1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu-common.h" 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/hw.h" 28 #include "hw/pci/msi.h" 29 #include "hw/pci/msix.h" 30 #include "hw/s390x/adapter.h" 31 #include "exec/gdbstub.h" 32 #include "sysemu/kvm_int.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 42 #include "hw/boards.h" 43 44 /* This check must be after config-host.h is included */ 45 #ifdef CONFIG_EVENTFD 46 #include <sys/eventfd.h> 47 #endif 48 49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 50 * need to use the real host PAGE_SIZE, as that's what KVM will use. 51 */ 52 #define PAGE_SIZE getpagesize() 53 54 //#define DEBUG_KVM 55 56 #ifdef DEBUG_KVM 57 #define DPRINTF(fmt, ...) \ 58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 59 #else 60 #define DPRINTF(fmt, ...) \ 61 do { } while (0) 62 #endif 63 64 #define KVM_MSI_HASHTAB_SIZE 256 65 66 struct KVMParkedVcpu { 67 unsigned long vcpu_id; 68 int kvm_fd; 69 QLIST_ENTRY(KVMParkedVcpu) node; 70 }; 71 72 struct KVMState 73 { 74 AccelState parent_obj; 75 76 int nr_slots; 77 int fd; 78 int vmfd; 79 int coalesced_mmio; 80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 81 bool coalesced_flush_in_progress; 82 int vcpu_events; 83 int robust_singlestep; 84 int debugregs; 85 #ifdef KVM_CAP_SET_GUEST_DEBUG 86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints; 87 #endif 88 int many_ioeventfds; 89 int intx_set_mask; 90 /* The man page (and posix) say ioctl numbers are signed int, but 91 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 92 * unsigned, and treating them as signed here can break things */ 93 unsigned irq_set_ioctl; 94 unsigned int sigmask_len; 95 GHashTable *gsimap; 96 #ifdef KVM_CAP_IRQ_ROUTING 97 struct kvm_irq_routing *irq_routes; 98 int nr_allocated_irq_routes; 99 unsigned long *used_gsi_bitmap; 100 unsigned int gsi_count; 101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 102 #endif 103 KVMMemoryListener memory_listener; 104 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 105 }; 106 107 KVMState *kvm_state; 108 bool kvm_kernel_irqchip; 109 bool kvm_split_irqchip; 110 bool kvm_async_interrupts_allowed; 111 bool kvm_halt_in_kernel_allowed; 112 bool kvm_eventfds_allowed; 113 bool kvm_irqfds_allowed; 114 bool kvm_resamplefds_allowed; 115 bool kvm_msi_via_irqfd_allowed; 116 bool kvm_gsi_routing_allowed; 117 bool kvm_gsi_direct_mapping; 118 bool kvm_allowed; 119 bool kvm_readonly_mem_allowed; 120 bool kvm_vm_attributes_allowed; 121 bool kvm_direct_msi_allowed; 122 bool kvm_ioeventfd_any_length_allowed; 123 bool kvm_msi_use_devid; 124 static bool kvm_immediate_exit; 125 126 static const KVMCapabilityInfo kvm_required_capabilites[] = { 127 KVM_CAP_INFO(USER_MEMORY), 128 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 129 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 130 KVM_CAP_LAST_INFO 131 }; 132 133 int kvm_get_max_memslots(void) 134 { 135 KVMState *s = KVM_STATE(current_machine->accelerator); 136 137 return s->nr_slots; 138 } 139 140 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 141 { 142 KVMState *s = kvm_state; 143 int i; 144 145 for (i = 0; i < s->nr_slots; i++) { 146 if (kml->slots[i].memory_size == 0) { 147 return &kml->slots[i]; 148 } 149 } 150 151 return NULL; 152 } 153 154 bool kvm_has_free_slot(MachineState *ms) 155 { 156 KVMState *s = KVM_STATE(ms->accelerator); 157 158 return kvm_get_free_slot(&s->memory_listener); 159 } 160 161 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 162 { 163 KVMSlot *slot = kvm_get_free_slot(kml); 164 165 if (slot) { 166 return slot; 167 } 168 169 fprintf(stderr, "%s: no free slot available\n", __func__); 170 abort(); 171 } 172 173 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 174 hwaddr start_addr, 175 hwaddr size) 176 { 177 KVMState *s = kvm_state; 178 int i; 179 180 for (i = 0; i < s->nr_slots; i++) { 181 KVMSlot *mem = &kml->slots[i]; 182 183 if (start_addr == mem->start_addr && size == mem->memory_size) { 184 return mem; 185 } 186 } 187 188 return NULL; 189 } 190 191 /* 192 * Calculate and align the start address and the size of the section. 193 * Return the size. If the size is 0, the aligned section is empty. 194 */ 195 static hwaddr kvm_align_section(MemoryRegionSection *section, 196 hwaddr *start) 197 { 198 hwaddr size = int128_get64(section->size); 199 hwaddr delta; 200 201 *start = section->offset_within_address_space; 202 203 /* kvm works in page size chunks, but the function may be called 204 with sub-page size and unaligned start address. Pad the start 205 address to next and truncate size to previous page boundary. */ 206 delta = qemu_real_host_page_size - (*start & ~qemu_real_host_page_mask); 207 delta &= ~qemu_real_host_page_mask; 208 *start += delta; 209 if (delta > size) { 210 return 0; 211 } 212 size -= delta; 213 size &= qemu_real_host_page_mask; 214 if (*start & ~qemu_real_host_page_mask) { 215 return 0; 216 } 217 218 return size; 219 } 220 221 /* 222 * Find overlapping slot with lowest start address 223 */ 224 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml, 225 hwaddr start_addr, 226 hwaddr end_addr) 227 { 228 KVMState *s = kvm_state; 229 KVMSlot *found = NULL; 230 int i; 231 232 for (i = 0; i < s->nr_slots; i++) { 233 KVMSlot *mem = &kml->slots[i]; 234 235 if (mem->memory_size == 0 || 236 (found && found->start_addr < mem->start_addr)) { 237 continue; 238 } 239 240 if (end_addr > mem->start_addr && 241 start_addr < mem->start_addr + mem->memory_size) { 242 found = mem; 243 } 244 } 245 246 return found; 247 } 248 249 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 250 hwaddr *phys_addr) 251 { 252 KVMMemoryListener *kml = &s->memory_listener; 253 int i; 254 255 for (i = 0; i < s->nr_slots; i++) { 256 KVMSlot *mem = &kml->slots[i]; 257 258 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 259 *phys_addr = mem->start_addr + (ram - mem->ram); 260 return 1; 261 } 262 } 263 264 return 0; 265 } 266 267 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot) 268 { 269 KVMState *s = kvm_state; 270 struct kvm_userspace_memory_region mem; 271 272 mem.slot = slot->slot | (kml->as_id << 16); 273 mem.guest_phys_addr = slot->start_addr; 274 mem.userspace_addr = (unsigned long)slot->ram; 275 mem.flags = slot->flags; 276 277 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { 278 /* Set the slot size to 0 before setting the slot to the desired 279 * value. This is needed based on KVM commit 75d61fbc. */ 280 mem.memory_size = 0; 281 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 282 } 283 mem.memory_size = slot->memory_size; 284 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 285 } 286 287 int kvm_destroy_vcpu(CPUState *cpu) 288 { 289 KVMState *s = kvm_state; 290 long mmap_size; 291 struct KVMParkedVcpu *vcpu = NULL; 292 int ret = 0; 293 294 DPRINTF("kvm_destroy_vcpu\n"); 295 296 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 297 if (mmap_size < 0) { 298 ret = mmap_size; 299 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 300 goto err; 301 } 302 303 ret = munmap(cpu->kvm_run, mmap_size); 304 if (ret < 0) { 305 goto err; 306 } 307 308 vcpu = g_malloc0(sizeof(*vcpu)); 309 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 310 vcpu->kvm_fd = cpu->kvm_fd; 311 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 312 err: 313 return ret; 314 } 315 316 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 317 { 318 struct KVMParkedVcpu *cpu; 319 320 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 321 if (cpu->vcpu_id == vcpu_id) { 322 int kvm_fd; 323 324 QLIST_REMOVE(cpu, node); 325 kvm_fd = cpu->kvm_fd; 326 g_free(cpu); 327 return kvm_fd; 328 } 329 } 330 331 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 332 } 333 334 int kvm_init_vcpu(CPUState *cpu) 335 { 336 KVMState *s = kvm_state; 337 long mmap_size; 338 int ret; 339 340 DPRINTF("kvm_init_vcpu\n"); 341 342 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 343 if (ret < 0) { 344 DPRINTF("kvm_create_vcpu failed\n"); 345 goto err; 346 } 347 348 cpu->kvm_fd = ret; 349 cpu->kvm_state = s; 350 cpu->vcpu_dirty = true; 351 352 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 