1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu-common.h" 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/hw.h" 28 #include "hw/pci/msi.h" 29 #include "hw/pci/msix.h" 30 #include "hw/s390x/adapter.h" 31 #include "exec/gdbstub.h" 32 #include "sysemu/kvm_int.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 42 #include "hw/boards.h" 43 44 /* This check must be after config-host.h is included */ 45 #ifdef CONFIG_EVENTFD 46 #include <sys/eventfd.h> 47 #endif 48 49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 50 * need to use the real host PAGE_SIZE, as that's what KVM will use. 51 */ 52 #define PAGE_SIZE getpagesize() 53 54 //#define DEBUG_KVM 55 56 #ifdef DEBUG_KVM 57 #define DPRINTF(fmt, ...) \ 58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 59 #else 60 #define DPRINTF(fmt, ...) \ 61 do { } while (0) 62 #endif 63 64 #define KVM_MSI_HASHTAB_SIZE 256 65 66 struct KVMParkedVcpu { 67 unsigned long vcpu_id; 68 int kvm_fd; 69 QLIST_ENTRY(KVMParkedVcpu) node; 70 }; 71 72 struct KVMState 73 { 74 AccelState parent_obj; 75 76 int nr_slots; 77 int fd; 78 int vmfd; 79 int coalesced_mmio; 80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 81 bool coalesced_flush_in_progress; 82 int vcpu_events; 83 int robust_singlestep; 84 int debugregs; 85 #ifdef KVM_CAP_SET_GUEST_DEBUG 86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints; 87 #endif 88 int many_ioeventfds; 89 int intx_set_mask; 90 bool sync_mmu; 91 /* The man page (and posix) say ioctl numbers are signed int, but 92 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 93 * unsigned, and treating them as signed here can break things */ 94 unsigned irq_set_ioctl; 95 unsigned int sigmask_len; 96 GHashTable *gsimap; 97 #ifdef KVM_CAP_IRQ_ROUTING 98 struct kvm_irq_routing *irq_routes; 99 int nr_allocated_irq_routes; 100 unsigned long *used_gsi_bitmap; 101 unsigned int gsi_count; 102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 103 #endif 104 KVMMemoryListener memory_listener; 105 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 106 }; 107 108 KVMState *kvm_state; 109 bool kvm_kernel_irqchip; 110 bool kvm_split_irqchip; 111 bool kvm_async_interrupts_allowed; 112 bool kvm_halt_in_kernel_allowed; 113 bool kvm_eventfds_allowed; 114 bool kvm_irqfds_allowed; 115 bool kvm_resamplefds_allowed; 116 bool kvm_msi_via_irqfd_allowed; 117 bool kvm_gsi_routing_allowed; 118 bool kvm_gsi_direct_mapping; 119 bool kvm_allowed; 120 bool kvm_readonly_mem_allowed; 121 bool kvm_vm_attributes_allowed; 122 bool kvm_direct_msi_allowed; 123 bool kvm_ioeventfd_any_length_allowed; 124 bool kvm_msi_use_devid; 125 static bool kvm_immediate_exit; 126 127 static const KVMCapabilityInfo kvm_required_capabilites[] = { 128 KVM_CAP_INFO(USER_MEMORY), 129 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 130 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 131 KVM_CAP_LAST_INFO 132 }; 133 134 int kvm_get_max_memslots(void) 135 { 136 KVMState *s = KVM_STATE(current_machine->accelerator); 137 138 return s->nr_slots; 139 } 140 141 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 142 { 143 KVMState *s = kvm_state; 144 int i; 145 146 for (i = 0; i < s->nr_slots; i++) { 147 if (kml->slots[i].memory_size == 0) { 148 return &kml->slots[i]; 149 } 150 } 151 152 return NULL; 153 } 154 155 bool kvm_has_free_slot(MachineState *ms) 156 { 157 KVMState *s = KVM_STATE(ms->accelerator); 158 159 return kvm_get_free_slot(&s->memory_listener); 160 } 161 162 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 163 { 164 KVMSlot *slot = kvm_get_free_slot(kml); 165 166 if (slot) { 167 return slot; 168 } 169 170 fprintf(stderr, "%s: no free slot available\n", __func__); 171 abort(); 172 } 173 174 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 175 hwaddr start_addr, 176 hwaddr size) 177 { 178 KVMState *s = kvm_state; 179 int i; 180 181 for (i = 0; i < s->nr_slots; i++) { 182 KVMSlot *mem = &kml->slots[i]; 183 184 if (start_addr == mem->start_addr && size == mem->memory_size) { 185 return mem; 186 } 187 } 188 189 return NULL; 190 } 191 192 /* 193 * Calculate and align the start address and the size of the section. 