1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "system/kvm_int.h" 32 #include "system/runstate.h" 33 #include "system/cpus.h" 34 #include "system/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/tswap.h" 37 #include "system/memory.h" 38 #include "system/ram_addr.h" 39 #include "qemu/event_notifier.h" 40 #include "qemu/main-loop.h" 41 #include "trace.h" 42 #include "hw/irq.h" 43 #include "qapi/visitor.h" 44 #include "qapi/qapi-types-common.h" 45 #include "qapi/qapi-visit-common.h" 46 #include "system/reset.h" 47 #include "qemu/guest-random.h" 48 #include "system/hw_accel.h" 49 #include "kvm-cpus.h" 50 #include "system/dirtylimit.h" 51 #include "qemu/range.h" 52 53 #include "hw/boards.h" 54 #include "system/stats.h" 55 56 /* This check must be after config-host.h is included */ 57 #ifdef CONFIG_EVENTFD 58 #include <sys/eventfd.h> 59 #endif 60 61 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) 62 # define KVM_HAVE_MCE_INJECTION 1 63 #endif 64 65 66 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 67 * need to use the real host PAGE_SIZE, as that's what KVM will use. 68 */ 69 #ifdef PAGE_SIZE 70 #undef PAGE_SIZE 71 #endif 72 #define PAGE_SIZE qemu_real_host_page_size() 73 74 #ifndef KVM_GUESTDBG_BLOCKIRQ 75 #define KVM_GUESTDBG_BLOCKIRQ 0 76 #endif 77 78 /* Default num of memslots to be allocated when VM starts */ 79 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 80 /* Default max allowed memslots if kernel reported nothing */ 81 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32 82 83 struct KVMParkedVcpu { 84 unsigned long vcpu_id; 85 int kvm_fd; 86 QLIST_ENTRY(KVMParkedVcpu) node; 87 }; 88 89 KVMState *kvm_state; 90 bool kvm_kernel_irqchip; 91 bool kvm_split_irqchip; 92 bool kvm_async_interrupts_allowed; 93 bool kvm_halt_in_kernel_allowed; 94 bool kvm_resamplefds_allowed; 95 bool kvm_msi_via_irqfd_allowed; 96 bool kvm_gsi_routing_allowed; 97 bool kvm_gsi_direct_mapping; 98 bool kvm_allowed; 99 bool kvm_readonly_mem_allowed; 100 bool kvm_vm_attributes_allowed; 101 bool kvm_msi_use_devid; 102 bool kvm_pre_fault_memory_supported; 103 static bool kvm_has_guest_debug; 104 static int kvm_sstep_flags; 105 static bool kvm_immediate_exit; 106 static uint64_t kvm_supported_memory_attributes; 107 static bool kvm_guest_memfd_supported; 108 static hwaddr kvm_max_slot_size = ~0; 109 110 static const KVMCapabilityInfo kvm_required_capabilites[] = { 111 KVM_CAP_INFO(USER_MEMORY), 112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 114 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 115 KVM_CAP_INFO(IOEVENTFD), 116 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 117 KVM_CAP_LAST_INFO 118 }; 119 120 static NotifierList kvm_irqchip_change_notifiers = 121 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 122 123 struct KVMResampleFd { 124 int gsi; 125 EventNotifier *resample_event; 126 QLIST_ENTRY(KVMResampleFd) node; 127 }; 128 typedef struct KVMResampleFd KVMResampleFd; 129 130 /* 131 * Only used with split irqchip where we need to do the resample fd 132 * kick for the kernel from userspace. 133 */ 134 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 135 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 136 137 static QemuMutex kml_slots_lock; 138 139 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 140 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 141 142 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 143 144 static inline void kvm_resample_fd_remove(int gsi) 145 { 146 KVMResampleFd *rfd; 147 148 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 149 if (rfd->gsi == gsi) { 150 QLIST_REMOVE(rfd, node); 151 g_free(rfd); 152 break; 153 } 154 } 155 } 156 157 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 158 { 159 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 160 161 rfd->gsi = gsi; 162 rfd->resample_event = event; 163 164 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 165 } 166 167 void kvm_resample_fd_notify(int gsi) 168 { 169 KVMResampleFd *rfd; 170 171 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 172 if (rfd->gsi == gsi) { 173 event_notifier_set(rfd->resample_event); 174 trace_kvm_resample_fd_notify(gsi); 175 return; 176 } 177 } 178 } 179 180 /** 181 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 182 * 183 * @kml: The KVMMemoryListener* to grow the slots[] array 184 * @nr_slots_new: The new size of slots[] array 185 * 186 * Returns: True if the array grows larger, false otherwise. 187 */ 188 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 189 { 190 unsigned int i, cur = kml->nr_slots_allocated; 191 KVMSlot *slots; 192 193 if (nr_slots_new > kvm_state->nr_slots_max) { 194 nr_slots_new = kvm_state->nr_slots_max; 195 } 196 197 if (cur >= nr_slots_new) { 198 /* Big enough, no need to grow, or we reached max */ 199 return false; 200 } 201 202 if (cur == 0) { 203 slots = g_new0(KVMSlot, nr_slots_new); 204 } else { 205 assert(kml->slots); 206 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 207 /* 208 * g_renew() doesn't initialize extended buffers, however kvm 209 * memslots require fields to be zero-initialized. E.g. pointers, 210 * memory_size field, etc. 211 */ 212 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 213 } 214 215 for (i = cur; i < nr_slots_new; i++) { 216 slots[i].slot = i; 217 } 218 219 kml->slots = slots; 220 kml->nr_slots_allocated = nr_slots_new; 221 trace_kvm_slots_grow(cur, nr_slots_new); 222 223 return true; 224 } 225 226 static bool kvm_slots_double(KVMMemoryListener *kml) 227 { 228 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 229 } 230 231 unsigned int kvm_get_max_memslots(void) 232 { 233 KVMState *s = KVM_STATE(current_accel()); 234 235 return s->nr_slots_max; 236 } 237 238 unsigned int kvm_get_free_memslots(void) 239 { 240 unsigned int used_slots = 0; 241 KVMState *s = kvm_state; 242 int i; 243 244 kvm_slots_lock(); 245 for (i = 0; i < s->nr_as; i++) { 246 if (!s->as[i].ml) { 247 continue; 248 } 249 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used); 250 } 251 kvm_slots_unlock(); 252 253 return s->nr_slots_max - used_slots; 254 } 255 256 /* Called with KVMMemoryListener.slots_lock held */ 257 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 258 { 259 unsigned int n; 260 int i; 261 262 for (i = 0; i < kml->nr_slots_allocated; i++) { 263 if (kml->slots[i].memory_size == 0) { 264 return &kml->slots[i]; 265 } 266 } 267 268 /* 269 * If no free slots, try to grow first by doubling. Cache the old size 270 * here to avoid another round of search: if the grow succeeded, it 271 * means slots[] now must have the existing "n" slots occupied, 272 * followed by one or more free slots starting from slots[n]. 273 */ 274 n = kml->nr_slots_allocated; 275 if (kvm_slots_double(kml)) { 276 return &kml->slots[n]; 277 } 278 279 return NULL; 280 } 281 282 /* Called with KVMMemoryListener.slots_lock held */ 283 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 284 { 285 KVMSlot *slot = kvm_get_free_slot(kml); 286 287 if (slot) { 288 return slot; 289 } 290 291 fprintf(stderr, "%s: no free slot available\n", __func__); 292 abort(); 293 } 294 295 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 296 hwaddr start_addr, 297 hwaddr size) 298 { 299 int i; 300 301 for (i = 0; i < kml->nr_slots_allocated; i++) { 302 KVMSlot *mem = &kml->slots[i]; 303 304 if (start_addr == mem->start_addr && size == mem->memory_size) { 305 return mem; 306 } 307 } 308 309 return NULL; 310 } 311 312 /* 313 * Calculate and align the start address and the size of the section. 314 * Return the size. If the size is 0, the aligned section is empty. 315 */ 316 static hwaddr kvm_align_section(MemoryRegionSection *section, 317 hwaddr *start) 318 { 319 hwaddr size = int128_get64(section->size); 320 hwaddr delta, aligned; 321 322 /* kvm works in page size chunks, but the function may be called 323 with sub-page size and unaligned start address. Pad the start 324 address to next and truncate size to previous page boundary. */ 325 aligned = ROUND_UP(section->offset_within_address_space, 326 qemu_real_host_page_size()); 327 delta = aligned - section->offset_within_address_space; 328 *start = aligned; 329 if (delta > size) { 330 return 0; 331 } 332 333 return (size - delta) & qemu_real_host_page_mask(); 334 } 335 336 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 337 hwaddr *phys_addr) 338 { 339 KVMMemoryListener *kml = &s->memory_listener; 340 int i, ret = 0; 341 342 kvm_slots_lock(); 343 for (i = 0; i < kml->nr_slots_allocated; i++) { 344 KVMSlot *mem = &kml->slots[i]; 345 346 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 347 *phys_addr = mem->start_addr + (ram - mem->ram); 348 ret = 1; 349 break; 350 } 351 } 352 kvm_slots_unlock(); 353 354 return ret; 355 } 356 357 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 358 { 359 KVMState *s = kvm_state; 360 struct kvm_userspace_memory_region2 mem; 361 int ret; 362 363 mem.slot = slot->slot | (kml->as_id << 16); 364 mem.guest_phys_addr = slot->start_addr; 365 mem.userspace_addr = (unsigned long)slot->ram; 366 mem.flags = slot->flags; 367 mem.guest_memfd = slot->guest_memfd; 368 mem.guest_memfd_offset = slot->guest_memfd_offset; 369 370 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 371 /* Set the slot size to 0 before setting the slot to the desired 372 * value. This is needed based on KVM commit 75d61fbc. */ 373 mem.memory_size = 0; 374 375 if (kvm_guest_memfd_supported) { 376 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 377 } else { 378 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 379 } 380 if (ret < 0) { 381 goto err; 382 } 383 } 384 mem.memory_size = slot->memory_size; 385 if (kvm_guest_memfd_supported) { 386 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 387 } else { 388 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 389 } 390 slot->old_flags = mem.flags; 391 err: 392 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 393 mem.guest_phys_addr, mem.memory_size, 394 mem.userspace_addr, mem.guest_memfd, 395 mem.guest_memfd_offset, ret); 396 if (ret < 0) { 397 if (kvm_guest_memfd_supported) { 398 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 399 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 400 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 401 " guest_memfd_offset=0x%" PRIx64 ": %s", 402 __func__, mem.slot, slot->start_addr, 403 (uint64_t)mem.memory_size, mem.flags, 404 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 405 strerror(errno)); 406 } else { 407 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 408 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 409 __func__, mem.slot, slot->start_addr, 410 (uint64_t)mem.memory_size, strerror(errno)); 411 } 412 } 413 return ret; 414 } 415 416 void kvm_park_vcpu(CPUState *cpu) 417 { 418 struct KVMParkedVcpu *vcpu; 419 420 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 421 422 vcpu = g_malloc0(sizeof(*vcpu)); 423 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 424 vcpu->kvm_fd = cpu->kvm_fd; 425 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 426 } 427 428 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 429 { 430 struct KVMParkedVcpu *cpu; 431 int kvm_fd = -ENOENT; 432 433 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 434 if (cpu->vcpu_id == vcpu_id) { 435 QLIST_REMOVE(cpu, node); 436 kvm_fd = cpu->kvm_fd; 437 g_free(cpu); 438 break; 439 } 440 } 441 442 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 443 444 return kvm_fd; 445 } 446 447 static void kvm_reset_parked_vcpus(KVMState *s) 448 { 449 struct KVMParkedVcpu *cpu; 450 451 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 452 kvm_arch_reset_parked_vcpu(cpu->vcpu_id, cpu->kvm_fd); 453 } 454 } 455 456 /** 457 * kvm_create_vcpu - Gets a parked KVM vCPU or creates a KVM vCPU 458 * @cpu: QOM CPUState object for which KVM vCPU has to be fetched/created. 459 * 460 * @returns: 0 when success, errno (<0) when failed. 461 */ 462 static int kvm_create_vcpu(CPUState *cpu) 463 { 464 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 465 KVMState *s = kvm_state; 466 int kvm_fd; 467 468 /* check if the KVM vCPU already exist but is parked */ 469 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 470 if (kvm_fd < 0) { 471 /* vCPU not parked: create a new KVM vCPU */ 472 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 473 if (kvm_fd < 0) { 474 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 475 return kvm_fd; 476 } 477 } 478 479 cpu->kvm_fd = kvm_fd; 480 cpu->kvm_state = s; 481 if (!s->guest_state_protected) { 482 cpu->vcpu_dirty = true; 483 } 484 cpu->dirty_pages = 0; 485 cpu->throttle_us_per_full = 0; 486 487 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 488 489 return 0; 490 } 491 492 int kvm_create_and_park_vcpu(CPUState *cpu) 493 { 494 int ret = 0; 495 496 ret = kvm_create_vcpu(cpu); 497 if (!ret) { 498 kvm_park_vcpu(cpu); 499 } 500 501 return ret; 502 } 503 504 static int do_kvm_destroy_vcpu(CPUState *cpu) 505 { 506 KVMState *s = kvm_state; 507 int mmap_size; 508 int ret = 0; 509 510 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 511 512 ret = kvm_arch_destroy_vcpu(cpu); 513 if (ret < 0) { 514 goto err; 515 } 516 517 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 518 if (mmap_size < 0) { 519 ret = mmap_size; 520 trace_kvm_failed_get_vcpu_mmap_size(); 521 goto err; 522 } 523 524 ret = munmap(cpu->kvm_run, mmap_size); 525 if (ret < 0) { 526 goto err; 527 } 528 529 if (cpu->kvm_dirty_gfns) { 530 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 531 if (ret < 0) { 532 goto err; 533 } 534 } 535 536 kvm_park_vcpu(cpu); 537 err: 538 return ret; 539 } 540 541 void kvm_destroy_vcpu(CPUState *cpu) 542 { 543 if (do_kvm_destroy_vcpu(cpu) < 0) { 544 error_report("kvm_destroy_vcpu failed"); 545 exit(EXIT_FAILURE); 546 } 547 } 548 549 int kvm_init_vcpu(CPUState *cpu, Error **errp) 550 { 551 KVMState *s = kvm_state; 552 int mmap_size; 553 int ret; 554 555 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 556 557 ret = kvm_arch_pre_create_vcpu(cpu, errp); 558 if (ret < 0) { 559 goto err; 560 } 561 562 ret = kvm_create_vcpu(cpu); 563 if (ret < 0) { 564 error_setg_errno(errp, -ret, 565 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 566 kvm_arch_vcpu_id(cpu)); 567 goto err; 568 } 569 570 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 571 if (mmap_size < 0) { 572 ret = mmap_size; 573 error_setg_errno(errp, -mmap_size, 574 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 575 goto err; 576 } 577 578 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 579 cpu->kvm_fd, 0); 580 if (cpu->kvm_run == MAP_FAILED) { 581 ret = -errno; 582 error_setg_errno(errp, ret, 583 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 584 kvm_arch_vcpu_id(cpu)); 585 goto err; 586 } 587 588 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 589 s->coalesced_mmio_ring = 590 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 591 } 592 593 if (s->kvm_dirty_ring_size) { 594 /* Use MAP_SHARED to share pages with the