353 if (mmap_size < 0) { 354 ret = mmap_size; 355 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 356 goto err; 357 } 358 359 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 360 cpu->kvm_fd, 0); 361 if (cpu->kvm_run == MAP_FAILED) { 362 ret = -errno; 363 DPRINTF("mmap'ing vcpu state failed\n"); 364 goto err; 365 } 366 367 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 368 s->coalesced_mmio_ring = 369 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 370 } 371 372 ret = kvm_arch_init_vcpu(cpu); 373 err: 374 return ret; 375 } 376 377 /* 378 * dirty pages logging control 379 */ 380 381 static int kvm_mem_flags(MemoryRegion *mr) 382 { 383 bool readonly = mr->readonly || memory_region_is_romd(mr); 384 int flags = 0; 385 386 if (memory_region_get_dirty_log_mask(mr) != 0) { 387 flags |= KVM_MEM_LOG_DIRTY_PAGES; 388 } 389 if (readonly && kvm_readonly_mem_allowed) { 390 flags |= KVM_MEM_READONLY; 391 } 392 return flags; 393 } 394 395 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 396 MemoryRegion *mr) 397 { 398 int old_flags; 399 400 old_flags = mem->flags; 401 mem->flags = kvm_mem_flags(mr); 402 403 /* If nothing changed effectively, no need to issue ioctl */ 404 if (mem->flags == old_flags) { 405 return 0; 406 } 407 408 return kvm_set_user_memory_region(kml, mem); 409 } 410 411 static int kvm_section_update_flags(KVMMemoryListener *kml, 412 MemoryRegionSection *section) 413 { 414 hwaddr phys_addr = section->offset_within_address_space; 415 ram_addr_t size = int128_get64(section->size); 416 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, size); 417 418 if (mem == NULL) { 419 return 0; 420 } else { 421 return kvm_slot_update_flags(kml, mem, section->mr); 422 } 423 } 424 425 static void kvm_log_start(MemoryListener *listener, 426 MemoryRegionSection *section, 427 int old, int new) 428 { 429 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 430 int r; 431 432 if (old != 0) { 433 return; 434 } 435 436 r = kvm_section_update_flags(kml, section); 437 if (r < 0) { 438 abort(); 439 } 440 } 441 442 static void kvm_log_stop(MemoryListener *listener, 443 MemoryRegionSection *section, 444 int old, int new) 445 { 446 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 447 int r; 448 449 if (new != 0) { 450 return; 451 } 452 453 r = kvm_section_update_flags(kml, section); 454 if (r < 0) { 455 abort(); 456 } 457 } 458 459 /* get kvm's dirty pages bitmap and update qemu's */ 460 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 461 unsigned long *bitmap) 462 { 463 ram_addr_t start = section->offset_within_region + 464 memory_region_get_ram_addr(section->mr); 465 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 466 467 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 468 return 0; 469 } 470 471 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 472 473 /** 474 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space 475 * This function updates qemu's dirty bitmap using 476 * memory_region_set_dirty(). This means all bits are set 477 * to dirty. 478 * 479 * @start_add: start of logged region. 480 * @end_addr: end of logged region. 481 */ 482 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 483 MemoryRegionSection *section) 484 { 485 KVMState *s = kvm_state; 486 unsigned long size, allocated_size = 0; 487 struct kvm_dirty_log d = {}; 488 KVMSlot *mem; 489 int ret = 0; 490 hwaddr start_addr = section->offset_within_address_space; 491 hwaddr end_addr = start_addr + int128_get64(section->size); 492 493 d.dirty_bitmap = NULL; 494 while (start_addr < end_addr) { 495 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr); 496 if (mem == NULL) { 497 break; 498 } 499 500 /* XXX bad kernel interface alert 501 * For dirty bitmap, kernel allocates array of size aligned to 502 * bits-per-long. But for case when the kernel is 64bits and 503 * the userspace is 32bits, userspace can't align to the same 504 * bits-per-long, since sizeof(long) is different between kernel 505 * and user space. This way, userspace will provide buffer which 506 * may be 4 bytes less than the kernel will use, resulting in 507 * userspace memory corruption (which is not detectable by valgrind 508 * too, in most cases). 509 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 510 * a hope that sizeof(long) won't become >8 any time soon. 511 */ 512 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 513 /*HOST_LONG_BITS*/ 64) / 8; 514 if (!d.dirty_bitmap) { 515 d.dirty_bitmap = g_malloc(size); 516 } else if (size > allocated_size) { 517 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); 518 } 519 allocated_size = size; 520 memset(d.dirty_bitmap, 0, allocated_size); 521 522 d.slot = mem->slot | (kml->as_id << 16); 523 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 524 DPRINTF("ioctl failed %d\n", errno); 525 ret = -1; 526 break; 527 } 528 529 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 530 start_addr = mem->start_addr + mem->memory_size; 531 } 532 g_free(d.dirty_bitmap); 533 534 return ret; 535 } 536 537 static void kvm_coalesce_mmio_region(MemoryListener *listener, 538 MemoryRegionSection *secion, 539 hwaddr start, hwaddr size) 540 { 541 KVMState *s = kvm_state; 542 543 if (s->coalesced_mmio) { 544 struct kvm_coalesced_mmio_zone zone; 545 546 zone.addr = start; 547 zone.size = size; 548 zone.pad = 0; 549 550 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 551 } 552 } 553 554 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 555 MemoryRegionSection *secion, 556 hwaddr start, hwaddr size) 557 { 558 KVMState *s = kvm_state; 559 560 if (s->coalesced_mmio) { 561 struct kvm_coalesced_mmio_zone zone; 562 563 zone.addr = start; 564 zone.size = size; 565 zone.pad = 0; 566 567 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 568 } 569 } 570 571 int kvm_check_extension(KVMState *s, unsigned int extension) 572 { 573 int ret; 574 575 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 576 if (ret < 0) { 577 ret = 0; 578 } 579 580 return ret; 581 } 582 583 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 584 { 585 int ret; 586 587 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 588 if (ret < 0) { 589 /* VM wide version not implemented, use global one instead */ 590 ret = kvm_check_extension(s, extension); 591 } 592 593 return ret; 594 } 595 596 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 597 { 598 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 599 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 600 * endianness, but the memory core hands them in target endianness. 601 * For example, PPC is always treated as big-endian even if running 602 * on KVM and on PPC64LE. Correct here. 603 */ 604 switch (size) { 605 case 2: 606 val = bswap16(val); 607 break; 608 case 4: 609 val = bswap32(val); 610 break; 611 } 612 #endif 613 return val; 614 } 615 616 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 617 bool assign, uint32_t size, bool datamatch) 618 { 619 int ret; 620 struct kvm_ioeventfd iofd = { 621 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 622 .addr = addr, 623 .len = size, 624 .flags = 0, 625 .fd = fd, 626 }; 627 628 if (!kvm_enabled()) { 629 return -ENOSYS; 630 } 631 632 if (datamatch) { 633 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 634 } 635 if (!assign) { 636 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 637 } 638 639 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 640 641 if (ret < 0) { 642 return -errno; 643 } 644 645 return 0; 646 } 647 648 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 649 bool assign, uint32_t size, bool datamatch) 650 { 651 struct kvm_ioeventfd kick = { 652 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 653 .addr = addr, 654 .flags = KVM_IOEVENTFD_FLAG_PIO, 655 .len = size, 656 .fd = fd, 657 }; 658 int r; 659 if (!kvm_enabled()) { 660 return -ENOSYS; 661 } 662 if (datamatch) { 663 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 664 } 665 if (!assign) { 666 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 667 } 668 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 669 if (r < 0) { 670 return r; 671 } 672 return 0; 673 } 674 675 676 static int kvm_check_many_ioeventfds(void) 677 { 678 /* Userspace can use ioeventfd for io notification. This requires a host 679 * that supports eventfd(2) and an I/O thread; since eventfd does not 680 * support SIGIO it cannot interrupt the vcpu. 681 * 682 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 683 * can avoid creating too many ioeventfds. 