1189 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1190 datamatch); 1191 if (!kvm_enabled()) { 1192 return -ENOSYS; 1193 } 1194 1195 if (datamatch) { 1196 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1197 } 1198 if (!assign) { 1199 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1200 } 1201 1202 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1203 1204 if (ret < 0) { 1205 return -errno; 1206 } 1207 1208 return 0; 1209 } 1210 1211 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1212 bool assign, uint32_t size, bool datamatch) 1213 { 1214 struct kvm_ioeventfd kick = { 1215 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1216 .addr = addr, 1217 .flags = KVM_IOEVENTFD_FLAG_PIO, 1218 .len = size, 1219 .fd = fd, 1220 }; 1221 int r; 1222 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1223 if (!kvm_enabled()) { 1224 return -ENOSYS; 1225 } 1226 if (datamatch) { 1227 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1228 } 1229 if (!assign) { 1230 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1231 } 1232 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1233 if (r < 0) { 1234 return r; 1235 } 1236 return 0; 1237 } 1238 1239 1240 static int kvm_check_many_ioeventfds(void) 1241 { 1242 /* Userspace can use ioeventfd for io notification. This requires a host 1243 * that supports eventfd(2) and an I/O thread; since eventfd does not 1244 * support SIGIO it cannot interrupt the vcpu. 1245 * 1246 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1247 * can avoid creating too many ioeventfds. 1248 */ 1249 #if defined(CONFIG_EVENTFD) 1250 int ioeventfds[7]; 1251 int i, ret = 0; 1252 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1253 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1254 if (ioeventfds[i] < 0) { 1255 break; 1256 } 1257 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1258 if (ret < 0) { 1259 close(ioeventfds[i]); 1260 break; 1261 } 1262 } 1263 1264 /* Decide whether many devices are supported or not */ 1265 ret = i == ARRAY_SIZE(ioeventfds); 1266 1267 while (i-- > 0) { 1268 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1269 close(ioeventfds[i]); 1270 } 1271 return ret; 1272 #else 1273 return 0; 1274 #endif 1275 } 1276 1277 static const KVMCapabilityInfo * 1278 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1279 { 1280 while (list->name) { 1281 if (!kvm_check_extension(s, list->value)) { 1282 return list; 1283 } 1284 list++; 1285 } 1286 return NULL; 1287 } 1288 1289 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1290 { 1291 g_assert( 1292 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1293 ); 1294 kvm_max_slot_size = max_slot_size; 1295 } 1296 1297 /* Called with KVMMemoryListener.slots_lock held */ 1298 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1299 MemoryRegionSection *section, bool add) 1300 { 1301 KVMSlot *mem; 1302 int err; 1303 MemoryRegion *mr = section->mr; 1304 bool writable = !mr->readonly && !mr->rom_device; 1305 hwaddr start_addr, size, slot_size, mr_offset; 1306 ram_addr_t ram_start_offset; 1307 void *ram; 1308 1309 if (!memory_region_is_ram(mr)) { 1310 if (writable || !kvm_readonly_mem_allowed) { 1311 return; 1312 } else if (!mr->romd_mode) { 1313 /* If the memory device is not in romd_mode, then we actually want 1314 * to remove the kvm memory slot so all accesses will trap. */ 1315 add = false; 1316 } 1317 } 1318 1319 size = kvm_align_section(section, &start_addr); 1320 if (!size) { 1321 return; 1322 } 1323 1324 /* The offset of the kvmslot within the memory region */ 1325 mr_offset = section->offset_within_region + start_addr - 1326 section->offset_within_address_space; 1327 1328 /* use aligned delta to align the ram address and offset */ 1329 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1330 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1331 1332 if (!add) { 1333 do { 1334 slot_size = MIN(kvm_max_slot_size, size); 1335 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1336 if (!mem) { 1337 return; 1338 } 1339 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1340 /* 1341 * NOTE: We should be aware of the fact that here we're only 1342 * doing a best effort to sync dirty bits. No matter whether 1343 * we're using dirty log or dirty ring, we ignored two facts: 1344 * 1345 * (1) dirty bits can reside in hardware buffers (PML) 1346 * 1347 * (2) after we collected dirty bits here, pages can be dirtied 1348 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1349 * remove the slot. 1350 * 1351 * Not easy. Let's cross the fingers until it's fixed. 1352 */ 1353 if (kvm_state->kvm_dirty_ring_size) { 1354 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1355 } else { 1356 kvm_slot_get_dirty_log(kvm_state, mem); 1357 } 1358 kvm_slot_sync_dirty_pages(mem); 1359 } 1360 1361 /* unregister the slot */ 1362 g_free(mem->dirty_bmap); 1363 mem->dirty_bmap = NULL; 1364 mem->memory_size = 0; 1365 mem->flags = 0; 1366 err = kvm_set_user_memory_region(kml, mem, false); 1367 if (err) { 1368 fprintf(stderr, "%s: error unregistering slot: %s\n", 1369 __func__, strerror(-err)); 1370 abort(); 1371 } 1372 start_addr += slot_size; 1373 size -= slot_size; 1374 } while (size); 1375 return; 1376 } 1377 1378 /* register the new slot */ 1379 do { 1380 slot_size = MIN(kvm_max_slot_size, size); 1381 mem = kvm_alloc_slot(kml); 1382 mem->as_id = kml->as_id; 1383 mem->memory_size = slot_size; 1384 mem->start_addr = start_addr; 1385 mem->ram_start_offset = ram_start_offset; 1386 mem->ram = ram; 1387 mem->flags = kvm_mem_flags(mr); 1388 kvm_slot_init_dirty_bitmap(mem); 1389 err = kvm_set_user_memory_region(kml, mem, true); 1390 if (err) { 1391 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1392 strerror(-err)); 1393 abort(); 1394 } 1395 start_addr += slot_size; 1396 ram_start_offset += slot_size; 1397 ram += slot_size; 1398 size -= slot_size; 1399 } while (size); 1400 } 1401 1402 static void *kvm_dirty_ring_reaper_thread(void *data) 1403 { 1404 KVMState *s = data; 1405 struct KVMDirtyRingReaper *r = &s->reaper; 1406 1407 rcu_register_thread(); 1408 1409 trace_kvm_dirty_ring_reaper("init"); 1410 1411 while (true) { 1412 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1413 trace_kvm_dirty_ring_reaper("wait"); 1414 /* 1415 * TODO: provide a smarter timeout rather than a constant? 1416 */ 1417 sleep(1); 1418 1419 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1420 if (dirtylimit_in_service()) { 1421 continue; 1422 } 1423 1424 trace_kvm_dirty_ring_reaper("wakeup"); 1425 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1426 1427 qemu_mutex_lock_iothread(); 1428 kvm_dirty_ring_reap(s, NULL); 1429 qemu_mutex_unlock_iothread(); 1430 1431 r->reaper_iteration++; 1432 } 1433 1434 trace_kvm_dirty_ring_reaper("exit"); 1435 1436 rcu_unregister_thread(); 1437 1438 return NULL; 1439 } 1440 1441 static int kvm_dirty_ring_reaper_init(KVMState *s) 1442 { 1443 struct KVMDirtyRingReaper *r = &s->reaper; 1444 1445 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1446 kvm_dirty_ring_reaper_thread, 1447 s, QEMU_THREAD_JOINABLE); 1448 1449 return 0; 1450 } 1451 1452 static void kvm_region_add(MemoryListener *listener, 1453 MemoryRegionSection *section) 1454 { 1455 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1456 KVMMemoryUpdate *update; 1457 1458 update = g_new0(KVMMemoryUpdate, 1); 1459 update->section = *section; 1460 1461 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1462 } 1463 1464 static void kvm_region_del(MemoryListener *listener, 1465 MemoryRegionSection *section) 1466 { 1467 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1468 KVMMemoryUpdate *update; 1469 1470 update = g_new0(KVMMemoryUpdate, 1); 1471 update->section = *section; 1472 1473 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1474 } 1475 1476 static void kvm_region_commit(MemoryListener *listener) 1477 { 1478 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1479 listener); 1480 KVMMemoryUpdate *u1, *u2; 1481 bool need_inhibit = false; 1482 1483 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1484 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1485 return; 1486 } 1487 1488 /* 1489 * We have to be careful when regions to add overlap with ranges to remove. 1490 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1491 * is currently active. 1492 * 1493 * The lists are order by addresses, so it's easy to find overlaps. 1494 */ 1495 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1496 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1497 while (u1 && u2) { 1498 Range r1, r2; 1499 1500 range_init_nofail(&r1, u1->section.offset_within_address_space, 1501 int128_get64(u1->section.size)); 1502 range_init_nofail(&r2, u2->section.offset_within_address_space, 1503 int128_get64(u2->section.size)); 1504 1505 if (range_overlaps_range(&r1, &r2)) { 1506 need_inhibit = true; 1507 break; 1508 } 1509 if (range_lob(&r1) < range_lob(&r2)) { 1510 u1 = QSIMPLEQ_NEXT(u1, next); 1511 } else { 1512 u2 = QSIMPLEQ_NEXT(u2, next); 1513 } 1514 } 1515 1516 kvm_slots_lock(); 1517 if (need_inhibit) { 1518 accel_ioctl_inhibit_begin(); 1519 } 1520 1521 /* Remove all memslots before adding the new ones. */ 1522 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1523 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1524 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1525 1526 kvm_set_phys_mem(kml, &u1->section, false); 1527 memory_region_unref(u1->section.mr); 1528 1529 g_free(u1); 1530 } 1531 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1532 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1533 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1534 1535 memory_region_ref(u1->section.mr); 1536 kvm_set_phys_mem(kml, &u1->section, true); 1537 1538 g_free(u1); 1539 } 1540 1541 if (need_inhibit) { 1542 accel_ioctl_inhibit_end(); 1543 } 1544 kvm_slots_unlock(); 1545 } 1546 1547 static void kvm_log_sync(MemoryListener *listener, 1548 MemoryRegionSection *section) 1549 { 1550 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1551 1552 kvm_slots_lock(); 1553 kvm_physical_sync_dirty_bitmap(kml, section); 1554 kvm_slots_unlock(); 1555 } 1556 1557 static void kvm_log_sync_global(MemoryListener *l) 1558 { 1559 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1560 KVMState *s = kvm_state; 1561 KVMSlot *mem; 1562 int i; 1563 1564 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1565 kvm_dirty_ring_flush(); 1566 1567 /* 1568 * TODO: make this faster when nr_slots is big while there are 1569 * only a few used slots (small VMs). 