1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "qemu/bswap.h" 34 #include "exec/memory.h" 35 #include "exec/ram_addr.h" 36 #include "exec/address-spaces.h" 37 #include "qemu/event_notifier.h" 38 #include "qemu/main-loop.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 #include "qapi/visitor.h" 42 #include "qapi/qapi-types-common.h" 43 #include "qapi/qapi-visit-common.h" 44 #include "sysemu/reset.h" 45 #include "qemu/guest-random.h" 46 #include "sysemu/hw_accel.h" 47 #include "kvm-cpus.h" 48 49 #include "hw/boards.h" 50 51 /* This check must be after config-host.h is included */ 52 #ifdef CONFIG_EVENTFD 53 #include <sys/eventfd.h> 54 #endif 55 56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 57 * need to use the real host PAGE_SIZE, as that's what KVM will use. 58 */ 59 #ifdef PAGE_SIZE 60 #undef PAGE_SIZE 61 #endif 62 #define PAGE_SIZE qemu_real_host_page_size 63 64 //#define DEBUG_KVM 65 66 #ifdef DEBUG_KVM 67 #define DPRINTF(fmt, ...) \ 68 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 69 #else 70 #define DPRINTF(fmt, ...) \ 71 do { } while (0) 72 #endif 73 74 #define KVM_MSI_HASHTAB_SIZE 256 75 76 struct KVMParkedVcpu { 77 unsigned long vcpu_id; 78 int kvm_fd; 79 QLIST_ENTRY(KVMParkedVcpu) node; 80 }; 81 82 struct KVMState 83 { 84 AccelState parent_obj; 85 86 int nr_slots; 87 int fd; 88 int vmfd; 89 int coalesced_mmio; 90 int coalesced_pio; 91 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 92 bool coalesced_flush_in_progress; 93 int vcpu_events; 94 int robust_singlestep; 95 int debugregs; 96 #ifdef KVM_CAP_SET_GUEST_DEBUG 97 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 98 #endif 99 int max_nested_state_len; 100 int many_ioeventfds; 101 int intx_set_mask; 102 int kvm_shadow_mem; 103 bool kernel_irqchip_allowed; 104 bool kernel_irqchip_required; 105 OnOffAuto kernel_irqchip_split; 106 bool sync_mmu; 107 uint64_t manual_dirty_log_protect; 108 /* The man page (and posix) say ioctl numbers are signed int, but 109 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 110 * unsigned, and treating them as signed here can break things */ 111 unsigned irq_set_ioctl; 112 unsigned int sigmask_len; 113 GHashTable *gsimap; 114 #ifdef KVM_CAP_IRQ_ROUTING 115 struct kvm_irq_routing *irq_routes; 116 int nr_allocated_irq_routes; 117 unsigned long *used_gsi_bitmap; 118 unsigned int gsi_count; 119 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 120 #endif 121 KVMMemoryListener memory_listener; 122 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 123 124 /* For "info mtree -f" to tell if an MR is registered in KVM */ 125 int nr_as; 126 struct KVMAs { 127 KVMMemoryListener *ml; 128 AddressSpace *as; 129 } *as; 130 }; 131 132 KVMState *kvm_state; 133 bool kvm_kernel_irqchip; 134 bool kvm_split_irqchip; 135 bool kvm_async_interrupts_allowed; 136 bool kvm_halt_in_kernel_allowed; 137 bool kvm_eventfds_allowed; 138 bool kvm_irqfds_allowed; 139 bool kvm_resamplefds_allowed; 140 bool kvm_msi_via_irqfd_allowed; 141 bool kvm_gsi_routing_allowed; 142 bool kvm_gsi_direct_mapping; 143 bool kvm_allowed; 144 bool kvm_readonly_mem_allowed; 145 bool kvm_vm_attributes_allowed; 146 bool kvm_direct_msi_allowed; 147 bool kvm_ioeventfd_any_length_allowed; 148 bool kvm_msi_use_devid; 149 static bool kvm_immediate_exit; 150 static hwaddr kvm_max_slot_size = ~0; 151 152 static const KVMCapabilityInfo kvm_required_capabilites[] = { 153 KVM_CAP_INFO(USER_MEMORY), 154 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 155 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 156 KVM_CAP_LAST_INFO 157 }; 158 159 static NotifierList kvm_irqchip_change_notifiers = 160 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 161 162 struct KVMResampleFd { 163 int gsi; 164 EventNotifier *resample_event; 165 QLIST_ENTRY(KVMResampleFd) node; 166 }; 167 typedef struct KVMResampleFd KVMResampleFd; 168 169 /* 170 * Only used with split irqchip where we need to do the resample fd 171 * kick for the kernel from userspace. 172 */ 173 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 174 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 175 176 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 177 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 178 179 static inline void kvm_resample_fd_remove(int gsi) 180 { 181 KVMResampleFd *rfd; 182 183 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 184 if (rfd->gsi == gsi) { 185 QLIST_REMOVE(rfd, node); 186 g_free(rfd); 187 break; 188 } 189 } 190 } 191 192 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 193 { 194 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 195 196 rfd->gsi = gsi; 197 rfd->resample_event = event; 198 199 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 200 } 201 202 void kvm_resample_fd_notify(int gsi) 203 { 204 KVMResampleFd *rfd; 205 206 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 207 if (rfd->gsi == gsi) { 208 event_notifier_set(rfd->resample_event); 209 trace_kvm_resample_fd_notify(gsi); 210 return; 211 } 212 } 213 } 214 215 int kvm_get_max_memslots(void) 216 { 217 KVMState *s = KVM_STATE(current_accel()); 218 219 return s->nr_slots; 220 } 221 222 /* Called with KVMMemoryListener.slots_lock held */ 223 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 224 { 225 KVMState *s = kvm_state; 226 int i; 227 228 for (i = 0; i < s->nr_slots; i++) { 229 if (kml->slots[i].memory_size == 0) { 230 return &kml->slots[i]; 231 } 232 } 233 234 return NULL; 235 } 236 237 bool kvm_has_free_slot(MachineState *ms) 238 { 239 KVMState *s = KVM_STATE(ms->accelerator); 240 bool result; 241 KVMMemoryListener *kml = &s->memory_listener; 242 243 kvm_slots_lock(kml); 244 result = !!kvm_get_free_slot(kml); 245 kvm_slots_unlock(kml); 246 247 return result; 248 } 249 250 /* Called with KVMMemoryListener.slots_lock held */ 251 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 252 { 253 KVMSlot *slot = kvm_get_free_slot(kml); 254 255 if (slot) { 256 return slot; 257 } 258 259 fprintf(stderr, "%s: no free slot available\n", __func__); 260 abort(); 261 } 262 263 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 264 hwaddr start_addr, 265 hwaddr size) 266 { 267 KVMState *s = kvm_state; 268 int i; 269 270 for (i = 0; i < s->nr_slots; i++) { 271 KVMSlot *mem = &kml->slots[i]; 272 273 if (start_addr == mem->start_addr && size == mem->memory_size) { 274 return mem; 275 } 276 } 277 278 return NULL; 279 } 280 281 /* 282 * Calculate and align the start address and the size of the section. 283 * Return the size. If the size is 0, the aligned section is empty. 284 */ 285 static hwaddr kvm_align_section(MemoryRegionSection *section, 286 hwaddr *start) 287 { 288 hwaddr size = int128_get64(section->size); 289 hwaddr delta, aligned; 290 291 /* kvm works in page size chunks, but the function may be called 292 with sub-page size and unaligned start address. Pad the start 293 address to next and truncate size to previous page boundary. */ 294 aligned = ROUND_UP(section->offset_within_address_space, 295 qemu_real_host_page_size); 296 delta = aligned - section->offset_within_address_space; 297 *start = aligned; 298 if (delta > size) { 299 return 0; 300 } 301 302 return (size - delta) & qemu_real_host_page_mask; 303 } 304 305 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 306 hwaddr *phys_addr) 307 { 308 KVMMemoryListener *kml = &s->memory_listener; 309 int i, ret = 0; 310 311 kvm_slots_lock(kml); 312 for (i = 0; i < s->nr_slots; i++) { 313 KVMSlot *mem = &kml->slots[i]; 314 315 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 316 *phys_addr = mem->start_addr + (ram - mem->ram); 317 ret = 1; 318 break; 319 } 320 } 321 kvm_slots_unlock(kml); 322 323 return ret; 324 } 325 326 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 327 { 328 KVMState *s = kvm_state; 329 struct kvm_userspace_memory_region mem; 330 int ret; 331 332 mem.slot = slot->slot | (kml->as_id << 16); 333 mem.guest_phys_addr = slot->start_addr; 334 mem.userspace_addr = (unsigned long)slot->ram; 335 mem.flags = slot->flags; 336 337 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 338 /* Set the slot size to 0 before setting the slot to the desired 339 * value. This is needed based on KVM commit 75d61fbc. */ 340 mem.memory_size = 0; 341 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 342 if (ret < 0) { 343 goto err; 344 } 345 } 346 mem.memory_size = slot->memory_size; 347 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 348 slot->old_flags = mem.flags; 349 err: 350 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 351 mem.memory_size, mem.userspace_addr, ret); 352 if (ret < 0) { 353 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 354 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 355 __func__, mem.slot, slot->start_addr, 356 (uint64_t)mem.memory_size, strerror(errno)); 357 } 358 return ret; 359 } 360 361 static int do_kvm_destroy_vcpu(CPUState *cpu) 362 { 363 KVMState *s = kvm_state; 364 long mmap_size; 365 struct KVMParkedVcpu *vcpu = NULL; 366 int ret = 0; 367 368 DPRINTF("kvm_destroy_vcpu\n"); 369 370 ret = kvm_arch_destroy_vcpu(cpu); 371 if (ret < 0) { 372 goto err; 373 } 374 375 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 376 if (mmap_size < 0) { 377 ret = mmap_size; 378 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 379 goto err; 380 } 381 382 ret = munmap(cpu->kvm_run, mmap_size); 383 if (ret < 0) { 384 goto err; 385 } 386 387 vcpu = g_malloc0(sizeof(*vcpu)); 388 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 389 vcpu->kvm_fd = cpu->kvm_fd; 390 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 391 err: 392 return ret; 393 } 394 395 void kvm_destroy_vcpu(CPUState *cpu) 396 { 397 if (do_kvm_destroy_vcpu(cpu) < 0) { 398 error_report("kvm_destroy_vcpu failed"); 399 exit(EXIT_FAILURE); 400 } 401 } 402 403 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 404 { 405 struct KVMParkedVcpu *cpu; 406 407 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 408 if (cpu->vcpu_id == vcpu_id) { 409 int kvm_fd; 410 411 QLIST_REMOVE(cpu, node); 412 kvm_fd = cpu->kvm_fd; 413 g_free(cpu); 414 return kvm_fd; 415 } 416 } 417 418 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 419 } 420 421 int kvm_init_vcpu(CPUState *cpu, Error **errp) 422 { 423 KVMState *s = kvm_state; 424 long mmap_size; 425 int ret; 426 427 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 428 429 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 