kernel */ 595 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 596 PROT_READ | PROT_WRITE, MAP_SHARED, 597 cpu->kvm_fd, 598 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 599 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 600 ret = -errno; 601 goto err; 602 } 603 } 604 605 ret = kvm_arch_init_vcpu(cpu); 606 if (ret < 0) { 607 error_setg_errno(errp, -ret, 608 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 609 kvm_arch_vcpu_id(cpu)); 610 } 611 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 612 613 err: 614 return ret; 615 } 616 617 /* 618 * dirty pages logging control 619 */ 620 621 static int kvm_mem_flags(MemoryRegion *mr) 622 { 623 bool readonly = mr->readonly || memory_region_is_romd(mr); 624 int flags = 0; 625 626 if (memory_region_get_dirty_log_mask(mr) != 0) { 627 flags |= KVM_MEM_LOG_DIRTY_PAGES; 628 } 629 if (readonly && kvm_readonly_mem_allowed) { 630 flags |= KVM_MEM_READONLY; 631 } 632 if (memory_region_has_guest_memfd(mr)) { 633 assert(kvm_guest_memfd_supported); 634 flags |= KVM_MEM_GUEST_MEMFD; 635 } 636 return flags; 637 } 638 639 /* Called with KVMMemoryListener.slots_lock held */ 640 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 641 MemoryRegion *mr) 642 { 643 mem->flags = kvm_mem_flags(mr); 644 645 /* If nothing changed effectively, no need to issue ioctl */ 646 if (mem->flags == mem->old_flags) { 647 return 0; 648 } 649 650 kvm_slot_init_dirty_bitmap(mem); 651 return kvm_set_user_memory_region(kml, mem, false); 652 } 653 654 static int kvm_section_update_flags(KVMMemoryListener *kml, 655 MemoryRegionSection *section) 656 { 657 hwaddr start_addr, size, slot_size; 658 KVMSlot *mem; 659 int ret = 0; 660 661 size = kvm_align_section(section, &start_addr); 662 if (!size) { 663 return 0; 664 } 665 666 kvm_slots_lock(); 667 668 while (size && !ret) { 669 slot_size = MIN(kvm_max_slot_size, size); 670 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 671 if (!mem) { 672 /* We don't have a slot if we want to trap every access. */ 673 goto out; 674 } 675 676 ret = kvm_slot_update_flags(kml, mem, section->mr); 677 start_addr += slot_size; 678 size -= slot_size; 679 } 680 681 out: 682 kvm_slots_unlock(); 683 return ret; 684 } 685 686 static void kvm_log_start(MemoryListener *listener, 687 MemoryRegionSection *section, 688 int old, int new) 689 { 690 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 691 int r; 692 693 if (old != 0) { 694 return; 695 } 696 697 r = kvm_section_update_flags(kml, section); 698 if (r < 0) { 699 abort(); 700 } 701 } 702 703 static void kvm_log_stop(MemoryListener *listener, 704 MemoryRegionSection *section, 705 int old, int new) 706 { 707 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 708 int r; 709 710 if (new != 0) { 711 return; 712 } 713 714 r = kvm_section_update_flags(kml, section); 715 if (r < 0) { 716 abort(); 717 } 718 } 719 720 /* get kvm's dirty pages bitmap and update qemu's */ 721 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 722 { 723 ram_addr_t start = slot->ram_start_offset; 724 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 725 726 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 727 } 728 729 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 730 { 731 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 732 } 733 734 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 735 736 /* Allocate the dirty bitmap for a slot */ 737 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 738 { 739 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 740 return; 741 } 742 743 /* 744 * XXX bad kernel interface alert 745 * For dirty bitmap, kernel allocates array of size aligned to 746 * bits-per-long. But for case when the kernel is 64bits and 747 * the userspace is 32bits, userspace can't align to the same 748 * bits-per-long, since sizeof(long) is different between kernel 749 * and user space. This way, userspace will provide buffer which 750 * may be 4 bytes less than the kernel will use, resulting in 751 * userspace memory corruption (which is not detectable by valgrind 752 * too, in most cases). 753 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 754 * a hope that sizeof(long) won't become >8 any time soon. 755 * 756 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 757 * And mem->memory_size is aligned to it (otherwise this mem can't 758 * be registered to KVM). 759 */ 760 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 761 /*HOST_LONG_BITS*/ 64) / 8; 762 mem->dirty_bmap = g_malloc0(bitmap_size); 763 mem->dirty_bmap_size = bitmap_size; 764 } 765 766 /* 767 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 768 * succeeded, false otherwise 769 */ 770 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 771 { 772 struct kvm_dirty_log d = {}; 773 int ret; 774 775 d.dirty_bitmap = slot->dirty_bmap; 776 d.slot = slot->slot | (slot->as_id << 16); 777 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 778 779 if (ret == -ENOENT) { 780 /* kernel does not have dirty bitmap in this slot */ 781 ret = 0; 782 } 783 if (ret) { 784 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 785 __func__, ret); 786 } 787 return ret == 0; 788 } 789 790 /* Should be with all slots_lock held for the address spaces. */ 791 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 792 uint32_t slot_id, uint64_t offset) 793 { 794 KVMMemoryListener *kml; 795 KVMSlot *mem; 796 797 if (as_id >= s->nr_as) { 798 return; 799 } 800 801 kml = s->as[as_id].ml; 802 mem = &kml->slots[slot_id]; 803 804 if (!mem->memory_size || offset >= 805 (mem->memory_size / qemu_real_host_page_size())) { 806 return; 807 } 808 809 set_bit(offset, mem->dirty_bmap); 810 } 811 812 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 813 { 814 /* 815 * Read the flags before the value. Pairs with barrier in 816 * KVM's kvm_dirty_ring_push() function. 817 */ 818 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 819 } 820 821 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 822 { 823 /* 824 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 825 * sees the full content of the ring: 826 * 827 * CPU0 CPU1 CPU2 828 * ------------------------------------------------------------------------------ 829 * fill gfn0 830 * store-rel flags for gfn0 831 * load-acq flags for gfn0 832 * store-rel RESET for gfn0 833 * ioctl(RESET_RINGS) 834 * load-acq flags for gfn0 835 * check if flags have RESET 836 * 837 * The synchronization goes from CPU2 to CPU0 to CPU1. 838 */ 839 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 840 } 841 842 /* 843 * Should be with all slots_lock held for the address spaces. It returns the 844 * dirty page we've collected on this dirty ring. 845 */ 846 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 847 { 848 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 849 uint32_t ring_size = s->kvm_dirty_ring_size; 850 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 851 852 /* 853 * It's possible that we race with vcpu creation code where the vcpu is 854 * put onto the vcpus list but not yet initialized the dirty ring 855 * structures. If so, skip it. 856 */ 857 if (!cpu->created) { 858 return 0; 859 } 860 861 assert(dirty_gfns && ring_size); 862 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 863 864 while (true) { 865 cur = &dirty_gfns[fetch % ring_size]; 866 if (!dirty_gfn_is_dirtied(cur)) { 867 break; 868 } 869 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 870 cur->offset); 871 dirty_gfn_set_collected(cur); 872 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 873 fetch++; 874 count++; 875 } 876 cpu->kvm_fetch_index = fetch; 877 cpu->dirty_pages += count; 878 879 return count; 880 } 881 882 /* Must be with slots_lock held */ 883 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 884 { 885 int ret; 886 uint64_t total = 0; 887 int64_t stamp; 888 889 stamp = get_clock(); 890 891 if (cpu) { 892 total = kvm_dirty_ring_reap_one(s, cpu); 893 } else { 894 CPU_FOREACH(cpu) { 895 total += kvm_dirty_ring_reap_one(s, cpu); 896 } 897 } 898 899 if (total) { 900 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 901 assert(ret == total); 902 } 903 904 stamp = get_clock() - stamp; 905 906 if (total) { 907 trace_kvm_dirty_ring_reap(total, stamp / 1000); 908 } 909 910 return total; 911 } 912 913 /* 914 * Currently for simplicity, we must hold BQL before calling this. We can 915 * consider to drop the BQL if we're clear with all the race conditions. 916 */ 917 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 918 { 919 uint64_t total; 920 921 /* 922 * We need to lock all kvm slots for all address spaces here, 923 * because: 924 * 925 * (1) We need to mark dirty for dirty bitmaps in multiple slots 926 * and for tons of pages, so it's better to take the lock here 927 * once rather than once per page. And more importantly, 928 * 929 * (2) We must _NOT_ publish dirty bits to the other threads 930 * (e.g., the migration thread) via the kvm memory slot dirty 931 * bitmaps before correctly re-protect those dirtied pages. 932 * Otherwise we can have potential risk of data corruption if 933 * the page data is read in the other thread before we do 934 * reset below. 935 */ 936 kvm_slots_lock(); 937 total = kvm_dirty_ring_reap_locked(s, cpu); 938 kvm_slots_unlock(); 939 940 return total; 941 } 942 943 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 944 { 945 /* No need to do anything */ 946 } 947 948 /* 949 * Kick all vcpus out in a synchronized way. When returned, we 950 * guarantee that every vcpu has been kicked and at least returned to 951 * userspace once. 952 */ 953 static void kvm_cpu_synchronize_kick_all(void) 954 { 955 CPUState *cpu; 956 957 CPU_FOREACH(cpu) { 958 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 959 } 960 } 961 962 /* 963 * Flush all the existing dirty pages to the KVM slot buffers. When 964 * this call returns, we guarantee that all the touched dirty pages 965 * before calling this function have been put into the per-kvmslot 966 * dirty bitmap. 967 * 968 * This function must be called with BQL held. 969 */ 970 static void kvm_dirty_ring_flush(void) 971 { 972 trace_kvm_dirty_ring_flush(0); 973 /* 974 * The function needs to be serialized. Since this function 975 * should always be with BQL held, serialization is guaranteed. 976 * However, let's be sure of it. 977 */ 978 assert(bql_locked()); 979 /* 980 * First make sure to flush the hardware buffers by kicking all 981 * vcpus out in a synchronous way. 982 */ 983 kvm_cpu_synchronize_kick_all(); 984 kvm_dirty_ring_reap(kvm_state, NULL); 985 trace_kvm_dirty_ring_flush(1); 986 } 987 988 /** 989 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 990 * 991 * This function will first try to fetch dirty bitmap from the kernel, 992 * and then updates qemu's dirty bitmap. 993 * 994 * NOTE: caller must be with kml->slots_lock held. 995 * 996 * @kml: the KVM memory listener object 997 * @section: the memory section to sync the dirty bitmap with 998 */ 999 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 1000 MemoryRegionSection *section) 1001 { 1002 KVMState *s = kvm_state; 1003 KVMSlot *mem; 1004 hwaddr start_addr, size; 1005 hwaddr slot_size; 1006 1007 size = kvm_align_section(section, &start_addr); 1008 while (size) { 1009 slot_size = MIN(kvm_max_slot_size, size); 1010 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1011 if (!mem) { 1012 /* We don't have a slot if we want to trap every access. */ 1013 return; 1014 } 1015 if (kvm_slot_get_dirty_log(s, mem)) { 1016 kvm_slot_sync_dirty_pages(mem); 1017 } 1018 start_addr += slot_size; 1019 size -= slot_size; 1020 } 1021 } 1022 1023 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 1024 #define KVM_CLEAR_LOG_SHIFT 6 1025 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 1026 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 1027 1028 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 1029 uint64_t size) 1030 { 1031 KVMState *s = kvm_state; 1032 uint64_t end, bmap_start, start_delta, bmap_npages; 1033 struct kvm_clear_dirty_log d; 1034 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1035 int ret; 1036 1037 /* 1038 * We need to extend either the start or the size or both to 1039 * satisfy the KVM interface requirement. Firstly, do the start 1040 * page alignment on 64 host pages 1041 */ 1042 bmap_start = start & KVM_CLEAR_LOG_MASK; 1043 start_delta = start - bmap_start; 1044 bmap_start /= psize; 1045 1046 /* 1047 * The kernel interface has restriction on the size too, that either: 1048 * 1049 * (1) the size is 64 host pages aligned (just like the start), or 1050 * (2) the size fills up until the end of the KVM memslot. 1051 */ 1052 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1053 << KVM_CLEAR_LOG_SHIFT; 1054 end = mem->memory_size / psize; 1055 if (bmap_npages > end - bmap_start) { 1056 bmap_npages = end - bmap_start; 1057 } 1058 start_delta /= psize; 1059 1060 /* 1061 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1062 * that we won't clear any unknown dirty bits otherwise we might 1063 * accidentally clear some set bits which are not yet synced from 1064 * the kernel into QEMU's bitmap, then we'll lose track of the 1065 * guest modifications upon those pages (which can directly lead 1066 * to guest data loss or panic after migration). 1067 * 1068 * Layout of the KVMSlot.dirty_bmap: 1069 * 1070 * |<-------- bmap_npages -----------..>| 1071 * [1] 1072 * start_delta size 1073 * |----------------|-------------|------------------|------------| 1074 * ^ ^ ^ ^ 1075 * | | | | 1076 * start bmap_start (start) end 1077 * of memslot of memslot 1078 * 1079 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1080 */ 1081 1082 assert(bmap_start % BITS_PER_LONG == 0); 1083 /* We should never do log_clear before log_sync */ 1084 assert(mem->dirty_bmap); 1085 if (start_delta || bmap_npages - size / psize) { 1086 /* Slow path - we need to manipulate a temp bitmap */ 1087 bmap_clear = bitmap_new(bmap_npages); 1088 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1089 bmap_start, start_delta + size / psize); 1090 /* 1091 * We need to fill the holes at start because that was not 1092 * specified by the caller and we extended the bitmap only for 1093 * 64 pages alignment 1094 */ 1095 bitmap_clear(bmap_clear, 0, start_delta); 1096 d.dirty_bitmap = bmap_clear; 1097 } else { 1098 /* 1099 * Fast path - both start and size align well with BITS_PER_LONG 1100 * (or the end of memory slot) 1101 */ 1102 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1103 } 1104 1105 d.first_page = bmap_start; 1106 /* It should never overflow. If it happens, say something */ 1107 assert(bmap_npages <= UINT32_MAX); 1108 d.num_pages = bmap_npages; 1109 d.slot = mem->slot | (as_id << 16); 1110 1111 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1112 if (ret < 0 && ret != -ENOENT) { 1113 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1114 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1115 __func__, d.slot, (uint64_t)d.first_page, 1116 (uint32_t)d.num_pages, ret); 1117 } else { 1118 ret = 0; 1119 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1120 } 1121 1122 /* 1123 * After we have updated the remote dirty bitmap, we update the 1124 * cached bitmap as well for the memslot, then if another user 1125 * clears the same region we know we shouldn't clear it again on 1126 * the remote otherwise it's data loss as well. 1127 */ 1128 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1129 size / psize); 1130 /* This handles the NULL case well */ 1131 g_free(bmap_clear); 1132 return ret; 1133 } 1134 1135 1136 /** 1137 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1138 * 1139 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1140 * protection in the host kernel because in that case this operation 1141 * will be done within log_sync(). 