684 */ 685 #if defined(CONFIG_EVENTFD) 686 int ioeventfds[7]; 687 int i, ret = 0; 688 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 689 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 690 if (ioeventfds[i] < 0) { 691 break; 692 } 693 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 694 if (ret < 0) { 695 close(ioeventfds[i]); 696 break; 697 } 698 } 699 700 /* Decide whether many devices are supported or not */ 701 ret = i == ARRAY_SIZE(ioeventfds); 702 703 while (i-- > 0) { 704 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 705 close(ioeventfds[i]); 706 } 707 return ret; 708 #else 709 return 0; 710 #endif 711 } 712 713 static const KVMCapabilityInfo * 714 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 715 { 716 while (list->name) { 717 if (!kvm_check_extension(s, list->value)) { 718 return list; 719 } 720 list++; 721 } 722 return NULL; 723 } 724 725 static void kvm_set_phys_mem(KVMMemoryListener *kml, 726 MemoryRegionSection *section, bool add) 727 { 728 KVMSlot *mem, old; 729 int err; 730 MemoryRegion *mr = section->mr; 731 bool writeable = !mr->readonly && !mr->rom_device; 732 hwaddr start_addr, size; 733 void *ram; 734 735 if (!memory_region_is_ram(mr)) { 736 if (writeable || !kvm_readonly_mem_allowed) { 737 return; 738 } else if (!mr->romd_mode) { 739 /* If the memory device is not in romd_mode, then we actually want 740 * to remove the kvm memory slot so all accesses will trap. */ 741 add = false; 742 } 743 } 744 745 size = kvm_align_section(section, &start_addr); 746 if (!size) { 747 return; 748 } 749 750 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 751 (section->offset_within_address_space - start_addr); 752 753 while (1) { 754 mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size); 755 if (!mem) { 756 break; 757 } 758 759 if (add && start_addr >= mem->start_addr && 760 (start_addr + size <= mem->start_addr + mem->memory_size) && 761 (ram - start_addr == mem->ram - mem->start_addr)) { 762 /* The new slot fits into the existing one and comes with 763 * identical parameters - update flags and done. */ 764 kvm_slot_update_flags(kml, mem, mr); 765 return; 766 } 767 768 old = *mem; 769 770 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 771 kvm_physical_sync_dirty_bitmap(kml, section); 772 } 773 774 /* unregister the overlapping slot */ 775 mem->memory_size = 0; 776 err = kvm_set_user_memory_region(kml, mem); 777 if (err) { 778 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", 779 __func__, strerror(-err)); 780 abort(); 781 } 782 783 /* register prefix slot */ 784 if (old.start_addr < start_addr) { 785 mem = kvm_alloc_slot(kml); 786 mem->memory_size = start_addr - old.start_addr; 787 mem->start_addr = old.start_addr; 788 mem->ram = old.ram; 789 mem->flags = kvm_mem_flags(mr); 790 791 err = kvm_set_user_memory_region(kml, mem); 792 if (err) { 793 fprintf(stderr, "%s: error registering prefix slot: %s\n", 794 __func__, strerror(-err)); 795 #ifdef TARGET_PPC 796 fprintf(stderr, "%s: This is probably because your kernel's " \ 797 "PAGE_SIZE is too big. Please try to use 4k " \ 798 "PAGE_SIZE!\n", __func__); 799 #endif 800 abort(); 801 } 802 } 803 804 /* register suffix slot */ 805 if (old.start_addr + old.memory_size > start_addr + size) { 806 ram_addr_t size_delta; 807 808 mem = kvm_alloc_slot(kml); 809 mem->start_addr = start_addr + size; 810 size_delta = mem->start_addr - old.start_addr; 811 mem->memory_size = old.memory_size - size_delta; 812 mem->ram = old.ram + size_delta; 813 mem->flags = kvm_mem_flags(mr); 814 815 err = kvm_set_user_memory_region(kml, mem); 816 if (err) { 817 fprintf(stderr, "%s: error registering suffix slot: %s\n", 818 __func__, strerror(-err)); 819 abort(); 820 } 821 } 822 } 823 824 if (!add) { 825 return; 826 } 827 mem = kvm_alloc_slot(kml); 828 mem->memory_size = size; 829 mem->start_addr = start_addr; 830 mem->ram = ram; 831 mem->flags = kvm_mem_flags(mr); 832 833 err = kvm_set_user_memory_region(kml, mem); 834 if (err) { 835 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 836 strerror(-err)); 837 abort(); 838 } 839 } 840 841 static void kvm_region_add(MemoryListener *listener, 842 MemoryRegionSection *section) 843 { 844 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 845 846 memory_region_ref(section->mr); 847 kvm_set_phys_mem(kml, section, true); 848 } 849 850 static void kvm_region_del(MemoryListener *listener, 851 MemoryRegionSection *section) 852 { 853 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 854 855 kvm_set_phys_mem(kml, section, false); 856 memory_region_unref(section->mr); 857 } 858 859 static void kvm_log_sync(MemoryListener *listener, 860 MemoryRegionSection *section) 861 { 862 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 863 int r; 864 865 r = kvm_physical_sync_dirty_bitmap(kml, section); 866 if (r < 0) { 867 abort(); 868 } 869 } 870 871 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 872 MemoryRegionSection *section, 873 bool match_data, uint64_t data, 874 EventNotifier *e) 875 { 876 int fd = event_notifier_get_fd(e); 877 int r; 878 879 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 880 data, true, int128_get64(section->size), 881 match_data); 882 if (r < 0) { 883 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 884 __func__, strerror(-r)); 885 abort(); 886 } 887 } 888 889 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 890 MemoryRegionSection *section, 891 bool match_data, uint64_t data, 892 EventNotifier *e) 893 { 894 int fd = event_notifier_get_fd(e); 895 int r; 896 897 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 898 data, false, int128_get64(section->size), 899 match_data); 900 if (r < 0) { 901 abort(); 902 } 903 } 904 905 static void kvm_io_ioeventfd_add(MemoryListener *listener, 906 MemoryRegionSection *section, 907 bool match_data, uint64_t data, 908 EventNotifier *e) 909 { 910 int fd = event_notifier_get_fd(e); 911 int r; 912 913 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 914 data, true, int128_get64(section->size), 915 match_data); 916 if (r < 0) { 917 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 918 __func__, strerror(-r)); 919 abort(); 920 } 921 } 922 923 static void kvm_io_ioeventfd_del(MemoryListener *listener, 924 MemoryRegionSection *section, 925 bool match_data, uint64_t data, 926 EventNotifier *e) 927 928 { 929 int fd = event_notifier_get_fd(e); 930 int r; 931 932 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 933 data, false, int128_get64(section->size), 934 match_data); 935 if (r < 0) { 936 abort(); 937 } 938 } 939 940 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 941 AddressSpace *as, int as_id) 942 { 943 int i; 944 945 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 946 kml->as_id = as_id; 947 948 for (i = 0; i < s->nr_slots; i++) { 949 kml->slots[i].slot = i; 950 } 951 952 kml->listener.region_add = kvm_region_add; 953 kml->listener.region_del = kvm_region_del; 954 kml->listener.log_start = kvm_log_start; 955 kml->listener.log_stop = kvm_log_stop; 956 kml->listener.log_sync = kvm_log_sync; 957 kml->listener.priority = 10; 958 959 memory_listener_register(&kml->listener, as); 960 } 961 962 static MemoryListener kvm_io_listener = { 963 .eventfd_add = kvm_io_ioeventfd_add, 964 .eventfd_del = kvm_io_ioeventfd_del, 965 .priority = 10, 966 }; 967 968 int kvm_set_irq(KVMState *s, int irq, int level) 969 { 970 struct kvm_irq_level event; 971 int ret; 972 973 assert(kvm_async_interrupts_enabled()); 974 975 event.level = level; 976 event.irq = irq; 977 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 978 if (ret < 0) { 979 perror("kvm_set_irq"); 980 abort(); 981 } 982 983 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 984 } 985 986 #ifdef KVM_CAP_IRQ_ROUTING 987 typedef struct KVMMSIRoute { 988 struct kvm_irq_routing_entry