1570 */ 1571 kvm_slots_lock(); 1572 for (i = 0; i < s->nr_slots; i++) { 1573 mem = &kml->slots[i]; 1574 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1575 kvm_slot_sync_dirty_pages(mem); 1576 /* 1577 * This is not needed by KVM_GET_DIRTY_LOG because the 1578 * ioctl will unconditionally overwrite the whole region. 1579 * However kvm dirty ring has no such side effect. 1580 */ 1581 kvm_slot_reset_dirty_pages(mem); 1582 } 1583 } 1584 kvm_slots_unlock(); 1585 } 1586 1587 static void kvm_log_clear(MemoryListener *listener, 1588 MemoryRegionSection *section) 1589 { 1590 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1591 int r; 1592 1593 r = kvm_physical_log_clear(kml, section); 1594 if (r < 0) { 1595 error_report_once("%s: kvm log clear failed: mr=%s " 1596 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1597 section->mr->name, section->offset_within_region, 1598 int128_get64(section->size)); 1599 abort(); 1600 } 1601 } 1602 1603 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1604 MemoryRegionSection *section, 1605 bool match_data, uint64_t data, 1606 EventNotifier *e) 1607 { 1608 int fd = event_notifier_get_fd(e); 1609 int r; 1610 1611 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1612 data, true, int128_get64(section->size), 1613 match_data); 1614 if (r < 0) { 1615 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1616 __func__, strerror(-r), -r); 1617 abort(); 1618 } 1619 } 1620 1621 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1622 MemoryRegionSection *section, 1623 bool match_data, uint64_t data, 1624 EventNotifier *e) 1625 { 1626 int fd = event_notifier_get_fd(e); 1627 int r; 1628 1629 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1630 data, false, int128_get64(section->size), 1631 match_data); 1632 if (r < 0) { 1633 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1634 __func__, strerror(-r), -r); 1635 abort(); 1636 } 1637 } 1638 1639 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1640 MemoryRegionSection *section, 1641 bool match_data, uint64_t data, 1642 EventNotifier *e) 1643 { 1644 int fd = event_notifier_get_fd(e); 1645 int r; 1646 1647 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1648 data, true, int128_get64(section->size), 1649 match_data); 1650 if (r < 0) { 1651 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1652 __func__, strerror(-r), -r); 1653 abort(); 1654 } 1655 } 1656 1657 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1658 MemoryRegionSection *section, 1659 bool match_data, uint64_t data, 1660 EventNotifier *e) 1661 1662 { 1663 int fd = event_notifier_get_fd(e); 1664 int r; 1665 1666 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1667 data, false, int128_get64(section->size), 1668 match_data); 1669 if (r < 0) { 1670 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1671 __func__, strerror(-r), -r); 1672 abort(); 1673 } 1674 } 1675 1676 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1677 AddressSpace *as, int as_id, const char *name) 1678 { 1679 int i; 1680 1681 kml->slots = g_new0(KVMSlot, s->nr_slots); 1682 kml->as_id = as_id; 1683 1684 for (i = 0; i < s->nr_slots; i++) { 1685 kml->slots[i].slot = i; 1686 } 1687 1688 QSIMPLEQ_INIT(&kml->transaction_add); 1689 QSIMPLEQ_INIT(&kml->transaction_del); 1690 1691 kml->listener.region_add = kvm_region_add; 1692 kml->listener.region_del = kvm_region_del; 1693 kml->listener.commit = kvm_region_commit; 1694 kml->listener.log_start = kvm_log_start; 1695 kml->listener.log_stop = kvm_log_stop; 1696 kml->listener.priority = 10; 1697 kml->listener.name = name; 1698 1699 if (s->kvm_dirty_ring_size) { 1700 kml->listener.log_sync_global = kvm_log_sync_global; 1701 } else { 1702 kml->listener.log_sync = kvm_log_sync; 1703 kml->listener.log_clear = kvm_log_clear; 1704 } 1705 1706 memory_listener_register(&kml->listener, as); 1707 1708 for (i = 0; i < s->nr_as; ++i) { 1709 if (!s->as[i].as) { 1710 s->as[i].as = as; 1711 s->as[i].ml = kml; 1712 break; 1713 } 1714 } 1715 } 1716 1717 static MemoryListener kvm_io_listener = { 1718 .name = "kvm-io", 1719 .eventfd_add = kvm_io_ioeventfd_add, 1720 .eventfd_del = kvm_io_ioeventfd_del, 1721 .priority = 10, 1722 }; 1723 1724 int kvm_set_irq(KVMState *s, int irq, int level) 1725 { 1726 struct kvm_irq_level event; 1727 int ret; 1728 1729 assert(kvm_async_interrupts_enabled()); 1730 1731 event.level = level; 1732 event.irq = irq; 1733 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1734 if (ret < 0) { 1735 perror("kvm_set_irq"); 1736 abort(); 1737 } 1738 1739 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1740 } 1741 1742 #ifdef KVM_CAP_IRQ_ROUTING 1743 typedef struct KVMMSIRoute { 1744 struct kvm_irq_routing_entry kroute; 1745 QTAILQ_ENTRY(KVMMSIRoute) entry; 1746 } KVMMSIRoute; 1747 1748 static void set_gsi(KVMState *s, unsigned int gsi) 1749 { 1750 set_bit(gsi, s->used_gsi_bitmap); 1751 } 1752 1753 static void clear_gsi(KVMState *s, unsigned int gsi) 1754 { 1755 clear_bit(gsi, s->used_gsi_bitmap); 1756 } 1757 1758 void kvm_init_irq_routing(KVMState *s) 1759 { 1760 int gsi_count, i; 1761 1762 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1763 if (gsi_count > 0) { 1764 /* Round up so we can search ints using ffs */ 1765 s->used_gsi_bitmap = bitmap_new(gsi_count); 1766 s->gsi_count = gsi_count; 1767 } 1768 1769 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1770 s->nr_allocated_irq_routes = 0; 1771 1772 if (!kvm_direct_msi_allowed) { 1773 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1774 QTAILQ_INIT(&s->msi_hashtab[i]); 1775 } 1776 } 1777 1778 kvm_arch_init_irq_routing(s); 1779 } 1780 1781 void kvm_irqchip_commit_routes(KVMState *s) 1782 { 1783 int ret; 1784 1785 if (kvm_gsi_direct_mapping()) { 1786 return; 1787 } 1788 1789 if (!kvm_gsi_routing_enabled()) { 1790 return; 1791 } 1792 1793 s->irq_routes->flags = 0; 1794 trace_kvm_irqchip_commit_routes(); 1795 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1796 assert(ret == 0); 1797 } 1798 1799 static void kvm_add_routing_entry(KVMState *s, 1800 struct kvm_irq_routing_entry *entry) 1801 { 1802 struct kvm_irq_routing_entry *new; 1803 int n, size; 1804 1805 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1806 n = s->nr_allocated_irq_routes * 2; 1807 if (n < 64) { 1808 n = 64; 1809 } 1810 size = sizeof(struct kvm_irq_routing); 1811 size += n * sizeof(*new); 1812 s->irq_routes = g_realloc(s->irq_routes, size); 1813 s->nr_allocated_irq_routes = n; 1814 } 1815 n = s->irq_routes->nr++; 1816 new = &s->irq_routes->entries[n]; 1817 1818 *new = *entry; 1819 1820 set_gsi(s, entry->gsi); 1821 } 1822 1823 static int kvm_update_routing_entry(KVMState *s, 1824 struct kvm_irq_routing_entry *new_entry) 1825 { 1826 struct kvm_irq_routing_entry *entry; 1827 int n; 1828 1829 for (n = 0; n < s->irq_routes->nr; n++) { 1830 entry = &s->irq_routes->entries[n]; 1831 if (entry->gsi != new_entry->gsi) { 1832 continue; 1833 } 1834 1835 if(!memcmp(entry, new_entry, sizeof *entry)) { 1836 return 0; 1837 } 1838 1839 *entry = *new_entry; 1840 1841 return 0; 1842 } 1843 1844 return -ESRCH; 1845 } 1846 1847 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1848 { 1849 struct kvm_irq_routing_entry e = {}; 1850 1851 assert(pin < s->gsi_count); 1852 1853 e.gsi = irq; 1854 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1855 e.flags = 0; 1856 e.u.irqchip.irqchip = irqchip; 1857 e.u.irqchip.pin = pin; 1858 kvm_add_routing_entry(s, &e); 1859 } 1860 1861 void kvm_irqchip_release_virq(KVMState *s, int virq) 1862 { 1863 struct kvm_irq_routing_entry *e; 1864 int i; 1865 1866 if (kvm_gsi_direct_mapping()) { 1867 return; 1868 } 1869 1870 for (i = 0; i < s->irq_routes->nr; i++) { 1871 e = &s->irq_routes->entries[i]; 1872 if (e->gsi == virq) { 1873 s->irq_routes->nr--; 1874 *e = s->irq_routes->entries[s->irq_routes->nr]; 1875 } 1876 } 1877 clear_gsi(s, virq); 1878 kvm_arch_release_virq_post(virq); 1879 trace_kvm_irqchip_release_virq(virq); 1880 } 1881 1882 void kvm_irqchip_add_change_notifier(Notifier *n) 1883 { 1884 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1885 } 1886 1887 void kvm_irqchip_remove_change_notifier(Notifier *n) 1888 { 1889 notifier_remove(n); 1890 } 1891 1892 void kvm_irqchip_change_notify(void) 1893 { 1894 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1895 } 1896 1897 static unsigned int kvm_hash_msi(uint32_t data) 1898 { 1899 /* This is optimized for IA32 MSI layout. However, no other arch shall 1900 * repeat the mistake of not providing a direct MSI injection API. */ 1901 return data & 0xff; 1902 } 1903 1904 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1905 { 1906 KVMMSIRoute *route, *next; 1907 unsigned int hash; 1908 1909 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1910 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1911 kvm_irqchip_release_virq(s, route->kroute.gsi); 1912 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1913 g_free(route); 1914 } 1915 } 1916 } 1917 1918 static int kvm_irqchip_get_virq(KVMState *s) 1919 { 1920 int next_virq; 1921 1922 /* 1923 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1924 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1925 * number can succeed even though a new route entry cannot be added. 