1142 * 1143 * @kml: the kvm memory listener 1144 * @section: the memory range to clear dirty bitmap 1145 */ 1146 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1147 MemoryRegionSection *section) 1148 { 1149 KVMState *s = kvm_state; 1150 uint64_t start, size, offset, count; 1151 KVMSlot *mem; 1152 int ret = 0, i; 1153 1154 if (!s->manual_dirty_log_protect) { 1155 /* No need to do explicit clear */ 1156 return ret; 1157 } 1158 1159 start = section->offset_within_address_space; 1160 size = int128_get64(section->size); 1161 1162 if (!size) { 1163 /* Nothing more we can do... */ 1164 return ret; 1165 } 1166 1167 kvm_slots_lock(); 1168 1169 for (i = 0; i < kml->nr_slots_allocated; i++) { 1170 mem = &kml->slots[i]; 1171 /* Discard slots that are empty or do not overlap the section */ 1172 if (!mem->memory_size || 1173 mem->start_addr > start + size - 1 || 1174 start > mem->start_addr + mem->memory_size - 1) { 1175 continue; 1176 } 1177 1178 if (start >= mem->start_addr) { 1179 /* The slot starts before section or is aligned to it. */ 1180 offset = start - mem->start_addr; 1181 count = MIN(mem->memory_size - offset, size); 1182 } else { 1183 /* The slot starts after section. */ 1184 offset = 0; 1185 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1186 } 1187 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1188 if (ret < 0) { 1189 break; 1190 } 1191 } 1192 1193 kvm_slots_unlock(); 1194 1195 return ret; 1196 } 1197 1198 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1199 MemoryRegionSection *secion, 1200 hwaddr start, hwaddr size) 1201 { 1202 KVMState *s = kvm_state; 1203 1204 if (s->coalesced_mmio) { 1205 struct kvm_coalesced_mmio_zone zone; 1206 1207 zone.addr = start; 1208 zone.size = size; 1209 zone.pad = 0; 1210 1211 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1212 } 1213 } 1214 1215 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1216 MemoryRegionSection *secion, 1217 hwaddr start, hwaddr size) 1218 { 1219 KVMState *s = kvm_state; 1220 1221 if (s->coalesced_mmio) { 1222 struct kvm_coalesced_mmio_zone zone; 1223 1224 zone.addr = start; 1225 zone.size = size; 1226 zone.pad = 0; 1227 1228 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1229 } 1230 } 1231 1232 static void kvm_coalesce_pio_add(MemoryListener *listener, 1233 MemoryRegionSection *section, 1234 hwaddr start, hwaddr size) 1235 { 1236 KVMState *s = kvm_state; 1237 1238 if (s->coalesced_pio) { 1239 struct kvm_coalesced_mmio_zone zone; 1240 1241 zone.addr = start; 1242 zone.size = size; 1243 zone.pio = 1; 1244 1245 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1246 } 1247 } 1248 1249 static void kvm_coalesce_pio_del(MemoryListener *listener, 1250 MemoryRegionSection *section, 1251 hwaddr start, hwaddr size) 1252 { 1253 KVMState *s = kvm_state; 1254 1255 if (s->coalesced_pio) { 1256 struct kvm_coalesced_mmio_zone zone; 1257 1258 zone.addr = start; 1259 zone.size = size; 1260 zone.pio = 1; 1261 1262 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1263 } 1264 } 1265 1266 int kvm_check_extension(KVMState *s, unsigned int extension) 1267 { 1268 int ret; 1269 1270 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1271 if (ret < 0) { 1272 ret = 0; 1273 } 1274 1275 return ret; 1276 } 1277 1278 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1279 { 1280 int ret; 1281 1282 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1283 if (ret < 0) { 1284 /* VM wide version not implemented, use global one instead */ 1285 ret = kvm_check_extension(s, extension); 1286 } 1287 1288 return ret; 1289 } 1290 1291 /* 1292 * We track the poisoned pages to be able to: 1293 * - replace them on VM reset 1294 * - block a migration for a VM with a poisoned page 1295 */ 1296 typedef struct HWPoisonPage { 1297 ram_addr_t ram_addr; 1298 QLIST_ENTRY(HWPoisonPage) list; 1299 } HWPoisonPage; 1300 1301 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1302 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1303 1304 static void kvm_unpoison_all(void *param) 1305 { 1306 HWPoisonPage *page, *next_page; 1307 1308 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1309 QLIST_REMOVE(page, list); 1310 qemu_ram_remap(page->ram_addr); 1311 g_free(page); 1312 } 1313 } 1314 1315 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1316 { 1317 HWPoisonPage *page; 1318 1319 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1320 if (page->ram_addr == ram_addr) { 1321 return; 1322 } 1323 } 1324 page = g_new(HWPoisonPage, 1); 1325 page->ram_addr = ram_addr; 1326 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1327 } 1328 1329 bool kvm_hwpoisoned_mem(void) 1330 { 1331 return !QLIST_EMPTY(&hwpoison_page_list); 1332 } 1333 1334 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1335 { 1336 if (target_needs_bswap()) { 1337 /* 1338 * The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1339 * endianness, but the memory core hands them in target endianness. 1340 * For example, PPC is always treated as big-endian even if running 1341 * on KVM and on PPC64LE. Correct here, swapping back. 1342 */ 1343 switch (size) { 1344 case 2: 1345 val = bswap16(val); 1346 break; 1347 case 4: 1348 val = bswap32(val); 1349 break; 1350 } 1351 } 1352 return val; 1353 } 1354 1355 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1356 bool assign, uint32_t size, bool datamatch) 1357 { 1358 int ret; 1359 struct kvm_ioeventfd iofd = { 1360 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1361 .addr = addr, 1362 .len = size, 1363 .flags = 0, 1364 .fd = fd, 1365 }; 1366 1367 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1368 datamatch); 1369 if (!kvm_enabled()) { 1370 return -ENOSYS; 1371 } 1372 1373 if (datamatch) { 1374 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1375 } 1376 if (!assign) { 1377 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1378 } 1379 1380 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1381 1382 if (ret < 0) { 1383 return -errno; 1384 } 1385 1386 return 0; 1387 } 1388 1389 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1390 bool assign, uint32_t size, bool datamatch) 1391 { 1392 struct kvm_ioeventfd kick = { 1393 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1394 .addr = addr, 1395 .flags = KVM_IOEVENTFD_FLAG_PIO, 1396 .len = size, 1397 .fd = fd, 1398 }; 1399 int r; 1400 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1401 if (!kvm_enabled()) { 1402 return -ENOSYS; 1403 } 1404 if (datamatch) { 1405 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1406 } 1407 if (!assign) { 1408 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1409 } 1410 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1411 if (r < 0) { 1412 return r; 1413 } 1414 return 0; 1415 } 1416 1417 1418 static const KVMCapabilityInfo * 1419 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1420 { 1421 while (list->name) { 1422 if (!kvm_check_extension(s, list->value)) { 1423 return list; 1424 } 1425 list++; 1426 } 1427 return NULL; 1428 } 1429 1430 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1431 { 1432 g_assert( 1433 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1434 ); 1435 kvm_max_slot_size = max_slot_size; 1436 } 1437 1438 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1439 { 1440 struct kvm_memory_attributes attrs; 1441 int r; 1442 1443 assert((attr & kvm_supported_memory_attributes) == attr); 1444 attrs.attributes = attr; 1445 attrs.address = start; 1446 attrs.size = size; 1447 attrs.flags = 0; 1448 1449 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1450 if (r) { 1451 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1452 "with attr 0x%" PRIx64 " error '%s'", 1453 start, size, attr, strerror(errno)); 1454 } 1455 return r; 1456 } 1457 1458 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1459 { 1460 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1461 } 1462 1463 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1464 { 1465 return kvm_set_memory_attributes(start, size, 0); 1466 } 1467 1468 /* Called with KVMMemoryListener.slots_lock held */ 1469 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1470 MemoryRegionSection *section, bool add) 1471 { 1472 KVMSlot *mem; 1473 int err; 1474 MemoryRegion *mr = section->mr; 1475 bool writable = !mr->readonly && !mr->rom_device; 1476 hwaddr start_addr, size, slot_size, mr_offset; 1477 ram_addr_t ram_start_offset; 1478 void *ram; 1479 1480 if (!memory_region_is_ram(mr)) { 1481 if (writable || !kvm_readonly_mem_allowed) { 1482 return; 1483 } else if (!mr->romd_mode) { 1484 /* If the memory device is not in romd_mode, then we actually want 1485 * to remove the kvm memory slot so all accesses will trap. */ 1486 add = false; 1487 } 1488 } 1489 1490 size = kvm_align_section(section, &start_addr); 1491 if (!size) { 1492 return; 1493 } 1494 1495 /* The offset of the kvmslot within the memory region */ 1496 mr_offset = section->offset_within_region + start_addr - 1497 section->offset_within_address_space; 1498 1499 /* use aligned delta to align the ram address and offset */ 1500 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1501 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1502 1503 if (!add) { 1504 do { 1505 slot_size = MIN(kvm_max_slot_size, size); 1506 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1507 if (!mem) { 1508 return; 1509 } 1510 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1511 /* 1512 * NOTE: We should be aware of the fact that here we're only 1513 * doing a best effort to sync dirty bits. No matter whether 1514 * we're using dirty log or dirty ring, we ignored two facts: 1515 * 1516 * (1) dirty bits can reside in hardware buffers (PML) 1517 * 1518 * (2) after we collected dirty bits here, pages can be dirtied 1519 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1520 * remove the slot. 1521 * 1522 * Not easy. Let's cross the fingers until it's fixed. 1523 */ 1524 if (kvm_state->kvm_dirty_ring_size) { 1525 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1526 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1527 kvm_slot_sync_dirty_pages(mem); 1528 kvm_slot_get_dirty_log(kvm_state, mem); 1529 } 1530 } else { 1531 kvm_slot_get_dirty_log(kvm_state, mem); 1532 } 1533 kvm_slot_sync_dirty_pages(mem); 1534 } 1535 1536 /* unregister the slot */ 1537 g_free(mem->dirty_bmap); 1538 mem->dirty_bmap = NULL; 1539 mem->memory_size = 0; 1540 mem->flags = 0; 1541 err = kvm_set_user_memory_region(kml, mem, false); 1542 if (err) { 1543 fprintf(stderr, "%s: error unregistering slot: %s\n", 1544 __func__, strerror(-err)); 1545 abort(); 1546 } 1547 start_addr += slot_size; 1548 size -= slot_size; 1549 kml->nr_slots_used--; 1550 } while (size); 1551 return; 1552 } 1553 1554 /* register the new slot */ 1555 do { 1556 slot_size = MIN(kvm_max_slot_size, size); 1557 mem = kvm_alloc_slot(kml); 1558 mem->as_id = kml->as_id; 1559 mem->memory_size = slot_size; 1560 mem->start_addr = start_addr; 1561 mem->ram_start_offset = ram_start_offset; 1562 mem->ram = ram; 1563 mem->flags = kvm_mem_flags(mr); 1564 mem->guest_memfd = mr->ram_block->guest_memfd; 1565 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1566 1567 kvm_slot_init_dirty_bitmap(mem); 1568 err = kvm_set_user_memory_region(kml, mem, true); 1569 if (err) { 1570 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1571 strerror(-err)); 1572 abort(); 1573 } 1574 1575 if (memory_region_has_guest_memfd(mr)) { 1576 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1577 if (err) { 1578 error_report("%s: failed to set memory attribute private: %s", 1579 __func__, strerror(-err)); 1580 exit(1); 1581 } 1582 } 1583 1584 start_addr += slot_size; 1585 ram_start_offset += slot_size; 1586 ram += slot_size; 1587 size -= slot_size; 1588 kml->nr_slots_used++; 1589 } while (size); 1590 } 1591 1592 static void *kvm_dirty_ring_reaper_thread(void *data) 1593 { 1594 KVMState *s = data; 1595 struct KVMDirtyRingReaper *r = &s->reaper; 1596 1597 rcu_register_thread(); 1598 1599 trace_kvm_dirty_ring_reaper("init"); 1600 1601 while (true) { 1602 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1603 trace_kvm_dirty_ring_reaper("wait"); 1604 /* 1605 * TODO: provide a smarter timeout rather than a constant? 1606 */ 1607 sleep(1); 1608 1609 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1610 if (dirtylimit_in_service()) { 1611 continue; 1612 } 1613 1614 trace_kvm_dirty_ring_reaper("wakeup"); 1615 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1616 1617 bql_lock(); 1618 kvm_dirty_ring_reap(s, NULL); 1619 bql_unlock(); 1620 1621 r->reaper_iteration++; 1622 } 1623 1624 g_assert_not_reached(); 1625 } 1626 1627 static void kvm_dirty_ring_reaper_init(KVMState *s) 1628 { 1629 struct KVMDirtyRingReaper *r = &s->reaper; 1630 1631 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1632 kvm_dirty_ring_reaper_thread, 1633 s, QEMU_THREAD_JOINABLE); 1634 } 1635 1636 static int kvm_dirty_ring_init(KVMState *s) 1637 { 1638 uint32_t ring_size = s->kvm_dirty_ring_size; 1639 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1640 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1641 int ret; 1642 1643 s->kvm_dirty_ring_size = 0; 1644 s->kvm_dirty_ring_bytes = 0; 1645 1646 /* Bail if the dirty ring size isn't specified */ 1647 if (!ring_size) { 1648 return 0; 1649 } 1650 1651 /* 1652 * Read the max supported pages. Fall back to dirty logging mode 1653 * if the dirty ring isn't supported. 