194 * Return the size. If the size is 0, the aligned section is empty. 195 */ 196 static hwaddr kvm_align_section(MemoryRegionSection *section, 197 hwaddr *start) 198 { 199 hwaddr size = int128_get64(section->size); 200 hwaddr delta, aligned; 201 202 /* kvm works in page size chunks, but the function may be called 203 with sub-page size and unaligned start address. Pad the start 204 address to next and truncate size to previous page boundary. */ 205 aligned = ROUND_UP(section->offset_within_address_space, 206 qemu_real_host_page_size); 207 delta = aligned - section->offset_within_address_space; 208 *start = aligned; 209 if (delta > size) { 210 return 0; 211 } 212 213 return (size - delta) & qemu_real_host_page_mask; 214 } 215 216 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 217 hwaddr *phys_addr) 218 { 219 KVMMemoryListener *kml = &s->memory_listener; 220 int i; 221 222 for (i = 0; i < s->nr_slots; i++) { 223 KVMSlot *mem = &kml->slots[i]; 224 225 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 226 *phys_addr = mem->start_addr + (ram - mem->ram); 227 return 1; 228 } 229 } 230 231 return 0; 232 } 233 234 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot) 235 { 236 KVMState *s = kvm_state; 237 struct kvm_userspace_memory_region mem; 238 239 mem.slot = slot->slot | (kml->as_id << 16); 240 mem.guest_phys_addr = slot->start_addr; 241 mem.userspace_addr = (unsigned long)slot->ram; 242 mem.flags = slot->flags; 243 244 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { 245 /* Set the slot size to 0 before setting the slot to the desired 246 * value. This is needed based on KVM commit 75d61fbc. */ 247 mem.memory_size = 0; 248 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 249 } 250 mem.memory_size = slot->memory_size; 251 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 252 } 253 254 int kvm_destroy_vcpu(CPUState *cpu) 255 { 256 KVMState *s = kvm_state; 257 long mmap_size; 258 struct KVMParkedVcpu *vcpu = NULL; 259 int ret = 0; 260 261 DPRINTF("kvm_destroy_vcpu\n"); 262 263 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 264 if (mmap_size < 0) { 265 ret = mmap_size; 266 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 267 goto err; 268 } 269 270 ret = munmap(cpu->kvm_run, mmap_size); 271 if (ret < 0) { 272 goto err; 273 } 274 275 vcpu = g_malloc0(sizeof(*vcpu)); 276 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 277 vcpu->kvm_fd = cpu->kvm_fd; 278 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 279 err: 280 return ret; 281 } 282 283 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 284 { 285 struct KVMParkedVcpu *cpu; 286 287 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 288 if (cpu->vcpu_id == vcpu_id) { 289 int kvm_fd; 290 291 QLIST_REMOVE(cpu, node); 292 kvm_fd = cpu->kvm_fd; 293 g_free(cpu); 294 return kvm_fd; 295 } 296 } 297 298 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 299 } 300 301 int kvm_init_vcpu(CPUState *cpu) 302 { 303 KVMState *s = kvm_state; 304 long mmap_size; 305 int ret; 306 307 DPRINTF("kvm_init_vcpu\n"); 308 309 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 310 if (ret < 0) { 311 DPRINTF("kvm_create_vcpu failed\n"); 312 goto err; 313 } 314 315 cpu->kvm_fd = ret; 316 cpu->kvm_state = s; 317 cpu->vcpu_dirty = true; 318 319 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 320 if (mmap_size < 0) { 321 ret = mmap_size; 322 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 323 goto err; 324 } 325 326 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 327 cpu->kvm_fd, 0); 328 if (cpu->kvm_run == MAP_FAILED) { 329 ret = -errno; 330 DPRINTF("mmap'ing vcpu state failed\n"); 331 goto err; 332 } 333 334 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 