kroute; 989 QTAILQ_ENTRY(KVMMSIRoute) entry; 990 } KVMMSIRoute; 991 992 static void set_gsi(KVMState *s, unsigned int gsi) 993 { 994 set_bit(gsi, s->used_gsi_bitmap); 995 } 996 997 static void clear_gsi(KVMState *s, unsigned int gsi) 998 { 999 clear_bit(gsi, s->used_gsi_bitmap); 1000 } 1001 1002 void kvm_init_irq_routing(KVMState *s) 1003 { 1004 int gsi_count, i; 1005 1006 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1007 if (gsi_count > 0) { 1008 /* Round up so we can search ints using ffs */ 1009 s->used_gsi_bitmap = bitmap_new(gsi_count); 1010 s->gsi_count = gsi_count; 1011 } 1012 1013 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1014 s->nr_allocated_irq_routes = 0; 1015 1016 if (!kvm_direct_msi_allowed) { 1017 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1018 QTAILQ_INIT(&s->msi_hashtab[i]); 1019 } 1020 } 1021 1022 kvm_arch_init_irq_routing(s); 1023 } 1024 1025 void kvm_irqchip_commit_routes(KVMState *s) 1026 { 1027 int ret; 1028 1029 if (kvm_gsi_direct_mapping()) { 1030 return; 1031 } 1032 1033 if (!kvm_gsi_routing_enabled()) { 1034 return; 1035 } 1036 1037 s->irq_routes->flags = 0; 1038 trace_kvm_irqchip_commit_routes(); 1039 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1040 assert(ret == 0); 1041 } 1042 1043 static void kvm_add_routing_entry(KVMState *s, 1044 struct kvm_irq_routing_entry *entry) 1045 { 1046 struct kvm_irq_routing_entry *new; 1047 int n, size; 1048 1049 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1050 n = s->nr_allocated_irq_routes * 2; 1051 if (n < 64) { 1052 n = 64; 1053 } 1054 size = sizeof(struct kvm_irq_routing); 1055 size += n * sizeof(*new); 1056 s->irq_routes = g_realloc(s->irq_routes, size); 1057 s->nr_allocated_irq_routes = n; 1058 } 1059 n = s->irq_routes->nr++; 1060 new = &s->irq_routes->entries[n]; 1061 1062 *new = *entry; 1063 1064 set_gsi(s, entry->gsi); 1065 } 1066 1067 static int kvm_update_routing_entry(KVMState *s, 1068 struct kvm_irq_routing_entry *new_entry) 1069 { 1070 struct kvm_irq_routing_entry *entry; 1071 int n; 1072 1073 for (n = 0; n < s->irq_routes->nr; n++) { 1074 entry = &s->irq_routes->entries[n]; 1075 if (entry->gsi != new_entry->gsi) { 1076 continue; 1077 } 1078 1079 if(!memcmp(entry, new_entry, sizeof *entry)) { 1080 return 0; 1081 } 1082 1083 *entry = *new_entry; 1084 1085 return 0; 1086 } 1087 1088 return -ESRCH; 1089 } 1090 1091 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1092 { 1093 struct kvm_irq_routing_entry e = {}; 1094 1095 assert(pin < s->gsi_count); 1096 1097 e.gsi = irq; 1098 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1099 e.flags = 0; 1100 e.u.irqchip.irqchip = irqchip; 1101 e.u.irqchip.pin = pin; 1102 kvm_add_routing_entry(s, &e); 1103 } 1104 1105 void kvm_irqchip_release_virq(KVMState *s, int virq) 1106 { 1107 struct kvm_irq_routing_entry *e; 1108 int i; 1109 1110 if (kvm_gsi_direct_mapping()) { 1111 return; 1112 } 1113 1114 for (i = 0; i < s->irq_routes->nr; i++) { 1115 e = &s->irq_routes->entries[i]; 1116 if (e->gsi == virq) { 1117 s->irq_routes->nr--; 1118 *e = s->irq_routes->entries[s->irq_routes->nr]; 1119 } 1120 } 1121 clear_gsi(s, virq); 1122 kvm_arch_release_virq_post(virq); 1123 trace_kvm_irqchip_release_virq(virq); 1124 } 1125 1126 static unsigned int kvm_hash_msi(uint32_t data) 1127 { 1128 /* This is optimized for IA32 MSI layout. However, no other arch shall 1129 * repeat the mistake of not providing a direct MSI injection API. */ 1130 return data & 0xff; 1131 } 1132 1133 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1134 { 1135 KVMMSIRoute *route, *next; 1136 unsigned int hash; 1137 1138 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1139 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1140 kvm_irqchip_release_virq(s, route->kroute.gsi); 1141 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1142 g_free(route); 1143 } 1144 } 1145 } 1146 1147 static int kvm_irqchip_get_virq(KVMState *s) 1148 { 1149 int next_virq; 1150 1151 /* 1152 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1153 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1154 * number can succeed even though a new route entry cannot be added. 1155 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1156 */ 1157 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1158 kvm_flush_dynamic_msi_routes(s); 1159 } 1160 1161 /* Return the lowest unused GSI in the bitmap */ 1162 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1163 if (next_virq >= s->gsi_count) { 1164 return -ENOSPC; 1165 } else { 1166 return next_virq; 1167 } 1168 } 1169 1170 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1171 { 1172 unsigned int hash = kvm_hash_msi(msg.data); 1173 KVMMSIRoute *route; 1174 1175 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1176 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1177 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1178 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1179 return route; 1180 } 1181 } 1182 return NULL; 1183 } 1184 1185 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1186 { 1187 struct kvm_msi msi; 1188 KVMMSIRoute *route; 1189 1190 if (kvm_direct_msi_allowed) { 1191 msi.address_lo = (uint32_t)msg.address; 1192 msi.address_hi = msg.address >> 32; 1193 msi.data = le32_to_cpu(msg.data); 1194 msi.flags = 0; 1195 memset(msi.pad, 0, sizeof(msi.pad)); 1196 1197 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1198 } 1199 1200 route = kvm_lookup_msi_route(s, msg); 1201 if (!route) { 1202 int virq; 1203 1204 virq = kvm_irqchip_get_virq(s); 1205 if (virq < 0) { 1206 return virq; 1207 } 1208 1209 route = g_malloc0(sizeof(KVMMSIRoute)); 1210 route->kroute.gsi = virq; 1211 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1212 route->kroute.flags = 0; 1213 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1214 route->kroute.u.msi.address_hi = msg.address >> 32; 1215 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1216 1217 kvm_add_routing_entry(s, &route->kroute); 1218 kvm_irqchip_commit_routes(s); 1219 1220 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1221 entry); 1222 } 1223 1224 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1225 1226 return kvm_set_irq(s, route->kroute.gsi, 1); 1227 } 1228 1229 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1230 { 1231 struct kvm_irq_routing_entry kroute = {}; 1232 int virq; 1233 MSIMessage msg = {0, 0}; 1234 1235 if (pci_available && dev) { 1236 msg = pci_get_msi_message(dev, vector); 1237 } 1238 1239 if (kvm_gsi_direct_mapping()) { 1240 return kvm_arch_msi_data_to_gsi(msg.data); 1241 } 1242 1243 if (!kvm_gsi_routing_enabled()) { 1244 return -ENOSYS; 1245 } 1246 1247 virq = kvm_irqchip_get_virq(s); 1248 if (virq < 0) { 1249 return virq; 1250 } 1251 1252 kroute.gsi = virq; 1253 kroute.type = KVM_IRQ_ROUTING_MSI; 1254 kroute.flags = 0; 1255 kroute.u.msi.address_lo = (uint32_t)msg.address; 1256 kroute.u.msi.address_hi = msg.address >> 32; 1257 kroute.u.msi.data = le32_to_cpu(msg.data); 1258 if (pci_available && kvm_msi_devid_required()) { 1259 kroute.flags = KVM_MSI_VALID_DEVID; 1260 kroute.u.msi.devid = pci_requester_id(dev); 1261 } 1262 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1263 kvm_irqchip_release_virq(s, virq); 1264 return -EINVAL; 1265 } 1266 1267 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1268 vector, virq); 1269 1270 kvm_add_routing_entry(s, &kroute); 1271 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1272 kvm_irqchip_commit_routes(s); 1273 1274 return virq; 1275 } 1276 1277 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1278 PCIDevice *dev) 1279 { 1280 struct kvm_irq_routing_entry kroute = {}; 1281 1282 if (kvm_gsi_direct_mapping()) { 1283 return 0; 1284 } 1285 1286 if (!kvm_irqchip_in_kernel()) { 1287 return -ENOSYS; 1288 } 1289 1290 kroute.gsi = virq; 1291 kroute.type = KVM_IRQ_ROUTING_MSI; 1292 kroute.flags = 0; 1293 kroute.u.msi.address_lo = (uint32_t)msg.address; 1294 kroute.u.msi.address_hi = msg.address >> 32; 1295 kroute.u.msi.data = le32_to_cpu(msg.data); 1296 if (pci_available && kvm_msi_devid_required()) { 1297 kroute.flags = KVM_MSI_VALID_DEVID; 1298 kroute.u.msi.devid = pci_requester_id(dev); 