1654 */ 1655 ret = kvm_vm_check_extension(s, capability); 1656 if (ret <= 0) { 1657 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1658 ret = kvm_vm_check_extension(s, capability); 1659 } 1660 1661 if (ret <= 0) { 1662 warn_report("KVM dirty ring not available, using bitmap method"); 1663 return 0; 1664 } 1665 1666 if (ring_bytes > ret) { 1667 error_report("KVM dirty ring size %" PRIu32 " too big " 1668 "(maximum is %ld). Please use a smaller value.", 1669 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1670 return -EINVAL; 1671 } 1672 1673 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1674 if (ret) { 1675 error_report("Enabling of KVM dirty ring failed: %s. " 1676 "Suggested minimum value is 1024.", strerror(-ret)); 1677 return -EIO; 1678 } 1679 1680 /* Enable the backup bitmap if it is supported */ 1681 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1682 if (ret > 0) { 1683 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1684 if (ret) { 1685 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1686 "%s. ", strerror(-ret)); 1687 return -EIO; 1688 } 1689 1690 s->kvm_dirty_ring_with_bitmap = true; 1691 } 1692 1693 s->kvm_dirty_ring_size = ring_size; 1694 s->kvm_dirty_ring_bytes = ring_bytes; 1695 1696 return 0; 1697 } 1698 1699 static void kvm_region_add(MemoryListener *listener, 1700 MemoryRegionSection *section) 1701 { 1702 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1703 KVMMemoryUpdate *update; 1704 1705 update = g_new0(KVMMemoryUpdate, 1); 1706 update->section = *section; 1707 1708 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1709 } 1710 1711 static void kvm_region_del(MemoryListener *listener, 1712 MemoryRegionSection *section) 1713 { 1714 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1715 KVMMemoryUpdate *update; 1716 1717 update = g_new0(KVMMemoryUpdate, 1); 1718 update->section = *section; 1719 1720 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1721 } 1722 1723 static void kvm_region_commit(MemoryListener *listener) 1724 { 1725 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1726 listener); 1727 KVMMemoryUpdate *u1, *u2; 1728 bool need_inhibit = false; 1729 1730 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1731 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1732 return; 1733 } 1734 1735 /* 1736 * We have to be careful when regions to add overlap with ranges to remove. 1737 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1738 * is currently active. 1739 * 1740 * The lists are order by addresses, so it's easy to find overlaps. 1741 */ 1742 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1743 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1744 while (u1 && u2) { 1745 Range r1, r2; 1746 1747 range_init_nofail(&r1, u1->section.offset_within_address_space, 1748 int128_get64(u1->section.size)); 1749 range_init_nofail(&r2, u2->section.offset_within_address_space, 1750 int128_get64(u2->section.size)); 1751 1752 if (range_overlaps_range(&r1, &r2)) { 1753 need_inhibit = true; 1754 break; 1755 } 1756 if (range_lob(&r1) < range_lob(&r2)) { 1757 u1 = QSIMPLEQ_NEXT(u1, next); 1758 } else { 1759 u2 = QSIMPLEQ_NEXT(u2, next); 1760 } 1761 } 1762 1763 kvm_slots_lock(); 1764 if (need_inhibit) { 1765 accel_ioctl_inhibit_begin(); 1766 } 1767 1768 /* Remove all memslots before adding the new ones. */ 1769 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1770 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1771 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1772 1773 kvm_set_phys_mem(kml, &u1->section, false); 1774 memory_region_unref(u1->section.mr); 1775 1776 g_free(u1); 1777 } 1778 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1779 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1780 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1781 1782 memory_region_ref(u1->section.mr); 1783 kvm_set_phys_mem(kml, &u1->section, true); 1784 1785 g_free(u1); 1786 } 1787 1788 if (need_inhibit) { 1789 accel_ioctl_inhibit_end(); 1790 } 1791 kvm_slots_unlock(); 1792 } 1793 1794 static void kvm_log_sync(MemoryListener *listener, 1795 MemoryRegionSection *section) 1796 { 1797 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1798 1799 kvm_slots_lock(); 1800 kvm_physical_sync_dirty_bitmap(kml, section); 1801 kvm_slots_unlock(); 1802 } 1803 1804 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1805 { 1806 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1807 KVMState *s = kvm_state; 1808 KVMSlot *mem; 1809 int i; 1810 1811 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1812 kvm_dirty_ring_flush(); 1813 1814 kvm_slots_lock(); 1815 for (i = 0; i < kml->nr_slots_allocated; i++) { 1816 mem = &kml->slots[i]; 1817 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1818 kvm_slot_sync_dirty_pages(mem); 1819 1820 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1821 kvm_slot_get_dirty_log(s, mem)) { 1822 kvm_slot_sync_dirty_pages(mem); 1823 } 1824 1825 /* 1826 * This is not needed by KVM_GET_DIRTY_LOG because the 1827 * ioctl will unconditionally overwrite the whole region. 1828 * However kvm dirty ring has no such side effect. 1829 */ 1830 kvm_slot_reset_dirty_pages(mem); 1831 } 1832 } 1833 kvm_slots_unlock(); 1834 } 1835 1836 static void kvm_log_clear(MemoryListener *listener, 1837 MemoryRegionSection *section) 1838 { 1839 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1840 int r; 1841 1842 r = kvm_physical_log_clear(kml, section); 1843 if (r < 0) { 1844 error_report_once("%s: kvm log clear failed: mr=%s " 1845 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1846 section->mr->name, section->offset_within_region, 1847 int128_get64(section->size)); 1848 abort(); 1849 } 1850 } 1851 1852 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1853 MemoryRegionSection *section, 1854 bool match_data, uint64_t data, 1855 EventNotifier *e) 1856 { 1857 int fd = event_notifier_get_fd(e); 1858 int r; 1859 1860 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1861 data, true, int128_get64(section->size), 1862 match_data); 1863 if (r < 0) { 1864 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1865 __func__, strerror(-r), -r); 1866 abort(); 1867 } 1868 } 1869 1870 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1871 MemoryRegionSection *section, 1872 bool match_data, uint64_t data, 1873 EventNotifier *e) 1874 { 1875 int fd = event_notifier_get_fd(e); 1876 int r; 1877 1878 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1879 data, false, int128_get64(section->size), 1880 match_data); 1881 if (r < 0) { 1882 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1883 __func__, strerror(-r), -r); 1884 abort(); 1885 } 1886 } 1887 1888 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1889 MemoryRegionSection *section, 1890 bool match_data, uint64_t data, 1891 EventNotifier *e) 1892 { 1893 int fd = event_notifier_get_fd(e); 1894 int r; 1895 1896 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1897 data, true, int128_get64(section->size), 1898 match_data); 1899 if (r < 0) { 1900 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1901 __func__, strerror(-r), -r); 1902 abort(); 1903 } 1904 } 1905 1906 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1907 MemoryRegionSection *section, 1908 bool match_data, uint64_t data, 1909 EventNotifier *e) 1910 1911 { 1912 int fd = event_notifier_get_fd(e); 1913 int r; 1914 1915 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1916 data, false, int128_get64(section->size), 1917 match_data); 1918 if (r < 0) { 1919 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1920 __func__, strerror(-r), -r); 1921 abort(); 1922 } 1923 } 1924 1925 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1926 AddressSpace *as, int as_id, const char *name) 1927 { 1928 int i; 1929 1930 kml->as_id = as_id; 1931 1932 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1933 1934 QSIMPLEQ_INIT(&kml->transaction_add); 1935 QSIMPLEQ_INIT(&kml->transaction_del); 1936 1937 kml->listener.region_add = kvm_region_add; 1938 kml->listener.region_del = kvm_region_del; 1939 kml->listener.commit = kvm_region_commit; 1940 kml->listener.log_start = kvm_log_start; 1941 kml->listener.log_stop = kvm_log_stop; 1942 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1943 kml->listener.name = name; 1944 1945 if (s->kvm_dirty_ring_size) { 1946 kml->listener.log_sync_global = kvm_log_sync_global; 1947 } else { 1948 kml->listener.log_sync = kvm_log_sync; 1949 kml->listener.log_clear = kvm_log_clear; 1950 } 1951 1952 memory_listener_register(&kml->listener, as); 1953 1954 for (i = 0; i < s->nr_as; ++i) { 1955 if (!s->as[i].as) { 1956 s->as[i].as = as; 1957 s->as[i].ml = kml; 1958 break; 1959 } 1960 } 1961 } 1962 1963 static MemoryListener kvm_io_listener = { 1964 .name = "kvm-io", 1965 .coalesced_io_add = kvm_coalesce_pio_add, 1966 .coalesced_io_del = kvm_coalesce_pio_del, 1967 .eventfd_add = kvm_io_ioeventfd_add, 1968 .eventfd_del = kvm_io_ioeventfd_del, 1969 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1970 }; 1971 1972 int kvm_set_irq(KVMState *s, int irq, int level) 1973 { 1974 struct kvm_irq_level event; 1975 int ret; 1976 1977 assert(kvm_async_interrupts_enabled()); 1978 1979 event.level = level; 1980 event.irq = irq; 1981 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1982 if (ret < 0) { 1983 perror("kvm_set_irq"); 1984 abort(); 1985 } 1986 1987 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1988 } 1989 1990 #ifdef KVM_CAP_IRQ_ROUTING 1991 typedef struct KVMMSIRoute { 1992 struct kvm_irq_routing_entry kroute; 1993 QTAILQ_ENTRY(KVMMSIRoute) entry; 1994 } KVMMSIRoute; 1995 1996 static void set_gsi(KVMState *s, unsigned int gsi) 1997 { 1998 set_bit(gsi, s->used_gsi_bitmap); 1999 } 2000 2001 static void clear_gsi(KVMState *s, unsigned int gsi) 2002 { 2003 clear_bit(gsi, s->used_gsi_bitmap); 2004 } 2005 2006 void kvm_init_irq_routing(KVMState *s) 2007 { 2008 int gsi_count; 2009 2010 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 2011 if (gsi_count > 0) { 2012 /* Round up so we can search ints using ffs */ 2013 s->used_gsi_bitmap = bitmap_new(gsi_count); 2014 s->gsi_count = gsi_count; 2015 } 2016 2017 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 2018 s->nr_allocated_irq_routes = 0; 2019 2020 kvm_arch_init_irq_routing(s); 2021 } 2022 2023 void kvm_irqchip_commit_routes(KVMState *s) 2024 { 2025 int ret; 2026 2027 if (kvm_gsi_direct_mapping()) { 2028 return; 2029 } 2030 2031 if (!kvm_gsi_routing_enabled()) { 2032 return; 2033 } 2034 2035 s->irq_routes->flags = 0; 2036 trace_kvm_irqchip_commit_routes(); 2037 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2038 assert(ret == 0); 2039 } 2040 2041 void kvm_add_routing_entry(KVMState *s, 2042 struct kvm_irq_routing_entry *entry) 2043 { 2044 struct kvm_irq_routing_entry *new; 2045 int n, size; 2046 2047 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2048 n = s->nr_allocated_irq_routes * 2; 2049 if (n < 64) { 2050 n = 64; 2051 } 2052 size = sizeof(struct kvm_irq_routing); 2053 size += n * sizeof(*new); 2054 s->irq_routes = g_realloc(s->irq_routes, size); 2055 s->nr_allocated_irq_routes = n; 2056 } 2057 n = s->irq_routes->nr++; 2058 new = &s->irq_routes->entries[n]; 2059 2060 *new = *entry; 2061 2062 set_gsi(s, entry->gsi); 2063 } 2064 2065 static int kvm_update_routing_entry(KVMState *s, 2066 struct kvm_irq_routing_entry *new_entry) 2067 { 2068 struct kvm_irq_routing_entry *entry; 2069 int n; 2070 2071 for (n = 0; n < s->irq_routes->nr; n++) { 2072 entry = &s->irq_routes->entries[n]; 2073 if (entry->gsi != new_entry->gsi) { 2074 continue; 2075 } 2076 2077 if(!memcmp(entry, new_entry, sizeof *entry)) { 2078 return 0; 2079 } 2080 2081 *entry = *new_entry; 2082 2083 return 0; 2084 } 2085 2086 return -ESRCH; 2087 } 2088 2089 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2090 { 2091 struct kvm_irq_routing_entry e = {}; 2092 2093 assert(pin < s->gsi_count); 2094 2095 e.gsi = irq; 2096 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2097 e.flags = 0; 2098 e.u.irqchip.irqchip = irqchip; 2099 e.u.irqchip.pin = pin; 2100 kvm_add_routing_entry(s, &e); 2101 } 2102 2103 void kvm_irqchip_release_virq(KVMState *s, int virq) 2104 { 2105 struct kvm_irq_routing_entry *e; 2106 int i; 2107 2108 if (kvm_gsi_direct_mapping()) { 2109 return; 2110 } 2111 2112 for (i = 0; i < s->irq_routes->nr; i++) { 2113 e = &s->irq_routes->entries[i]; 2114 if (e->gsi == virq) { 2115 s->irq_routes->nr--; 2116 *e = s->irq_routes->entries[s->irq_routes->nr]; 2117 } 2118 } 2119 clear_gsi(s, virq); 2120 kvm_arch_release_virq_post(virq); 2121 trace_kvm_irqchip_release_virq(virq); 2122 } 2123 2124 void kvm_irqchip_add_change_notifier(Notifier *n) 2125 { 2126 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2127 } 2128 2129 void kvm_irqchip_remove_change_notifier(Notifier *n) 2130 { 2131 notifier_remove(n); 2132 } 2133 2134 void kvm_irqchip_change_notify(void) 2135 { 2136 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2137 } 2138 2139 int kvm_irqchip_get_virq(KVMState *s) 2140 { 2141 int next_virq; 2142 2143 /* Return the lowest unused GSI in the bitmap */ 2144 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2145 if (next_virq >= s->gsi_count) { 2146 return -ENOSPC; 2147 } else { 2148 return next_virq; 2149 } 2150 } 2151 2152 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2153 { 2154 struct kvm_msi msi; 2155 2156 msi.address_lo = (uint32_t)msg.address; 2157 msi.address_hi = msg.address >> 32; 2158 msi.data = le32_to_cpu(msg.data); 2159 msi.flags = 0; 2160 memset(msi.pad, 0, sizeof(msi.pad)); 2161 2162 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2163 } 2164 2165 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2166 { 2167 struct kvm_irq_routing_entry kroute = {}; 2168 int virq; 2169 KVMState *s = c->s; 2170 MSIMessage msg = {0, 0}; 2171 2172 if (pci_available && dev) { 2173 msg = pci_get_msi_message(dev, vector); 2174 } 2175 2176 if (kvm_gsi_direct_mapping()) { 2177 return kvm_arch_msi_data_to_gsi(msg.data); 2178 } 2179 2180 if (!kvm_gsi_routing_enabled()) { 2181 return -ENOSYS; 2182 } 2183 2184 virq = kvm_irqchip_get_virq(s); 2185 if (virq < 0) { 2186 return virq; 2187 } 2188 2189 kroute.gsi = virq; 2190 kroute.type = KVM_IRQ_ROUTING_MSI; 2191 kroute.flags = 0; 2192 kroute.u.msi.address_lo = (uint32_t)msg.address; 2193 kroute.u.msi.address_hi = msg.address >> 32; 2194 kroute.u.msi.data = le32_to_cpu(msg.data); 2195 if (pci_available && kvm_msi_devid_required()) { 2196 kroute.flags = KVM_MSI_VALID_DEVID; 2197 kroute.u.msi.devid = pci_requester_id(dev); 2198 } 2199 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2200 kvm_irqchip_release_virq(s, virq); 2201 return -EINVAL; 2202 } 2203 2204 if (s->irq_routes->nr < s->gsi_count) { 2205 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2206 vector, virq); 2207 2208 kvm_add_routing_entry(s, &kroute); 2209 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2210 c->changes++; 2211 } else { 2212 kvm_irqchip_release_virq(s, virq); 2213 return -ENOSPC; 2214 } 2215 2216 return virq; 2217 } 2218 2219 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2220 PCIDevice *dev) 2221 { 2222 struct kvm_irq_routing_entry kroute = {}; 2223 2224 if (kvm_gsi_direct_mapping()) { 2225 return 0; 2226 } 2227 2228 if (!kvm_irqchip_in_kernel()) { 2229 return -ENOSYS; 2230 } 2231 2232 kroute.gsi = virq; 2233 kroute.type = KVM_IRQ_ROUTING_MSI; 2234 kroute.flags = 0; 2235 kroute.u.msi.address_lo = (uint32_t)msg.address; 2236 kroute.u.msi.address_hi = msg.address >> 32; 2237 kroute.u.msi.data = le32_to_cpu(msg.data); 2238 if (pci_available && kvm_msi_devid_required()) { 2239 kroute.flags = KVM_MSI_VALID_DEVID; 2240 kroute.u.msi.devid = pci_requester_id(dev); 2241 } 2242 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2243 return -EINVAL; 2244 } 2245 2246 trace_kvm_irqchip_update_msi_route(virq); 2247 2248 return kvm_update_routing_entry(s, &kroute); 2249 } 2250 2251 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2252 EventNotifier *resample, int virq, 2253 bool assign) 2254 { 2255 int fd = event_notifier_get_fd(event); 2256 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2257 2258 struct kvm_irqfd irqfd = { 2259 .fd = fd, 2260 .gsi = virq, 2261 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2262 }; 2263 2264 if (rfd != -1) { 2265 assert(assign); 2266 if (kvm_irqchip_is_split()) { 2267 /* 2268 * When the slow irqchip (e.g. IOAPIC) is in the 2269 * userspace, KVM kernel resamplefd will not work because 2270 * the EOI of the interrupt will be delivered to userspace 2271 * instead, so the KVM kernel resamplefd kick will be 2272 * skipped. The userspace here mimics what the kernel 2273 * provides with resamplefd, remember the resamplefd and 2274 * kick it when we receive EOI of this IRQ. 2275 * 2276 * This is hackery because IOAPIC is mostly bypassed 2277 * (except EOI broadcasts) when irqfd is used. However 2278 * this can bring much performance back for split irqchip 2279 * with INTx IRQs (for VFIO, this gives 93% perf of the 2280 * full fast path, which is 46% perf boost comparing to 2281 * the INTx slow path). 