430 if (ret < 0) { 431 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 432 kvm_arch_vcpu_id(cpu)); 433 goto err; 434 } 435 436 cpu->kvm_fd = ret; 437 cpu->kvm_state = s; 438 cpu->vcpu_dirty = true; 439 440 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 441 if (mmap_size < 0) { 442 ret = mmap_size; 443 error_setg_errno(errp, -mmap_size, 444 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 445 goto err; 446 } 447 448 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 449 cpu->kvm_fd, 0); 450 if (cpu->kvm_run == MAP_FAILED) { 451 ret = -errno; 452 error_setg_errno(errp, ret, 453 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 454 kvm_arch_vcpu_id(cpu)); 455 goto err; 456 } 457 458 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 459 s->coalesced_mmio_ring = 460 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 461 } 462 463 ret = kvm_arch_init_vcpu(cpu); 464 if (ret < 0) { 465 error_setg_errno(errp, -ret, 466 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 467 kvm_arch_vcpu_id(cpu)); 468 } 469 err: 470 return ret; 471 } 472 473 /* 474 * dirty pages logging control 475 */ 476 477 static int kvm_mem_flags(MemoryRegion *mr) 478 { 479 bool readonly = mr->readonly || memory_region_is_romd(mr); 480 int flags = 0; 481 482 if (memory_region_get_dirty_log_mask(mr) != 0) { 483 flags |= KVM_MEM_LOG_DIRTY_PAGES; 484 } 485 if (readonly && kvm_readonly_mem_allowed) { 486 flags |= KVM_MEM_READONLY; 487 } 488 return flags; 489 } 490 491 /* Called with KVMMemoryListener.slots_lock held */ 492 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 493 MemoryRegion *mr) 494 { 495 mem->flags = kvm_mem_flags(mr); 496 497 /* If nothing changed effectively, no need to issue ioctl */ 498 if (mem->flags == mem->old_flags) { 499 return 0; 500 } 501 502 return kvm_set_user_memory_region(kml, mem, false); 503 } 504 505 static int kvm_section_update_flags(KVMMemoryListener *kml, 506 MemoryRegionSection *section) 507 { 508 hwaddr start_addr, size, slot_size; 509 KVMSlot *mem; 510 int ret = 0; 511 512 size = kvm_align_section(section, &start_addr); 513 if (!size) { 514 return 0; 515 } 516 517 kvm_slots_lock(kml); 518 519 while (size && !ret) { 520 slot_size = MIN(kvm_max_slot_size, size); 521 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 522 if (!mem) { 523 /* We don't have a slot if we want to trap every access. */ 524 goto out; 525 } 526 527 ret = kvm_slot_update_flags(kml, mem, section->mr); 528 start_addr += slot_size; 529 size -= slot_size; 530 } 531 532 out: 533 kvm_slots_unlock(kml); 534 return ret; 535 } 536 537 static void kvm_log_start(MemoryListener *listener, 538 MemoryRegionSection *section, 539 int old, int new) 540 { 541 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 542 int r; 543 544 if (old != 0) { 545 return; 546 } 547 548 r = kvm_section_update_flags(kml, section); 549 if (r < 0) { 550 abort(); 551 } 552 } 553 554 static void kvm_log_stop(MemoryListener *listener, 555 MemoryRegionSection *section, 556 int old, int new) 557 { 558 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 559 int r; 560 561 if (new != 0) { 562 return; 563 } 564 565 r = kvm_section_update_flags(kml, section); 566 if (r < 0) { 567 abort(); 568 } 569 } 570 571 /* get kvm's dirty pages bitmap and update qemu's */ 572 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 573 unsigned long *bitmap) 574 { 575 ram_addr_t start = section->offset_within_region + 576 memory_region_get_ram_addr(section->mr); 577 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 578 579 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 580 return 0; 581 } 582 583 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 584 585 /* Allocate the dirty bitmap for a slot */ 586 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 587 { 588 /* 589 * XXX bad kernel interface alert 590 * For dirty bitmap, kernel allocates array of size aligned to 591 * bits-per-long. But for case when the kernel is 64bits and 592 * the userspace is 32bits, userspace can't align to the same 593 * bits-per-long, since sizeof(long) is different between kernel 594 * and user space. This way, userspace will provide buffer which 595 * may be 4 bytes less than the kernel will use, resulting in 596 * userspace memory corruption (which is not detectable by valgrind 597 * too, in most cases). 598 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 599 * a hope that sizeof(long) won't become >8 any time soon. 600 * 601 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 602 * And mem->memory_size is aligned to it (otherwise this mem can't 603 * be registered to KVM). 604 */ 605 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size, 606 /*HOST_LONG_BITS*/ 64) / 8; 607 mem->dirty_bmap = g_malloc0(bitmap_size); 608 } 609 610 /** 611 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 612 * 613 * This function will first try to fetch dirty bitmap from the kernel, 614 * and then updates qemu's dirty bitmap. 615 * 616 * NOTE: caller must be with kml->slots_lock held. 617 * 618 * @kml: the KVM memory listener object 619 * @section: the memory section to sync the dirty bitmap with 620 */ 621 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 622 MemoryRegionSection *section) 623 { 624 KVMState *s = kvm_state; 625 struct kvm_dirty_log d = {}; 626 KVMSlot *mem; 627 hwaddr start_addr, size; 628 hwaddr slot_size, slot_offset = 0; 629 int ret = 0; 630 631 size = kvm_align_section(section, &start_addr); 632 while (size) { 633 MemoryRegionSection subsection = *section; 634 635 slot_size = MIN(kvm_max_slot_size, size); 636 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 637 if (!mem) { 638 /* We don't have a slot if we want to trap every access. */ 639 goto out; 640 } 641 642 if (!mem->dirty_bmap) { 643 /* Allocate on the first log_sync, once and for all */ 644 kvm_memslot_init_dirty_bitmap(mem); 645 } 646 647 d.dirty_bitmap = mem->dirty_bmap; 648 d.slot = mem->slot | (kml->as_id << 16); 649 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 650 if (ret == -ENOENT) { 651 /* kernel does not have dirty bitmap in this slot */ 652 ret = 0; 653 } else if (ret < 0) { 654 error_report("ioctl KVM_GET_DIRTY_LOG failed: %d", errno); 655 goto out; 656 } else { 657 subsection.offset_within_region += slot_offset; 658 subsection.size = int128_make64(slot_size); 659 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 660 } 661 662 slot_offset += slot_size; 663 start_addr += slot_size; 664 size -= slot_size; 665 } 666 out: 667 return ret; 668 } 669 670 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 671 #define KVM_CLEAR_LOG_SHIFT 6 672 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 673 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 674 675 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 676 uint64_t size) 677 { 678 KVMState *s = kvm_state; 679 uint64_t end, bmap_start, start_delta, bmap_npages; 680 struct kvm_clear_dirty_log d; 681 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 682 int ret; 683 684 /* 685 * We need to extend either the start or the size or both to 686 * satisfy the KVM interface requirement. Firstly, do the start 687 * page alignment on 64 host pages 688 */ 689 bmap_start = start & KVM_CLEAR_LOG_MASK; 690 start_delta = start - bmap_start; 691 bmap_start /= psize; 692 693 /* 694 * The kernel interface has restriction on the size too, that either: 695 * 696 * (1) the size is 64 host pages aligned (just like the start), or 697 * (2) the size fills up until the end of the KVM memslot. 698 */ 699 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 700 << KVM_CLEAR_LOG_SHIFT; 701 end = mem->memory_size / psize; 702 if (bmap_npages > end - bmap_start) { 703 bmap_npages = end - bmap_start; 704 } 705 start_delta /= psize; 706 707 /* 708 * Prepare the bitmap to clear dirty bits. Here we must guarantee 709 * that we won't clear any unknown dirty bits otherwise we might 710 * accidentally clear some set bits which are not yet synced from 711 * the kernel into QEMU's bitmap, then we'll lose track of the 712 * guest modifications upon those pages (which can directly lead 713 * to guest data loss or panic after migration). 714 * 715 * Layout of the KVMSlot.dirty_bmap: 716 * 717 * |<-------- bmap_npages -----------..>| 718 * [1] 719 * start_delta size 720 * |----------------|-------------|------------------|------------| 721 * ^ ^ ^ ^ 722 * | | | | 723 * start bmap_start (start) end 724 * of memslot of memslot 725 * 726 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 727 */ 728 729 assert(bmap_start % BITS_PER_LONG == 0); 730 /* We should never do log_clear before log_sync */ 731 assert(mem->dirty_bmap); 732 if (start_delta || bmap_npages - size / psize) { 733 /* Slow path - we need to manipulate a temp bitmap */ 734 bmap_clear = bitmap_new(bmap_npages); 735 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 736 bmap_start, start_delta + size / psize); 737 /* 738 * We need to fill the holes at start because that was not 739 * specified by the caller and we extended the bitmap only for 740 * 64 pages alignment 741 */ 742 bitmap_clear(bmap_clear, 0, start_delta); 743 d.dirty_bitmap = bmap_clear; 744 } else { 745 /* 746 * Fast path - both start and size align well with BITS_PER_LONG 747 * (or the end of memory slot) 748 */ 749 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 750 } 751 752 d.first_page = bmap_start; 753 /* It should never overflow. If it happens, say something */ 754 assert(bmap_npages <= UINT32_MAX); 755 d.num_pages = bmap_npages; 756 d.slot = mem->slot | (as_id << 16); 757 758 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 759 if (ret < 0 && ret != -ENOENT) { 760 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 761 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 762 __func__, d.slot, (uint64_t)d.first_page, 763 (uint32_t)d.num_pages, ret); 764 } else { 765 ret = 0; 766 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 767 } 768 769 /* 770 * After we have updated the remote dirty bitmap, we update the 771 * cached bitmap as well for the memslot, then if another user 772 * clears the same region we know we shouldn't clear it again on 773 * the remote otherwise it's data loss as well. 774 */ 775 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 776 size / psize); 777 /* This handles the NULL case well */ 778 g_free(bmap_clear); 779 return ret; 780 } 781 782 783 /** 784 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 785 * 786 * NOTE: this will be a no-op if we haven't enabled manual dirty log 787 * protection in the host kernel because in that case this operation 788 * will be done within log_sync(). 