1299 } 1300 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1301 return -EINVAL; 1302 } 1303 1304 trace_kvm_irqchip_update_msi_route(virq); 1305 1306 return kvm_update_routing_entry(s, &kroute); 1307 } 1308 1309 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1310 bool assign) 1311 { 1312 struct kvm_irqfd irqfd = { 1313 .fd = fd, 1314 .gsi = virq, 1315 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1316 }; 1317 1318 if (rfd != -1) { 1319 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1320 irqfd.resamplefd = rfd; 1321 } 1322 1323 if (!kvm_irqfds_enabled()) { 1324 return -ENOSYS; 1325 } 1326 1327 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1328 } 1329 1330 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1331 { 1332 struct kvm_irq_routing_entry kroute = {}; 1333 int virq; 1334 1335 if (!kvm_gsi_routing_enabled()) { 1336 return -ENOSYS; 1337 } 1338 1339 virq = kvm_irqchip_get_virq(s); 1340 if (virq < 0) { 1341 return virq; 1342 } 1343 1344 kroute.gsi = virq; 1345 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1346 kroute.flags = 0; 1347 kroute.u.adapter.summary_addr = adapter->summary_addr; 1348 kroute.u.adapter.ind_addr = adapter->ind_addr; 1349 kroute.u.adapter.summary_offset = adapter->summary_offset; 1350 kroute.u.adapter.ind_offset = adapter->ind_offset; 1351 kroute.u.adapter.adapter_id = adapter->adapter_id; 1352 1353 kvm_add_routing_entry(s, &kroute); 1354 1355 return virq; 1356 } 1357 1358 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1359 { 1360 struct kvm_irq_routing_entry kroute = {}; 1361 int virq; 1362 1363 if (!kvm_gsi_routing_enabled()) { 1364 return -ENOSYS; 1365 } 1366 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1367 return -ENOSYS; 1368 } 1369 virq = kvm_irqchip_get_virq(s); 1370 if (virq < 0) { 1371 return virq; 1372 } 1373 1374 kroute.gsi = virq; 1375 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1376 kroute.flags = 0; 1377 kroute.u.hv_sint.vcpu = vcpu; 1378 kroute.u.hv_sint.sint = sint; 1379 1380 kvm_add_routing_entry(s, &kroute); 1381 kvm_irqchip_commit_routes(s); 1382 1383 return virq; 1384 } 1385 1386 #else /* !KVM_CAP_IRQ_ROUTING */ 1387 1388 void kvm_init_irq_routing(KVMState *s) 1389 { 1390 } 1391 1392 void kvm_irqchip_release_virq(KVMState *s, int virq) 1393 { 1394 } 1395 1396 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1397 { 1398 abort(); 1399 } 1400 1401 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1402 { 1403 return -ENOSYS; 1404 } 1405 1406 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1407 { 1408 return -ENOSYS; 1409 } 1410 1411 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1412 { 1413 return -ENOSYS; 1414 } 1415 1416 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1417 { 1418 abort(); 1419 } 1420 1421 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1422 { 1423 return -ENOSYS; 1424 } 1425 #endif /* !KVM_CAP_IRQ_ROUTING */ 1426 1427 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1428 EventNotifier *rn, int virq) 1429 { 1430 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1431 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1432 } 1433 1434 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1435 int virq) 1436 { 1437 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1438 false); 1439 } 1440 1441 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1442 EventNotifier *rn, qemu_irq irq) 1443 { 1444 gpointer key, gsi; 1445 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1446 1447 if (!found) { 1448 return -ENXIO; 1449 } 1450 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1451 } 1452 1453 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1454 qemu_irq irq) 1455 { 1456 gpointer key, gsi; 1457 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1458 1459 if (!found) { 1460 return -ENXIO; 1461 } 1462 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1463 } 1464 1465 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1466 { 1467 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1468 } 1469 1470 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1471 { 1472 int ret; 1473 1474 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1475 ; 1476 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1477 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1478 if (ret < 0) { 1479 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1480 exit(1); 1481 } 1482 } else { 1483 return; 1484 } 1485 1486 /* First probe and see if there's a arch-specific hook to create the 1487 * in-kernel irqchip for us */ 1488 ret = kvm_arch_irqchip_create(machine, s); 1489 if (ret == 0) { 1490 if (machine_kernel_irqchip_split(machine)) { 1491 perror("Split IRQ chip mode not supported."); 1492 exit(1); 1493 } else { 1494 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1495 } 1496 } 1497 if (ret < 0) { 1498 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1499 exit(1); 1500 } 1501 1502 kvm_kernel_irqchip = true; 1503 /* If we have an in-kernel IRQ chip then we must have asynchronous 1504 * interrupt delivery (though the reverse is not necessarily true) 1505 */ 1506 kvm_async_interrupts_allowed = true; 1507 kvm_halt_in_kernel_allowed = true; 1508 1509 kvm_init_irq_routing(s); 1510 1511 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1512 } 1513 1514 /* Find number of supported CPUs using the recommended 1515 * procedure from the kernel API documentation to cope with 1516 * older kernels that may be missing capabilities. 1517 */ 1518 static int kvm_recommended_vcpus(KVMState *s) 1519 { 1520 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); 1521 return (ret) ? ret : 4; 1522 } 1523 1524 static int kvm_max_vcpus(KVMState *s) 1525 { 1526 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1527 return (ret) ? ret : kvm_recommended_vcpus(s); 1528 } 1529 1530 static int kvm_max_vcpu_id(KVMState *s) 1531 { 1532 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1533 return (ret) ? ret : kvm_max_vcpus(s); 1534 } 1535 1536 bool kvm_vcpu_id_is_valid(int vcpu_id) 1537 { 1538 KVMState *s = KVM_STATE(current_machine->accelerator); 1539 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1540 } 1541 1542 static int kvm_init(MachineState *ms) 1543 { 1544 MachineClass *mc = MACHINE_GET_CLASS(ms); 1545 static const char upgrade_note[] = 1546 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1547 "(see http://sourceforge.net/projects/kvm).\n"; 1548 struct { 1549 const char *name; 1550 int num; 1551 } num_cpus[] = { 1552 { "SMP", smp_cpus }, 1553 { "hotpluggable", max_cpus }, 1554 { NULL, } 1555 }, *nc = num_cpus; 1556 int soft_vcpus_limit, hard_vcpus_limit; 1557 KVMState *s; 1558 const KVMCapabilityInfo *missing_cap; 1559 int ret; 1560 int type = 0; 1561 const char *kvm_type; 1562 1563 s = KVM_STATE(ms->accelerator); 1564 1565 /* 1566 * On systems where the kernel can support different base page 1567 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1568 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1569 * page size for the system though. 