2282 */ 2283 kvm_resample_fd_insert(virq, resample); 2284 } else { 2285 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2286 irqfd.resamplefd = rfd; 2287 } 2288 } else if (!assign) { 2289 if (kvm_irqchip_is_split()) { 2290 kvm_resample_fd_remove(virq); 2291 } 2292 } 2293 2294 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2295 } 2296 2297 #else /* !KVM_CAP_IRQ_ROUTING */ 2298 2299 void kvm_init_irq_routing(KVMState *s) 2300 { 2301 } 2302 2303 void kvm_irqchip_release_virq(KVMState *s, int virq) 2304 { 2305 } 2306 2307 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2308 { 2309 abort(); 2310 } 2311 2312 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2313 { 2314 return -ENOSYS; 2315 } 2316 2317 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2318 { 2319 return -ENOSYS; 2320 } 2321 2322 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2323 { 2324 return -ENOSYS; 2325 } 2326 2327 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2328 EventNotifier *resample, int virq, 2329 bool assign) 2330 { 2331 abort(); 2332 } 2333 2334 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2335 { 2336 return -ENOSYS; 2337 } 2338 #endif /* !KVM_CAP_IRQ_ROUTING */ 2339 2340 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2341 EventNotifier *rn, int virq) 2342 { 2343 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2344 } 2345 2346 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2347 int virq) 2348 { 2349 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2350 } 2351 2352 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2353 EventNotifier *rn, qemu_irq irq) 2354 { 2355 gpointer key, gsi; 2356 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2357 2358 if (!found) { 2359 return -ENXIO; 2360 } 2361 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2362 } 2363 2364 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2365 qemu_irq irq) 2366 { 2367 gpointer key, gsi; 2368 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2369 2370 if (!found) { 2371 return -ENXIO; 2372 } 2373 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2374 } 2375 2376 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2377 { 2378 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2379 } 2380 2381 static void kvm_irqchip_create(KVMState *s) 2382 { 2383 int ret; 2384 2385 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2386 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2387 ; 2388 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2389 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2390 if (ret < 0) { 2391 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2392 exit(1); 2393 } 2394 } else { 2395 return; 2396 } 2397 2398 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2399 fprintf(stderr, "kvm: irqfd not implemented\n"); 2400 exit(1); 2401 } 2402 2403 /* First probe and see if there's a arch-specific hook to create the 2404 * in-kernel irqchip for us */ 2405 ret = kvm_arch_irqchip_create(s); 2406 if (ret == 0) { 2407 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2408 error_report("Split IRQ chip mode not supported."); 2409 exit(1); 2410 } else { 2411 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2412 } 2413 } 2414 if (ret < 0) { 2415 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2416 exit(1); 2417 } 2418 2419 kvm_kernel_irqchip = true; 2420 /* If we have an in-kernel IRQ chip then we must have asynchronous 2421 * interrupt delivery (though the reverse is not necessarily true) 2422 */ 2423 kvm_async_interrupts_allowed = true; 2424 kvm_halt_in_kernel_allowed = true; 2425 2426 kvm_init_irq_routing(s); 2427 2428 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2429 } 2430 2431 /* Find number of supported CPUs using the recommended 2432 * procedure from the kernel API documentation to cope with 2433 * older kernels that may be missing capabilities. 2434 */ 2435 static int kvm_recommended_vcpus(KVMState *s) 2436 { 2437 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2438 return (ret) ? ret : 4; 2439 } 2440 2441 static int kvm_max_vcpus(KVMState *s) 2442 { 2443 int ret = kvm_vm_check_extension(s, KVM_CAP_MAX_VCPUS); 2444 return (ret) ? ret : kvm_recommended_vcpus(s); 2445 } 2446 2447 static int kvm_max_vcpu_id(KVMState *s) 2448 { 2449 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2450 return (ret) ? ret : kvm_max_vcpus(s); 2451 } 2452 2453 bool kvm_vcpu_id_is_valid(int vcpu_id) 2454 { 2455 KVMState *s = KVM_STATE(current_accel()); 2456 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2457 } 2458 2459 bool kvm_dirty_ring_enabled(void) 2460 { 2461 return kvm_state && kvm_state->kvm_dirty_ring_size; 2462 } 2463 2464 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2465 strList *names, strList *targets, Error **errp); 2466 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2467 2468 uint32_t kvm_dirty_ring_size(void) 2469 { 2470 return kvm_state->kvm_dirty_ring_size; 2471 } 2472 2473 static int do_kvm_create_vm(KVMState *s, int type) 2474 { 2475 int ret; 2476 2477 do { 2478 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2479 } while (ret == -EINTR); 2480 2481 if (ret < 0) { 2482 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret)); 2483 2484 #ifdef TARGET_S390X 2485 if (ret == -EINVAL) { 2486 error_printf("Host kernel setup problem detected." 2487 " Please verify:\n"); 2488 error_printf("- for kernels supporting the" 2489 " switch_amode or user_mode parameters, whether"); 2490 error_printf(" user space is running in primary address space\n"); 2491 error_printf("- for kernels supporting the vm.allocate_pgste" 2492 " sysctl, whether it is enabled\n"); 2493 } 2494 #elif defined(TARGET_PPC) 2495 if (ret == -EINVAL) { 2496 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2497 (type == 2) ? "pr" : "hv"); 2498 } 2499 #endif 2500 } 2501 2502 return ret; 2503 } 2504 2505 static int find_kvm_machine_type(MachineState *ms) 2506 { 2507 MachineClass *mc = MACHINE_GET_CLASS(ms); 2508 int type; 2509 2510 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2511 g_autofree char *kvm_type; 2512 kvm_type = object_property_get_str(OBJECT(current_machine), 2513 "kvm-type", 2514 &error_abort); 2515 type = mc->kvm_type(ms, kvm_type); 2516 } else if (mc->kvm_type) { 2517 type = mc->kvm_type(ms, NULL); 2518 } else { 2519 type = kvm_arch_get_default_type(ms); 2520 } 2521 return type; 2522 } 2523 2524 static int kvm_setup_dirty_ring(KVMState *s) 2525 { 2526 uint64_t dirty_log_manual_caps; 2527 int ret; 2528 2529 /* 2530 * Enable KVM dirty ring if supported, otherwise fall back to 2531 * dirty logging mode 2532 */ 2533 ret = kvm_dirty_ring_init(s); 2534 if (ret < 0) { 2535 return ret; 2536 } 2537 2538 /* 2539 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2540 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2541 * page is wr-protected initially, which is against how kvm dirty ring is 2542 * usage - kvm dirty ring requires all pages are wr-protected at the very 2543 * beginning. Enabling this feature for dirty ring causes data corruption. 2544 * 2545 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2546 * we may expect a higher stall time when starting the migration. In the 2547 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2548 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2549 * guest pages. 2550 */ 2551 if (!s->kvm_dirty_ring_size) { 2552 dirty_log_manual_caps = 2553 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2554 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2555 KVM_DIRTY_LOG_INITIALLY_SET); 2556 s->manual_dirty_log_protect = dirty_log_manual_caps; 2557 if (dirty_log_manual_caps) { 2558 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2559 dirty_log_manual_caps); 2560 if (ret) { 2561 warn_report("Trying to enable capability %"PRIu64" of " 2562 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2563 "Falling back to the legacy mode. ", 2564 dirty_log_manual_caps); 2565 s->manual_dirty_log_protect = 0; 2566 } 2567 } 2568 } 2569 2570 return 0; 2571 } 2572 2573 static int kvm_init(AccelState *as, MachineState *ms) 2574 { 2575 MachineClass *mc = MACHINE_GET_CLASS(ms); 2576 static const char upgrade_note[] = 2577 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2578 "(see http://sourceforge.net/projects/kvm).\n"; 2579 const struct { 2580 const char *name; 2581 int num; 2582 } num_cpus[] = { 2583 { "SMP", ms->smp.cpus }, 2584 { "hotpluggable", ms->smp.max_cpus }, 2585 { /* end of list */ } 2586 }, *nc = num_cpus; 2587 int soft_vcpus_limit, hard_vcpus_limit; 2588 KVMState *s = KVM_STATE(as); 2589 const KVMCapabilityInfo *missing_cap; 2590 int ret; 2591 int type; 2592 2593 qemu_mutex_init(&kml_slots_lock); 2594 2595 /* 2596 * On systems where the kernel can support different base page 2597 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2598 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2599 * page size for the system though. 2600 */ 2601 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2602 2603 s->sigmask_len = 8; 2604 accel_blocker_init(); 2605 2606 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2607 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2608 #endif 2609 QLIST_INIT(&s->kvm_parked_vcpus); 2610 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2611 if (s->fd == -1) { 2612 error_report("Could not access KVM kernel module: %m"); 2613 ret = -errno; 2614 goto err; 2615 } 2616 2617 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2618 if (ret < KVM_API_VERSION) { 2619 if (ret >= 0) { 2620 ret = -EINVAL; 2621 } 2622 error_report("kvm version too old"); 2623 goto err; 2624 } 2625 2626 if (ret > KVM_API_VERSION) { 2627 ret = -EINVAL; 2628 error_report("kvm version not supported"); 2629 goto err; 2630 } 2631 2632 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2633 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2634 2635 /* If unspecified, use the default value */ 2636 if (!s->nr_slots_max) { 2637 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT; 2638 } 2639 2640 type = find_kvm_machine_type(ms); 2641 if (type < 0) { 2642 ret = -EINVAL; 2643 goto err; 2644 } 2645 2646 ret = do_kvm_create_vm(s, type); 2647 if (ret < 0) { 2648 goto err; 2649 } 2650 2651 s->vmfd = ret; 2652 2653 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2654 if (s->nr_as <= 1) { 2655 s->nr_as = 1; 2656 } 2657 s->as = g_new0(struct KVMAs, s->nr_as); 2658 2659 /* check the vcpu limits */ 2660 soft_vcpus_limit = kvm_recommended_vcpus(s); 2661 hard_vcpus_limit = kvm_max_vcpus(s); 2662 2663 while (nc->name) { 2664 if (nc->num > soft_vcpus_limit) { 2665 warn_report("Number of %s cpus requested (%d) exceeds " 2666 "the recommended cpus supported by KVM (%d)", 2667 nc->name, nc->num, soft_vcpus_limit); 2668 2669 if (nc->num > hard_vcpus_limit) { 2670 error_report("Number of %s cpus requested (%d) exceeds " 2671 "the maximum cpus supported by KVM (%d)", 2672 nc->name, nc->num, hard_vcpus_limit); 2673 exit(1); 2674 } 2675 } 2676 nc++; 2677 } 2678 2679 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2680 if (!missing_cap) { 2681 missing_cap = 2682 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2683 } 2684 if (missing_cap) { 2685 ret = -EINVAL; 2686 error_report("kvm does not support %s", missing_cap->name); 2687 error_printf("%s", upgrade_note); 2688 goto err; 2689 } 2690 2691 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2692 s->coalesced_pio = s->coalesced_mmio && 2693 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2694 2695 ret = kvm_setup_dirty_ring(s); 2696 if (ret < 0) { 2697 goto err; 2698 } 2699 2700 #ifdef KVM_CAP_VCPU_EVENTS 2701 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2702 #endif 2703 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2704 2705 s->irq_set_ioctl = KVM_IRQ_LINE; 2706 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2707 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2708 } 2709 2710 kvm_readonly_mem_allowed = 2711 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2712 2713 kvm_resamplefds_allowed = 2714 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2715 2716 kvm_vm_attributes_allowed = 2717 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2718 2719 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2720 kvm_has_guest_debug = 2721 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2722 #endif 2723 2724 kvm_sstep_flags = 0; 2725 if (kvm_has_guest_debug) { 2726 kvm_sstep_flags = SSTEP_ENABLE; 2727 2728 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2729 int guest_debug_flags = 2730 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2731 2732 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2733 kvm_sstep_flags |= SSTEP_NOIRQ; 2734 } 2735 #endif 2736 } 2737 2738 kvm_state = s; 2739 2740 ret = kvm_arch_init(ms, s); 2741 if (ret < 0) { 2742 goto err; 2743 } 2744 2745 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2746 kvm_guest_memfd_supported = 2747 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2748 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2749 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2750 kvm_pre_fault_memory_supported = kvm_vm_check_extension(s, KVM_CAP_PRE_FAULT_MEMORY); 2751 2752 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2753 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2754 } 2755 2756 qemu_register_reset(kvm_unpoison_all, NULL); 2757 2758 if (s->kernel_irqchip_allowed) { 2759 kvm_irqchip_create(s); 2760 } 2761 2762 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2763 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2764 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2765 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2766 2767 kvm_memory_listener_register(s, &s->memory_listener, 2768 &address_space_memory, 0, "kvm-memory"); 2769 memory_listener_register(&kvm_io_listener, 2770 &address_space_io); 2771 2772 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2773 if (!s->sync_mmu) { 2774 ret = ram_block_discard_disable(true); 2775 assert(!ret); 2776 } 2777 2778 if (s->kvm_dirty_ring_size) { 2779 kvm_dirty_ring_reaper_init(s); 2780 } 2781 2782 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2783 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2784 query_stats_schemas_cb); 2785 } 2786 2787 return 0; 2788 2789 err: 2790 assert(ret < 0); 2791 if (s->vmfd >= 0) { 2792 close(s->vmfd); 2793 } 2794 if (s->fd != -1) { 2795 close(s->fd); 2796 } 2797 g_free(s->as); 2798 g_free(s->memory_listener.slots); 2799 2800 return ret; 2801 } 2802 2803 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2804 { 2805 s->sigmask_len = sigmask_len; 2806 } 2807 2808 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2809 int size, uint32_t count) 2810 { 2811 int i; 2812 uint8_t *ptr = data; 2813 2814 for (i = 0; i < count; i++) { 2815 address_space_rw(&address_space_io, port, attrs, 2816 ptr, size, 2817 direction == KVM_EXIT_IO_OUT); 2818 ptr += size; 2819 } 2820 } 2821 2822 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2823 { 2824 int i; 2825 2826 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2827 run->internal.suberror); 2828 2829 for (i = 0; i < run->internal.ndata; ++i) { 2830 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2831 i, (uint64_t)run->internal.data[i]); 2832 } 2833 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2834 fprintf(stderr, "emulation failure\n"); 2835 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2836 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2837 return EXCP_INTERRUPT; 2838 } 2839 } 2840 /* FIXME: Should trigger a qmp message to let management know 2841 * something went wrong. 