789 * 790 * @kml: the kvm memory listener 791 * @section: the memory range to clear dirty bitmap 792 */ 793 static int kvm_physical_log_clear(KVMMemoryListener *kml, 794 MemoryRegionSection *section) 795 { 796 KVMState *s = kvm_state; 797 uint64_t start, size, offset, count; 798 KVMSlot *mem; 799 int ret = 0, i; 800 801 if (!s->manual_dirty_log_protect) { 802 /* No need to do explicit clear */ 803 return ret; 804 } 805 806 start = section->offset_within_address_space; 807 size = int128_get64(section->size); 808 809 if (!size) { 810 /* Nothing more we can do... */ 811 return ret; 812 } 813 814 kvm_slots_lock(kml); 815 816 for (i = 0; i < s->nr_slots; i++) { 817 mem = &kml->slots[i]; 818 /* Discard slots that are empty or do not overlap the section */ 819 if (!mem->memory_size || 820 mem->start_addr > start + size - 1 || 821 start > mem->start_addr + mem->memory_size - 1) { 822 continue; 823 } 824 825 if (start >= mem->start_addr) { 826 /* The slot starts before section or is aligned to it. */ 827 offset = start - mem->start_addr; 828 count = MIN(mem->memory_size - offset, size); 829 } else { 830 /* The slot starts after section. */ 831 offset = 0; 832 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 833 } 834 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 835 if (ret < 0) { 836 break; 837 } 838 } 839 840 kvm_slots_unlock(kml); 841 842 return ret; 843 } 844 845 static void kvm_coalesce_mmio_region(MemoryListener *listener, 846 MemoryRegionSection *secion, 847 hwaddr start, hwaddr size) 848 { 849 KVMState *s = kvm_state; 850 851 if (s->coalesced_mmio) { 852 struct kvm_coalesced_mmio_zone zone; 853 854 zone.addr = start; 855 zone.size = size; 856 zone.pad = 0; 857 858 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 859 } 860 } 861 862 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 863 MemoryRegionSection *secion, 864 hwaddr start, hwaddr size) 865 { 866 KVMState *s = kvm_state; 867 868 if (s->coalesced_mmio) { 869 struct kvm_coalesced_mmio_zone zone; 870 871 zone.addr = start; 872 zone.size = size; 873 zone.pad = 0; 874 875 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 876 } 877 } 878 879 static void kvm_coalesce_pio_add(MemoryListener *listener, 880 MemoryRegionSection *section, 881 hwaddr start, hwaddr size) 882 { 883 KVMState *s = kvm_state; 884 885 if (s->coalesced_pio) { 886 struct kvm_coalesced_mmio_zone zone; 887 888 zone.addr = start; 889 zone.size = size; 890 zone.pio = 1; 891 892 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 893 } 894 } 895 896 static void kvm_coalesce_pio_del(MemoryListener *listener, 897 MemoryRegionSection *section, 898 hwaddr start, hwaddr size) 899 { 900 KVMState *s = kvm_state; 901 902 if (s->coalesced_pio) { 903 struct kvm_coalesced_mmio_zone zone; 904 905 zone.addr = start; 906 zone.size = size; 907 zone.pio = 1; 908 909 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 910 } 911 } 912 913 static MemoryListener kvm_coalesced_pio_listener = { 914 .coalesced_io_add = kvm_coalesce_pio_add, 915 .coalesced_io_del = kvm_coalesce_pio_del, 916 }; 917 918 int kvm_check_extension(KVMState *s, unsigned int extension) 919 { 920 int ret; 921 922 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 923 if (ret < 0) { 924 ret = 0; 925 } 926 927 return ret; 928 } 929 930 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 931 { 932 int ret; 933 934 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 935 if (ret < 0) { 936 /* VM wide version not implemented, use global one instead */ 937 ret = kvm_check_extension(s, extension); 938 } 939 940 return ret; 941 } 942 943 typedef struct HWPoisonPage { 944 ram_addr_t ram_addr; 945 QLIST_ENTRY(HWPoisonPage) list; 946 } HWPoisonPage; 947 948 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 949 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 950 951 static void kvm_unpoison_all(void *param) 952 { 953 HWPoisonPage *page, *next_page; 954 955 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 956 QLIST_REMOVE(page, list); 957 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 958 g_free(page); 959 } 960 } 961 962 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 963 { 964 HWPoisonPage *page; 965 966 QLIST_FOREACH(page, &hwpoison_page_list, list) { 967 if (page->ram_addr == ram_addr) { 968 return; 969 } 970 } 971 page = g_new(HWPoisonPage, 1); 972 page->ram_addr = ram_addr; 973 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 974 } 975 976 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 977 { 978 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 979 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 980 * endianness, but the memory core hands them in target endianness. 981 * For example, PPC is always treated as big-endian even if running 982 * on KVM and on PPC64LE. Correct here. 983 */ 984 switch (size) { 985 case 2: 986 val = bswap16(val); 987 break; 988 case 4: 989 val = bswap32(val); 990 break; 991 } 992 #endif 993 return val; 994 } 995 996 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 997 bool assign, uint32_t size, bool datamatch) 998 { 999 int ret; 1000 struct kvm_ioeventfd iofd = { 1001 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1002 .addr = addr, 1003 .len = size, 1004 .flags = 0, 1005 .fd = fd, 1006 }; 1007 1008 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1009 datamatch); 1010 if (!kvm_enabled()) { 1011 return -ENOSYS; 1012 } 1013 1014 if (datamatch) { 1015 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1016 } 1017 if (!assign) { 1018 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1019 } 1020 1021 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1022 1023 if (ret < 0) { 1024 return -errno; 1025 } 1026 1027 return 0; 1028 } 1029 1030 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1031 bool assign, uint32_t size, bool datamatch) 1032 { 1033 struct kvm_ioeventfd kick = { 1034 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1035 .addr = addr, 1036 .flags = KVM_IOEVENTFD_FLAG_PIO, 1037 .len = size, 1038 .fd = fd, 1039 }; 1040 int r; 1041 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1042 if (!kvm_enabled()) { 1043 return -ENOSYS; 1044 } 1045 if (datamatch) { 1046 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1047 } 1048 if (!assign) { 1049 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1050 } 1051 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1052 if (r < 0) { 1053 return r; 1054 } 1055 return 0; 1056 } 1057 1058 1059 static int kvm_check_many_ioeventfds(void) 1060 { 1061 /* Userspace can use ioeventfd for io notification. This requires a host 1062 * that supports eventfd(2) and an I/O thread; since eventfd does not 1063 * support SIGIO it cannot interrupt the vcpu. 1064 * 1065 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1066 * can avoid creating too many ioeventfds. 1067 */ 1068 #if defined(CONFIG_EVENTFD) 1069 int ioeventfds[7]; 1070 int i, ret = 0; 1071 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1072 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1073 if (ioeventfds[i] < 0) { 1074 break; 1075 } 1076 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1077 if (ret < 0) { 1078 close(ioeventfds[i]); 1079 break; 1080 } 1081 } 1082 1083 /* Decide whether many devices are supported or not */ 1084 ret = i == ARRAY_SIZE(ioeventfds); 1085 1086 while (i-- > 0) { 1087 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1088 close(ioeventfds[i]); 1089 } 1090 return ret; 1091 #else 1092 return 0; 1093 #endif 1094 } 1095 1096 static const KVMCapabilityInfo * 1097 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1098 { 1099 while (list->name) { 1100 if (!kvm_check_extension(s, list->value)) { 1101 return list; 1102 } 1103 list++; 1104 } 1105 return NULL; 1106 } 1107 1108 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1109 { 1110 g_assert( 1111 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1112 ); 1113 kvm_max_slot_size = max_slot_size; 1114 } 1115 1116 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1117 MemoryRegionSection *section, bool add) 1118 { 1119 KVMSlot *mem; 1120 int err; 1121 MemoryRegion *mr = section->mr; 1122 bool writeable = !mr->readonly && !mr->rom_device; 1123 hwaddr start_addr, size, slot_size; 1124 void *ram; 1125 1126 if (!memory_region_is_ram(mr)) { 1127 if (writeable || !kvm_readonly_mem_allowed) { 1128 return; 1129 } else if (!mr->romd_mode) { 1130 /* If the memory device is not in romd_mode, then we actually want 1131 * to remove the kvm memory slot so all accesses will trap. */ 1132 add = false; 1133 } 1134 } 1135 1136 size = kvm_align_section(section, &start_addr); 1137 if (!size) { 1138 return; 1139 } 1140 1141 /* use aligned delta to align the ram address */ 1142 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1143 (start_addr - section->offset_within_address_space); 1144 1145 kvm_slots_lock(kml); 1146 1147 if (!add) { 1148 do { 1149 slot_size = MIN(kvm_max_slot_size, size); 1150 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1151 if (!mem) { 1152 goto out; 1153 } 1154 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1155 kvm_physical_sync_dirty_bitmap(kml, section); 1156 } 1157 1158 /* unregister the slot */ 1159 g_free(mem->dirty_bmap); 1160 mem->dirty_bmap = NULL; 1161 mem->memory_size = 0; 1162 mem->flags = 0; 1163 err = kvm_set_user_memory_region(kml, mem, false); 1164 if (err) { 1165 fprintf(stderr, "%s: error unregistering slot: %s\n", 1166 __func__, strerror(-err)); 1167 abort(); 1168 } 1169 start_addr += slot_size; 1170 size -= slot_size; 1171 } while (size); 1172 goto out; 1173 } 1174 1175 /* register the new slot */ 1176 do { 1177 slot_size = MIN(kvm_max_slot_size, size); 1178 mem = kvm_alloc_slot(kml); 1179 mem->memory_size = slot_size; 1180 mem->start_addr = start_addr; 1181 mem->ram = ram; 1182 mem->flags = kvm_mem_flags(mr); 1183 1184 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1185 /* 1186 * Reallocate the bmap; it means it doesn't disappear in 1187 * middle of a migrate. 