1570 */ 1571 assert(TARGET_PAGE_SIZE <= getpagesize()); 1572 1573 s->sigmask_len = 8; 1574 1575 #ifdef KVM_CAP_SET_GUEST_DEBUG 1576 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1577 #endif 1578 QLIST_INIT(&s->kvm_parked_vcpus); 1579 s->vmfd = -1; 1580 s->fd = qemu_open("/dev/kvm", O_RDWR); 1581 if (s->fd == -1) { 1582 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1583 ret = -errno; 1584 goto err; 1585 } 1586 1587 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1588 if (ret < KVM_API_VERSION) { 1589 if (ret >= 0) { 1590 ret = -EINVAL; 1591 } 1592 fprintf(stderr, "kvm version too old\n"); 1593 goto err; 1594 } 1595 1596 if (ret > KVM_API_VERSION) { 1597 ret = -EINVAL; 1598 fprintf(stderr, "kvm version not supported\n"); 1599 goto err; 1600 } 1601 1602 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1603 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1604 1605 /* If unspecified, use the default value */ 1606 if (!s->nr_slots) { 1607 s->nr_slots = 32; 1608 } 1609 1610 /* check the vcpu limits */ 1611 soft_vcpus_limit = kvm_recommended_vcpus(s); 1612 hard_vcpus_limit = kvm_max_vcpus(s); 1613 1614 while (nc->name) { 1615 if (nc->num > soft_vcpus_limit) { 1616 fprintf(stderr, 1617 "Warning: Number of %s cpus requested (%d) exceeds " 1618 "the recommended cpus supported by KVM (%d)\n", 1619 nc->name, nc->num, soft_vcpus_limit); 1620 1621 if (nc->num > hard_vcpus_limit) { 1622 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1623 "the maximum cpus supported by KVM (%d)\n", 1624 nc->name, nc->num, hard_vcpus_limit); 1625 exit(1); 1626 } 1627 } 1628 nc++; 1629 } 1630 1631 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1632 if (mc->kvm_type) { 1633 type = mc->kvm_type(kvm_type); 1634 } else if (kvm_type) { 1635 ret = -EINVAL; 1636 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1637 goto err; 1638 } 1639 1640 do { 1641 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1642 } while (ret == -EINTR); 1643 1644 if (ret < 0) { 1645 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1646 strerror(-ret)); 1647 1648 #ifdef TARGET_S390X 1649 if (ret == -EINVAL) { 1650 fprintf(stderr, 1651 "Host kernel setup problem detected. Please verify:\n"); 1652 fprintf(stderr, "- for kernels supporting the switch_amode or" 1653 " user_mode parameters, whether\n"); 1654 fprintf(stderr, 1655 " user space is running in primary address space\n"); 1656 fprintf(stderr, 1657 "- for kernels supporting the vm.allocate_pgste sysctl, " 1658 "whether it is enabled\n"); 1659 } 1660 #endif 1661 goto err; 1662 } 1663 1664 s->vmfd = ret; 1665 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1666 if (!missing_cap) { 1667 missing_cap = 1668 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1669 } 1670 if (missing_cap) { 1671 ret = -EINVAL; 1672 fprintf(stderr, "kvm does not support %s\n%s", 1673 missing_cap->name, upgrade_note); 1674 goto err; 1675 } 1676 1677 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1678 1679 #ifdef KVM_CAP_VCPU_EVENTS 1680 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1681 #endif 1682 1683 s->robust_singlestep = 1684 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1685 1686 #ifdef KVM_CAP_DEBUGREGS 1687 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1688 #endif 1689 1690 #ifdef KVM_CAP_IRQ_ROUTING 1691 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1692 #endif 1693 1694 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1695 1696 s->irq_set_ioctl = KVM_IRQ_LINE; 1697 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1698 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1699 } 1700 1701 #ifdef KVM_CAP_READONLY_MEM 1702 kvm_readonly_mem_allowed = 1703 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1704 #endif 1705 1706 kvm_eventfds_allowed = 1707 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1708 1709 kvm_irqfds_allowed = 1710 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1711 1712 kvm_resamplefds_allowed = 1713 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1714 1715 kvm_vm_attributes_allowed = 1716 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1717 1718 kvm_ioeventfd_any_length_allowed = 1719 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1720 1721 kvm_state = s; 1722 1723 ret = kvm_arch_init(ms, s); 1724 if (ret < 0) { 1725 goto err; 1726 } 1727 1728 if (machine_kernel_irqchip_allowed(ms)) { 1729 kvm_irqchip_create(ms, s); 1730 } 1731 1732 if (kvm_eventfds_allowed) { 1733 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1734 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1735 } 1736 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; 1737 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; 1738 1739 kvm_memory_listener_register(s, &s->memory_listener, 1740 &address_space_memory, 0); 1741 memory_listener_register(&kvm_io_listener, 1742 &address_space_io); 1743 1744 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1745 1746 return 0; 1747 1748 err: 1749 assert(ret < 0); 1750 if (s->vmfd >= 0) { 1751 close(s->vmfd); 1752 } 1753 if (s->fd != -1) { 1754 close(s->fd); 1755 } 1756 g_free(s->memory_listener.slots); 1757 1758 return ret; 1759 } 1760 1761 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1762 { 1763 s->sigmask_len = sigmask_len; 1764 } 1765 1766 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1767 int size, uint32_t count) 1768 { 1769 int i; 1770 uint8_t *ptr = data; 1771 1772 for (i = 0; i < count; i++) { 1773 address_space_rw(&address_space_io, port, attrs, 1774 ptr, size, 1775 direction == KVM_EXIT_IO_OUT); 1776 ptr += size; 1777 } 1778 } 1779 1780 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1781 { 1782 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1783 run->internal.suberror); 1784 1785 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1786 int i; 1787 1788 for (i = 0; i < run->internal.ndata; ++i) { 1789 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1790 i, (uint64_t)run->internal.data[i]); 1791 } 1792 } 1793 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1794 fprintf(stderr, "emulation failure\n"); 1795 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1796 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 1797 return EXCP_INTERRUPT; 1798 } 1799 } 1800 /* FIXME: Should trigger a qmp message to let management know 1801 * something went wrong. 1802 */ 1803 return -1; 1804 } 1805 1806 void kvm_flush_coalesced_mmio_buffer(void) 1807 { 1808 KVMState *s = kvm_state; 1809 1810 if (s->coalesced_flush_in_progress) { 1811 return; 1812 } 1813 1814 s->coalesced_flush_in_progress = true; 1815 1816 if (s->coalesced_mmio_ring) { 1817 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1818 while (ring->first != ring->last) { 1819 struct kvm_coalesced_mmio *ent; 1820 1821 ent = &ring->coalesced_mmio[ring->first]; 1822 1823 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1824 smp_wmb(); 1825 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1826 } 1827 } 1828 1829 s->coalesced_flush_in_progress = false; 1830 } 1831 1832 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1833 { 1834 if (!cpu->vcpu_dirty) { 1835 kvm_arch_get_registers(cpu); 1836 cpu->vcpu_dirty = true; 1837 } 1838 } 1839 1840 void kvm_cpu_synchronize_state(CPUState *cpu) 1841 { 1842 if (!cpu->vcpu_dirty) { 1843 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1844 } 1845 } 1846 1847 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1848 { 1849 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1850 cpu->vcpu_dirty = false; 1851 } 1852 1853 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1854 { 1855 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1856 } 1857 1858 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1859 { 1860 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1861 cpu->vcpu_dirty = false; 1862 } 1863 1864 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1865 { 1866 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1867 } 1868 1869 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1870 { 1871 cpu->vcpu_dirty = true; 1872 } 1873 1874 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1875 { 1876 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1877 } 1878 1879 #ifdef KVM_HAVE_MCE_INJECTION 1880 static __thread void *pending_sigbus_addr; 1881 static __thread int pending_sigbus_code; 1882 static __thread bool have_sigbus_pending; 1883 #endif 1884 1885 static void kvm_cpu_kick(CPUState *cpu) 1886 { 1887 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1888 } 1889 1890 static void kvm_cpu_kick_self(void) 1891 { 1892 if (kvm_immediate_exit) { 1893 kvm_cpu_kick(current_cpu); 1894 } else { 1895 qemu_cpu_kick_self(); 1896 } 1897 } 1898 1899 static void kvm_eat_signals(CPUState *cpu) 1900 { 1901 struct timespec ts = { 0, 0 }; 1902 siginfo_t siginfo; 1903 sigset_t waitset; 1904 sigset_t chkset; 1905 int r; 1906 1907 if (kvm_immediate_exit) { 1908 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1909 /* Write kvm_run->immediate_exit before the cpu->exit_request 1910 * write in kvm_cpu_exec. 1911 */ 1912 smp_wmb(); 1913 return; 1914 } 1915 1916 sigemptyset(&waitset); 1917 sigaddset(&waitset, SIG_IPI); 1918 1919 do { 1920 r = sigtimedwait(&waitset, &siginfo, &ts); 1921 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1922 perror("sigtimedwait"); 1923 exit(1); 1924 } 1925 1926 r = sigpending(&chkset); 1927 if (r == -1) { 1928 perror("sigpending"); 1929 exit(1); 1930 } 1931 } while (sigismember(&chkset, SIG_IPI)); 1932 } 1933 1934 int kvm_cpu_exec(CPUState *cpu) 1935 { 1936 struct kvm_run *run = cpu->kvm_run; 1937 int ret, run_ret; 1938 1939 DPRINTF("kvm_cpu_exec()\n"); 1940 1941 if (kvm_arch_process_async_events(cpu)) { 1942 atomic_set(&cpu->exit_request, 0); 1943 return EXCP_HLT; 1944 } 1945 1946 qemu_mutex_unlock_iothread(); 1947 cpu_exec_start(cpu); 1948 1949 do { 1950 MemTxAttrs attrs; 1951 1952 if (cpu->vcpu_dirty) { 1953 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 1954 cpu->vcpu_dirty = false; 1955 } 1956 1957 kvm_arch_pre_run(cpu, run); 1958 if (atomic_read(&cpu->exit_request)) { 1959 DPRINTF("interrupt exit requested\n"); 1960 /* 1961 * KVM requires us to reenter the kernel after IO exits to complete 1962 * instruction emulation. This self-signal will ensure that we 1963 * leave ASAP again. 