2842 */ 2843 return -1; 2844 } 2845 2846 void kvm_flush_coalesced_mmio_buffer(void) 2847 { 2848 KVMState *s = kvm_state; 2849 2850 if (!s || s->coalesced_flush_in_progress) { 2851 return; 2852 } 2853 2854 s->coalesced_flush_in_progress = true; 2855 2856 if (s->coalesced_mmio_ring) { 2857 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2858 while (ring->first != ring->last) { 2859 struct kvm_coalesced_mmio *ent; 2860 2861 ent = &ring->coalesced_mmio[ring->first]; 2862 2863 if (ent->pio == 1) { 2864 address_space_write(&address_space_io, ent->phys_addr, 2865 MEMTXATTRS_UNSPECIFIED, ent->data, 2866 ent->len); 2867 } else { 2868 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2869 } 2870 smp_wmb(); 2871 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2872 } 2873 } 2874 2875 s->coalesced_flush_in_progress = false; 2876 } 2877 2878 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2879 { 2880 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2881 Error *err = NULL; 2882 int ret = kvm_arch_get_registers(cpu, &err); 2883 if (ret) { 2884 if (err) { 2885 error_reportf_err(err, "Failed to synchronize CPU state: "); 2886 } else { 2887 error_report("Failed to get registers: %s", strerror(-ret)); 2888 } 2889 2890 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2891 vm_stop(RUN_STATE_INTERNAL_ERROR); 2892 } 2893 2894 cpu->vcpu_dirty = true; 2895 } 2896 } 2897 2898 void kvm_cpu_synchronize_state(CPUState *cpu) 2899 { 2900 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2901 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2902 } 2903 } 2904 2905 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2906 { 2907 Error *err = NULL; 2908 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err); 2909 if (ret) { 2910 if (err) { 2911 error_reportf_err(err, "Restoring resisters after reset: "); 2912 } else { 2913 error_report("Failed to put registers after reset: %s", 2914 strerror(-ret)); 2915 } 2916 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2917 vm_stop(RUN_STATE_INTERNAL_ERROR); 2918 } 2919 2920 cpu->vcpu_dirty = false; 2921 } 2922 2923 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2924 { 2925 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2926 2927 if (cpu == first_cpu) { 2928 kvm_reset_parked_vcpus(kvm_state); 2929 } 2930 } 2931 2932 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2933 { 2934 Error *err = NULL; 2935 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err); 2936 if (ret) { 2937 if (err) { 2938 error_reportf_err(err, "Putting registers after init: "); 2939 } else { 2940 error_report("Failed to put registers after init: %s", 2941 strerror(-ret)); 2942 } 2943 exit(1); 2944 } 2945 2946 cpu->vcpu_dirty = false; 2947 } 2948 2949 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2950 { 2951 if (!kvm_state->guest_state_protected) { 2952 /* 2953 * This runs before the machine_init_done notifiers, and is the last 2954 * opportunity to synchronize the state of confidential guests. 2955 */ 2956 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2957 } 2958 } 2959 2960 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2961 { 2962 cpu->vcpu_dirty = true; 2963 } 2964 2965 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2966 { 2967 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2968 } 2969 2970 #ifdef KVM_HAVE_MCE_INJECTION 2971 static __thread void *pending_sigbus_addr; 2972 static __thread int pending_sigbus_code; 2973 static __thread bool have_sigbus_pending; 2974 #endif 2975 2976 static void kvm_cpu_kick(CPUState *cpu) 2977 { 2978 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2979 } 2980 2981 static void kvm_cpu_kick_self(void) 2982 { 2983 if (kvm_immediate_exit) { 2984 kvm_cpu_kick(current_cpu); 2985 } else { 2986 qemu_cpu_kick_self(); 2987 } 2988 } 2989 2990 static void kvm_eat_signals(CPUState *cpu) 2991 { 2992 struct timespec ts = { 0, 0 }; 2993 siginfo_t siginfo; 2994 sigset_t waitset; 2995 sigset_t chkset; 2996 int r; 2997 2998 if (kvm_immediate_exit) { 2999 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 3000 /* Write kvm_run->immediate_exit before the cpu->exit_request 3001 * write in kvm_cpu_exec. 3002 */ 3003 smp_wmb(); 3004 return; 3005 } 3006 3007 sigemptyset(&waitset); 3008 sigaddset(&waitset, SIG_IPI); 3009 3010 do { 3011 r = sigtimedwait(&waitset, &siginfo, &ts); 3012 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 3013 perror("sigtimedwait"); 3014 exit(1); 3015 } 3016 3017 r = sigpending(&chkset); 3018 if (r == -1) { 3019 perror("sigpending"); 3020 exit(1); 3021 } 3022 } while (sigismember(&chkset, SIG_IPI)); 3023 } 3024 3025 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 3026 { 3027 MemoryRegionSection section; 3028 ram_addr_t offset; 3029 MemoryRegion *mr; 3030 RAMBlock *rb; 3031 void *addr; 3032 int ret = -EINVAL; 3033 3034 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 3035 3036 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 3037 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 3038 return ret; 3039 } 3040 3041 if (!size) { 3042 return ret; 3043 } 3044 3045 section = memory_region_find(get_system_memory(), start, size); 3046 mr = section.mr; 3047 if (!mr) { 3048 /* 3049 * Ignore converting non-assigned region to shared. 3050 * 3051 * TDX requires vMMIO region to be shared to inject #VE to guest. 3052 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 3053 * and vIO-APIC 0xFEC00000 4K page. 3054 * OVMF assigns 32bit PCI MMIO region to 3055 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 3056 */ 3057 if (!to_private) { 3058 return 0; 3059 } 3060 return ret; 3061 } 3062 3063 if (!memory_region_has_guest_memfd(mr)) { 3064 /* 3065 * Because vMMIO region must be shared, guest TD may convert vMMIO 3066 * region to shared explicitly. Don't complain such case. See 3067 * memory_region_type() for checking if the region is MMIO region. 3068 */ 3069 if (!to_private && 3070 !memory_region_is_ram(mr) && 3071 !memory_region_is_ram_device(mr) && 3072 !memory_region_is_rom(mr) && 3073 !memory_region_is_romd(mr)) { 3074 ret = 0; 3075 } else { 3076 error_report("Convert non guest_memfd backed memory region " 3077 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3078 start, size, to_private ? "private" : "shared"); 3079 } 3080 goto out_unref; 3081 } 3082 3083 if (to_private) { 3084 ret = kvm_set_memory_attributes_private(start, size); 3085 } else { 3086 ret = kvm_set_memory_attributes_shared(start, size); 3087 } 3088 if (ret) { 3089 goto out_unref; 3090 } 3091 3092 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3093 rb = qemu_ram_block_from_host(addr, false, &offset); 3094 3095 ret = ram_block_attributes_state_change(RAM_BLOCK_ATTRIBUTES(mr->rdm), 3096 offset, size, to_private); 3097 if (ret) { 3098 error_report("Failed to notify the listener the state change of " 3099 "(0x%"HWADDR_PRIx" + 0x%"HWADDR_PRIx") to %s", 3100 start, size, to_private ? "private" : "shared"); 3101 goto out_unref; 3102 } 3103 3104 if (to_private) { 3105 if (rb->page_size != qemu_real_host_page_size()) { 3106 /* 3107 * shared memory is backed by hugetlb, which is supposed to be 3108 * pre-allocated and doesn't need to be discarded 3109 */ 3110 goto out_unref; 3111 } 3112 ret = ram_block_discard_range(rb, offset, size); 3113 } else { 3114 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3115 } 3116 3117 out_unref: 3118 memory_region_unref(mr); 3119 return ret; 3120 } 3121 3122 int kvm_cpu_exec(CPUState *cpu) 3123 { 3124 struct kvm_run *run = cpu->kvm_run; 3125 int ret, run_ret; 3126 3127 trace_kvm_cpu_exec(); 3128 3129 if (kvm_arch_process_async_events(cpu)) { 3130 qatomic_set(&cpu->exit_request, 0); 3131 return EXCP_HLT; 3132 } 3133 3134 bql_unlock(); 3135 cpu_exec_start(cpu); 3136 3137 do { 3138 MemTxAttrs attrs; 3139 3140 if (cpu->vcpu_dirty) { 3141 Error *err = NULL; 3142 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err); 3143 if (ret) { 3144 if (err) { 3145 error_reportf_err(err, "Putting registers after init: "); 3146 } else { 3147 error_report("Failed to put registers after init: %s", 3148 strerror(-ret)); 3149 } 3150 ret = -1; 3151 break; 3152 } 3153 3154 cpu->vcpu_dirty = false; 3155 } 3156 3157 kvm_arch_pre_run(cpu, run); 3158 if (qatomic_read(&cpu->exit_request)) { 3159 trace_kvm_interrupt_exit_request(); 3160 /* 3161 * KVM requires us to reenter the kernel after IO exits to complete 3162 * instruction emulation. This self-signal will ensure that we 3163 * leave ASAP again. 3164 */ 3165 kvm_cpu_kick_self(); 3166 } 3167 3168 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3169 * Matching barrier in kvm_eat_signals. 3170 */ 3171 smp_rmb(); 3172 3173 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3174 3175 attrs = kvm_arch_post_run(cpu, run); 3176 3177 #ifdef KVM_HAVE_MCE_INJECTION 3178 if (unlikely(have_sigbus_pending)) { 3179 bql_lock(); 3180 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3181 pending_sigbus_addr); 3182 have_sigbus_pending = false; 3183 bql_unlock(); 3184 } 3185 #endif 3186 3187 if (run_ret < 0) { 3188 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3189 trace_kvm_io_window_exit(); 3190 kvm_eat_signals(cpu); 3191 ret = EXCP_INTERRUPT; 3192 break; 3193 } 3194 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3195 fprintf(stderr, "error: kvm run failed %s\n", 3196 strerror(-run_ret)); 3197 #ifdef TARGET_PPC 3198 if (run_ret == -EBUSY) { 3199 fprintf(stderr, 3200 "This is probably because your SMT is enabled.\n" 3201 "VCPU can only run on primary threads with all " 3202 "secondary threads offline.\n"); 3203 } 3204 #endif 3205 ret = -1; 3206 break; 3207 } 3208 } 3209 3210 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3211 switch (run->exit_reason) { 3212 case KVM_EXIT_IO: 3213 /* Called outside BQL */ 3214 kvm_handle_io(run->io.port, attrs, 3215 (uint8_t *)run + run->io.data_offset, 3216 run->io.direction, 3217 run->io.size, 3218 run->io.count); 3219 ret = 0; 3220 break; 3221 case KVM_EXIT_MMIO: 3222 /* Called outside BQL */ 3223 address_space_rw(&address_space_memory, 3224 run->mmio.phys_addr, attrs, 3225 run->mmio.data, 3226 run->mmio.len, 3227 run->mmio.is_write); 3228 ret = 0; 3229 break; 3230 case KVM_EXIT_IRQ_WINDOW_OPEN: 3231 ret = EXCP_INTERRUPT; 3232 break; 3233 case KVM_EXIT_SHUTDOWN: 3234 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3235 ret = EXCP_INTERRUPT; 3236 break; 3237 case KVM_EXIT_UNKNOWN: 3238 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3239 (uint64_t)run->hw.hardware_exit_reason); 3240 ret = -1; 3241 break; 3242 case KVM_EXIT_INTERNAL_ERROR: 3243 ret = kvm_handle_internal_error(cpu, run); 3244 break; 3245 case KVM_EXIT_DIRTY_RING_FULL: 3246 /* 3247 * We shouldn't continue if the dirty ring of this vcpu is 3248 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3249 */ 3250 trace_kvm_dirty_ring_full(cpu->cpu_index); 3251 bql_lock(); 3252 /* 3253 * We throttle vCPU by making it sleep once it exit from kernel 3254 * due to dirty ring full. In the dirtylimit scenario, reaping 3255 * all vCPUs after a single vCPU dirty ring get full result in 3256 * the miss of sleep, so just reap the ring-fulled vCPU. 3257 */ 3258 if (dirtylimit_in_service()) { 3259 kvm_dirty_ring_reap(kvm_state, cpu); 3260 } else { 3261 kvm_dirty_ring_reap(kvm_state, NULL); 3262 } 3263 bql_unlock(); 3264 dirtylimit_vcpu_execute(cpu); 3265 ret = 0; 3266 break; 3267 case KVM_EXIT_SYSTEM_EVENT: 3268 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3269 switch (run->system_event.type) { 3270 case KVM_SYSTEM_EVENT_SHUTDOWN: 3271 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3272 ret = EXCP_INTERRUPT; 3273 break; 3274 case KVM_SYSTEM_EVENT_RESET: 3275 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3276 ret = EXCP_INTERRUPT; 3277 break; 3278 case KVM_SYSTEM_EVENT_CRASH: 3279 kvm_cpu_synchronize_state(cpu); 3280 bql_lock(); 3281 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3282 bql_unlock(); 3283 ret = 0; 3284 break; 3285 default: 3286 ret = kvm_arch_handle_exit(cpu, run); 3287 break; 3288 } 3289 break; 3290 case KVM_EXIT_MEMORY_FAULT: 3291 trace_kvm_memory_fault(run->memory_fault.gpa, 3292 run->memory_fault.size, 3293 run->memory_fault.flags); 3294 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3295 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3296 (uint64_t)run->memory_fault.flags); 3297 ret = -1; 3298 break; 3299 } 3300 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3301 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3302 break; 3303 default: 3304 ret = kvm_arch_handle_exit(cpu, run); 3305 break; 3306 } 3307 } while (ret == 0); 3308 3309 cpu_exec_end(cpu); 3310 bql_lock(); 3311 3312 if (ret < 0) { 3313 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3314 vm_stop(RUN_STATE_INTERNAL_ERROR); 3315 } 3316 3317 qatomic_set(&cpu->exit_request, 0); 3318 return ret; 3319 } 3320 3321 int kvm_ioctl(KVMState *s, unsigned long type, ...) 3322 { 3323 int ret; 3324 void *arg; 3325 va_list ap; 3326 3327 va_start(ap, type); 3328 arg = va_arg(ap, void *); 3329 va_end(ap); 3330 3331 trace_kvm_ioctl(type, arg); 3332 ret = ioctl(s->fd, type, arg); 3333 if (ret == -1) { 3334 ret = -errno; 3335 } 3336 return ret; 3337 } 3338 3339 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...) 