1188 */ 1189 kvm_memslot_init_dirty_bitmap(mem); 1190 } 1191 err = kvm_set_user_memory_region(kml, mem, true); 1192 if (err) { 1193 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1194 strerror(-err)); 1195 abort(); 1196 } 1197 start_addr += slot_size; 1198 ram += slot_size; 1199 size -= slot_size; 1200 } while (size); 1201 1202 out: 1203 kvm_slots_unlock(kml); 1204 } 1205 1206 static void kvm_region_add(MemoryListener *listener, 1207 MemoryRegionSection *section) 1208 { 1209 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1210 1211 memory_region_ref(section->mr); 1212 kvm_set_phys_mem(kml, section, true); 1213 } 1214 1215 static void kvm_region_del(MemoryListener *listener, 1216 MemoryRegionSection *section) 1217 { 1218 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1219 1220 kvm_set_phys_mem(kml, section, false); 1221 memory_region_unref(section->mr); 1222 } 1223 1224 static void kvm_log_sync(MemoryListener *listener, 1225 MemoryRegionSection *section) 1226 { 1227 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1228 int r; 1229 1230 kvm_slots_lock(kml); 1231 r = kvm_physical_sync_dirty_bitmap(kml, section); 1232 kvm_slots_unlock(kml); 1233 if (r < 0) { 1234 abort(); 1235 } 1236 } 1237 1238 static void kvm_log_clear(MemoryListener *listener, 1239 MemoryRegionSection *section) 1240 { 1241 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1242 int r; 1243 1244 r = kvm_physical_log_clear(kml, section); 1245 if (r < 0) { 1246 error_report_once("%s: kvm log clear failed: mr=%s " 1247 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1248 section->mr->name, section->offset_within_region, 1249 int128_get64(section->size)); 1250 abort(); 1251 } 1252 } 1253 1254 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1255 MemoryRegionSection *section, 1256 bool match_data, uint64_t data, 1257 EventNotifier *e) 1258 { 1259 int fd = event_notifier_get_fd(e); 1260 int r; 1261 1262 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1263 data, true, int128_get64(section->size), 1264 match_data); 1265 if (r < 0) { 1266 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1267 __func__, strerror(-r), -r); 1268 abort(); 1269 } 1270 } 1271 1272 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1273 MemoryRegionSection *section, 1274 bool match_data, uint64_t data, 1275 EventNotifier *e) 1276 { 1277 int fd = event_notifier_get_fd(e); 1278 int r; 1279 1280 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1281 data, false, int128_get64(section->size), 1282 match_data); 1283 if (r < 0) { 1284 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1285 __func__, strerror(-r), -r); 1286 abort(); 1287 } 1288 } 1289 1290 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1291 MemoryRegionSection *section, 1292 bool match_data, uint64_t data, 1293 EventNotifier *e) 1294 { 1295 int fd = event_notifier_get_fd(e); 1296 int r; 1297 1298 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1299 data, true, int128_get64(section->size), 1300 match_data); 1301 if (r < 0) { 1302 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1303 __func__, strerror(-r), -r); 1304 abort(); 1305 } 1306 } 1307 1308 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1309 MemoryRegionSection *section, 1310 bool match_data, uint64_t data, 1311 EventNotifier *e) 1312 1313 { 1314 int fd = event_notifier_get_fd(e); 1315 int r; 1316 1317 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1318 data, false, int128_get64(section->size), 1319 match_data); 1320 if (r < 0) { 1321 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1322 __func__, strerror(-r), -r); 1323 abort(); 1324 } 1325 } 1326 1327 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1328 AddressSpace *as, int as_id) 1329 { 1330 int i; 1331 1332 qemu_mutex_init(&kml->slots_lock); 1333 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1334 kml->as_id = as_id; 1335 1336 for (i = 0; i < s->nr_slots; i++) { 1337 kml->slots[i].slot = i; 1338 } 1339 1340 kml->listener.region_add = kvm_region_add; 1341 kml->listener.region_del = kvm_region_del; 1342 kml->listener.log_start = kvm_log_start; 1343 kml->listener.log_stop = kvm_log_stop; 1344 kml->listener.log_sync = kvm_log_sync; 1345 kml->listener.log_clear = kvm_log_clear; 1346 kml->listener.priority = 10; 1347 1348 memory_listener_register(&kml->listener, as); 1349 1350 for (i = 0; i < s->nr_as; ++i) { 1351 if (!s->as[i].as) { 1352 s->as[i].as = as; 1353 s->as[i].ml = kml; 1354 break; 1355 } 1356 } 1357 } 1358 1359 static MemoryListener kvm_io_listener = { 1360 .eventfd_add = kvm_io_ioeventfd_add, 1361 .eventfd_del = kvm_io_ioeventfd_del, 1362 .priority = 10, 1363 }; 1364 1365 int kvm_set_irq(KVMState *s, int irq, int level) 1366 { 1367 struct kvm_irq_level event; 1368 int ret; 1369 1370 assert(kvm_async_interrupts_enabled()); 1371 1372 event.level = level; 1373 event.irq = irq; 1374 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1375 if (ret < 0) { 1376 perror("kvm_set_irq"); 1377 abort(); 1378 } 1379 1380 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1381 } 1382 1383 #ifdef KVM_CAP_IRQ_ROUTING 1384 typedef struct KVMMSIRoute { 1385 struct kvm_irq_routing_entry kroute; 1386 QTAILQ_ENTRY(KVMMSIRoute) entry; 1387 } KVMMSIRoute; 1388 1389 static void set_gsi(KVMState *s, unsigned int gsi) 1390 { 1391 set_bit(gsi, s->used_gsi_bitmap); 1392 } 1393 1394 static void clear_gsi(KVMState *s, unsigned int gsi) 1395 { 1396 clear_bit(gsi, s->used_gsi_bitmap); 1397 } 1398 1399 void kvm_init_irq_routing(KVMState *s) 1400 { 1401 int gsi_count, i; 1402 1403 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1404 if (gsi_count > 0) { 1405 /* Round up so we can search ints using ffs */ 1406 s->used_gsi_bitmap = bitmap_new(gsi_count); 1407 s->gsi_count = gsi_count; 1408 } 1409 1410 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1411 s->nr_allocated_irq_routes = 0; 1412 1413 if (!kvm_direct_msi_allowed) { 1414 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1415 QTAILQ_INIT(&s->msi_hashtab[i]); 1416 } 1417 } 1418 1419 kvm_arch_init_irq_routing(s); 1420 } 1421 1422 void kvm_irqchip_commit_routes(KVMState *s) 1423 { 1424 int ret; 1425 1426 if (kvm_gsi_direct_mapping()) { 1427 return; 1428 } 1429 1430 if (!kvm_gsi_routing_enabled()) { 1431 return; 1432 } 1433 1434 s->irq_routes->flags = 0; 1435 trace_kvm_irqchip_commit_routes(); 1436 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1437 assert(ret == 0); 1438 } 1439 1440 static void kvm_add_routing_entry(KVMState *s, 1441 struct kvm_irq_routing_entry *entry) 1442 { 1443 struct kvm_irq_routing_entry *new; 1444 int n, size; 1445 1446 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1447 n = s->nr_allocated_irq_routes * 2; 1448 if (n < 64) { 1449 n = 64; 1450 } 1451 size = sizeof(struct kvm_irq_routing); 1452 size += n * sizeof(*new); 1453 s->irq_routes = g_realloc(s->irq_routes, size); 1454 s->nr_allocated_irq_routes = n; 1455 } 1456 n = s->irq_routes->nr++; 1457 new = &s->irq_routes->entries[n]; 1458 1459 *new = *entry; 1460 1461 set_gsi(s, entry->gsi); 1462 } 1463 1464 static int kvm_update_routing_entry(KVMState *s, 1465 struct kvm_irq_routing_entry *new_entry) 1466 { 1467 struct kvm_irq_routing_entry *entry; 1468 int n; 1469 1470 for (n = 0; n < s->irq_routes->nr; n++) { 1471 entry = &s->irq_routes->entries[n]; 1472 if (entry->gsi != new_entry->gsi) { 1473 continue; 1474 } 1475 1476 if(!memcmp(entry, new_entry, sizeof *entry)) { 1477 return 0; 1478 } 1479 1480 *entry = *new_entry; 1481 1482 return 0; 1483 } 1484 1485 return -ESRCH; 1486 } 1487 1488 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1489 { 1490 struct kvm_irq_routing_entry e = {}; 1491 1492 assert(pin < s->gsi_count); 1493 1494 e.gsi = irq; 1495 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1496 e.flags = 0; 1497 e.u.irqchip.irqchip = irqchip; 1498 e.u.irqchip.pin = pin; 1499 kvm_add_routing_entry(s, &e); 1500 } 1501 1502 void kvm_irqchip_release_virq(KVMState *s, int virq) 1503 { 1504 struct kvm_irq_routing_entry *e; 1505 int i; 1506 1507 if (kvm_gsi_direct_mapping()) { 1508 return; 1509 } 1510 1511 for (i = 0; i < s->irq_routes->nr; i++) { 1512 e = &s->irq_routes->entries[i]; 1513 if (e->gsi == virq) { 1514 s->irq_routes->nr--; 1515 *e = s->irq_routes->entries[s->irq_routes->nr]; 1516 } 1517 } 1518 clear_gsi(s, virq); 1519 kvm_arch_release_virq_post(virq); 1520 trace_kvm_irqchip_release_virq(virq); 1521 } 1522 1523 void kvm_irqchip_add_change_notifier(Notifier *n) 1524 { 1525 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1526 } 1527 1528 void kvm_irqchip_remove_change_notifier(Notifier *n) 1529 { 1530 notifier_remove(n); 1531 } 1532 1533 void kvm_irqchip_change_notify(void) 1534 { 1535 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1536 } 1537 1538 static unsigned int kvm_hash_msi(uint32_t data) 1539 { 1540 /* This is optimized for IA32 MSI layout. However, no other arch shall 1541 * repeat the mistake of not providing a direct MSI injection API. */ 1542 return data & 0xff; 1543 } 1544 1545 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1546 { 1547 KVMMSIRoute *route, *next; 1548 unsigned int hash; 1549 1550 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1551 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1552 kvm_irqchip_release_virq(s, route->kroute.gsi); 1553 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1554 g_free(route); 1555 } 1556 } 1557 } 1558 1559 static int kvm_irqchip_get_virq(KVMState *s) 1560 { 1561 int next_virq; 1562 1563 /* 1564 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1565 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1566 * number can succeed even though a new route entry cannot be added. 