1964 */ 1965 kvm_cpu_kick_self(); 1966 } 1967 1968 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 1969 * Matching barrier in kvm_eat_signals. 1970 */ 1971 smp_rmb(); 1972 1973 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 1974 1975 attrs = kvm_arch_post_run(cpu, run); 1976 1977 #ifdef KVM_HAVE_MCE_INJECTION 1978 if (unlikely(have_sigbus_pending)) { 1979 qemu_mutex_lock_iothread(); 1980 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 1981 pending_sigbus_addr); 1982 have_sigbus_pending = false; 1983 qemu_mutex_unlock_iothread(); 1984 } 1985 #endif 1986 1987 if (run_ret < 0) { 1988 if (run_ret == -EINTR || run_ret == -EAGAIN) { 1989 DPRINTF("io window exit\n"); 1990 kvm_eat_signals(cpu); 1991 ret = EXCP_INTERRUPT; 1992 break; 1993 } 1994 fprintf(stderr, "error: kvm run failed %s\n", 1995 strerror(-run_ret)); 1996 #ifdef TARGET_PPC 1997 if (run_ret == -EBUSY) { 1998 fprintf(stderr, 1999 "This is probably because your SMT is enabled.\n" 2000 "VCPU can only run on primary threads with all " 2001 "secondary threads offline.\n"); 2002 } 2003 #endif 2004 ret = -1; 2005 break; 2006 } 2007 2008 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2009 switch (run->exit_reason) { 2010 case KVM_EXIT_IO: 2011 DPRINTF("handle_io\n"); 2012 /* Called outside BQL */ 2013 kvm_handle_io(run->io.port, attrs, 2014 (uint8_t *)run + run->io.data_offset, 2015 run->io.direction, 2016 run->io.size, 2017 run->io.count); 2018 ret = 0; 2019 break; 2020 case KVM_EXIT_MMIO: 2021 DPRINTF("handle_mmio\n"); 2022 /* Called outside BQL */ 2023 address_space_rw(&address_space_memory, 2024 run->mmio.phys_addr, attrs, 2025 run->mmio.data, 2026 run->mmio.len, 2027 run->mmio.is_write); 2028 ret = 0; 2029 break; 2030 case KVM_EXIT_IRQ_WINDOW_OPEN: 2031 DPRINTF("irq_window_open\n"); 2032 ret = EXCP_INTERRUPT; 2033 break; 2034 case KVM_EXIT_SHUTDOWN: 2035 DPRINTF("shutdown\n"); 2036 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2037 ret = EXCP_INTERRUPT; 2038 break; 2039 case KVM_EXIT_UNKNOWN: 2040 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2041 (uint64_t)run->hw.hardware_exit_reason); 2042 ret = -1; 2043 break; 2044 case KVM_EXIT_INTERNAL_ERROR: 2045 ret = kvm_handle_internal_error(cpu, run); 2046 break; 2047 case KVM_EXIT_SYSTEM_EVENT: 2048 switch (run->system_event.type) { 2049 case KVM_SYSTEM_EVENT_SHUTDOWN: 2050 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2051 ret = EXCP_INTERRUPT; 2052 break; 2053 case KVM_SYSTEM_EVENT_RESET: 2054 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2055 ret = EXCP_INTERRUPT; 2056 break; 2057 case KVM_SYSTEM_EVENT_CRASH: 2058 kvm_cpu_synchronize_state(cpu); 2059 qemu_mutex_lock_iothread(); 2060 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2061 qemu_mutex_unlock_iothread(); 2062 ret = 0; 2063 break; 2064 default: 2065 DPRINTF("kvm_arch_handle_exit\n"); 2066 ret = kvm_arch_handle_exit(cpu, run); 2067 break; 2068 } 2069 break; 2070 default: 2071 DPRINTF("kvm_arch_handle_exit\n"); 2072 ret = kvm_arch_handle_exit(cpu, run); 2073 break; 2074 } 2075 } while (ret == 0); 2076 2077 cpu_exec_end(cpu); 2078 qemu_mutex_lock_iothread(); 2079 2080 if (ret < 0) { 2081 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 2082 vm_stop(RUN_STATE_INTERNAL_ERROR); 2083 } 2084 2085 atomic_set(&cpu->exit_request, 0); 2086 return ret; 2087 } 2088 2089 int kvm_ioctl(KVMState *s, int type, ...) 2090 { 2091 int ret; 2092 void *arg; 2093 va_list ap; 2094 2095 va_start(ap, type); 2096 arg = va_arg(ap, void *); 2097 va_end(ap); 2098 2099 trace_kvm_ioctl(type, arg); 2100 ret = ioctl(s->fd, type, arg); 2101 if (ret == -1) { 2102 ret = -errno; 2103 } 2104 return ret; 2105 } 2106 2107 int kvm_vm_ioctl(KVMState *s, int type, ...) 2108 { 2109 int ret; 2110 void *arg; 2111 va_list ap; 2112 2113 va_start(ap, type); 2114 arg = va_arg(ap, void *); 2115 va_end(ap); 2116 2117 trace_kvm_vm_ioctl(type, arg); 2118 ret = ioctl(s->vmfd, type, arg); 2119 if (ret == -1) { 2120 ret = -errno; 2121 } 2122 return ret; 2123 } 2124 2125 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2126 { 2127 int ret; 2128 void *arg; 2129 va_list ap; 2130 2131 va_start(ap, type); 2132 arg = va_arg(ap, void *); 2133 va_end(ap); 2134 2135 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2136 ret = ioctl(cpu->kvm_fd, type, arg); 2137 if (ret == -1) { 2138 ret = -errno; 2139 } 2140 return ret; 2141 } 2142 2143 int kvm_device_ioctl(int fd, int type, ...) 2144 { 2145 int ret; 2146 void *arg; 2147 va_list ap; 2148 2149 va_start(ap, type); 2150 arg = va_arg(ap, void *); 2151 va_end(ap); 2152 2153 trace_kvm_device_ioctl(fd, type, arg); 2154 ret = ioctl(fd, type, arg); 2155 if (ret == -1) { 2156 ret = -errno; 2157 } 2158 return ret; 2159 } 2160 2161 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2162 { 2163 int ret; 2164 struct kvm_device_attr attribute = { 2165 .group = group, 2166 .attr = attr, 2167 }; 2168 2169 if (!kvm_vm_attributes_allowed) { 2170 return 0; 2171 } 2172 2173 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2174 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2175 return ret ? 0 : 1; 2176 } 2177 2178 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2179 { 2180 struct kvm_device_attr attribute = { 2181 .group = group, 2182 .attr = attr, 2183 .flags = 0, 2184 }; 2185 2186 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2187 } 2188 2189 int kvm_device_access(int fd, int group, uint64_t attr, 2190 void *val, bool write, Error **errp) 2191 { 2192 struct kvm_device_attr kvmattr; 2193 int err; 2194 2195 kvmattr.flags = 0; 2196 kvmattr.group = group; 2197 kvmattr.attr = attr; 2198 kvmattr.addr = (uintptr_t)val; 2199 2200 err = kvm_device_ioctl(fd, 2201 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2202 &kvmattr); 2203 if (err < 0) { 2204 error_setg_errno(errp, -err, 2205 "KVM_%s_DEVICE_ATTR failed: Group %d " 2206 "attr 0x%016" PRIx64, 2207 write ? "SET" : "GET", group, attr); 2208 } 2209 return err; 2210 } 2211 2212 /* Return 1 on success, 0 on failure */ 2213 int kvm_has_sync_mmu(void) 2214 { 2215 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2216 } 2217 2218 int kvm_has_vcpu_events(void) 2219 { 2220 return kvm_state->vcpu_events; 2221 } 2222 2223 int kvm_has_robust_singlestep(void) 2224 { 2225 return kvm_state->robust_singlestep; 2226 } 2227 2228 int kvm_has_debugregs(void) 2229 { 2230 return kvm_state->debugregs; 2231 } 2232 2233 int kvm_has_many_ioeventfds(void) 2234 { 2235 if (!kvm_enabled()) { 2236 return 0; 2237 } 2238 return kvm_state->many_ioeventfds; 2239 } 2240 2241 int kvm_has_gsi_routing(void) 2242 { 2243 #ifdef KVM_CAP_IRQ_ROUTING 2244 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2245 #else 2246 return false; 2247 #endif 2248 } 2249 2250 int kvm_has_intx_set_mask(void) 2251 { 2252 return kvm_state->intx_set_mask; 2253 } 2254 2255 bool kvm_arm_supports_user_irq(void) 2256 { 2257 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2258 } 2259 2260 #ifdef KVM_CAP_SET_GUEST_DEBUG 2261 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2262 target_ulong pc) 2263 { 2264 struct kvm_sw_breakpoint *bp; 2265 2266 