1926 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1927 */ 1928 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1929 kvm_flush_dynamic_msi_routes(s); 1930 } 1931 1932 /* Return the lowest unused GSI in the bitmap */ 1933 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1934 if (next_virq >= s->gsi_count) { 1935 return -ENOSPC; 1936 } else { 1937 return next_virq; 1938 } 1939 } 1940 1941 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1942 { 1943 unsigned int hash = kvm_hash_msi(msg.data); 1944 KVMMSIRoute *route; 1945 1946 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1947 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1948 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1949 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1950 return route; 1951 } 1952 } 1953 return NULL; 1954 } 1955 1956 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1957 { 1958 struct kvm_msi msi; 1959 KVMMSIRoute *route; 1960 1961 if (kvm_direct_msi_allowed) { 1962 msi.address_lo = (uint32_t)msg.address; 1963 msi.address_hi = msg.address >> 32; 1964 msi.data = le32_to_cpu(msg.data); 1965 msi.flags = 0; 1966 memset(msi.pad, 0, sizeof(msi.pad)); 1967 1968 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1969 } 1970 1971 route = kvm_lookup_msi_route(s, msg); 1972 if (!route) { 1973 int virq; 1974 1975 virq = kvm_irqchip_get_virq(s); 1976 if (virq < 0) { 1977 return virq; 1978 } 1979 1980 route = g_new0(KVMMSIRoute, 1); 1981 route->kroute.gsi = virq; 1982 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1983 route->kroute.flags = 0; 1984 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1985 route->kroute.u.msi.address_hi = msg.address >> 32; 1986 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1987 1988 kvm_add_routing_entry(s, &route->kroute); 1989 kvm_irqchip_commit_routes(s); 1990 1991 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1992 entry); 1993 } 1994 1995 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1996 1997 return kvm_set_irq(s, route->kroute.gsi, 1); 1998 } 1999 2000 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2001 { 2002 struct kvm_irq_routing_entry kroute = {}; 2003 int virq; 2004 KVMState *s = c->s; 2005 MSIMessage msg = {0, 0}; 2006 2007 if (pci_available && dev) { 2008 msg = pci_get_msi_message(dev, vector); 2009 } 2010 2011 if (kvm_gsi_direct_mapping()) { 2012 return kvm_arch_msi_data_to_gsi(msg.data); 2013 } 2014 2015 if (!kvm_gsi_routing_enabled()) { 2016 return -ENOSYS; 2017 } 2018 2019 virq = kvm_irqchip_get_virq(s); 2020 if (virq < 0) { 2021 return virq; 2022 } 2023 2024 kroute.gsi = virq; 2025 kroute.type = KVM_IRQ_ROUTING_MSI; 2026 kroute.flags = 0; 2027 kroute.u.msi.address_lo = (uint32_t)msg.address; 2028 kroute.u.msi.address_hi = msg.address >> 32; 2029 kroute.u.msi.data = le32_to_cpu(msg.data); 2030 if (pci_available && kvm_msi_devid_required()) { 2031 kroute.flags = KVM_MSI_VALID_DEVID; 2032 kroute.u.msi.devid = pci_requester_id(dev); 2033 } 2034 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2035 kvm_irqchip_release_virq(s, virq); 2036 return -EINVAL; 2037 } 2038 2039 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2040 vector, virq); 2041 2042 kvm_add_routing_entry(s, &kroute); 2043 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2044 c->changes++; 2045 2046 return virq; 2047 } 2048 2049 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2050 PCIDevice *dev) 2051 { 2052 struct kvm_irq_routing_entry kroute = {}; 2053 2054 if (kvm_gsi_direct_mapping()) { 2055 return 0; 2056 } 2057 2058 if (!kvm_irqchip_in_kernel()) { 2059 return -ENOSYS; 2060 } 2061 2062 kroute.gsi = virq; 2063 kroute.type = KVM_IRQ_ROUTING_MSI; 2064 kroute.flags = 0; 2065 kroute.u.msi.address_lo = (uint32_t)msg.address; 2066 kroute.u.msi.address_hi = msg.address >> 32; 2067 kroute.u.msi.data = le32_to_cpu(msg.data); 2068 if (pci_available && kvm_msi_devid_required()) { 2069 kroute.flags = KVM_MSI_VALID_DEVID; 2070 kroute.u.msi.devid = pci_requester_id(dev); 2071 } 2072 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2073 return -EINVAL; 2074 } 2075 2076 trace_kvm_irqchip_update_msi_route(virq); 2077 2078 return kvm_update_routing_entry(s, &kroute); 2079 } 2080 2081 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2082 EventNotifier *resample, int virq, 2083 bool assign) 2084 { 2085 int fd = event_notifier_get_fd(event); 2086 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2087 2088 struct kvm_irqfd irqfd = { 2089 .fd = fd, 2090 .gsi = virq, 2091 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2092 }; 2093 2094 if (rfd != -1) { 2095 assert(assign); 2096 if (kvm_irqchip_is_split()) { 2097 /* 2098 * When the slow irqchip (e.g. IOAPIC) is in the 2099 * userspace, KVM kernel resamplefd will not work because 2100 * the EOI of the interrupt will be delivered to userspace 2101 * instead, so the KVM kernel resamplefd kick will be 2102 * skipped. The userspace here mimics what the kernel 2103 * provides with resamplefd, remember the resamplefd and 2104 * kick it when we receive EOI of this IRQ. 2105 * 2106 * This is hackery because IOAPIC is mostly bypassed 2107 * (except EOI broadcasts) when irqfd is used. However 2108 * this can bring much performance back for split irqchip 2109 * with INTx IRQs (for VFIO, this gives 93% perf of the 2110 * full fast path, which is 46% perf boost comparing to 2111 * the INTx slow path). 2112 */ 2113 kvm_resample_fd_insert(virq, resample); 2114 } else { 2115 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2116 irqfd.resamplefd = rfd; 2117 } 2118 } else if (!assign) { 2119 if (kvm_irqchip_is_split()) { 2120 kvm_resample_fd_remove(virq); 2121 } 2122 } 2123 2124 if (!kvm_irqfds_enabled()) { 2125 return -ENOSYS; 2126 } 2127 2128 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2129 } 2130 2131 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2132 { 2133 struct kvm_irq_routing_entry kroute = {}; 2134 int virq; 2135 2136 if (!kvm_gsi_routing_enabled()) { 2137 return -ENOSYS; 2138 } 2139 2140 virq = kvm_irqchip_get_virq(s); 2141 if (virq < 0) { 2142 return virq; 2143 } 2144 2145 kroute.gsi = virq; 2146 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2147 kroute.flags = 0; 2148 kroute.u.adapter.summary_addr = adapter->summary_addr; 2149 kroute.u.adapter.ind_addr = adapter->ind_addr; 2150 kroute.u.adapter.summary_offset = adapter->summary_offset; 2151 kroute.u.adapter.ind_offset = adapter->ind_offset; 2152 kroute.u.adapter.adapter_id = adapter->adapter_id; 2153 2154 kvm_add_routing_entry(s, &kroute); 2155 2156 return virq; 2157 } 2158 2159 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2160 { 2161 struct kvm_irq_routing_entry kroute = {}; 2162 int virq; 2163 2164 if (!kvm_gsi_routing_enabled()) { 2165 return -ENOSYS; 2166 } 2167 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2168 return -ENOSYS; 2169 } 2170 virq = kvm_irqchip_get_virq(s); 2171 if (virq < 0) { 2172 return virq; 2173 } 2174 2175 kroute.gsi = virq; 2176 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2177 kroute.flags = 0; 2178 kroute.u.hv_sint.vcpu = vcpu; 2179 kroute.u.hv_sint.sint = sint; 2180 2181 kvm_add_routing_entry(s, &kroute); 2182 kvm_irqchip_commit_routes(s); 2183 2184 return virq; 2185 } 2186 2187 #else /* !KVM_CAP_IRQ_ROUTING */ 2188 2189 void kvm_init_irq_routing(KVMState *s) 2190 { 2191 } 2192 2193 void kvm_irqchip_release_virq(KVMState *s, int virq) 2194 { 2195 } 2196 2197 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2198 { 2199 abort(); 2200 } 2201 2202 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2203 { 2204 return -ENOSYS; 2205 } 2206 2207 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2208 { 2209 return -ENOSYS; 2210 } 2211 2212 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2213 { 2214 return -ENOSYS; 2215 } 2216 2217 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2218 EventNotifier *resample, int virq, 2219 bool assign) 2220 { 2221 abort(); 2222 } 2223 2224 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2225 { 2226 return -ENOSYS; 2227 } 2228 #endif /* !KVM_CAP_IRQ_ROUTING */ 2229 2230 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2231 EventNotifier *rn, int virq) 2232 { 2233 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2234 } 2235 2236 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2237 int virq) 2238 { 2239 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2240 } 2241 2242 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2243 EventNotifier *rn, qemu_irq irq) 2244 { 2245 gpointer key, gsi; 2246 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2247 2248 if (!found) { 2249 return -ENXIO; 2250 } 2251 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2252 } 2253 2254 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2255 qemu_irq irq) 2256 { 2257 gpointer key, gsi; 2258 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2259 2260 if (!found) { 2261 return -ENXIO; 2262 } 2263 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2264 } 2265 2266 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2267 { 2268 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2269 } 2270 2271 static void kvm_irqchip_create(KVMState *s) 2272 { 2273 int ret; 2274 2275 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2276 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2277 ; 2278 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2279 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2280 if (ret < 0) { 2281 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2282 exit(1); 2283 } 2284 } else { 2285 return; 2286 } 2287 2288 /* First probe and see if there's a arch-specific hook to create the 2289 * in-kernel irqchip for us */ 2290 ret = kvm_arch_irqchip_create(s); 2291 if (ret == 0) { 2292 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2293 error_report("Split IRQ chip mode not supported."); 2294 exit(1); 2295 } else { 2296 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2297 } 2298 } 2299 if (ret < 0) { 2300 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2301 exit(1); 2302 } 2303 2304 kvm_kernel_irqchip = true; 2305 /* If we have an in-kernel IRQ chip then we must have asynchronous 2306 * interrupt delivery (though the reverse is not necessarily true) 2307 */ 2308 kvm_async_interrupts_allowed = true; 2309 kvm_halt_in_kernel_allowed = true; 2310 2311 kvm_init_irq_routing(s); 2312 2313 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2314 } 2315 2316 /* Find number of supported CPUs using the recommended 2317 * procedure from the kernel API documentation to cope with 2318 * older kernels that may be missing capabilities. 