1567 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1568 */ 1569 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1570 kvm_flush_dynamic_msi_routes(s); 1571 } 1572 1573 /* Return the lowest unused GSI in the bitmap */ 1574 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1575 if (next_virq >= s->gsi_count) { 1576 return -ENOSPC; 1577 } else { 1578 return next_virq; 1579 } 1580 } 1581 1582 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1583 { 1584 unsigned int hash = kvm_hash_msi(msg.data); 1585 KVMMSIRoute *route; 1586 1587 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1588 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1589 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1590 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1591 return route; 1592 } 1593 } 1594 return NULL; 1595 } 1596 1597 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1598 { 1599 struct kvm_msi msi; 1600 KVMMSIRoute *route; 1601 1602 if (kvm_direct_msi_allowed) { 1603 msi.address_lo = (uint32_t)msg.address; 1604 msi.address_hi = msg.address >> 32; 1605 msi.data = le32_to_cpu(msg.data); 1606 msi.flags = 0; 1607 memset(msi.pad, 0, sizeof(msi.pad)); 1608 1609 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1610 } 1611 1612 route = kvm_lookup_msi_route(s, msg); 1613 if (!route) { 1614 int virq; 1615 1616 virq = kvm_irqchip_get_virq(s); 1617 if (virq < 0) { 1618 return virq; 1619 } 1620 1621 route = g_malloc0(sizeof(KVMMSIRoute)); 1622 route->kroute.gsi = virq; 1623 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1624 route->kroute.flags = 0; 1625 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1626 route->kroute.u.msi.address_hi = msg.address >> 32; 1627 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1628 1629 kvm_add_routing_entry(s, &route->kroute); 1630 kvm_irqchip_commit_routes(s); 1631 1632 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1633 entry); 1634 } 1635 1636 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1637 1638 return kvm_set_irq(s, route->kroute.gsi, 1); 1639 } 1640 1641 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1642 { 1643 struct kvm_irq_routing_entry kroute = {}; 1644 int virq; 1645 MSIMessage msg = {0, 0}; 1646 1647 if (pci_available && dev) { 1648 msg = pci_get_msi_message(dev, vector); 1649 } 1650 1651 if (kvm_gsi_direct_mapping()) { 1652 return kvm_arch_msi_data_to_gsi(msg.data); 1653 } 1654 1655 if (!kvm_gsi_routing_enabled()) { 1656 return -ENOSYS; 1657 } 1658 1659 virq = kvm_irqchip_get_virq(s); 1660 if (virq < 0) { 1661 return virq; 1662 } 1663 1664 kroute.gsi = virq; 1665 kroute.type = KVM_IRQ_ROUTING_MSI; 1666 kroute.flags = 0; 1667 kroute.u.msi.address_lo = (uint32_t)msg.address; 1668 kroute.u.msi.address_hi = msg.address >> 32; 1669 kroute.u.msi.data = le32_to_cpu(msg.data); 1670 if (pci_available && kvm_msi_devid_required()) { 1671 kroute.flags = KVM_MSI_VALID_DEVID; 1672 kroute.u.msi.devid = pci_requester_id(dev); 1673 } 1674 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1675 kvm_irqchip_release_virq(s, virq); 1676 return -EINVAL; 1677 } 1678 1679 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1680 vector, virq); 1681 1682 kvm_add_routing_entry(s, &kroute); 1683 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1684 kvm_irqchip_commit_routes(s); 1685 1686 return virq; 1687 } 1688 1689 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1690 PCIDevice *dev) 1691 { 1692 struct kvm_irq_routing_entry kroute = {}; 1693 1694 if (kvm_gsi_direct_mapping()) { 1695 return 0; 1696 } 1697 1698 if (!kvm_irqchip_in_kernel()) { 1699 return -ENOSYS; 1700 } 1701 1702 kroute.gsi = virq; 1703 kroute.type = KVM_IRQ_ROUTING_MSI; 1704 kroute.flags = 0; 1705 kroute.u.msi.address_lo = (uint32_t)msg.address; 1706 kroute.u.msi.address_hi = msg.address >> 32; 1707 kroute.u.msi.data = le32_to_cpu(msg.data); 1708 if (pci_available && kvm_msi_devid_required()) { 1709 kroute.flags = KVM_MSI_VALID_DEVID; 1710 kroute.u.msi.devid = pci_requester_id(dev); 1711 } 1712 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1713 return -EINVAL; 1714 } 1715 1716 trace_kvm_irqchip_update_msi_route(virq); 1717 1718 return kvm_update_routing_entry(s, &kroute); 1719 } 1720 1721 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1722 EventNotifier *resample, int virq, 1723 bool assign) 1724 { 1725 int fd = event_notifier_get_fd(event); 1726 int rfd = resample ? event_notifier_get_fd(resample) : -1; 1727 1728 struct kvm_irqfd irqfd = { 1729 .fd = fd, 1730 .gsi = virq, 1731 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1732 }; 1733 1734 if (rfd != -1) { 1735 assert(assign); 1736 if (kvm_irqchip_is_split()) { 1737 /* 1738 * When the slow irqchip (e.g. IOAPIC) is in the 1739 * userspace, KVM kernel resamplefd will not work because 1740 * the EOI of the interrupt will be delivered to userspace 1741 * instead, so the KVM kernel resamplefd kick will be 1742 * skipped. The userspace here mimics what the kernel 1743 * provides with resamplefd, remember the resamplefd and 1744 * kick it when we receive EOI of this IRQ. 1745 * 1746 * This is hackery because IOAPIC is mostly bypassed 1747 * (except EOI broadcasts) when irqfd is used. However 1748 * this can bring much performance back for split irqchip 1749 * with INTx IRQs (for VFIO, this gives 93% perf of the 1750 * full fast path, which is 46% perf boost comparing to 1751 * the INTx slow path). 1752 */ 1753 kvm_resample_fd_insert(virq, resample); 1754 } else { 1755 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1756 irqfd.resamplefd = rfd; 1757 } 1758 } else if (!assign) { 1759 if (kvm_irqchip_is_split()) { 1760 kvm_resample_fd_remove(virq); 1761 } 1762 } 1763 1764 if (!kvm_irqfds_enabled()) { 1765 return -ENOSYS; 1766 } 1767 1768 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1769 } 1770 1771 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1772 { 1773 struct kvm_irq_routing_entry kroute = {}; 1774 int virq; 1775 1776 if (!kvm_gsi_routing_enabled()) { 1777 return -ENOSYS; 1778 } 1779 1780 virq = kvm_irqchip_get_virq(s); 1781 if (virq < 0) { 1782 return virq; 1783 } 1784 1785 kroute.gsi = virq; 1786 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1787 kroute.flags = 0; 1788 kroute.u.adapter.summary_addr = adapter->summary_addr; 1789 kroute.u.adapter.ind_addr = adapter->ind_addr; 1790 kroute.u.adapter.summary_offset = adapter->summary_offset; 1791 kroute.u.adapter.ind_offset = adapter->ind_offset; 1792 kroute.u.adapter.adapter_id = adapter->adapter_id; 1793 1794 kvm_add_routing_entry(s, &kroute); 1795 1796 return virq; 1797 } 1798 1799 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1800 { 1801 struct kvm_irq_routing_entry kroute = {}; 1802 int virq; 1803 1804 if (!kvm_gsi_routing_enabled()) { 1805 return -ENOSYS; 1806 } 1807 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1808 return -ENOSYS; 1809 } 1810 virq = kvm_irqchip_get_virq(s); 1811 if (virq < 0) { 1812 return virq; 1813 } 1814 1815 kroute.gsi = virq; 1816 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1817 kroute.flags = 0; 1818 kroute.u.hv_sint.vcpu = vcpu; 1819 kroute.u.hv_sint.sint = sint; 1820 1821 kvm_add_routing_entry(s, &kroute); 1822 kvm_irqchip_commit_routes(s); 1823 1824 return virq; 1825 } 1826 1827 #else /* !KVM_CAP_IRQ_ROUTING */ 1828 1829 void kvm_init_irq_routing(KVMState *s) 1830 { 1831 } 1832 1833 void kvm_irqchip_release_virq(KVMState *s, int virq) 1834 { 1835 } 1836 1837 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1838 { 1839 abort(); 1840 } 1841 1842 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1843 { 1844 return -ENOSYS; 1845 } 1846 1847 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1848 { 1849 return -ENOSYS; 1850 } 1851 1852 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1853 { 1854 return -ENOSYS; 1855 } 1856 1857 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1858 EventNotifier *resample, int virq, 1859 bool assign) 1860 { 1861 abort(); 1862 } 1863 1864 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1865 { 1866 return -ENOSYS; 1867 } 1868 #endif /* !KVM_CAP_IRQ_ROUTING */ 1869 1870 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1871 EventNotifier *rn, int virq) 1872 { 1873 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 1874 } 1875 1876 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1877 int virq) 1878 { 1879 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 1880 } 1881 1882 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1883 EventNotifier *rn, qemu_irq irq) 1884 { 1885 gpointer key, gsi; 1886 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1887 1888 if (!found) { 1889 return -ENXIO; 1890 } 1891 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1892 } 1893 1894 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1895 qemu_irq irq) 1896 { 1897 gpointer key, gsi; 1898 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1899 1900 if (!found) { 1901 return -ENXIO; 1902 } 1903 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1904 } 1905 1906 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1907 { 1908 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1909 } 1910 1911 static void kvm_irqchip_create(KVMState *s) 1912 { 1913 int ret; 1914 1915 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 1916 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1917 ; 1918 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1919 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1920 if (ret < 0) { 1921 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1922 exit(1); 1923 } 1924 } else { 1925 return; 1926 } 1927 1928 /* First probe and see if there's a arch-specific hook to create the 1929 * in-kernel irqchip for us */ 1930 ret = kvm_arch_irqchip_create(s); 1931 if (ret == 0) { 1932 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 1933 perror("Split IRQ chip mode not supported."); 1934 exit(1); 1935 } else { 1936 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1937 } 1938 } 1939 if (ret < 0) { 1940 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1941 exit(1); 1942 } 1943 1944 kvm_kernel_irqchip = true; 1945 /* If we have an in-kernel IRQ chip then we must have asynchronous 1946 * interrupt delivery (though the reverse is not necessarily true) 1947 */ 1948 kvm_async_interrupts_allowed = true; 1949 kvm_halt_in_kernel_allowed = true; 1950 1951 kvm_init_irq_routing(s); 1952 1953 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1954 } 1955 1956 /* Find number of supported CPUs using the recommended 1957 * procedure from the kernel API documentation to cope with 1958 * older kernels that may be missing capabilities. 1959 */ 1960 static int kvm_recommended_vcpus(KVMState *s) 1961 { 1962 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1963 return (ret) ? ret : 4; 1964 } 1965 1966 static int kvm_max_vcpus(KVMState *s) 1967 { 1968 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1969 return (ret) ? ret : kvm_recommended_vcpus(s); 1970 } 1971 1972 static int kvm_max_vcpu_id(KVMState *s) 1973 { 1974 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1975 return (ret) ? ret : kvm_max_vcpus(s); 1976 } 1977 1978 bool kvm_vcpu_id_is_valid(int vcpu_id) 1979 { 1980 KVMState *s = KVM_STATE(current_accel()); 1981 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1982 } 1983 1984 static int kvm_init(MachineState *ms) 1985 { 1986 MachineClass *mc = MACHINE_GET_CLASS(ms); 1987 static const char upgrade_note[] = 1988 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1989 "(see http://sourceforge.net/projects/kvm).