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2267 if (bp->pc == pc) { 2268 return bp; 2269 } 2270 } 2271 return NULL; 2272 } 2273 2274 int kvm_sw_breakpoints_active(CPUState *cpu) 2275 { 2276 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2277 } 2278 2279 struct kvm_set_guest_debug_data { 2280 struct kvm_guest_debug dbg; 2281 int err; 2282 }; 2283 2284 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2285 { 2286 struct kvm_set_guest_debug_data *dbg_data = 2287 (struct kvm_set_guest_debug_data *) data.host_ptr; 2288 2289 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2290 &dbg_data->dbg); 2291 } 2292 2293 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2294 { 2295 struct kvm_set_guest_debug_data data; 2296 2297 data.dbg.control = reinject_trap; 2298 2299 if (cpu->singlestep_enabled) { 2300 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2301 } 2302 kvm_arch_update_guest_debug(cpu, &data.dbg); 2303 2304 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2305 RUN_ON_CPU_HOST_PTR(&data)); 2306 return data.err; 2307 } 2308 2309 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2310 target_ulong len, int type) 2311 { 2312 struct kvm_sw_breakpoint *bp; 2313 int err; 2314 2315 if (type == GDB_BREAKPOINT_SW) { 2316 bp = kvm_find_sw_breakpoint(cpu, addr); 2317 if (bp) { 2318 bp->use_count++; 2319 return 0; 2320 } 2321 2322 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2323 bp->pc = addr; 2324 bp->use_count = 1; 2325 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2326 if (err) { 2327 g_free(bp); 2328 return err; 2329 } 2330 2331 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2332 } else { 2333 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2334 if (err) { 2335 return err; 2336 } 2337 } 2338 2339 CPU_FOREACH(cpu) { 2340 err = kvm_update_guest_debug(cpu, 0); 2341 if (err) { 2342 return err; 2343 } 2344 } 2345 return 0; 2346 } 2347 2348 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2349 target_ulong len, int type) 2350 { 2351 struct kvm_sw_breakpoint *bp; 2352 int err; 2353 2354 if (type == GDB_BREAKPOINT_SW) { 2355 bp = kvm_find_sw_breakpoint(cpu, addr); 2356 if (!bp) { 2357 return -ENOENT; 2358 } 2359 2360 if (bp->use_count > 1) { 2361 bp->use_count--; 2362 return 0; 2363 } 2364 2365 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2366 if (err) { 2367 return err; 2368 } 2369 2370 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2371 g_free(bp); 2372 } else { 2373 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2374 if (err) { 2375 return err; 2376 } 2377 } 2378 2379 CPU_FOREACH(cpu) { 2380 err = kvm_update_guest_debug(cpu, 0); 2381 if (err) { 2382 return err; 2383 } 2384 } 2385 return 0; 2386 } 2387 2388 void kvm_remove_all_breakpoints(CPUState *cpu) 2389 { 2390 struct kvm_sw_breakpoint *bp, *next; 2391 KVMState *s = cpu->kvm_state; 2392 CPUState *tmpcpu; 2393 2394 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2395 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2396 /* Try harder to find a CPU that currently sees the breakpoint. */ 2397 CPU_FOREACH(tmpcpu) { 2398 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2399 break; 2400 } 2401 } 2402 } 2403 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2404 g_free(bp); 2405 } 2406 kvm_arch_remove_all_hw_breakpoints(); 2407 2408 CPU_FOREACH(cpu) { 2409 kvm_update_guest_debug(cpu, 0); 2410 } 2411 } 2412 2413 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2414 2415 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2416 { 2417 return -EINVAL; 2418 } 2419 2420 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2421 target_ulong len, int type) 2422 { 2423 return -EINVAL; 2424 } 2425 2426 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2427 target_ulong len, int type) 2428 { 2429 return -EINVAL; 2430 } 2431 2432 void kvm_remove_all_breakpoints(CPUState *cpu) 2433 { 2434 } 2435 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2436 2437 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2438 { 2439 KVMState *s = kvm_state; 2440 struct kvm_signal_mask *sigmask; 2441 int r; 2442 2443 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2444 2445 sigmask->len = s->sigmask_len; 2446 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2447 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2448 g_free(sigmask); 2449 2450 return r; 2451 } 2452 2453 static void kvm_ipi_signal(int sig) 2454 { 2455 if (current_cpu) { 2456 assert(kvm_immediate_exit); 2457 kvm_cpu_kick(current_cpu); 2458 } 2459 } 2460 2461 void kvm_init_cpu_signals(CPUState *cpu) 2462 { 2463 int r; 2464 sigset_t set; 2465 struct sigaction sigact; 2466 2467 memset(&sigact, 0, sizeof(sigact)); 2468 sigact.sa_handler = kvm_ipi_signal; 2469 sigaction(SIG_IPI, &sigact, NULL); 2470 2471 pthread_sigmask(SIG_BLOCK, NULL, &set); 2472 #if defined KVM_HAVE_MCE_INJECTION 2473 sigdelset(&set, SIGBUS); 2474 pthread_sigmask(SIG_SETMASK, &set, NULL); 2475 #endif 2476 sigdelset(&set, SIG_IPI); 2477 if (kvm_immediate_exit) { 2478 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2479 } else { 2480 r = kvm_set_signal_mask(cpu, &set); 2481 } 2482 if (r) { 2483 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2484 exit(1); 2485 } 2486 } 2487 2488 /* Called asynchronously in VCPU thread. */ 2489 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2490 { 2491 #ifdef KVM_HAVE_MCE_INJECTION 2492 if (have_sigbus_pending) { 2493 return 1; 2494 } 2495 have_sigbus_pending = true; 2496 pending_sigbus_addr = addr; 2497 pending_sigbus_code = code; 2498 atomic_set(&cpu->exit_request, 1); 2499 return 0; 2500 #else 2501 return 1; 2502 #endif 2503 } 2504 2505 /* Called synchronously (via signalfd) in main thread. */ 2506 int kvm_on_sigbus(int code, void *addr) 2507 { 2508 #ifdef KVM_HAVE_MCE_INJECTION 2509 /* Action required MCE kills the process if SIGBUS is blocked. Because 2510 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2511 * we can only get action optional here. 2512 */ 2513 assert(code != BUS_MCEERR_AR); 2514 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2515 return 0; 2516 #else 2517 return 1; 2518 #endif 2519 } 2520 2521 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2522 { 2523 int ret; 2524 struct kvm_create_device create_dev; 2525 2526 create_dev.type = type; 2527 create_dev.fd = -1; 2528 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2529 2530 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2531 return -ENOTSUP; 2532 } 2533 2534 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2535 if (ret) { 2536 return ret; 2537 } 2538 2539 return test ? 0 : create_dev.fd; 2540 } 2541 2542 bool kvm_device_supported(int vmfd, uint64_t type) 2543 { 2544 struct kvm_create_device create_dev = { 2545 .type = type, 2546 .fd = -1, 2547 .flags = KVM_CREATE_DEVICE_TEST, 2548 }; 2549 2550 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2551 return false; 2552 } 2553 2554 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2555 } 2556 2557 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2558 { 2559 struct kvm_one_reg reg; 2560 int r; 2561 2562 reg.id = id; 2563 reg.addr = (uintptr_t) source; 2564 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2565 if (r) { 2566 trace_kvm_failed_reg_set(id, strerror(-r)); 2567 } 2568 return r; 2569 } 2570 2571 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2572 { 2573 struct kvm_one_reg reg; 2574 int r; 2575 2576 reg.id = id; 2577 reg.addr = (uintptr_t) target; 2578 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2579 if (r) { 2580 trace_kvm_failed_reg_get(id, strerror(-r)); 2581 } 2582 return r; 2583 } 2584 2585 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2586 { 2587 AccelClass *ac = ACCEL_CLASS(oc); 2588 ac->name = "KVM"; 2589 ac->init_machine = kvm_init; 2590 ac->allowed = &kvm_allowed; 2591 } 2592 2593 static const TypeInfo kvm_accel_type = { 2594 .name = TYPE_KVM_ACCEL, 2595 .parent = TYPE_ACCEL, 2596 .class_init = kvm_accel_class_init, 2597 .instance_size = sizeof(KVMState), 2598 }; 2599 2600 static void kvm_type_init(void) 2601 { 2602 type_register_static(&kvm_accel_type); 2603 } 2604 2605 type_init(kvm_type_init); 2606