2319 */ 2320 static int kvm_recommended_vcpus(KVMState *s) 2321 { 2322 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2323 return (ret) ? ret : 4; 2324 } 2325 2326 static int kvm_max_vcpus(KVMState *s) 2327 { 2328 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2329 return (ret) ? ret : kvm_recommended_vcpus(s); 2330 } 2331 2332 static int kvm_max_vcpu_id(KVMState *s) 2333 { 2334 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2335 return (ret) ? ret : kvm_max_vcpus(s); 2336 } 2337 2338 bool kvm_vcpu_id_is_valid(int vcpu_id) 2339 { 2340 KVMState *s = KVM_STATE(current_accel()); 2341 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2342 } 2343 2344 bool kvm_dirty_ring_enabled(void) 2345 { 2346 return kvm_state->kvm_dirty_ring_size ? true : false; 2347 } 2348 2349 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2350 strList *names, strList *targets, Error **errp); 2351 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2352 2353 uint32_t kvm_dirty_ring_size(void) 2354 { 2355 return kvm_state->kvm_dirty_ring_size; 2356 } 2357 2358 static int kvm_init(MachineState *ms) 2359 { 2360 MachineClass *mc = MACHINE_GET_CLASS(ms); 2361 static const char upgrade_note[] = 2362 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2363 "(see http://sourceforge.net/projects/kvm).\n"; 2364 const struct { 2365 const char *name; 2366 int num; 2367 } num_cpus[] = { 2368 { "SMP", ms->smp.cpus }, 2369 { "hotpluggable", ms->smp.max_cpus }, 2370 { /* end of list */ } 2371 }, *nc = num_cpus; 2372 int soft_vcpus_limit, hard_vcpus_limit; 2373 KVMState *s; 2374 const KVMCapabilityInfo *missing_cap; 2375 int ret; 2376 int type = 0; 2377 uint64_t dirty_log_manual_caps; 2378 2379 qemu_mutex_init(&kml_slots_lock); 2380 2381 s = KVM_STATE(ms->accelerator); 2382 2383 /* 2384 * On systems where the kernel can support different base page 2385 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2386 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2387 * page size for the system though. 2388 */ 2389 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2390 2391 s->sigmask_len = 8; 2392 accel_blocker_init(); 2393 2394 #ifdef KVM_CAP_SET_GUEST_DEBUG 2395 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2396 #endif 2397 QLIST_INIT(&s->kvm_parked_vcpus); 2398 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2399 if (s->fd == -1) { 2400 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2401 ret = -errno; 2402 goto err; 2403 } 2404 2405 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2406 if (ret < KVM_API_VERSION) { 2407 if (ret >= 0) { 2408 ret = -EINVAL; 2409 } 2410 fprintf(stderr, "kvm version too old\n"); 2411 goto err; 2412 } 2413 2414 if (ret > KVM_API_VERSION) { 2415 ret = -EINVAL; 2416 fprintf(stderr, "kvm version not supported\n"); 2417 goto err; 2418 } 2419 2420 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2421 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2422 2423 /* If unspecified, use the default value */ 2424 if (!s->nr_slots) { 2425 s->nr_slots = 32; 2426 } 2427 2428 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2429 if (s->nr_as <= 1) { 2430 s->nr_as = 1; 2431 } 2432 s->as = g_new0(struct KVMAs, s->nr_as); 2433 2434 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2435 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2436 "kvm-type", 2437 &error_abort); 2438 type = mc->kvm_type(ms, kvm_type); 2439 } else if (mc->kvm_type) { 2440 type = mc->kvm_type(ms, NULL); 2441 } 2442 2443 do { 2444 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2445 } while (ret == -EINTR); 2446 2447 if (ret < 0) { 2448 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2449 strerror(-ret)); 2450 2451 #ifdef TARGET_S390X 2452 if (ret == -EINVAL) { 2453 fprintf(stderr, 2454 "Host kernel setup problem detected. Please verify:\n"); 2455 fprintf(stderr, "- for kernels supporting the switch_amode or" 2456 " user_mode parameters, whether\n"); 2457 fprintf(stderr, 2458 " user space is running in primary address space\n"); 2459 fprintf(stderr, 2460 "- for kernels supporting the vm.allocate_pgste sysctl, " 2461 "whether it is enabled\n"); 2462 } 2463 #elif defined(TARGET_PPC) 2464 if (ret == -EINVAL) { 2465 fprintf(stderr, 2466 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2467 (type == 2) ? "pr" : "hv"); 2468 } 2469 #endif 2470 goto err; 2471 } 2472 2473 s->vmfd = ret; 2474 2475 /* check the vcpu limits */ 2476 soft_vcpus_limit = kvm_recommended_vcpus(s); 2477 hard_vcpus_limit = kvm_max_vcpus(s); 2478 2479 while (nc->name) { 2480 if (nc->num > soft_vcpus_limit) { 2481 warn_report("Number of %s cpus requested (%d) exceeds " 2482 "the recommended cpus supported by KVM (%d)", 2483 nc->name, nc->num, soft_vcpus_limit); 2484 2485 if (nc->num > hard_vcpus_limit) { 2486 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2487 "the maximum cpus supported by KVM (%d)\n", 2488 nc->name, nc->num, hard_vcpus_limit); 2489 exit(1); 2490 } 2491 } 2492 nc++; 2493 } 2494 2495 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2496 if (!missing_cap) { 2497 missing_cap = 2498 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2499 } 2500 if (missing_cap) { 2501 ret = -EINVAL; 2502 fprintf(stderr, "kvm does not support %s\n%s", 2503 missing_cap->name, upgrade_note); 2504 goto err; 2505 } 2506 2507 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2508 s->coalesced_pio = s->coalesced_mmio && 2509 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2510 2511 /* 2512 * Enable KVM dirty ring if supported, otherwise fall back to 2513 * dirty logging mode 2514 */ 2515 if (s->kvm_dirty_ring_size > 0) { 2516 uint64_t ring_bytes; 2517 2518 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn); 2519 2520 /* Read the max supported pages */ 2521 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING); 2522 if (ret > 0) { 2523 if (ring_bytes > ret) { 2524 error_report("KVM dirty ring size %" PRIu32 " too big " 2525 "(maximum is %ld). Please use a smaller value.", 2526 s->kvm_dirty_ring_size, 2527 (long)ret / sizeof(struct kvm_dirty_gfn)); 2528 ret = -EINVAL; 2529 goto err; 2530 } 2531 2532 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes); 2533 if (ret) { 2534 error_report("Enabling of KVM dirty ring failed: %s. " 2535 "Suggested minimum value is 1024.", strerror(-ret)); 2536 goto err; 2537 } 2538 2539 s->kvm_dirty_ring_bytes = ring_bytes; 2540 } else { 2541 warn_report("KVM dirty ring not available, using bitmap method"); 2542 s->kvm_dirty_ring_size = 0; 2543 } 2544 } 2545 2546 /* 2547 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2548 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2549 * page is wr-protected initially, which is against how kvm dirty ring is 2550 * usage - kvm dirty ring requires all pages are wr-protected at the very 2551 * beginning. Enabling this feature for dirty ring causes data corruption. 2552 * 2553 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2554 * we may expect a higher stall time when starting the migration. In the 2555 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2556 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2557 * guest pages. 2558 */ 2559 if (!s->kvm_dirty_ring_size) { 2560 dirty_log_manual_caps = 2561 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2562 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2563 KVM_DIRTY_LOG_INITIALLY_SET); 2564 s->manual_dirty_log_protect = dirty_log_manual_caps; 2565 if (dirty_log_manual_caps) { 2566 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2567 dirty_log_manual_caps); 2568 if (ret) { 2569 warn_report("Trying to enable capability %"PRIu64" of " 2570 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2571 "Falling back to the legacy mode. ", 2572 dirty_log_manual_caps); 2573 s->manual_dirty_log_protect = 0; 2574 } 2575 } 2576 } 2577 2578 #ifdef KVM_CAP_VCPU_EVENTS 2579 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2580 #endif 2581 2582 s->robust_singlestep = 2583 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2584 2585 #ifdef KVM_CAP_DEBUGREGS 2586 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2587 #endif 2588 2589 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2590 2591 #ifdef KVM_CAP_IRQ_ROUTING 2592 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2593 #endif 2594 2595 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2596 2597 s->irq_set_ioctl = KVM_IRQ_LINE; 2598 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2599 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2600 } 2601 2602 kvm_readonly_mem_allowed = 2603 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2604 2605 kvm_eventfds_allowed = 2606 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2607 2608 kvm_irqfds_allowed = 2609 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2610 2611 kvm_resamplefds_allowed = 2612 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2613 2614 kvm_vm_attributes_allowed = 2615 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2616 2617 kvm_ioeventfd_any_length_allowed = 2618 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2619 2620 #ifdef KVM_CAP_SET_GUEST_DEBUG 2621 kvm_has_guest_debug = 2622 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2623 #endif 2624 2625 kvm_sstep_flags = 0; 2626 if (kvm_has_guest_debug) { 2627 kvm_sstep_flags = SSTEP_ENABLE; 2628 2629 #if defined KVM_CAP_SET_GUEST_DEBUG2 2630 int guest_debug_flags = 2631 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2632 2633 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2634 kvm_sstep_flags |= SSTEP_NOIRQ; 2635 } 2636 #endif 2637 } 