335 s->coalesced_mmio_ring = 336 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 337 } 338 339 ret = kvm_arch_init_vcpu(cpu); 340 err: 341 return ret; 342 } 343 344 /* 345 * dirty pages logging control 346 */ 347 348 static int kvm_mem_flags(MemoryRegion *mr) 349 { 350 bool readonly = mr->readonly || memory_region_is_romd(mr); 351 int flags = 0; 352 353 if (memory_region_get_dirty_log_mask(mr) != 0) { 354 flags |= KVM_MEM_LOG_DIRTY_PAGES; 355 } 356 if (readonly && kvm_readonly_mem_allowed) { 357 flags |= KVM_MEM_READONLY; 358 } 359 return flags; 360 } 361 362 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 363 MemoryRegion *mr) 364 { 365 int old_flags; 366 367 old_flags = mem->flags; 368 mem->flags = kvm_mem_flags(mr); 369 370 /* If nothing changed effectively, no need to issue ioctl */ 371 if (mem->flags == old_flags) { 372 return 0; 373 } 374 375 return kvm_set_user_memory_region(kml, mem); 376 } 377 378 static int kvm_section_update_flags(KVMMemoryListener *kml, 379 MemoryRegionSection *section) 380 { 381 hwaddr start_addr, size; 382 KVMSlot *mem; 383 384 size = kvm_align_section(section, &start_addr); 385 if (!size) { 386 return 0; 387 } 388 389 mem = kvm_lookup_matching_slot(kml, start_addr, size); 390 if (!mem) { 391 /* We don't have a slot if we want to trap every access. */ 392 return 0; 393 } 394 395 return kvm_slot_update_flags(kml, mem, section->mr); 396 } 397 398 static void kvm_log_start(MemoryListener *listener, 399 MemoryRegionSection *section, 400 int old, int new) 401 { 402 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 403 int r; 404 405 if (old != 0) { 406 return; 407 } 408 409 r = kvm_section_update_flags(kml, section); 410 if (r < 0) { 411 abort(); 412 } 413 } 414 415 static void kvm_log_stop(MemoryListener *listener, 416 MemoryRegionSection *section, 417 int old, int new) 418 { 419 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 420 int r; 421 422 if (new != 0) { 423 return; 424 } 425 426 r = kvm_section_update_flags(kml, section); 427 if (r < 0) { 428 abort(); 429 } 430 } 431 432 /* get kvm's dirty pages bitmap and update qemu's */ 433 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 434 unsigned long *bitmap) 435 { 436 ram_addr_t start = section->offset_within_region + 437 memory_region_get_ram_addr(section->mr); 438 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 439 440 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 441 return 0; 442 } 443 444 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 445 446 /** 447 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space 448 * This function updates qemu's dirty bitmap using 449 * memory_region_set_dirty(). This means all bits are set 450 * to dirty. 451 * 452 * @start_add: start of logged region. 453 * @end_addr: end of logged region. 454 */ 455 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 456 MemoryRegionSection *section) 457 { 458 KVMState *s = kvm_state; 459 struct kvm_dirty_log d = {}; 460 KVMSlot *mem; 461 hwaddr start_addr, size; 462 463 size = kvm_align_section(section, &start_addr); 464 if (size) { 465 mem = kvm_lookup_matching_slot(kml, start_addr, size); 466 if (!mem) { 467 /* We don't have a slot if we want to trap every access. */ 468 return 0; 469 } 470 471 /* XXX bad kernel interface alert 472 * For dirty bitmap, kernel allocates array of size aligned to 473 * bits-per-long. But for case when the kernel is 64bits and 474 * the userspace is 32bits, userspace can't align to the same 475 * bits-per-long, since sizeof(long) is different between kernel 476 * and user space. This way, userspace will provide buffer which 477 * may be 4 bytes less than the kernel will use, resulting in 478 * userspace memory corruption (which is not detectable by valgrind 479 * too, in most cases). 