3340 { 3341 int ret; 3342 void *arg; 3343 va_list ap; 3344 3345 va_start(ap, type); 3346 arg = va_arg(ap, void *); 3347 va_end(ap); 3348 3349 trace_kvm_vm_ioctl(type, arg); 3350 accel_ioctl_begin(); 3351 ret = ioctl(s->vmfd, type, arg); 3352 accel_ioctl_end(); 3353 if (ret == -1) { 3354 ret = -errno; 3355 } 3356 return ret; 3357 } 3358 3359 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...) 3360 { 3361 int ret; 3362 void *arg; 3363 va_list ap; 3364 3365 va_start(ap, type); 3366 arg = va_arg(ap, void *); 3367 va_end(ap); 3368 3369 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3370 accel_cpu_ioctl_begin(cpu); 3371 ret = ioctl(cpu->kvm_fd, type, arg); 3372 accel_cpu_ioctl_end(cpu); 3373 if (ret == -1) { 3374 ret = -errno; 3375 } 3376 return ret; 3377 } 3378 3379 int kvm_device_ioctl(int fd, unsigned long type, ...) 3380 { 3381 int ret; 3382 void *arg; 3383 va_list ap; 3384 3385 va_start(ap, type); 3386 arg = va_arg(ap, void *); 3387 va_end(ap); 3388 3389 trace_kvm_device_ioctl(fd, type, arg); 3390 accel_ioctl_begin(); 3391 ret = ioctl(fd, type, arg); 3392 accel_ioctl_end(); 3393 if (ret == -1) { 3394 ret = -errno; 3395 } 3396 return ret; 3397 } 3398 3399 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3400 { 3401 int ret; 3402 struct kvm_device_attr attribute = { 3403 .group = group, 3404 .attr = attr, 3405 }; 3406 3407 if (!kvm_vm_attributes_allowed) { 3408 return 0; 3409 } 3410 3411 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3412 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3413 return ret ? 0 : 1; 3414 } 3415 3416 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3417 { 3418 struct kvm_device_attr attribute = { 3419 .group = group, 3420 .attr = attr, 3421 .flags = 0, 3422 }; 3423 3424 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3425 } 3426 3427 int kvm_device_access(int fd, int group, uint64_t attr, 3428 void *val, bool write, Error **errp) 3429 { 3430 struct kvm_device_attr kvmattr; 3431 int err; 3432 3433 kvmattr.flags = 0; 3434 kvmattr.group = group; 3435 kvmattr.attr = attr; 3436 kvmattr.addr = (uintptr_t)val; 3437 3438 err = kvm_device_ioctl(fd, 3439 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3440 &kvmattr); 3441 if (err < 0) { 3442 error_setg_errno(errp, -err, 3443 "KVM_%s_DEVICE_ATTR failed: Group %d " 3444 "attr 0x%016" PRIx64, 3445 write ? "SET" : "GET", group, attr); 3446 } 3447 return err; 3448 } 3449 3450 bool kvm_has_sync_mmu(void) 3451 { 3452 return kvm_state->sync_mmu; 3453 } 3454 3455 int kvm_has_vcpu_events(void) 3456 { 3457 return kvm_state->vcpu_events; 3458 } 3459 3460 int kvm_max_nested_state_length(void) 3461 { 3462 return kvm_state->max_nested_state_len; 3463 } 3464 3465 int kvm_has_gsi_routing(void) 3466 { 3467 #ifdef KVM_CAP_IRQ_ROUTING 3468 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3469 #else 3470 return false; 3471 #endif 3472 } 3473 3474 bool kvm_arm_supports_user_irq(void) 3475 { 3476 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3477 } 3478 3479 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3480 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3481 { 3482 struct kvm_sw_breakpoint *bp; 3483 3484 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3485 if (bp->pc == pc) { 3486 return bp; 3487 } 3488 } 3489 return NULL; 3490 } 3491 3492 int kvm_sw_breakpoints_active(CPUState *cpu) 3493 { 3494 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3495 } 3496 3497 struct kvm_set_guest_debug_data { 3498 struct kvm_guest_debug dbg; 3499 int err; 3500 }; 3501 3502 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3503 { 3504 struct kvm_set_guest_debug_data *dbg_data = 3505 (struct kvm_set_guest_debug_data *) data.host_ptr; 3506 3507 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3508 &dbg_data->dbg); 3509 } 3510 3511 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3512 { 3513 struct kvm_set_guest_debug_data data; 3514 3515 data.dbg.control = reinject_trap; 3516 3517 if (cpu->singlestep_enabled) { 3518 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3519 3520 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3521 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3522 } 3523 } 3524 kvm_arch_update_guest_debug(cpu, &data.dbg); 3525 3526 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3527 RUN_ON_CPU_HOST_PTR(&data)); 3528 return data.err; 3529 } 3530 3531 bool kvm_supports_guest_debug(void) 3532 { 3533 /* probed during kvm_init() */ 3534 return kvm_has_guest_debug; 3535 } 3536 3537 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3538 { 3539 struct kvm_sw_breakpoint *bp; 3540 int err; 3541 3542 if (type == GDB_BREAKPOINT_SW) { 3543 bp = kvm_find_sw_breakpoint(cpu, addr); 3544 if (bp) { 3545 bp->use_count++; 3546 return 0; 3547 } 3548 3549 bp = g_new(struct kvm_sw_breakpoint, 1); 3550 bp->pc = addr; 3551 bp->use_count = 1; 3552 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3553 if (err) { 3554 g_free(bp); 3555 return err; 3556 } 3557 3558 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3559 } else { 3560 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3561 if (err) { 3562 return err; 3563 } 3564 } 3565 3566 CPU_FOREACH(cpu) { 3567 err = kvm_update_guest_debug(cpu, 0); 3568 if (err) { 3569 return err; 3570 } 3571 } 3572 return 0; 3573 } 3574 3575 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3576 { 3577 struct kvm_sw_breakpoint *bp; 3578 int err; 3579 3580 if (type == GDB_BREAKPOINT_SW) { 3581 bp = kvm_find_sw_breakpoint(cpu, addr); 3582 if (!bp) { 3583 return -ENOENT; 3584 } 3585 3586 if (bp->use_count > 1) { 3587 bp->use_count--; 3588 return 0; 3589 } 3590 3591 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3592 if (err) { 3593 return err; 3594 } 3595 3596 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3597 g_free(bp); 3598 } else { 3599 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3600 if (err) { 3601 return err; 3602 } 3603 } 3604 3605 CPU_FOREACH(cpu) { 3606 err = kvm_update_guest_debug(cpu, 0); 3607 if (err) { 3608 return err; 3609 } 3610 } 3611 return 0; 3612 } 3613 3614 void kvm_remove_all_breakpoints(CPUState *cpu) 3615 { 3616 struct kvm_sw_breakpoint *bp, *next; 3617 KVMState *s = cpu->kvm_state; 3618 CPUState *tmpcpu; 3619 3620 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3621 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3622 /* Try harder to find a CPU that currently sees the breakpoint. */ 3623 CPU_FOREACH(tmpcpu) { 3624 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3625 break; 3626 } 3627 } 3628 } 3629 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3630 g_free(bp); 3631 } 3632 kvm_arch_remove_all_hw_breakpoints(); 3633 3634 CPU_FOREACH(cpu) { 3635 kvm_update_guest_debug(cpu, 0); 3636 } 3637 } 3638 3639 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3640 3641 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3642 { 3643 KVMState *s = kvm_state; 3644 struct kvm_signal_mask *sigmask; 3645 int r; 3646 3647 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3648 3649 sigmask->len = s->sigmask_len; 3650 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3651 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3652 g_free(sigmask); 3653 3654 return r; 3655 } 3656 3657 static void kvm_ipi_signal(int sig) 3658 { 3659 if (current_cpu) { 3660 assert(kvm_immediate_exit); 3661 kvm_cpu_kick(current_cpu); 3662 } 3663 } 3664 3665 void kvm_init_cpu_signals(CPUState *cpu) 3666 { 3667 int r; 3668 sigset_t set; 3669 struct sigaction sigact; 3670 3671 memset(&sigact, 0, sizeof(sigact)); 3672 sigact.sa_handler = kvm_ipi_signal; 3673 sigaction(SIG_IPI, &sigact, NULL); 3674 3675 pthread_sigmask(SIG_BLOCK, NULL, &set); 3676 #if defined KVM_HAVE_MCE_INJECTION 3677 sigdelset(&set, SIGBUS); 3678 pthread_sigmask(SIG_SETMASK, &set, NULL); 3679 #endif 3680 sigdelset(&set, SIG_IPI); 3681 if (kvm_immediate_exit) { 3682 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3683 } else { 3684 r = kvm_set_signal_mask(cpu, &set); 3685 } 3686 if (r) { 3687 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3688 exit(1); 3689 } 3690 } 3691 3692 /* Called asynchronously in VCPU thread. */ 3693 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3694 { 3695 #ifdef KVM_HAVE_MCE_INJECTION 3696 if (have_sigbus_pending) { 3697 return 1; 3698 } 3699 have_sigbus_pending = true; 3700 pending_sigbus_addr = addr; 3701 pending_sigbus_code = code; 3702 qatomic_set(&cpu->exit_request, 1); 3703 return 0; 3704 #else 3705 return 1; 3706 #endif 3707 } 3708 3709 /* Called synchronously (via signalfd) in main thread. */ 3710 int kvm_on_sigbus(int code, void *addr) 3711 { 3712 #ifdef KVM_HAVE_MCE_INJECTION 3713 /* Action required MCE kills the process if SIGBUS is blocked. Because 3714 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3715 * we can only get action optional here. 3716 */ 3717 assert(code != BUS_MCEERR_AR); 3718 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3719 return 0; 3720 #else 3721 return 1; 3722 #endif 3723 } 3724 3725 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3726 { 3727 int ret; 3728 struct kvm_create_device create_dev; 3729 3730 create_dev.type = type; 3731 create_dev.fd = -1; 3732 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3733 3734 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3735 return -ENOTSUP; 3736 } 3737 3738 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3739 if (ret) { 3740 return ret; 3741 } 3742 3743 return test ? 0 : create_dev.fd; 3744 } 3745 3746 bool kvm_device_supported(int vmfd, uint64_t type) 3747 { 3748 struct kvm_create_device create_dev = { 3749 .type = type, 3750 .fd = -1, 3751 .flags = KVM_CREATE_DEVICE_TEST, 3752 }; 3753 3754 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3755 return false; 3756 } 3757 3758 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3759 } 3760 3761 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3762 { 3763 struct kvm_one_reg reg; 3764 int r; 3765 3766 reg.id = id; 3767 reg.addr = (uintptr_t) source; 3768 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3769 if (r) { 3770 trace_kvm_failed_reg_set(id, strerror(-r)); 3771 } 3772 return r; 3773 } 3774 3775 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3776 { 3777 struct kvm_one_reg reg; 3778 int r; 3779 3780 reg.id = id; 3781 reg.addr = (uintptr_t) target; 3782 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3783 if (r) { 3784 trace_kvm_failed_reg_get(id, strerror(-r)); 3785 } 3786 return r; 3787 } 3788 3789 static bool kvm_accel_has_memory(AccelState *accel, AddressSpace *as, 3790 hwaddr start_addr, hwaddr size) 3791 { 3792 KVMState *kvm = KVM_STATE(accel); 3793 int i; 3794 3795 for (i = 0; i < kvm->nr_as; ++i) { 3796 if (kvm->as[i].as == as && kvm->as[i].ml) { 3797 size = MIN(kvm_max_slot_size, size); 3798 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3799 start_addr, size); 3800 } 3801 } 3802 3803 return false; 3804 } 3805 3806 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3807 const char *name, void *opaque, 3808 Error **errp) 3809 { 3810 KVMState *s = KVM_STATE(obj); 3811 int64_t value = s->kvm_shadow_mem; 3812 3813 visit_type_int(v, name, &value, errp); 3814 } 3815 3816 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3817 const char *name, void *opaque, 3818 Error **errp) 3819 { 3820 KVMState *s = KVM_STATE(obj); 3821 int64_t value; 3822 3823 if (s->fd != -1) { 3824 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3825 return; 3826 } 3827 3828 if (!visit_type_int(v, name, &value, errp)) { 3829 return; 3830 } 3831 3832 s->kvm_shadow_mem = value; 3833 } 3834 3835 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3836 const char *name, void *opaque, 3837 Error **errp) 3838 { 3839 KVMState *s = KVM_STATE(obj); 3840 OnOffSplit mode; 3841 3842 if (s->fd != -1) { 3843 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3844 return; 3845 } 3846 3847 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3848 return; 3849 } 3850 switch (mode) { 3851 case ON_OFF_SPLIT_ON: 3852 s->kernel_irqchip_allowed = true; 3853 s->kernel_irqchip_required = true; 3854 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3855 break; 3856 case ON_OFF_SPLIT_OFF: 3857 s->kernel_irqchip_allowed = false; 3858 s->kernel_irqchip_required = false; 3859 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3860 break; 3861 case ON_OFF_SPLIT_SPLIT: 3862 s->kernel_irqchip_allowed = true; 3863 s->kernel_irqchip_required = true; 3864 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3865 break; 3866 default: 3867 /* The value was checked in visit_type_OnOffSplit() above. If 3868 * we get here, then something is wrong in QEMU. 3869 */ 3870 abort(); 3871 } 3872 } 3873 3874 bool kvm_kernel_irqchip_allowed(void) 3875 { 3876 return kvm_state->kernel_irqchip_allowed; 3877 } 3878 3879 bool kvm_kernel_irqchip_required(void) 3880 { 3881 return kvm_state->kernel_irqchip_required; 3882 } 3883 3884 bool kvm_kernel_irqchip_split(void) 3885 { 3886 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3887 } 3888 3889 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3890 const char *name, void *opaque, 3891 Error **errp) 3892 { 3893 KVMState *s = KVM_STATE(obj); 3894 uint32_t value = s->kvm_dirty_ring_size; 3895 3896 visit_type_uint32(v, name, &value, errp); 3897 } 3898 3899 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3900 const char *name, void *opaque, 3901 Error **errp) 3902 { 3903 KVMState *s = KVM_STATE(obj); 3904 uint32_t value; 3905 3906 if (s->fd != -1) { 3907 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3908 return; 3909 } 3910 3911 if (!visit_type_uint32(v, name, &value, errp)) { 3912 return; 3913 } 3914 if (value & (value - 1)) { 3915 error_setg(errp, "dirty-ring-size must be a power of two."); 3916 return; 3917 } 3918 3919 s->kvm_dirty_ring_size = value; 3920 } 3921 3922 static char *kvm_get_device(Object *obj, 3923 Error **errp G_GNUC_UNUSED) 3924 { 3925 KVMState *s = KVM_STATE(obj); 3926 3927 return g_strdup(s->device); 3928 } 3929 3930 static void kvm_set_device(Object *obj, 3931 const char *value, 3932 Error **errp G_GNUC_UNUSED) 3933 { 3934 KVMState *s = KVM_STATE(obj); 3935 3936 g_free(s->device); 3937 s->device = g_strdup(value); 3938 } 3939 3940 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3941 { 3942 KVMState *s = KVM_STATE(obj); 3943 s->msr_energy.enable = value; 3944 } 3945 3946 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3947 const char *str, 3948 Error **errp) 3949 { 3950 KVMState *s = KVM_STATE(obj); 3951 g_free(s->msr_energy.socket_path); 3952 s->msr_energy.socket_path = g_strdup(str); 3953 } 3954 3955 static void kvm_accel_instance_init(Object *obj) 3956 { 3957 KVMState *s = KVM_STATE(obj); 3958 3959 s->fd = -1; 3960 s->vmfd = -1; 3961 s->kvm_shadow_mem = -1; 3962 s->kernel_irqchip_allowed = true; 3963 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3964 /* KVM dirty ring is by default off */ 3965 