2638 2639 kvm_state = s; 2640 2641 ret = kvm_arch_init(ms, s); 2642 if (ret < 0) { 2643 goto err; 2644 } 2645 2646 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2647 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2648 } 2649 2650 qemu_register_reset(kvm_unpoison_all, NULL); 2651 2652 if (s->kernel_irqchip_allowed) { 2653 kvm_irqchip_create(s); 2654 } 2655 2656 if (kvm_eventfds_allowed) { 2657 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2658 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2659 } 2660 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2661 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2662 2663 kvm_memory_listener_register(s, &s->memory_listener, 2664 &address_space_memory, 0, "kvm-memory"); 2665 if (kvm_eventfds_allowed) { 2666 memory_listener_register(&kvm_io_listener, 2667 &address_space_io); 2668 } 2669 memory_listener_register(&kvm_coalesced_pio_listener, 2670 &address_space_io); 2671 2672 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2673 2674 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2675 if (!s->sync_mmu) { 2676 ret = ram_block_discard_disable(true); 2677 assert(!ret); 2678 } 2679 2680 if (s->kvm_dirty_ring_size) { 2681 ret = kvm_dirty_ring_reaper_init(s); 2682 if (ret) { 2683 goto err; 2684 } 2685 } 2686 2687 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2688 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2689 query_stats_schemas_cb); 2690 } 2691 2692 return 0; 2693 2694 err: 2695 assert(ret < 0); 2696 if (s->vmfd >= 0) { 2697 close(s->vmfd); 2698 } 2699 if (s->fd != -1) { 2700 close(s->fd); 2701 } 2702 g_free(s->memory_listener.slots); 2703 2704 return ret; 2705 } 2706 2707 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2708 { 2709 s->sigmask_len = sigmask_len; 2710 } 2711 2712 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2713 int size, uint32_t count) 2714 { 2715 int i; 2716 uint8_t *ptr = data; 2717 2718 for (i = 0; i < count; i++) { 2719 address_space_rw(&address_space_io, port, attrs, 2720 ptr, size, 2721 direction == KVM_EXIT_IO_OUT); 2722 ptr += size; 2723 } 2724 } 2725 2726 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2727 { 2728 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2729 run->internal.suberror); 2730 2731 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2732 int i; 2733 2734 for (i = 0; i < run->internal.ndata; ++i) { 2735 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2736 i, (uint64_t)run->internal.data[i]); 2737 } 2738 } 2739 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2740 fprintf(stderr, "emulation failure\n"); 2741 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2742 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2743 return EXCP_INTERRUPT; 2744 } 2745 } 2746 /* FIXME: Should trigger a qmp message to let management know 2747 * something went wrong. 2748 */ 2749 return -1; 2750 } 2751 2752 void kvm_flush_coalesced_mmio_buffer(void) 2753 { 2754 KVMState *s = kvm_state; 2755 2756 if (s->coalesced_flush_in_progress) { 2757 return; 2758 } 2759 2760 s->coalesced_flush_in_progress = true; 2761 2762 if (s->coalesced_mmio_ring) { 2763 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2764 while (ring->first != ring->last) { 2765 struct kvm_coalesced_mmio *ent; 2766 2767 ent = &ring->coalesced_mmio[ring->first]; 2768 2769 if (ent->pio == 1) { 2770 address_space_write(&address_space_io, ent->phys_addr, 2771 MEMTXATTRS_UNSPECIFIED, ent->data, 2772 ent->len); 2773 } else { 2774 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2775 } 2776 smp_wmb(); 2777 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2778 } 2779 } 2780 2781 s->coalesced_flush_in_progress = false; 2782 } 2783 2784 bool kvm_cpu_check_are_resettable(void) 2785 { 2786 return kvm_arch_cpu_check_are_resettable(); 2787 } 2788 2789 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2790 { 2791 if (!cpu->vcpu_dirty) { 2792 kvm_arch_get_registers(cpu); 2793 cpu->vcpu_dirty = true; 2794 } 2795 } 2796 2797 void kvm_cpu_synchronize_state(CPUState *cpu) 2798 { 2799 if (!cpu->vcpu_dirty) { 2800 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2801 } 2802 } 2803 2804 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2805 { 2806 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2807 cpu->vcpu_dirty = false; 2808 } 2809 2810 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2811 { 2812 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2813 } 2814 2815 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2816 { 2817 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2818 cpu->vcpu_dirty = false; 2819 } 2820 2821 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2822 { 2823 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2824 } 2825 2826 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2827 { 2828 cpu->vcpu_dirty = true; 2829 } 2830 2831 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2832 { 2833 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2834 } 2835 2836 #ifdef KVM_HAVE_MCE_INJECTION 2837 static __thread void *pending_sigbus_addr; 2838 static __thread int pending_sigbus_code; 2839 static __thread bool have_sigbus_pending; 2840 #endif 2841 2842 static void kvm_cpu_kick(CPUState *cpu) 2843 { 2844 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2845 } 2846 2847 static void kvm_cpu_kick_self(void) 2848 { 2849 if (kvm_immediate_exit) { 2850 kvm_cpu_kick(current_cpu); 2851 } else { 2852 qemu_cpu_kick_self(); 2853 } 2854 } 2855 2856 static void kvm_eat_signals(CPUState *cpu) 2857 { 2858 struct timespec ts = { 0, 0 }; 2859 siginfo_t siginfo; 2860 sigset_t waitset; 2861 sigset_t chkset; 2862 int r; 2863 2864 if (kvm_immediate_exit) { 2865 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2866 /* Write kvm_run->immediate_exit before the cpu->exit_request 2867 * write in kvm_cpu_exec. 2868 */ 2869 smp_wmb(); 2870 return; 2871 } 2872 2873 sigemptyset(&waitset); 2874 sigaddset(&waitset, SIG_IPI); 2875 2876 do { 2877 r = sigtimedwait(&waitset, &siginfo, &ts); 2878 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2879 perror("sigtimedwait"); 2880 exit(1); 2881 } 2882 2883 r = sigpending(&chkset); 2884 if (r == -1) { 2885 perror("sigpending"); 2886 exit(1); 2887 } 2888 } while (sigismember(&chkset, SIG_IPI)); 2889 } 2890 2891 int kvm_cpu_exec(CPUState *cpu) 2892 { 2893 struct kvm_run *run = cpu->kvm_run; 2894 int ret, run_ret; 2895 2896 DPRINTF("kvm_cpu_exec()\n"); 2897 2898 if (kvm_arch_process_async_events(cpu)) { 2899 qatomic_set(&cpu->exit_request, 0); 2900 return EXCP_HLT; 2901 } 2902 2903 qemu_mutex_unlock_iothread(); 2904 cpu_exec_start(cpu); 2905 2906 do { 2907 MemTxAttrs attrs; 2908 2909 if (cpu->vcpu_dirty) { 2910 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2911 cpu->vcpu_dirty = false; 2912 } 2913 2914 kvm_arch_pre_run(cpu, run); 2915 if (qatomic_read(&cpu->exit_request)) { 2916 DPRINTF("interrupt exit requested\n"); 2917 /* 2918 * KVM requires us to reenter the kernel after IO exits to complete 2919 * instruction emulation. This self-signal will ensure that we 2920 * leave ASAP again. 2921 */ 2922 kvm_cpu_kick_self(); 2923 } 2924 2925 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2926 * Matching barrier in kvm_eat_signals. 2927 */ 2928 smp_rmb(); 2929 2930 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2931 2932 attrs = kvm_arch_post_run(cpu, run); 2933 2934 #ifdef KVM_HAVE_MCE_INJECTION 2935 if (unlikely(have_sigbus_pending)) { 2936 qemu_mutex_lock_iothread(); 2937 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2938 pending_sigbus_addr); 2939 have_sigbus_pending = false; 2940 qemu_mutex_unlock_iothread(); 2941 } 2942 #endif 2943 2944 if (run_ret < 0) { 2945 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2946 DPRINTF("io window exit\n"); 2947 kvm_eat_signals(cpu); 2948 ret = EXCP_INTERRUPT; 2949 break; 2950 } 2951 fprintf(stderr, "error: kvm run failed %s\n", 2952 strerror(-run_ret)); 2953 #ifdef TARGET_PPC 2954 if (run_ret == -EBUSY) { 2955 fprintf(stderr, 2956 "This is probably because your SMT is enabled.\n" 2957 "VCPU can only run on primary threads with all " 2958 "secondary threads offline.\n"); 2959 } 2960 #endif 2961 ret = -1; 2962 break; 2963 } 2964 2965 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2966 switch (run->exit_reason) { 2967 case KVM_EXIT_IO: 2968 DPRINTF("handle_io\n"); 2969 /* Called outside BQL */ 2970 kvm_handle_io(run->io.port, attrs, 2971 (uint8_t *)run + run->io.data_offset, 2972 run->io.direction, 2973 run->io.size, 2974 run->io.count); 2975 ret = 0; 2976 break; 2977 case KVM_EXIT_MMIO: 2978 DPRINTF("handle_mmio\n"); 2979 /* Called outside BQL */ 2980 address_space_rw(&address_space_memory, 2981 run->mmio.phys_addr, attrs, 2982 run->mmio.data, 2983 run->mmio.len, 2984 run->mmio.is_write); 2985 ret = 0; 2986 break; 2987 case KVM_EXIT_IRQ_WINDOW_OPEN: 2988 DPRINTF("irq_window_open\n"); 2989 ret = EXCP_INTERRUPT; 2990 break; 2991 case KVM_EXIT_SHUTDOWN: 2992 DPRINTF("shutdown\n"); 2993 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2994 ret = EXCP_INTERRUPT; 2995 break; 2996 case KVM_EXIT_UNKNOWN: 2997 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2998 (uint64_t)run->hw.hardware_exit_reason); 2999 ret = -1; 3000 break; 3001 case KVM_EXIT_INTERNAL_ERROR: 3002 ret = kvm_handle_internal_error(cpu, run); 3003 break; 3004 case KVM_EXIT_DIRTY_RING_FULL: 3005 /* 3006 * We shouldn't continue if the dirty ring of this vcpu is 3007 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3008 */ 3009 trace_kvm_dirty_ring_full(cpu->cpu_index); 3010 qemu_mutex_lock_iothread(); 3011 /* 3012 * We throttle vCPU by making it sleep once it exit from kernel 3013 * due to dirty ring full. In the dirtylimit scenario, reaping 3014 * all vCPUs after a single vCPU dirty ring get full result in 3015 * the miss of sleep, so just reap the ring-fulled vCPU. 3016 */ 3017 if (dirtylimit_in_service()) { 3018 kvm_dirty_ring_reap(kvm_state, cpu); 3019 } else { 3020 kvm_dirty_ring_reap(kvm_state, NULL); 3021 } 3022 qemu_mutex_unlock_iothread(); 3023 dirtylimit_vcpu_execute(cpu); 3024 ret = 0; 3025 break; 3026 case KVM_EXIT_SYSTEM_EVENT: 3027 switch (run->system_event.type) { 3028 case KVM_SYSTEM_EVENT_SHUTDOWN: 3029 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3030 ret = EXCP_INTERRUPT; 3031 break; 3032 case KVM_SYSTEM_EVENT_RESET: 3033 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3034 ret = EXCP_INTERRUPT; 3035 break; 3036 case KVM_SYSTEM_EVENT_CRASH: 3037 kvm_cpu_synchronize_state(cpu); 3038 qemu_mutex_lock_iothread(); 3039 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3040 qemu_mutex_unlock_iothread(); 3041 ret = 0; 3042 break; 3043 default: 3044 DPRINTF("kvm_arch_handle_exit\n"); 3045 ret = kvm_arch_handle_exit(cpu, run); 3046 break; 3047 } 3048 break; 3049 default: 3050 DPRINTF("kvm_arch_handle_exit\n"); 3051 ret = kvm_arch_handle_exit(cpu, run); 3052 break; 3053 } 3054 } while (ret == 0); 3055 3056 cpu_exec_end(cpu); 3057 qemu_mutex_lock_iothread(); 3058 3059 if (ret < 0) { 3060 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3061 vm_stop(RUN_STATE_INTERNAL_ERROR); 3062 } 3063 3064 qatomic_set(&cpu->exit_request, 0); 3065 return ret; 3066 } 3067 3068 int kvm_ioctl(KVMState *s, int type, ...) 