480 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 481 * a hope that sizeof(long) won't become >8 any time soon. 482 */ 483 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 484 /*HOST_LONG_BITS*/ 64) / 8; 485 d.dirty_bitmap = g_malloc0(size); 486 487 d.slot = mem->slot | (kml->as_id << 16); 488 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 489 DPRINTF("ioctl failed %d\n", errno); 490 g_free(d.dirty_bitmap); 491 return -1; 492 } 493 494 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 495 g_free(d.dirty_bitmap); 496 } 497 498 return 0; 499 } 500 501 static void kvm_coalesce_mmio_region(MemoryListener *listener, 502 MemoryRegionSection *secion, 503 hwaddr start, hwaddr size) 504 { 505 KVMState *s = kvm_state; 506 507 if (s->coalesced_mmio) { 508 struct kvm_coalesced_mmio_zone zone; 509 510 zone.addr = start; 511 zone.size = size; 512 zone.pad = 0; 513 514 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 515 } 516 } 517 518 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 519 MemoryRegionSection *secion, 520 hwaddr start, hwaddr size) 521 { 522 KVMState *s = kvm_state; 523 524 if (s->coalesced_mmio) { 525 struct kvm_coalesced_mmio_zone zone; 526 527 zone.addr = start; 528 zone.size = size; 529 zone.pad = 0; 530 531 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 532 } 533 } 534 535 int kvm_check_extension(KVMState *s, unsigned int extension) 536 { 537 int ret; 538 539 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 540 if (ret < 0) { 541 ret = 0; 542 } 543 544 return ret; 545 } 546 547 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 548 { 549 int ret; 550 551 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 552 if (ret < 0) { 553 /* VM wide version not implemented, use global one instead */ 554 ret = kvm_check_extension(s, extension); 555 } 556 557 return ret; 558 } 559 560 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 561 { 562 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 563 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 564 * endianness, but the memory core hands them in target endianness. 565 * For example, PPC is always treated as big-endian even if running 566 * on KVM and on PPC64LE. Correct here. 567 */ 568 switch (size) { 569 case 2: 570 val = bswap16(val); 571 break; 572 case 4: 573 val = bswap32(val); 574 break; 575 } 576 #endif 577 return val; 578 } 579 580 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 581 bool assign, uint32_t size, bool datamatch) 582 { 583 int ret; 584 struct kvm_ioeventfd iofd = { 585 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 586 .addr = addr, 587 .len = size, 588 .flags = 0, 589 .fd = fd, 590 }; 591 592 if (!kvm_enabled()) { 593 return -ENOSYS; 594 } 595 596 if (datamatch) { 597 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 598 } 599 if (!assign) { 600 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 601 } 602 603 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 604 605 if (ret < 0) { 606 return -errno; 607 } 608 609 return 0; 610 } 611 612 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 613 bool assign, uint32_t size, bool datamatch) 614 { 615 struct kvm_ioeventfd kick = { 616 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 617 .addr = addr, 618 .flags = KVM_IOEVENTFD_FLAG_PIO, 619 .len = size, 620 .fd = fd, 621 }; 622 int r; 623 if (!kvm_enabled()) { 624 return -ENOSYS; 625 } 626 if (datamatch) { 627 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 628 } 629 if (!assign) { 630 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 631 } 632 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 633 if (r < 0) { 634 return r; 635 } 636 return 0; 637 } 638 639 640 static int kvm_check_many_ioeventfds(void) 641 { 642 /* Userspace can use ioeventfd for io notification. This requires a host 643 * that supports eventfd(2) and an I/O thread; since eventfd does not 644 * support SIGIO it cannot interrupt the vcpu. 645 * 646 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 647 * can avoid creating too many ioeventfds. 