\n"; 1990 struct { 1991 const char *name; 1992 int num; 1993 } num_cpus[] = { 1994 { "SMP", ms->smp.cpus }, 1995 { "hotpluggable", ms->smp.max_cpus }, 1996 { NULL, } 1997 }, *nc = num_cpus; 1998 int soft_vcpus_limit, hard_vcpus_limit; 1999 KVMState *s; 2000 const KVMCapabilityInfo *missing_cap; 2001 int ret; 2002 int type = 0; 2003 uint64_t dirty_log_manual_caps; 2004 2005 s = KVM_STATE(ms->accelerator); 2006 2007 /* 2008 * On systems where the kernel can support different base page 2009 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2010 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2011 * page size for the system though. 2012 */ 2013 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2014 2015 s->sigmask_len = 8; 2016 2017 #ifdef KVM_CAP_SET_GUEST_DEBUG 2018 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2019 #endif 2020 QLIST_INIT(&s->kvm_parked_vcpus); 2021 s->vmfd = -1; 2022 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2023 if (s->fd == -1) { 2024 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2025 ret = -errno; 2026 goto err; 2027 } 2028 2029 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2030 if (ret < KVM_API_VERSION) { 2031 if (ret >= 0) { 2032 ret = -EINVAL; 2033 } 2034 fprintf(stderr, "kvm version too old\n"); 2035 goto err; 2036 } 2037 2038 if (ret > KVM_API_VERSION) { 2039 ret = -EINVAL; 2040 fprintf(stderr, "kvm version not supported\n"); 2041 goto err; 2042 } 2043 2044 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2045 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2046 2047 /* If unspecified, use the default value */ 2048 if (!s->nr_slots) { 2049 s->nr_slots = 32; 2050 } 2051 2052 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2053 if (s->nr_as <= 1) { 2054 s->nr_as = 1; 2055 } 2056 s->as = g_new0(struct KVMAs, s->nr_as); 2057 2058 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2059 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2060 "kvm-type", 2061 &error_abort); 2062 type = mc->kvm_type(ms, kvm_type); 2063 } else if (mc->kvm_type) { 2064 type = mc->kvm_type(ms, NULL); 2065 } 2066 2067 do { 2068 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2069 } while (ret == -EINTR); 2070 2071 if (ret < 0) { 2072 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2073 strerror(-ret)); 2074 2075 #ifdef TARGET_S390X 2076 if (ret == -EINVAL) { 2077 fprintf(stderr, 2078 "Host kernel setup problem detected. Please verify:\n"); 2079 fprintf(stderr, "- for kernels supporting the switch_amode or" 2080 " user_mode parameters, whether\n"); 2081 fprintf(stderr, 2082 " user space is running in primary address space\n"); 2083 fprintf(stderr, 2084 "- for kernels supporting the vm.allocate_pgste sysctl, " 2085 "whether it is enabled\n"); 2086 } 2087 #endif 2088 goto err; 2089 } 2090 2091 s->vmfd = ret; 2092 2093 /* check the vcpu limits */ 2094 soft_vcpus_limit = kvm_recommended_vcpus(s); 2095 hard_vcpus_limit = kvm_max_vcpus(s); 2096 2097 while (nc->name) { 2098 if (nc->num > soft_vcpus_limit) { 2099 warn_report("Number of %s cpus requested (%d) exceeds " 2100 "the recommended cpus supported by KVM (%d)", 2101 nc->name, nc->num, soft_vcpus_limit); 2102 2103 if (nc->num > hard_vcpus_limit) { 2104 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2105 "the maximum cpus supported by KVM (%d)\n", 2106 nc->name, nc->num, hard_vcpus_limit); 2107 exit(1); 2108 } 2109 } 2110 nc++; 2111 } 2112 2113 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2114 if (!missing_cap) { 2115 missing_cap = 2116 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2117 } 2118 if (missing_cap) { 2119 ret = -EINVAL; 2120 fprintf(stderr, "kvm does not support %s\n%s", 2121 missing_cap->name, upgrade_note); 2122 goto err; 2123 } 2124 2125 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2126 s->coalesced_pio = s->coalesced_mmio && 2127 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2128 2129 dirty_log_manual_caps = 2130 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2131 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2132 KVM_DIRTY_LOG_INITIALLY_SET); 2133 s->manual_dirty_log_protect = dirty_log_manual_caps; 2134 if (dirty_log_manual_caps) { 2135 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2136 dirty_log_manual_caps); 2137 if (ret) { 2138 warn_report("Trying to enable capability %"PRIu64" of " 2139 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2140 "Falling back to the legacy mode. ", 2141 dirty_log_manual_caps); 2142 s->manual_dirty_log_protect = 0; 2143 } 2144 } 2145 2146 #ifdef KVM_CAP_VCPU_EVENTS 2147 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2148 #endif 2149 2150 s->robust_singlestep = 2151 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2152 2153 #ifdef KVM_CAP_DEBUGREGS 2154 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2155 #endif 2156 2157 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2158 2159 #ifdef KVM_CAP_IRQ_ROUTING 2160 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2161 #endif 2162 2163 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2164 2165 s->irq_set_ioctl = KVM_IRQ_LINE; 2166 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2167 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2168 } 2169 2170 kvm_readonly_mem_allowed = 2171 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2172 2173 kvm_eventfds_allowed = 2174 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2175 2176 kvm_irqfds_allowed = 2177 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2178 2179 kvm_resamplefds_allowed = 2180 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2181 2182 kvm_vm_attributes_allowed = 2183 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2184 2185 kvm_ioeventfd_any_length_allowed = 2186 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2187 2188 kvm_state = s; 2189 2190 ret = kvm_arch_init(ms, s); 2191 if (ret < 0) { 2192 goto err; 2193 } 2194 2195 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2196 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2197 } 2198 2199 qemu_register_reset(kvm_unpoison_all, NULL); 2200 2201 if (s->kernel_irqchip_allowed) { 2202 kvm_irqchip_create(s); 2203 } 2204 2205 if (kvm_eventfds_allowed) { 2206 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2207 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2208 } 2209 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2210 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2211 2212 kvm_memory_listener_register(s, &s->memory_listener, 2213 &address_space_memory, 0); 2214 if (kvm_eventfds_allowed) { 2215 memory_listener_register(&kvm_io_listener, 2216 &address_space_io); 2217 } 2218 memory_listener_register(&kvm_coalesced_pio_listener, 2219 &address_space_io); 2220 2221 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2222 2223 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2224 if (!s->sync_mmu) { 2225 ret = ram_block_discard_disable(true); 2226 assert(!ret); 2227 } 2228 return 0; 2229 2230 err: 2231 assert(ret < 0); 2232 if (s->vmfd >= 0) { 2233 close(s->vmfd); 2234 } 2235 if (s->fd != -1) { 2236 close(s->fd); 2237 } 2238 g_free(s->memory_listener.slots); 2239 2240 return ret; 2241 } 2242 2243 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2244 { 2245 s->sigmask_len = sigmask_len; 2246 } 2247 2248 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2249 int size, uint32_t count) 2250 { 2251 int i; 2252 uint8_t *ptr = data; 2253 2254 for (i = 0; i < count; i++) { 2255 address_space_rw(&address_space_io, port, attrs, 2256 ptr, size, 2257 direction == KVM_EXIT_IO_OUT); 2258 ptr += size; 2259 } 2260 } 2261 2262 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2263 { 2264 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2265 run->internal.suberror); 2266 2267 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2268 int i; 2269 2270 for (i = 0; i < run->internal.ndata; ++i) { 2271 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2272 i, (uint64_t)run->internal.data[i]); 2273 } 2274 } 2275 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2276 fprintf(stderr, "emulation failure\n"); 2277 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2278 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2279 return EXCP_INTERRUPT; 2280 } 2281 } 2282 /* FIXME: Should trigger a qmp message to let management know 2283 * something went wrong. 2284 */ 2285 return -1; 2286 } 2287 2288 void kvm_flush_coalesced_mmio_buffer(void) 2289 { 2290 KVMState *s = kvm_state; 2291 2292 if (s->coalesced_flush_in_progress) { 2293 return; 2294 } 2295 2296 s->coalesced_flush_in_progress = true; 2297 2298 if (s->coalesced_mmio_ring) { 2299 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2300 while (ring->first != ring->last) { 2301 struct kvm_coalesced_mmio *ent; 2302 2303 ent = &ring->coalesced_mmio[ring->first]; 2304 2305 if (ent->pio == 1) { 2306 address_space_write(&address_space_io, ent->phys_addr, 2307 MEMTXATTRS_UNSPECIFIED, ent->data, 2308 ent->len); 2309 } else { 2310 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2311 } 2312 smp_wmb(); 2313 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2314 } 2315 } 2316 2317 s->coalesced_flush_in_progress = false; 2318 } 2319 2320 bool kvm_cpu_check_are_resettable(void) 2321 { 2322 return kvm_arch_cpu_check_are_resettable(); 2323 } 2324 2325 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2326 { 2327 if (!cpu->vcpu_dirty) { 2328 kvm_arch_get_registers(cpu); 2329 cpu->vcpu_dirty = true; 2330 } 2331 } 2332 2333 void kvm_cpu_synchronize_state(CPUState *cpu) 2334 { 2335 if (!cpu->vcpu_dirty) { 2336 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2337 } 2338 } 2339 2340 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2341 { 2342 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2343 cpu->vcpu_dirty = false; 2344 } 2345 2346 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2347 { 2348 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2349 } 2350 2351 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2352 { 2353 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2354 cpu->vcpu_dirty = false; 2355 } 2356 2357 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2358 { 2359 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2360 } 2361 2362 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2363 { 2364 cpu->vcpu_dirty = true; 2365 } 2366 2367 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2368 { 2369 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2370 } 2371 2372 #ifdef KVM_HAVE_MCE_INJECTION 2373 static __thread void *pending_sigbus_addr; 2374 static __thread int pending_sigbus_code; 2375 static __thread bool have_sigbus_pending; 2376 #endif 2377 2378 static void kvm_cpu_kick(CPUState *cpu) 2379 { 2380 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2381 } 2382 2383 static void kvm_cpu_kick_self(void) 2384 { 2385 if (kvm_immediate_exit) { 2386 kvm_cpu_kick(current_cpu); 2387 } else { 2388 qemu_cpu_kick_self(); 2389 } 2390 } 2391 2392 static void kvm_eat_signals(CPUState *cpu) 2393 { 2394 struct timespec ts = { 0, 0 }; 2395 siginfo_t siginfo; 2396 sigset_t waitset; 2397 sigset_t chkset; 2398 int r; 2399 2400 if (kvm_immediate_exit) { 2401 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2402 /* Write kvm_run->immediate_exit before the cpu->exit_request 2403 * write in kvm_cpu_exec. 2404 */ 2405 smp_wmb(); 2406 return; 2407 } 2408 2409 sigemptyset(&waitset); 2410 sigaddset(&waitset, SIG_IPI); 2411 2412 do { 2413 r = sigtimedwait(&waitset, &siginfo, &ts); 2414 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2415 perror("sigtimedwait"); 2416 exit(1); 2417 } 2418 2419 r = sigpending(&chkset); 2420 if (r == -1) { 2421 perror("sigpending"); 2422 exit(1); 2423 } 2424 } while (sigismember(&chkset, SIG_IPI)); 2425 } 2426 2427 int kvm_cpu_exec(CPUState *cpu) 2428 { 2429 struct kvm_run *run = cpu->kvm_run; 2430 int ret, run_ret; 2431 2432 DPRINTF("kvm_cpu_exec()\n"); 2433 2434 if (kvm_arch_process_async_events(cpu)) { 2435 qatomic_set(&cpu->exit_request, 0); 2436 return EXCP_HLT; 2437 } 2438 2439 qemu_mutex_unlock_iothread(); 2440 cpu_exec_start(cpu); 2441 2442 do { 2443 MemTxAttrs attrs; 2444 2445 if (cpu->vcpu_dirty) { 2446 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2447 cpu->vcpu_dirty = false; 2448 } 2449 2450 kvm_arch_pre_run(cpu, run); 2451 if (qatomic_read(&cpu->exit_request)) { 2452 DPRINTF("interrupt exit requested\n"); 2453 /* 2454 * KVM requires us to reenter the kernel after IO exits to complete 2455 * instruction emulation. This self-signal will ensure that we 2456 * leave ASAP again. 2457 */ 2458 kvm_cpu_kick_self(); 2459 } 2460 2461 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2462 * Matching barrier in kvm_eat_signals. 2463 */ 2464 smp_rmb(); 2465 2466 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2467 2468 attrs = kvm_arch_post_run(cpu, run); 2469 2470 #ifdef KVM_HAVE_MCE_INJECTION 2471 if (unlikely(have_sigbus_pending)) { 2472 qemu_mutex_lock_iothread(); 2473 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2474 pending_sigbus_addr); 2475 have_sigbus_pending = false; 2476 qemu_mutex_unlock_iothread(); 2477 } 2478 #endif 2479 2480 if (run_ret < 0) { 2481 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2482 DPRINTF("io window exit\n"); 2483 kvm_eat_signals(cpu); 2484 ret = EXCP_INTERRUPT; 2485 break; 2486 } 2487 fprintf(stderr, "error: kvm run failed %s\n", 2488 strerror(-run_ret)); 2489 #ifdef TARGET_PPC 2490 if (run_ret == -EBUSY) { 2491 fprintf(stderr, 2492 "This is probably because your SMT is enabled.\n" 2493 "VCPU can only run on primary threads with all " 2494 "secondary threads offline.\n"); 2495 } 2496 #endif 2497 ret = -1; 2498 break; 2499 } 2500 2501 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2502 switch (run->exit_reason) { 2503 case KVM_EXIT_IO: 2504 DPRINTF("handle_io\n"); 2505 /* Called outside BQL */ 2506 kvm_handle_io(run->io.port, attrs, 2507 (uint8_t *)run + run->io.data_offset, 2508 run->io.direction, 2509 run->io.size, 2510 run->io.count); 2511 ret = 0; 2512 break; 2513 case KVM_EXIT_MMIO: 2514 DPRINTF("handle_mmio\n"); 2515 /* Called outside BQL */ 2516 address_space_rw(&address_space_memory, 2517 run->mmio.phys_addr, attrs, 2518 run->mmio.data, 2519 run->mmio.len, 2520 run->mmio.is_write); 2521 ret = 0; 2522 break; 2523 case KVM_EXIT_IRQ_WINDOW_OPEN: 2524 DPRINTF("irq_window_open\n"); 2525 ret = EXCP_INTERRUPT; 2526 break; 2527 case KVM_EXIT_SHUTDOWN: 2528 DPRINTF("shutdown\n"); 2529 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2530 ret = EXCP_INTERRUPT; 2531 break; 2532 case KVM_EXIT_UNKNOWN: 2533 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2534 (uint64_t)run->hw.hardware_exit_reason); 2535 ret = -1; 2536 break; 2537 case KVM_EXIT_INTERNAL_ERROR: 2538 ret = kvm_handle_internal_error(cpu, run); 2539 break; 2540 case KVM_EXIT_SYSTEM_EVENT: 2541 switch (run->system_event.type) { 2542 case KVM_SYSTEM_EVENT_SHUTDOWN: 2543 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2544 ret = EXCP_INTERRUPT; 2545 break; 2546 case KVM_SYSTEM_EVENT_RESET: 2547 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2548 ret = EXCP_INTERRUPT; 2549 break; 2550 case KVM_SYSTEM_EVENT_CRASH: 2551 kvm_cpu_synchronize_state(cpu); 2552 qemu_mutex_lock_iothread(); 2553 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2554 qemu_mutex_unlock_iothread(); 2555 ret = 0; 2556 break; 2557 default: 2558 DPRINTF("kvm_arch_handle_exit\n"); 2559 ret = kvm_arch_handle_exit(cpu, run); 2560 break; 2561 } 2562 break; 2563 default: 2564 DPRINTF("kvm_arch_handle_exit\n"); 2565 ret = kvm_arch_handle_exit(cpu, run); 2566 break; 2567 } 2568 } while (ret == 0); 2569 2570 cpu_exec_end(cpu); 2571 qemu_mutex_lock_iothread(); 2572 2573 if (ret < 0) { 2574 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2575 vm_stop(RUN_STATE_INTERNAL_ERROR); 2576 } 2577 2578 qatomic_set(&cpu->exit_request, 0); 2579 return ret; 2580 } 2581 2582 int kvm_ioctl(KVMState *s, int type, ...) 2583 { 2584 int ret; 2585 void *arg; 2586 va_list ap; 2587 2588 va_start(ap, type); 2589 arg = va_arg(ap, void *); 2590 va_end(ap); 2591 2592 trace_kvm_ioctl(type, arg); 2593 ret = ioctl(s->fd, type, arg); 2594 if (ret == -1) { 2595 ret = -errno; 2596 } 2597 return ret; 2598 } 2599 2600 int kvm_vm_ioctl(KVMState *s, int type, ...) 2601 { 2602 int ret; 2603 void *arg; 2604 va_list ap; 2605 2606 va_start(ap, type); 2607 arg = va_arg(ap, void *); 2608 va_end(ap); 2609 2610 trace_kvm_vm_ioctl(type, arg); 2611 ret = ioctl(s->vmfd, type, arg); 2612 if (ret == -1) { 2613 ret = -errno; 2614 } 2615 return ret; 2616 } 2617 2618 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2619 { 2620 int ret; 2621 void *arg; 2622 va_list ap; 2623 2624 va_start(ap, type); 2625 arg = va_arg(ap, void *); 2626 va_end(ap); 2627 2628 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2629 ret = ioctl(cpu->kvm_fd, type, arg); 2630 if (ret == -1) { 2631 ret = -errno; 2632 } 2633 return ret; 2634 } 2635 2636 int kvm_device_ioctl(int fd, int type, ...) 2637 { 2638 int ret; 2639 void *arg; 2640 va_list ap; 2641 2642 va_start(ap, type); 2643 arg = va_arg(ap, void *); 2644 va_end(ap); 2645 2646 trace_kvm_device_ioctl(fd, type, arg); 2647 ret = ioctl(fd, type, arg); 2648 if (ret == -1) { 2649 ret = -errno; 2650 } 2651 return ret; 2652 } 2653 2654 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2655 { 2656 int ret; 2657 struct kvm_device_attr attribute = { 2658 .group = group, 2659 .attr = attr, 2660 }; 2661 2662 if (!kvm_vm_attributes_allowed) { 2663 return 0; 2664 } 2665 2666 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2667 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2668 return ret ? 0 : 1; 2669 } 2670 2671 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2672 { 2673 struct kvm_device_attr attribute = { 2674 .group = group, 2675 .attr = attr, 2676 .flags = 0, 2677 }; 2678 2679 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2680 } 2681 2682 int kvm_device_access(int fd, int group, uint64_t attr, 2683 void *val, bool write, Error **errp) 2684 { 2685 struct kvm_device_attr kvmattr; 2686 int err; 2687 2688 kvmattr.flags = 0; 2689 kvmattr.group = group; 2690 kvmattr.attr = attr; 2691 kvmattr.addr = (uintptr_t)val; 2692 2693 err = kvm_device_ioctl(fd, 2694 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2695 &kvmattr); 2696 if (err < 0) { 2697 error_setg_errno(errp, -err, 2698 "KVM_%s_DEVICE_ATTR failed: Group %d " 2699 "attr 0x%016" PRIx64, 2700 write ? "SET" : "GET", group, attr); 2701 } 2702 return err; 2703 } 2704 2705 bool kvm_has_sync_mmu(void) 2706 { 2707 return kvm_state->sync_mmu; 2708 } 2709 2710 int kvm_has_vcpu_events(void) 2711 { 2712 return kvm_state->vcpu_events; 2713 } 2714 2715 int kvm_has_robust_singlestep(void) 2716 { 2717 return kvm_state->robust_singlestep; 2718 } 2719 2720 int kvm_has_debugregs(void) 2721 { 2722 return kvm_state->debugregs; 2723 } 2724 2725 int kvm_max_nested_state_length(void) 2726 { 2727 return kvm_state->max_nested_state_len; 2728 } 2729 2730 int kvm_has_many_ioeventfds(void) 2731 { 2732 if (!kvm_enabled()) { 2733 return 0; 2734 } 2735 return kvm_state->many_ioeventfds; 2736 } 2737 2738 int kvm_has_gsi_routing(void) 2739 { 2740 #ifdef KVM_CAP_IRQ_ROUTING 2741 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2742 #else 2743 return false; 2744 #endif 2745 } 2746 2747 int kvm_has_intx_set_mask(void) 2748 { 2749 return kvm_state->intx_set_mask; 2750 } 2751 2752 bool kvm_arm_supports_user_irq(void) 2753 { 2754 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2755 } 2756 2757 #ifdef KVM_CAP_SET_GUEST_DEBUG 2758 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2759 target_ulong pc) 2760 { 2761 struct kvm_sw_breakpoint *bp; 2762 2763 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2764 if (bp->pc == pc) { 2765 return bp; 2766 } 2767 } 2768 return NULL; 2769 } 2770 2771 int kvm_sw_breakpoints_active(CPUState *cpu) 2772 { 2773 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2774 } 2775 2776 struct kvm_set_guest_debug_data { 2777 struct kvm_guest_debug dbg; 2778 int err; 2779 }; 2780 2781 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2782 { 2783 struct kvm_set_guest_debug_data *dbg_data = 2784 (struct kvm_set_guest_debug_data *) data.host_ptr; 2785 2786 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2787 &dbg_data->dbg); 2788 } 2789 2790 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2791 { 2792 struct kvm_set_guest_debug_data data; 2793 2794 data.dbg.control = reinject_trap; 2795 2796 if (cpu->singlestep_enabled) { 2797 