3069 { 3070 int ret; 3071 void *arg; 3072 va_list ap; 3073 3074 va_start(ap, type); 3075 arg = va_arg(ap, void *); 3076 va_end(ap); 3077 3078 trace_kvm_ioctl(type, arg); 3079 ret = ioctl(s->fd, type, arg); 3080 if (ret == -1) { 3081 ret = -errno; 3082 } 3083 return ret; 3084 } 3085 3086 int kvm_vm_ioctl(KVMState *s, int type, ...) 3087 { 3088 int ret; 3089 void *arg; 3090 va_list ap; 3091 3092 va_start(ap, type); 3093 arg = va_arg(ap, void *); 3094 va_end(ap); 3095 3096 trace_kvm_vm_ioctl(type, arg); 3097 accel_ioctl_begin(); 3098 ret = ioctl(s->vmfd, type, arg); 3099 accel_ioctl_end(); 3100 if (ret == -1) { 3101 ret = -errno; 3102 } 3103 return ret; 3104 } 3105 3106 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3107 { 3108 int ret; 3109 void *arg; 3110 va_list ap; 3111 3112 va_start(ap, type); 3113 arg = va_arg(ap, void *); 3114 va_end(ap); 3115 3116 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3117 accel_cpu_ioctl_begin(cpu); 3118 ret = ioctl(cpu->kvm_fd, type, arg); 3119 accel_cpu_ioctl_end(cpu); 3120 if (ret == -1) { 3121 ret = -errno; 3122 } 3123 return ret; 3124 } 3125 3126 int kvm_device_ioctl(int fd, int type, ...) 3127 { 3128 int ret; 3129 void *arg; 3130 va_list ap; 3131 3132 va_start(ap, type); 3133 arg = va_arg(ap, void *); 3134 va_end(ap); 3135 3136 trace_kvm_device_ioctl(fd, type, arg); 3137 accel_ioctl_begin(); 3138 ret = ioctl(fd, type, arg); 3139 accel_ioctl_end(); 3140 if (ret == -1) { 3141 ret = -errno; 3142 } 3143 return ret; 3144 } 3145 3146 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3147 { 3148 int ret; 3149 struct kvm_device_attr attribute = { 3150 .group = group, 3151 .attr = attr, 3152 }; 3153 3154 if (!kvm_vm_attributes_allowed) { 3155 return 0; 3156 } 3157 3158 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3159 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3160 return ret ? 0 : 1; 3161 } 3162 3163 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3164 { 3165 struct kvm_device_attr attribute = { 3166 .group = group, 3167 .attr = attr, 3168 .flags = 0, 3169 }; 3170 3171 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3172 } 3173 3174 int kvm_device_access(int fd, int group, uint64_t attr, 3175 void *val, bool write, Error **errp) 3176 { 3177 struct kvm_device_attr kvmattr; 3178 int err; 3179 3180 kvmattr.flags = 0; 3181 kvmattr.group = group; 3182 kvmattr.attr = attr; 3183 kvmattr.addr = (uintptr_t)val; 3184 3185 err = kvm_device_ioctl(fd, 3186 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3187 &kvmattr); 3188 if (err < 0) { 3189 error_setg_errno(errp, -err, 3190 "KVM_%s_DEVICE_ATTR failed: Group %d " 3191 "attr 0x%016" PRIx64, 3192 write ? "SET" : "GET", group, attr); 3193 } 3194 return err; 3195 } 3196 3197 bool kvm_has_sync_mmu(void) 3198 { 3199 return kvm_state->sync_mmu; 3200 } 3201 3202 int kvm_has_vcpu_events(void) 3203 { 3204 return kvm_state->vcpu_events; 3205 } 3206 3207 int kvm_has_robust_singlestep(void) 3208 { 3209 return kvm_state->robust_singlestep; 3210 } 3211 3212 int kvm_has_debugregs(void) 3213 { 3214 return kvm_state->debugregs; 3215 } 3216 3217 int kvm_max_nested_state_length(void) 3218 { 3219 return kvm_state->max_nested_state_len; 3220 } 3221 3222 int kvm_has_many_ioeventfds(void) 3223 { 3224 if (!kvm_enabled()) { 3225 return 0; 3226 } 3227 return kvm_state->many_ioeventfds; 3228 } 3229 3230 int kvm_has_gsi_routing(void) 3231 { 3232 #ifdef KVM_CAP_IRQ_ROUTING 3233 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3234 #else 3235 return false; 3236 #endif 3237 } 3238 3239 int kvm_has_intx_set_mask(void) 3240 { 3241 return kvm_state->intx_set_mask; 3242 } 3243 3244 bool kvm_arm_supports_user_irq(void) 3245 { 3246 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3247 } 3248 3249 #ifdef KVM_CAP_SET_GUEST_DEBUG 3250 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3251 target_ulong pc) 3252 { 3253 struct kvm_sw_breakpoint *bp; 3254 3255 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3256 if (bp->pc == pc) { 3257 return bp; 3258 } 3259 } 3260 return NULL; 3261 } 3262 3263 int kvm_sw_breakpoints_active(CPUState *cpu) 3264 { 3265 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3266 } 3267 3268 struct kvm_set_guest_debug_data { 3269 struct kvm_guest_debug dbg; 3270 int err; 3271 }; 3272 3273 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3274 { 3275 struct kvm_set_guest_debug_data *dbg_data = 3276 (struct kvm_set_guest_debug_data *) data.host_ptr; 3277 3278 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3279 &dbg_data->dbg); 3280 } 3281 3282 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3283 { 3284 struct kvm_set_guest_debug_data data; 3285 3286 data.dbg.control = reinject_trap; 3287 3288 if (cpu->singlestep_enabled) { 3289 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3290 3291 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3292 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3293 } 3294 } 3295 kvm_arch_update_guest_debug(cpu, &data.dbg); 3296 3297 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3298 RUN_ON_CPU_HOST_PTR(&data)); 3299 return data.err; 3300 } 3301 3302 bool kvm_supports_guest_debug(void) 3303 { 3304 /* probed during kvm_init() */ 3305 return kvm_has_guest_debug; 3306 } 3307 3308 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3309 { 3310 struct kvm_sw_breakpoint *bp; 3311 int err; 3312 3313 if (type == GDB_BREAKPOINT_SW) { 3314 bp = kvm_find_sw_breakpoint(cpu, addr); 3315 if (bp) { 3316 bp->use_count++; 3317 return 0; 3318 } 3319 3320 bp = g_new(struct kvm_sw_breakpoint, 1); 3321 bp->pc = addr; 3322 bp->use_count = 1; 3323 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3324 if (err) { 3325 g_free(bp); 3326 return err; 3327 } 3328 3329 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3330 } else { 3331 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3332 if (err) { 3333 return err; 3334 } 3335 } 3336 3337 CPU_FOREACH(cpu) { 3338 err = kvm_update_guest_debug(cpu, 0); 3339 if (err) { 3340 return err; 3341 } 3342 } 3343 return 0; 3344 } 3345 3346 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3347 { 3348 struct kvm_sw_breakpoint *bp; 3349 int err; 3350 3351 if (type == GDB_BREAKPOINT_SW) { 3352 bp = kvm_find_sw_breakpoint(cpu, addr); 3353 if (!bp) { 3354 return -ENOENT; 3355 } 3356 3357 if (bp->use_count > 1) { 3358 bp->use_count--; 3359 return 0; 3360 } 3361 3362 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3363 if (err) { 3364 return err; 3365 } 3366 3367 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3368 g_free(bp); 3369 } else { 3370 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3371 if (err) { 3372 return err; 3373 } 3374 } 3375 3376 CPU_FOREACH(cpu) { 3377 err = kvm_update_guest_debug(cpu, 0); 3378 if (err) { 3379 return err; 3380 } 3381 } 3382 return 0; 3383 } 3384 3385 void kvm_remove_all_breakpoints(CPUState *cpu) 3386 { 3387 struct kvm_sw_breakpoint *bp, *next; 3388 KVMState *s = cpu->kvm_state; 3389 CPUState *tmpcpu; 3390 3391 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3392 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3393 /* Try harder to find a CPU that currently sees the breakpoint. */ 3394 CPU_FOREACH(tmpcpu) { 3395 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3396 break; 3397 } 3398 } 3399 } 3400 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3401 g_free(bp); 3402 } 3403 kvm_arch_remove_all_hw_breakpoints(); 3404 3405 CPU_FOREACH(cpu) { 3406 kvm_update_guest_debug(cpu, 0); 3407 } 3408 } 3409 3410 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3411 3412 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3413 { 3414 KVMState *s = kvm_state; 3415 struct kvm_signal_mask *sigmask; 3416 int r; 3417 3418 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3419 3420 sigmask->len = s->sigmask_len; 3421 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3422 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3423 g_free(sigmask); 3424 3425 return r; 3426 } 3427 3428 static void kvm_ipi_signal(int sig) 3429 { 3430 if (current_cpu) { 3431 assert(kvm_immediate_exit); 3432 kvm_cpu_kick(current_cpu); 3433 } 3434 } 3435 3436 void kvm_init_cpu_signals(CPUState *cpu) 3437 { 3438 int r; 3439 sigset_t set; 3440 struct sigaction sigact; 3441 3442 memset(&sigact, 0, sizeof(sigact)); 3443 sigact.sa_handler = kvm_ipi_signal; 3444 sigaction(SIG_IPI, &sigact, NULL); 3445 3446 pthread_sigmask(SIG_BLOCK, NULL, &set); 3447 #if defined KVM_HAVE_MCE_INJECTION 3448 sigdelset(&set, SIGBUS); 3449 pthread_sigmask(SIG_SETMASK, &set, NULL); 3450 #endif 3451 sigdelset(&set, SIG_IPI); 3452 if (kvm_immediate_exit) { 3453 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3454 } else { 3455 r = kvm_set_signal_mask(cpu, &set); 3456 } 3457 if (r) { 3458 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3459 exit(1); 3460 } 3461 } 3462 3463 /* Called asynchronously in VCPU thread. */ 3464 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3465 { 3466 #ifdef KVM_HAVE_MCE_INJECTION 3467 if (have_sigbus_pending) { 3468 return 1; 3469 } 3470 have_sigbus_pending = true; 3471 pending_sigbus_addr = addr; 3472 pending_sigbus_code = code; 3473 qatomic_set(&cpu->exit_request, 1); 3474 return 0; 3475 #else 3476 return 1; 3477 #endif 3478 } 3479 3480 /* Called synchronously (via signalfd) in main thread. */ 3481 int kvm_on_sigbus(int code, void *addr) 3482 { 3483 #ifdef KVM_HAVE_MCE_INJECTION 3484 /* Action required MCE kills the process if SIGBUS is blocked. Because 3485 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3486 * we can only get action optional here. 3487 */ 3488 assert(code != BUS_MCEERR_AR); 3489 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3490 return 0; 3491 #else 3492 return 1; 3493 #endif 3494 } 3495 3496 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3497 { 3498 int ret; 3499 struct kvm_create_device create_dev; 3500 3501 create_dev.type = type; 3502 create_dev.fd = -1; 3503 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3504 3505 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3506 return -ENOTSUP; 3507 } 3508 3509 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3510 if (ret) { 3511 return ret; 3512 } 3513 3514 return test ? 