648 */ 649 #if defined(CONFIG_EVENTFD) 650 int ioeventfds[7]; 651 int i, ret = 0; 652 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 653 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 654 if (ioeventfds[i] < 0) { 655 break; 656 } 657 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 658 if (ret < 0) { 659 close(ioeventfds[i]); 660 break; 661 } 662 } 663 664 /* Decide whether many devices are supported or not */ 665 ret = i == ARRAY_SIZE(ioeventfds); 666 667 while (i-- > 0) { 668 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 669 close(ioeventfds[i]); 670 } 671 return ret; 672 #else 673 return 0; 674 #endif 675 } 676 677 static const KVMCapabilityInfo * 678 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 679 { 680 while (list->name) { 681 if (!kvm_check_extension(s, list->value)) { 682 return list; 683 } 684 list++; 685 } 686 return NULL; 687 } 688 689 static void kvm_set_phys_mem(KVMMemoryListener *kml, 690 MemoryRegionSection *section, bool add) 691 { 692 KVMSlot *mem; 693 int err; 694 MemoryRegion *mr = section->mr; 695 bool writeable = !mr->readonly && !mr->rom_device; 696 hwaddr start_addr, size; 697 void *ram; 698 699 if (!memory_region_is_ram(mr)) { 700 if (writeable || !kvm_readonly_mem_allowed) { 701 return; 702 } else if (!mr->romd_mode) { 703 /* If the memory device is not in romd_mode, then we actually want 704 * to remove the kvm memory slot so all accesses will trap. */ 705 add = false; 706 } 707 } 708 709 size = kvm_align_section(section, &start_addr); 710 if (!size) { 711 return; 712 } 713 714 /* use aligned delta to align the ram address */ 715 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 716 (start_addr - section->offset_within_address_space); 717 718 if (!add) { 719 mem = kvm_lookup_matching_slot(kml, start_addr, size); 720 if (!mem) { 721 return; 722 } 723 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 724 kvm_physical_sync_dirty_bitmap(kml, section); 725 } 726 727 /* unregister the slot */ 728 mem->memory_size = 0; 729 err = kvm_set_user_memory_region(kml, mem); 730 if (err) { 731 fprintf(stderr, "%s: error unregistering slot: %s\n", 732 __func__, strerror(-err)); 733 abort(); 734 } 735 return; 736 } 737 738 /* register the new slot */ 739 mem = kvm_alloc_slot(kml); 740 mem->memory_size = size; 741 mem->start_addr = start_addr; 742 mem->ram = ram; 743 mem->flags = kvm_mem_flags(mr); 744 745 err = kvm_set_user_memory_region(kml, mem); 746 if (err) { 747 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 748 strerror(-err)); 749 abort(); 750 } 751 } 752 753 static void kvm_region_add(MemoryListener *listener, 754 MemoryRegionSection *section) 755 { 756 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 757 758 memory_region_ref(section->mr); 759 kvm_set_phys_mem(kml, section, true); 760 } 761 762 static void kvm_region_del(MemoryListener *listener, 763 MemoryRegionSection *section) 764 { 765 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 766 767 kvm_set_phys_mem(kml, section, false); 768 memory_region_unref(section->mr); 769 } 770 771 static void kvm_log_sync(MemoryListener *listener, 772 MemoryRegionSection *section) 773 { 774 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 775 int r; 776 777 r = kvm_physical_sync_dirty_bitmap(kml, section); 778 if (r < 0) { 779 abort(); 780 } 781 } 782 783 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 784 MemoryRegionSection *section, 785 bool match_data, uint64_t data, 786 EventNotifier *e) 787 { 788 int fd = event_notifier_get_fd(e); 789 int r; 790 791 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 792 data, true, int128_get64(section->size), 793 match_data); 794 if (r < 0) { 795 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 796 __func__, strerror(-r)); 797 abort(); 798 } 799 } 800 801 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 802 MemoryRegionSection *section, 803 bool