s->kvm_dirty_ring_size = 0; 3966 s->kvm_dirty_ring_with_bitmap = false; 3967 s->kvm_eager_split_size = 0; 3968 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3969 s->notify_window = 0; 3970 s->xen_version = 0; 3971 s->xen_gnttab_max_frames = 64; 3972 s->xen_evtchn_max_pirq = 256; 3973 s->device = NULL; 3974 s->msr_energy.enable = false; 3975 } 3976 3977 /** 3978 * kvm_gdbstub_sstep_flags(): 3979 * 3980 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3981 * support is probed during kvm_init() 3982 */ 3983 static int kvm_gdbstub_sstep_flags(AccelState *as) 3984 { 3985 return kvm_sstep_flags; 3986 } 3987 3988 static void kvm_accel_class_init(ObjectClass *oc, const void *data) 3989 { 3990 AccelClass *ac = ACCEL_CLASS(oc); 3991 ac->name = "KVM"; 3992 ac->init_machine = kvm_init; 3993 ac->has_memory = kvm_accel_has_memory; 3994 ac->allowed = &kvm_allowed; 3995 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3996 3997 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3998 NULL, kvm_set_kernel_irqchip, 3999 NULL, NULL); 4000 object_class_property_set_description(oc, "kernel-irqchip", 4001 "Configure KVM in-kernel irqchip"); 4002 4003 object_class_property_add(oc, "kvm-shadow-mem", "int", 4004 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 4005 NULL, NULL); 4006 object_class_property_set_description(oc, "kvm-shadow-mem", 4007 "KVM shadow MMU size"); 4008 4009 object_class_property_add(oc, "dirty-ring-size", "uint32", 4010 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 4011 NULL, NULL); 4012 object_class_property_set_description(oc, "dirty-ring-size", 4013 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 4014 4015 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 4016 object_class_property_set_description(oc, "device", 4017 "Path to the device node to use (default: /dev/kvm)"); 4018 4019 object_class_property_add_bool(oc, "rapl", 4020 NULL, 4021 kvm_set_kvm_rapl); 4022 object_class_property_set_description(oc, "rapl", 4023 "Allow energy related MSRs for RAPL interface in Guest"); 4024 4025 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 4026 kvm_set_kvm_rapl_socket_path); 4027 object_class_property_set_description(oc, "rapl-helper-socket", 4028 "Socket Path for comminucating with the Virtual MSR helper daemon"); 4029 4030 kvm_arch_accel_class_init(oc); 4031 } 4032 4033 static const TypeInfo kvm_accel_type = { 4034 .name = TYPE_KVM_ACCEL, 4035 .parent = TYPE_ACCEL, 4036 .instance_init = kvm_accel_instance_init, 4037 .class_init = kvm_accel_class_init, 4038 .instance_size = sizeof(KVMState), 4039 }; 4040 4041 static void kvm_type_init(void) 4042 { 4043 type_register_static(&kvm_accel_type); 4044 } 4045 4046 type_init(kvm_type_init); 4047 4048 typedef struct StatsArgs { 4049 union StatsResultsType { 4050 StatsResultList **stats; 4051 StatsSchemaList **schema; 4052 } result; 4053 strList *names; 4054 Error **errp; 4055 } StatsArgs; 4056 4057 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 4058 uint64_t *stats_data, 4059 StatsList *stats_list, 4060 Error **errp) 4061 { 4062 4063 Stats *stats; 4064 uint64List *val_list = NULL; 4065 4066 /* Only add stats that we understand. */ 4067 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4068 case KVM_STATS_TYPE_CUMULATIVE: 4069 case KVM_STATS_TYPE_INSTANT: 4070 case KVM_STATS_TYPE_PEAK: 4071 case KVM_STATS_TYPE_LINEAR_HIST: 4072 case KVM_STATS_TYPE_LOG_HIST: 4073 break; 4074 default: 4075 return stats_list; 4076 } 4077 4078 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4079 case KVM_STATS_UNIT_NONE: 4080 case KVM_STATS_UNIT_BYTES: 4081 case KVM_STATS_UNIT_CYCLES: 4082 case KVM_STATS_UNIT_SECONDS: 4083 case KVM_STATS_UNIT_BOOLEAN: 4084 break; 4085 default: 4086 return stats_list; 4087 } 4088 4089 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4090 case KVM_STATS_BASE_POW10: 4091 case KVM_STATS_BASE_POW2: 4092 break; 4093 default: 4094 return stats_list; 4095 } 4096 4097 /* Alloc and populate data list */ 4098 stats = g_new0(Stats, 1); 4099 stats->name = g_strdup(pdesc->name); 4100 stats->value = g_new0(StatsValue, 1); 4101 4102 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4103 stats->value->u.boolean = *stats_data; 4104 stats->value->type = QTYPE_QBOOL; 4105 } else if (pdesc->size == 1) { 4106 stats->value->u.scalar = *stats_data; 4107 stats->value->type = QTYPE_QNUM; 4108 } else { 4109 int i; 4110 for (i = 0; i < pdesc->size; i++) { 4111 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4112 } 4113 stats->value->u.list = val_list; 4114 stats->value->type = QTYPE_QLIST; 4115 } 4116 4117 QAPI_LIST_PREPEND(stats_list, stats); 4118 return stats_list; 4119 } 4120 4121 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4122 StatsSchemaValueList *list, 4123 Error **errp) 4124 { 4125 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4126 schema_entry->value = g_new0(StatsSchemaValue, 1); 4127 4128 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4129 case KVM_STATS_TYPE_CUMULATIVE: 4130 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4131 break; 4132 case KVM_STATS_TYPE_INSTANT: 4133 schema_entry->value->type = STATS_TYPE_INSTANT; 4134 break; 4135 case KVM_STATS_TYPE_PEAK: 4136 schema_entry->value->type = STATS_TYPE_PEAK; 4137 break; 4138 case KVM_STATS_TYPE_LINEAR_HIST: 4139 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4140 schema_entry->value->bucket_size = pdesc->bucket_size; 4141 schema_entry->value->has_bucket_size = true; 4142 break; 4143 case KVM_STATS_TYPE_LOG_HIST: 4144 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4145 break; 4146 default: 4147 goto exit; 4148 } 4149 4150 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4151 case KVM_STATS_UNIT_NONE: 4152 break; 4153 case KVM_STATS_UNIT_BOOLEAN: 4154 schema_entry->value->has_unit = true; 4155 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4156 break; 4157 case KVM_STATS_UNIT_BYTES: 4158 schema_entry->value->has_unit = true; 4159 schema_entry->value->unit = STATS_UNIT_BYTES; 4160 break; 4161 case KVM_STATS_UNIT_CYCLES: 4162 schema_entry->value->has_unit = true; 4163 schema_entry->value->unit = STATS_UNIT_CYCLES; 4164 break; 4165 case KVM_STATS_UNIT_SECONDS: 4166 schema_entry->value->has_unit = true; 4167 schema_entry->value->unit = STATS_UNIT_SECONDS; 4168 break; 4169 default: 4170 goto exit; 4171 } 4172 4173 schema_entry->value->exponent = pdesc->exponent; 4174 if (pdesc->exponent) { 4175 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4176 case KVM_STATS_BASE_POW10: 4177 schema_entry->value->has_base = true; 4178 schema_entry->value->base = 10; 4179 break; 4180 case KVM_STATS_BASE_POW2: 4181 schema_entry->value->has_base = true; 4182 schema_entry->value->base = 2; 4183 break; 4184 default: 4185 goto exit; 4186 } 4187 } 4188 4189 schema_entry->value->name = g_strdup(pdesc->name); 4190 schema_entry->next = list; 4191 return schema_entry; 4192 exit: 4193 g_free(schema_entry->value); 4194 g_free(schema_entry); 4195 return list; 4196 } 4197 4198 /* Cached stats descriptors */ 4199 typedef struct StatsDescriptors { 4200 const char *ident; /* cache key, currently the StatsTarget */ 4201 struct kvm_stats_desc *kvm_stats_desc; 4202 struct kvm_stats_header kvm_stats_header; 4203 QTAILQ_ENTRY(StatsDescriptors) next; 4204 } StatsDescriptors; 4205 4206 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4207 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4208 4209 /* 4210 * Return the descriptors for 'target', that either have already been read 4211 * or are retrieved from 'stats_fd'. 4212 */ 4213 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4214 Error **errp) 4215 { 4216 StatsDescriptors *descriptors; 4217 const char *ident; 4218 struct kvm_stats_desc *kvm_stats_desc; 4219 struct kvm_stats_header *kvm_stats_header; 4220 size_t size_desc; 4221 ssize_t ret; 4222 4223 ident = StatsTarget_str(target); 4224 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4225 if (g_str_equal(descriptors->ident, ident)) { 4226 return descriptors; 4227 } 4228 } 4229 4230 descriptors = g_new0(StatsDescriptors, 1); 4231 4232 /* Read stats header */ 4233 kvm_stats_header = &descriptors->kvm_stats_header; 4234 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4235 if (ret != sizeof(*kvm_stats_header)) { 4236 error_setg(errp, "KVM stats: failed to read stats header: " 4237 "expected %zu actual %zu", 4238 sizeof(*kvm_stats_header), ret); 4239 g_free(descriptors); 4240 return NULL; 4241 } 4242 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4243 4244 /* Read stats descriptors */ 4245 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4246 ret = pread(stats_fd, kvm_stats_desc, 4247 size_desc * kvm_stats_header->num_desc, 4248 kvm_stats_header->desc_offset); 4249 4250 if (ret != size_desc * kvm_stats_header->num_desc) { 4251 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4252 "expected %zu actual %zu", 4253 size_desc * kvm_stats_header->num_desc, ret); 4254 g_free(descriptors); 4255 g_free(kvm_stats_desc); 4256 return NULL; 4257 } 4258 descriptors->kvm_stats_desc = kvm_stats_desc; 4259 descriptors->ident = ident; 4260 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4261 return descriptors; 4262 } 4263 4264 static void query_stats(StatsResultList **result, StatsTarget target, 4265 strList *names, int stats_fd, CPUState *cpu, 4266 Error **errp) 4267 { 4268 struct kvm_stats_desc *kvm_stats_desc; 4269 struct kvm_stats_header *kvm_stats_header; 4270 StatsDescriptors *descriptors; 4271 g_autofree uint64_t *stats_data = NULL; 4272 struct kvm_stats_desc *pdesc; 4273 StatsList *stats_list = NULL; 4274 size_t size_desc, size_data = 0; 4275 ssize_t ret; 4276 int i; 4277 4278 descriptors = find_stats_descriptors(target, stats_fd, errp); 4279 if (!descriptors) { 4280 return; 4281 } 4282 4283 kvm_stats_header = &descriptors->kvm_stats_header; 4284 kvm_stats_desc = descriptors->kvm_stats_desc; 4285 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4286 4287 /* Tally the total data size; read schema data */ 4288 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4289 pdesc = (void *)kvm_stats_desc + i * size_desc; 4290 size_data += pdesc->size * sizeof(*stats_data); 4291 } 4292 4293 stats_data = g_malloc0(size_data); 4294 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4295 4296 if (ret != size_data) { 4297 error_setg(errp, "KVM stats: failed to read data: " 4298 "expected %zu actual %zu", size_data, ret); 4299 return; 4300 } 4301 4302 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4303 uint64_t *stats; 4304 pdesc = (void *)kvm_stats_desc + i * size_desc; 4305 4306 /* Add entry to the list */ 4307 stats = (void *)stats_data + pdesc->offset; 4308 if (!apply_str_list_filter(pdesc->name, names)) { 4309 continue; 4310 } 4311 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4312 } 4313 4314 if (!stats_list) { 4315 return; 4316 } 4317 4318 switch (target) { 4319 case STATS_TARGET_VM: 4320 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4321 break; 4322 case STATS_TARGET_VCPU: 4323 add_stats_entry(result, STATS_PROVIDER_KVM, 4324 cpu->parent_obj.canonical_path, 4325 stats_list); 4326 break; 4327 default: 4328 g_assert_not_reached(); 4329 } 4330 } 4331 4332 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4333 int stats_fd, Error **errp) 4334 { 4335 struct kvm_stats_desc *kvm_stats_desc; 4336 struct kvm_stats_header *kvm_stats_header; 4337 StatsDescriptors *descriptors; 4338 struct kvm_stats_desc *pdesc; 4339 StatsSchemaValueList *stats_list = NULL; 4340 size_t size_desc; 4341 int i; 4342 4343 descriptors = find_stats_descriptors(target, stats_fd, errp); 4344 if (!descriptors) { 4345 return; 4346 } 4347 4348 kvm_stats_header = &descriptors->kvm_stats_header; 4349 kvm_stats_desc = descriptors->kvm_stats_desc; 4350 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4351 4352 /* Tally the total data size; read schema data */ 4353 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4354 pdesc = (void *)kvm_stats_desc + i * size_desc; 4355 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4356 } 4357 4358 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4359 } 4360 4361 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4362 { 4363 int stats_fd = cpu->kvm_vcpu_stats_fd; 4364 Error *local_err = NULL; 4365 4366 if (stats_fd == -1) { 4367 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4368 error_propagate(kvm_stats_args->errp, local_err); 4369 return; 4370 } 4371 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4372 kvm_stats_args->names, stats_fd, cpu, 4373 kvm_stats_args->errp); 4374 } 4375 4376 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4377 { 4378 int stats_fd = cpu->kvm_vcpu_stats_fd; 4379 Error *local_err = NULL; 4380 4381 if (stats_fd == -1) { 4382 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4383 error_propagate(kvm_stats_args->errp, local_err); 4384 return; 4385 } 4386 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4387 kvm_stats_args->errp); 4388 } 4389 4390 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4391 strList *names, strList *targets, Error **errp) 4392 { 4393 KVMState *s = kvm_state; 4394 CPUState *cpu; 4395 int stats_fd; 4396 4397 switch (target) { 4398 case STATS_TARGET_VM: 4399 { 4400 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4401 if (stats_fd == -1) { 4402 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4403 return; 4404 } 4405 query_stats(result, target, names, stats_fd, NULL, errp); 4406 close(stats_fd); 4407 break; 4408 } 4409 case STATS_TARGET_VCPU: 4410 { 4411 StatsArgs stats_args; 4412 stats_args.result.stats = result; 4413 stats_args.names = names; 4414 stats_args.errp = errp; 4415 CPU_FOREACH(cpu) { 4416 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4417 continue; 4418 } 4419 query_stats_vcpu(cpu, &stats_args); 4420 } 4421 break; 4422 } 4423 default: 4424 break; 4425 } 4426 } 4427 4428 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4429 { 4430 StatsArgs stats_args; 4431 KVMState *s = kvm_state; 4432 int stats_fd; 4433 4434 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4435 if (stats_fd == -1) { 4436 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4437 return; 4438 } 4439 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4440 close(stats_fd); 4441 4442 if (first_cpu) { 4443 stats_args.result.schema = result; 4444 stats_args.errp = errp; 4445 query_stats_schema_vcpu(first_cpu, &stats_args); 4446 } 4447 } 4448 4449 void kvm_mark_guest_state_protected(void) 4450 { 4451 kvm_state->guest_state_protected = true; 4452 } 4453 4454 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4455 { 4456 int fd; 4457 struct kvm_create_guest_memfd guest_memfd = { 4458 .size = size, 4459 .flags = flags, 4460 }; 4461 4462 if (!kvm_guest_memfd_supported) { 4463 error_setg(errp, "KVM does not support guest_memfd"); 4464 return -1; 4465 } 4466 4467 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4468 if (fd < 0) { 4469 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4470 return -1; 4471 } 4472 4473 return fd; 4474 } 4475