0 : create_dev.fd; 3515 } 3516 3517 bool kvm_device_supported(int vmfd, uint64_t type) 3518 { 3519 struct kvm_create_device create_dev = { 3520 .type = type, 3521 .fd = -1, 3522 .flags = KVM_CREATE_DEVICE_TEST, 3523 }; 3524 3525 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3526 return false; 3527 } 3528 3529 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3530 } 3531 3532 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3533 { 3534 struct kvm_one_reg reg; 3535 int r; 3536 3537 reg.id = id; 3538 reg.addr = (uintptr_t) source; 3539 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3540 if (r) { 3541 trace_kvm_failed_reg_set(id, strerror(-r)); 3542 } 3543 return r; 3544 } 3545 3546 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3547 { 3548 struct kvm_one_reg reg; 3549 int r; 3550 3551 reg.id = id; 3552 reg.addr = (uintptr_t) target; 3553 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3554 if (r) { 3555 trace_kvm_failed_reg_get(id, strerror(-r)); 3556 } 3557 return r; 3558 } 3559 3560 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3561 hwaddr start_addr, hwaddr size) 3562 { 3563 KVMState *kvm = KVM_STATE(ms->accelerator); 3564 int i; 3565 3566 for (i = 0; i < kvm->nr_as; ++i) { 3567 if (kvm->as[i].as == as && kvm->as[i].ml) { 3568 size = MIN(kvm_max_slot_size, size); 3569 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3570 start_addr, size); 3571 } 3572 } 3573 3574 return false; 3575 } 3576 3577 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3578 const char *name, void *opaque, 3579 Error **errp) 3580 { 3581 KVMState *s = KVM_STATE(obj); 3582 int64_t value = s->kvm_shadow_mem; 3583 3584 visit_type_int(v, name, &value, errp); 3585 } 3586 3587 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3588 const char *name, void *opaque, 3589 Error **errp) 3590 { 3591 KVMState *s = KVM_STATE(obj); 3592 int64_t value; 3593 3594 if (s->fd != -1) { 3595 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3596 return; 3597 } 3598 3599 if (!visit_type_int(v, name, &value, errp)) { 3600 return; 3601 } 3602 3603 s->kvm_shadow_mem = value; 3604 } 3605 3606 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3607 const char *name, void *opaque, 3608 Error **errp) 3609 { 3610 KVMState *s = KVM_STATE(obj); 3611 OnOffSplit mode; 3612 3613 if (s->fd != -1) { 3614 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3615 return; 3616 } 3617 3618 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3619 return; 3620 } 3621 switch (mode) { 3622 case ON_OFF_SPLIT_ON: 3623 s->kernel_irqchip_allowed = true; 3624 s->kernel_irqchip_required = true; 3625 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3626 break; 3627 case ON_OFF_SPLIT_OFF: 3628 s->kernel_irqchip_allowed = false; 3629 s->kernel_irqchip_required = false; 3630 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3631 break; 3632 case ON_OFF_SPLIT_SPLIT: 3633 s->kernel_irqchip_allowed = true; 3634 s->kernel_irqchip_required = true; 3635 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3636 break; 3637 default: 3638 /* The value was checked in visit_type_OnOffSplit() above. If 3639 * we get here, then something is wrong in QEMU. 3640 */ 3641 abort(); 3642 } 3643 } 3644 3645 bool kvm_kernel_irqchip_allowed(void) 3646 { 3647 return kvm_state->kernel_irqchip_allowed; 3648 } 3649 3650 bool kvm_kernel_irqchip_required(void) 3651 { 3652 return kvm_state->kernel_irqchip_required; 3653 } 3654 3655 bool kvm_kernel_irqchip_split(void) 3656 { 3657 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3658 } 3659 3660 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3661 const char *name, void *opaque, 3662 Error **errp) 3663 { 3664 KVMState *s = KVM_STATE(obj); 3665 uint32_t value = s->kvm_dirty_ring_size; 3666 3667 visit_type_uint32(v, name, &value, errp); 3668 } 3669 3670 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3671 const char *name, void *opaque, 3672 Error **errp) 3673 { 3674 KVMState *s = KVM_STATE(obj); 3675 uint32_t value; 3676 3677 if (s->fd != -1) { 3678 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3679 return; 3680 } 3681 3682 if (!visit_type_uint32(v, name, &value, errp)) { 3683 return; 3684 } 3685 if (value & (value - 1)) { 3686 error_setg(errp, "dirty-ring-size must be a power of two."); 3687 return; 3688 } 3689 3690 s->kvm_dirty_ring_size = value; 3691 } 3692 3693 static void kvm_accel_instance_init(Object *obj) 3694 { 3695 KVMState *s = KVM_STATE(obj); 3696 3697 s->fd = -1; 3698 s->vmfd = -1; 3699 s->kvm_shadow_mem = -1; 3700 s->kernel_irqchip_allowed = true; 3701 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3702 /* KVM dirty ring is by default off */ 3703 s->kvm_dirty_ring_size = 0; 3704 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3705 s->notify_window = 0; 3706 s->xen_version = 0; 3707 s->xen_gnttab_max_frames = 64; 3708 s->xen_evtchn_max_pirq = 256; 3709 } 3710 3711 /** 3712 * kvm_gdbstub_sstep_flags(): 3713 * 3714 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3715 * support is probed during kvm_init() 3716 */ 3717 static int kvm_gdbstub_sstep_flags(void) 3718 { 3719 return kvm_sstep_flags; 3720 } 3721 3722 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3723 { 3724 AccelClass *ac = ACCEL_CLASS(oc); 3725 ac->name = "KVM"; 3726 ac->init_machine = kvm_init; 3727 ac->has_memory = kvm_accel_has_memory; 3728 ac->allowed = &kvm_allowed; 3729 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3730 3731 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3732 NULL, kvm_set_kernel_irqchip, 3733 NULL, NULL); 3734 object_class_property_set_description(oc, "kernel-irqchip", 3735 "Configure KVM in-kernel irqchip"); 3736 3737 object_class_property_add(oc, "kvm-shadow-mem", "int", 3738 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3739 NULL, NULL); 3740 object_class_property_set_description(oc, "kvm-shadow-mem", 3741 "KVM shadow MMU size"); 3742 3743 object_class_property_add(oc, "dirty-ring-size", "uint32", 3744 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3745 NULL, NULL); 3746 object_class_property_set_description(oc, "dirty-ring-size", 3747 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3748 3749 kvm_arch_accel_class_init(oc); 3750 } 3751 3752 static const TypeInfo kvm_accel_type = { 3753 .name = TYPE_KVM_ACCEL, 3754 .parent = TYPE_ACCEL, 3755 .instance_init = kvm_accel_instance_init, 3756 .class_init = kvm_accel_class_init, 3757 .instance_size = sizeof(KVMState), 3758 }; 3759 3760 static void kvm_type_init(void) 3761 { 3762 type_register_static(&kvm_accel_type); 3763 } 3764 3765 type_init(kvm_type_init); 3766 3767 typedef struct StatsArgs { 3768 union StatsResultsType { 3769 StatsResultList **stats; 3770 StatsSchemaList **schema; 3771 } result; 3772 strList *names; 3773 Error **errp; 3774 } StatsArgs; 3775 3776 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3777 uint64_t *stats_data, 3778 StatsList *stats_list, 3779 Error **errp) 3780 { 3781 3782 Stats *stats; 3783 uint64List *val_list = NULL; 3784 3785 /* Only add stats that we understand. */ 3786 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3787 case KVM_STATS_TYPE_CUMULATIVE: 3788 case KVM_STATS_TYPE_INSTANT: 3789 case KVM_STATS_TYPE_PEAK: 3790 case KVM_STATS_TYPE_LINEAR_HIST: 3791 case KVM_STATS_TYPE_LOG_HIST: 3792 break; 3793 default: 3794 return stats_list; 3795 } 3796 3797 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3798 case KVM_STATS_UNIT_NONE: 3799 case KVM_STATS_UNIT_BYTES: 3800 case KVM_STATS_UNIT_CYCLES: 3801 case KVM_STATS_UNIT_SECONDS: 3802 case KVM_STATS_UNIT_BOOLEAN: 3803 break; 3804 default: 3805 return stats_list; 3806 } 3807 3808 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3809 case KVM_STATS_BASE_POW10: 3810 case KVM_STATS_BASE_POW2: 3811 break; 3812 default: 3813 return stats_list; 3814 } 3815 3816 /* Alloc and populate data list */ 3817 stats = g_new0(Stats, 1); 3818 stats->name = g_strdup(pdesc->name); 3819 stats->value = g_new0(StatsValue, 1);; 3820 3821 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3822 stats->value->u.boolean = *stats_data; 3823 stats->value->type = QTYPE_QBOOL; 3824 } else if (pdesc->size == 1) { 3825 stats->value->u.scalar = *stats_data; 3826 stats->value->type = QTYPE_QNUM; 3827 } else { 3828 int i; 3829 for (i = 0; i < pdesc->size; i++) { 3830 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3831 } 3832 stats->value->u.list = val_list; 3833 stats->value->type = QTYPE_QLIST; 3834 } 3835 3836 QAPI_LIST_PREPEND(stats_list, stats); 3837 return stats_list; 3838 } 