match_data, uint64_t data, 804 EventNotifier *e) 805 { 806 int fd = event_notifier_get_fd(e); 807 int r; 808 809 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 810 data, false, int128_get64(section->size), 811 match_data); 812 if (r < 0) { 813 abort(); 814 } 815 } 816 817 static void kvm_io_ioeventfd_add(MemoryListener *listener, 818 MemoryRegionSection *section, 819 bool match_data, uint64_t data, 820 EventNotifier *e) 821 { 822 int fd = event_notifier_get_fd(e); 823 int r; 824 825 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 826 data, true, int128_get64(section->size), 827 match_data); 828 if (r < 0) { 829 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 830 __func__, strerror(-r)); 831 abort(); 832 } 833 } 834 835 static void kvm_io_ioeventfd_del(MemoryListener *listener, 836 MemoryRegionSection *section, 837 bool match_data, uint64_t data, 838 EventNotifier *e) 839 840 { 841 int fd = event_notifier_get_fd(e); 842 int r; 843 844 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 845 data, false, int128_get64(section->size), 846 match_data); 847 if (r < 0) { 848 abort(); 849 } 850 } 851 852 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 853 AddressSpace *as, int as_id) 854 { 855 int i; 856 857 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 858 kml->as_id = as_id; 859 860 for (i = 0; i < s->nr_slots; i++) { 861 kml->slots[i].slot = i; 862 } 863 864 kml->listener.region_add = kvm_region_add; 865 kml->listener.region_del = kvm_region_del; 866 kml->listener.log_start = kvm_log_start; 867 kml->listener.log_stop = kvm_log_stop; 868 kml->listener.log_sync = kvm_log_sync; 869 kml->listener.priority = 10; 870 871 memory_listener_register(&kml->listener, as); 872 } 873 874 static MemoryListener kvm_io_listener = { 875 .eventfd_add = kvm_io_ioeventfd_add, 876 .eventfd_del = kvm_io_ioeventfd_del, 877 .priority = 10, 878 }; 879 880 int kvm_set_irq(KVMState *s, int irq, int level) 881 { 882 struct kvm_irq_level event; 883 int ret; 884 885 assert(kvm_async_interrupts_enabled()); 886 887 event.level = level; 888 event.irq = irq; 889 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 890 if (ret < 0) { 891 perror("kvm_set_irq"); 892 abort(); 893 } 894 895 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 896 } 897 898 #ifdef KVM_CAP_IRQ_ROUTING 899 typedef struct KVMMSIRoute { 900 struct kvm_irq_routing_entry kroute; 901 QTAILQ_ENTRY(KVMMSIRoute) entry; 902 } KVMMSIRoute; 903 904 static void set_gsi(KVMState *s, unsigned int gsi) 905 { 906 set_bit(gsi, s->used_gsi_bitmap); 907 } 908 909 static void clear_gsi(KVMState *s, unsigned int gsi) 910 { 911 clear_bit(gsi, s->used_gsi_bitmap); 912 } 913 914 void kvm_init_irq_routing(KVMState *s) 915 { 916 int gsi_count, i; 917 918 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 919 if (gsi_count > 0) { 920 /* Round up so we can search ints using ffs */ 921 s->used_gsi_bitmap = bitmap_new(gsi_count); 922 s->gsi_count = gsi_count; 923 } 924 925 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 926 s->nr_allocated_irq_routes = 0; 927 928 if (!kvm_direct_msi_allowed) { 929 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 930 QTAILQ_INIT(&s->msi_hashtab[i]); 931 } 932 } 933 934 kvm_arch_init_irq_routing(s); 935 } 936 937 void kvm_irqchip_commit_routes(KVMState *s) 938 { 939 int ret; 940 941 if (kvm_gsi_direct_mapping()) { 942 return; 943 } 944 945 if (!kvm_gsi_routing_enabled()) { 946 return; 947 } 948 949 s->irq_routes->flags = 0; 950 trace_kvm_irqchip_commit_routes(); 951 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 952 assert(ret == 0); 953 } 954 955 static void kvm_add_routing_entry(KVMState *s, 956 struct kvm_irq_routing_entry *entry) 957 { 958 struct kvm_irq_routing_entry *new; 959 int n, size; 960 961 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 962 n = s->nr_allocated_irq_routes * 2; 963 if (n < 64) { 964 n = 64; 965 } 966 size = sizeof(struct