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2798 } 2799 kvm_arch_update_guest_debug(cpu, &data.dbg); 2800 2801 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2802 RUN_ON_CPU_HOST_PTR(&data)); 2803 return data.err; 2804 } 2805 2806 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2807 target_ulong len, int type) 2808 { 2809 struct kvm_sw_breakpoint *bp; 2810 int err; 2811 2812 if (type == GDB_BREAKPOINT_SW) { 2813 bp = kvm_find_sw_breakpoint(cpu, addr); 2814 if (bp) { 2815 bp->use_count++; 2816 return 0; 2817 } 2818 2819 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2820 bp->pc = addr; 2821 bp->use_count = 1; 2822 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2823 if (err) { 2824 g_free(bp); 2825 return err; 2826 } 2827 2828 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2829 } else { 2830 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2831 if (err) { 2832 return err; 2833 } 2834 } 2835 2836 CPU_FOREACH(cpu) { 2837 err = kvm_update_guest_debug(cpu, 0); 2838 if (err) { 2839 return err; 2840 } 2841 } 2842 return 0; 2843 } 2844 2845 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2846 target_ulong len, int type) 2847 { 2848 struct kvm_sw_breakpoint *bp; 2849 int err; 2850 2851 if (type == GDB_BREAKPOINT_SW) { 2852 bp = kvm_find_sw_breakpoint(cpu, addr); 2853 if (!bp) { 2854 return -ENOENT; 2855 } 2856 2857 if (bp->use_count > 1) { 2858 bp->use_count--; 2859 return 0; 2860 } 2861 2862 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2863 if (err) { 2864 return err; 2865 } 2866 2867 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2868 g_free(bp); 2869 } else { 2870 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2871 if (err) { 2872 return err; 2873 } 2874 } 2875 2876 CPU_FOREACH(cpu) { 2877 err = kvm_update_guest_debug(cpu, 0); 2878 if (err) { 2879 return err; 2880 } 2881 } 2882 return 0; 2883 } 2884 2885 void kvm_remove_all_breakpoints(CPUState *cpu) 2886 { 2887 struct kvm_sw_breakpoint *bp, *next; 2888 KVMState *s = cpu->kvm_state; 2889 CPUState *tmpcpu; 2890 2891 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2892 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2893 /* Try harder to find a CPU that currently sees the breakpoint. */ 2894 CPU_FOREACH(tmpcpu) { 2895 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2896 break; 2897 } 2898 } 2899 } 2900 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2901 g_free(bp); 2902 } 2903 kvm_arch_remove_all_hw_breakpoints(); 2904 2905 CPU_FOREACH(cpu) { 2906 kvm_update_guest_debug(cpu, 0); 2907 } 2908 } 2909 2910 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2911 2912 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2913 { 2914 return -EINVAL; 2915 } 2916 2917 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2918 target_ulong len, int type) 2919 { 2920 return -EINVAL; 2921 } 2922 2923 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2924 target_ulong len, int type) 2925 { 2926 return -EINVAL; 2927 } 2928 2929 void kvm_remove_all_breakpoints(CPUState *cpu) 2930 { 2931 } 2932 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2933 2934 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2935 { 2936 KVMState *s = kvm_state; 2937 struct kvm_signal_mask *sigmask; 2938 int r; 2939 2940 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2941 2942 sigmask->len = s->sigmask_len; 2943 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2944 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2945 g_free(sigmask); 2946 2947 return r; 2948 } 2949 2950 static void kvm_ipi_signal(int sig) 2951 { 2952 if (current_cpu) { 2953 assert(kvm_immediate_exit); 2954 kvm_cpu_kick(current_cpu); 2955 } 2956 } 2957 2958 void kvm_init_cpu_signals(CPUState *cpu) 2959 { 2960 int r; 2961 sigset_t set; 2962 struct sigaction sigact; 2963 2964 memset(&sigact, 0, sizeof(sigact)); 2965 sigact.sa_handler = kvm_ipi_signal; 2966 sigaction(SIG_IPI, &sigact, NULL); 2967 2968 pthread_sigmask(SIG_BLOCK, NULL, &set); 2969 #if defined KVM_HAVE_MCE_INJECTION 2970 sigdelset(&set, SIGBUS); 2971 pthread_sigmask(SIG_SETMASK, &set, NULL); 2972 #endif 2973 sigdelset(&set, SIG_IPI); 2974 if (kvm_immediate_exit) { 2975 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2976 } else { 2977 r = kvm_set_signal_mask(cpu, &set); 2978 } 2979 if (r) { 2980 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2981 exit(1); 2982 } 2983 } 2984 2985 /* Called asynchronously in VCPU thread. */ 2986 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2987 { 2988 #ifdef KVM_HAVE_MCE_INJECTION 2989 if (have_sigbus_pending) { 2990 return 1; 2991 } 2992 have_sigbus_pending = true; 2993 pending_sigbus_addr = addr; 2994 pending_sigbus_code = code; 2995 qatomic_set(&cpu->exit_request, 1); 2996 return 0; 2997 #else 2998 return 1; 2999 #endif 3000 } 3001 3002 /* Called synchronously (via signalfd) in main thread. */ 3003 int kvm_on_sigbus(int code, void *addr) 3004 { 3005 #ifdef KVM_HAVE_MCE_INJECTION 3006 /* Action required MCE kills the process if SIGBUS is blocked. Because 3007 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3008 * we can only get action optional here. 3009 */ 3010 assert(code != BUS_MCEERR_AR); 3011 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3012 return 0; 3013 #else 3014 return 1; 3015 #endif 3016 } 3017 3018 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3019 { 3020 int ret; 3021 struct kvm_create_device create_dev; 3022 3023 create_dev.type = type; 3024 create_dev.fd = -1; 3025 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3026 3027 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3028 return -ENOTSUP; 3029 } 3030 3031 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3032 if (ret) { 3033 return ret; 3034 } 3035 3036 return test ? 0 : create_dev.fd; 3037 } 3038 3039 bool kvm_device_supported(int vmfd, uint64_t type) 3040 { 3041 struct kvm_create_device create_dev = { 3042 .type = type, 3043 .fd = -1, 3044 .flags = KVM_CREATE_DEVICE_TEST, 3045 }; 3046 3047 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3048 return false; 3049 } 3050 3051 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3052 } 3053 3054 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3055 { 3056 struct kvm_one_reg reg; 3057 int r; 3058 3059 reg.id = id; 3060 reg.addr = (uintptr_t) source; 3061 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3062 if (r) { 3063 trace_kvm_failed_reg_set(id, strerror(-r)); 3064 } 3065 return r; 3066 } 3067 3068 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3069 { 3070 struct kvm_one_reg reg; 3071 int r; 3072 3073 reg.id = id; 3074 reg.addr = (uintptr_t) target; 3075 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3076 if (r) { 3077 trace_kvm_failed_reg_get(id, strerror(-r)); 3078 } 3079 return r; 3080 } 3081 3082 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3083 hwaddr start_addr, hwaddr size) 3084 { 3085 KVMState *kvm = KVM_STATE(ms->accelerator); 3086 int i; 3087 3088 for (i = 0; i < kvm->nr_as; ++i) { 3089 if (kvm->as[i].as == as && kvm->as[i].ml) { 3090 size = MIN(kvm_max_slot_size, size); 3091 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3092 start_addr, size); 3093 } 3094 } 3095 3096 return false; 3097 } 3098 3099 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3100 const char *name, void *opaque, 3101 Error **errp) 3102 { 3103 KVMState *s = KVM_STATE(obj); 3104 int64_t value = s->kvm_shadow_mem; 3105 3106 visit_type_int(v, name, &value, errp); 3107 } 3108 3109 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3110 const char *name, void *opaque, 3111 Error **errp) 3112 { 3113 KVMState *s = KVM_STATE(obj); 3114 int64_t value; 3115 3116 if (!visit_type_int(v, name, &value, errp)) { 3117 return; 3118 } 3119 3120 s->kvm_shadow_mem = value; 3121 } 3122 3123 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3124 const char *name, void *opaque, 3125 Error **errp) 3126 { 3127 KVMState *s = KVM_STATE(obj); 3128 OnOffSplit mode; 3129 3130 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3131 return; 3132 } 3133 switch (mode) { 3134 case ON_OFF_SPLIT_ON: 3135 s->kernel_irqchip_allowed = true; 3136 s->kernel_irqchip_required = true; 3137 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3138 break; 3139 case ON_OFF_SPLIT_OFF: 3140 s->kernel_irqchip_allowed = false; 3141 s->kernel_irqchip_required = false; 3142 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3143 break; 3144 case ON_OFF_SPLIT_SPLIT: 3145 s->kernel_irqchip_allowed = true; 3146 s->kernel_irqchip_required = true; 3147 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3148 break; 3149 default: 3150 /* The value was checked in visit_type_OnOffSplit() above. If 3151 * we get here, then something is wrong in QEMU. 3152 */ 3153 abort(); 3154 } 3155 } 3156 3157 bool kvm_kernel_irqchip_allowed(void) 3158 { 3159 return kvm_state->kernel_irqchip_allowed; 3160 } 3161 3162 bool kvm_kernel_irqchip_required(void) 3163 { 3164 return kvm_state->kernel_irqchip_required; 3165 } 3166 3167 bool kvm_kernel_irqchip_split(void) 3168 { 3169 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3170 } 3171 3172 static void kvm_accel_instance_init(Object *obj) 3173 { 3174 KVMState *s = KVM_STATE(obj); 3175 3176 s->kvm_shadow_mem = -1; 3177 s->kernel_irqchip_allowed = true; 3178 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3179 } 3180 3181 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3182 { 3183 AccelClass *ac = ACCEL_CLASS(oc); 3184 ac->name = "KVM"; 3185 ac->init_machine = kvm_init; 3186 ac->has_memory = kvm_accel_has_memory; 3187 ac->allowed = &kvm_allowed; 3188 3189 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3190 NULL, kvm_set_kernel_irqchip, 3191 NULL, NULL); 3192 object_class_property_set_description(oc, "kernel-irqchip", 3193 "Configure KVM in-kernel irqchip"); 3194 3195 object_class_property_add(oc, "kvm-shadow-mem", "int", 3196 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3197 NULL, NULL); 3198 object_class_property_set_description(oc, "kvm-shadow-mem", 3199 "KVM shadow MMU size"); 3200 } 3201 3202 static const TypeInfo kvm_accel_type = { 3203 .name = TYPE_KVM_ACCEL, 3204 .parent = TYPE_ACCEL, 3205 .instance_init = kvm_accel_instance_init, 3206 .class_init = kvm_accel_class_init, 3207 .instance_size = sizeof(KVMState), 3208 }; 3209 3210 static void kvm_type_init(void) 3211 { 3212 type_register_static(&kvm_accel_type); 3213 } 3214 3215 type_init(kvm_type_init); 3216