3839 3840 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3841 StatsSchemaValueList *list, 3842 Error **errp) 3843 { 3844 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3845 schema_entry->value = g_new0(StatsSchemaValue, 1); 3846 3847 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3848 case KVM_STATS_TYPE_CUMULATIVE: 3849 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3850 break; 3851 case KVM_STATS_TYPE_INSTANT: 3852 schema_entry->value->type = STATS_TYPE_INSTANT; 3853 break; 3854 case KVM_STATS_TYPE_PEAK: 3855 schema_entry->value->type = STATS_TYPE_PEAK; 3856 break; 3857 case KVM_STATS_TYPE_LINEAR_HIST: 3858 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3859 schema_entry->value->bucket_size = pdesc->bucket_size; 3860 schema_entry->value->has_bucket_size = true; 3861 break; 3862 case KVM_STATS_TYPE_LOG_HIST: 3863 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3864 break; 3865 default: 3866 goto exit; 3867 } 3868 3869 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3870 case KVM_STATS_UNIT_NONE: 3871 break; 3872 case KVM_STATS_UNIT_BOOLEAN: 3873 schema_entry->value->has_unit = true; 3874 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3875 break; 3876 case KVM_STATS_UNIT_BYTES: 3877 schema_entry->value->has_unit = true; 3878 schema_entry->value->unit = STATS_UNIT_BYTES; 3879 break; 3880 case KVM_STATS_UNIT_CYCLES: 3881 schema_entry->value->has_unit = true; 3882 schema_entry->value->unit = STATS_UNIT_CYCLES; 3883 break; 3884 case KVM_STATS_UNIT_SECONDS: 3885 schema_entry->value->has_unit = true; 3886 schema_entry->value->unit = STATS_UNIT_SECONDS; 3887 break; 3888 default: 3889 goto exit; 3890 } 3891 3892 schema_entry->value->exponent = pdesc->exponent; 3893 if (pdesc->exponent) { 3894 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3895 case KVM_STATS_BASE_POW10: 3896 schema_entry->value->has_base = true; 3897 schema_entry->value->base = 10; 3898 break; 3899 case KVM_STATS_BASE_POW2: 3900 schema_entry->value->has_base = true; 3901 schema_entry->value->base = 2; 3902 break; 3903 default: 3904 goto exit; 3905 } 3906 } 3907 3908 schema_entry->value->name = g_strdup(pdesc->name); 3909 schema_entry->next = list; 3910 return schema_entry; 3911 exit: 3912 g_free(schema_entry->value); 3913 g_free(schema_entry); 3914 return list; 3915 } 3916 3917 /* Cached stats descriptors */ 3918 typedef struct StatsDescriptors { 3919 const char *ident; /* cache key, currently the StatsTarget */ 3920 struct kvm_stats_desc *kvm_stats_desc; 3921 struct kvm_stats_header kvm_stats_header; 3922 QTAILQ_ENTRY(StatsDescriptors) next; 3923 } StatsDescriptors; 3924 3925 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3926 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3927 3928 /* 3929 * Return the descriptors for 'target', that either have already been read 3930 * or are retrieved from 'stats_fd'. 3931 */ 3932 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3933 Error **errp) 3934 { 3935 StatsDescriptors *descriptors; 3936 const char *ident; 3937 struct kvm_stats_desc *kvm_stats_desc; 3938 struct kvm_stats_header *kvm_stats_header; 3939 size_t size_desc; 3940 ssize_t ret; 3941 3942 ident = StatsTarget_str(target); 3943 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 3944 if (g_str_equal(descriptors->ident, ident)) { 3945 return descriptors; 3946 } 3947 } 3948 3949 descriptors = g_new0(StatsDescriptors, 1); 3950 3951 /* Read stats header */ 3952 kvm_stats_header = &descriptors->kvm_stats_header; 3953 ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header)); 3954 if (ret != sizeof(*kvm_stats_header)) { 3955 error_setg(errp, "KVM stats: failed to read stats header: " 3956 "expected %zu actual %zu", 3957 sizeof(*kvm_stats_header), ret); 3958 g_free(descriptors); 3959 return NULL; 3960 } 3961 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3962 3963 /* Read stats descriptors */ 3964 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 3965 ret = pread(stats_fd, kvm_stats_desc, 3966 size_desc * kvm_stats_header->num_desc, 3967 kvm_stats_header->desc_offset); 3968 3969 if (ret != size_desc * kvm_stats_header->num_desc) { 3970 error_setg(errp, "KVM stats: failed to read stats descriptors: " 3971 "expected %zu actual %zu", 3972 size_desc * kvm_stats_header->num_desc, ret); 3973 g_free(descriptors); 3974 g_free(kvm_stats_desc); 3975 return NULL; 3976 } 3977 descriptors->kvm_stats_desc = kvm_stats_desc; 3978 descriptors->ident = ident; 3979 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 3980 return descriptors; 3981 } 3982 3983 static void query_stats(StatsResultList **result, StatsTarget target, 3984 strList *names, int stats_fd, Error **errp) 3985 { 3986 struct kvm_stats_desc *kvm_stats_desc; 3987 struct kvm_stats_header *kvm_stats_header; 3988 StatsDescriptors *descriptors; 3989 g_autofree uint64_t *stats_data = NULL; 3990 struct kvm_stats_desc *pdesc; 3991 StatsList *stats_list = NULL; 3992 size_t size_desc, size_data = 0; 3993 ssize_t ret; 3994 int i; 3995 3996 descriptors = find_stats_descriptors(target, stats_fd, errp); 3997 if (!descriptors) { 3998 return; 3999 } 4000 4001 kvm_stats_header = &descriptors->kvm_stats_header; 4002 kvm_stats_desc = descriptors->kvm_stats_desc; 4003 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4004 4005 /* Tally the total data size; read schema data */ 4006 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4007 pdesc = (void *)kvm_stats_desc + i * size_desc; 4008 size_data += pdesc->size * sizeof(*stats_data); 4009 } 4010 4011 stats_data = g_malloc0(size_data); 4012 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4013 4014 if (ret != size_data) { 4015 error_setg(errp, "KVM stats: failed to read data: " 4016 "expected %zu actual %zu", size_data, ret); 4017 return; 4018 } 4019 4020 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4021 uint64_t *stats; 4022 pdesc = (void *)kvm_stats_desc + i * size_desc; 4023 4024 /* Add entry to the list */ 4025 stats = (void *)stats_data + pdesc->offset; 4026 if (!apply_str_list_filter(pdesc->name, names)) { 4027 continue; 4028 } 4029 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4030 } 4031 4032 if (!stats_list) { 4033 return; 4034 } 4035 4036 switch (target) { 4037 case STATS_TARGET_VM: 4038 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4039 break; 4040 case STATS_TARGET_VCPU: 4041 add_stats_entry(result, STATS_PROVIDER_KVM, 4042 current_cpu->parent_obj.canonical_path, 4043 stats_list); 4044 break; 4045 default: 4046 g_assert_not_reached(); 4047 } 4048 } 4049 4050 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4051 int stats_fd, Error **errp) 4052 { 4053 struct kvm_stats_desc *kvm_stats_desc; 4054 struct kvm_stats_header *kvm_stats_header; 4055 StatsDescriptors *descriptors; 4056 struct kvm_stats_desc *pdesc; 4057 StatsSchemaValueList *stats_list = NULL; 4058 size_t size_desc; 4059 int i; 4060 4061 descriptors = find_stats_descriptors(target, stats_fd, errp); 4062 if (!descriptors) { 4063 return; 4064 } 4065 4066 kvm_stats_header = &descriptors->kvm_stats_header; 4067 kvm_stats_desc = descriptors->kvm_stats_desc; 4068 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4069 4070 /* Tally the total data size; read schema data */ 4071 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4072 pdesc = (void *)kvm_stats_desc + i * size_desc; 4073 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4074 } 4075 4076 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4077 } 4078 4079 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data) 4080 { 4081 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; 4082 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 4083 Error *local_err = NULL; 4084 4085 if (stats_fd == -1) { 4086 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4087 error_propagate(kvm_stats_args->errp, local_err); 4088 return; 4089 } 4090 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4091 kvm_stats_args->names, stats_fd, kvm_stats_args->errp); 4092 close(stats_fd); 4093 } 4094 4095 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data) 4096 { 4097 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; 4098 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 4099 Error *local_err = NULL; 4100 4101 if (stats_fd == -1) { 4102 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4103 error_propagate(kvm_stats_args->errp, local_err); 4104 return; 4105 } 4106 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4107 kvm_stats_args->errp); 4108 close(stats_fd); 4109 } 4110 4111 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4112 strList *names, strList *targets, Error **errp) 4113 { 4114 KVMState *s = kvm_state; 4115 CPUState *cpu; 4116 int stats_fd; 4117 4118 switch (target) { 4119 case STATS_TARGET_VM: 4120 { 4121 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4122 if (stats_fd == -1) { 4123 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4124 return; 4125 } 4126 query_stats(result, target, names, stats_fd, errp); 4127 close(stats_fd); 4128 break; 4129 } 4130 case STATS_TARGET_VCPU: 4131 { 4132 StatsArgs stats_args; 4133 stats_args.result.stats = result; 4134 stats_args.names = names; 4135 stats_args.errp = errp; 4136 CPU_FOREACH(cpu) { 4137 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4138 continue; 4139 } 4140 run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); 4141 } 4142 break; 4143 } 4144 default: 4145 break; 4146 } 4147 } 4148 4149 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4150 { 4151 StatsArgs stats_args; 4152 KVMState *s = kvm_state; 4153 int stats_fd; 4154 4155 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4156 if (stats_fd == -1) { 4157 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4158 return; 4159 } 4160 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4161 close(stats_fd); 4162 4163 if (first_cpu) { 4164 stats_args.result.schema = result; 4165 stats_args.errp = errp; 4166 run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); 4167 } 4168 } 4169