kvm_irq_routing); 967 size += n * sizeof(*new); 968 s->irq_routes = g_realloc(s->irq_routes, size); 969 s->nr_allocated_irq_routes = n; 970 } 971 n = s->irq_routes->nr++; 972 new = &s->irq_routes->entries[n]; 973 974 *new = *entry; 975 976 set_gsi(s, entry->gsi); 977 } 978 979 static int kvm_update_routing_entry(KVMState *s, 980 struct kvm_irq_routing_entry *new_entry) 981 { 982 struct kvm_irq_routing_entry *entry; 983 int n; 984 985 for (n = 0; n < s->irq_routes->nr; n++) { 986 entry = &s->irq_routes->entries[n]; 987 if (entry->gsi != new_entry->gsi) { 988 continue; 989 } 990 991 if(!memcmp(entry, new_entry, sizeof *entry)) { 992 return 0; 993 } 994 995 *entry = *new_entry; 996 997 return 0; 998 } 999 1000 return -ESRCH; 1001 } 1002 1003 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1004 { 1005 struct kvm_irq_routing_entry e = {}; 1006 1007 assert(pin < s->gsi_count); 1008 1009 e.gsi = irq; 1010 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1011 e.flags = 0; 1012 e.u.irqchip.irqchip = irqchip; 1013 e.u.irqchip.pin = pin; 1014 kvm_add_routing_entry(s, &e); 1015 } 1016 1017 void kvm_irqchip_release_virq(KVMState *s, int virq) 1018 { 1019 struct kvm_irq_routing_entry *e; 1020 int i; 1021 1022 if (kvm_gsi_direct_mapping()) { 1023 return; 1024 } 1025 1026 for (i = 0; i < s->irq_routes->nr; i++) { 1027 e = &s->irq_routes->entries[i]; 1028 if (e->gsi == virq) { 1029 s->irq_routes->nr--; 1030 *e = s->irq_routes->entries[s->irq_routes->nr]; 1031 } 1032 } 1033 clear_gsi(s, virq); 1034 kvm_arch_release_virq_post(virq); 1035 trace_kvm_irqchip_release_virq(virq); 1036 } 1037 1038 static unsigned int kvm_hash_msi(uint32_t data) 1039 { 1040 /* This is optimized for IA32 MSI layout. However, no other arch shall 1041 * repeat the mistake of not providing a direct MSI injection API. */ 1042 return data & 0xff; 1043 } 1044 1045 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1046 { 1047 KVMMSIRoute *route, *next; 1048 unsigned int hash; 1049 1050 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1051 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1052 kvm_irqchip_release_virq(s, route->kroute.gsi); 1053 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1054 g_free(route); 1055 } 1056 } 1057 } 1058 1059 static int kvm_irqchip_get_virq(KVMState *s) 1060 { 1061 int next_virq; 1062 1063 /* 1064 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1065 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1066 * number can succeed even though a new route entry cannot be added. 1067 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1068 */ 1069 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1070 kvm_flush_dynamic_msi_routes(s); 1071 } 1072 1073 /* Return the lowest unused GSI in the bitmap */ 1074 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1075 if (next_virq >= s->gsi_count) { 1076 return -ENOSPC; 1077 } else { 1078 return next_virq; 1079 } 1080 } 1081 1082 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1083 { 1084 unsigned int hash = kvm_hash_msi(msg.data); 1085 KVMMSIRoute *route; 1086 1087 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1088 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1089 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1090 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1091 return route; 1092 } 1093 } 1094 return NULL; 1095 } 1096 1097 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1098 { 1099 struct kvm_msi msi; 1100 KVMMSIRoute *route; 1101 1102 if (kvm_direct_msi_allowed) { 1103 msi.address_lo = (uint32_t)msg.address; 1104 msi.address_hi = msg.address >> 32; 1105 msi.data = le32_to_cpu(msg.data); 1106 msi.flags = 0; 1107 memset(msi.pad, 0, sizeof(msi.pad)); 1108 1109 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1110 } 1111 1112 route = kvm_lookup_msi_route(s, msg); 1113 if (!route) { 1114 int virq; 1115 1116 virq = kvm_irqchip_get_virq(s); 1117 if (virq < 0) { 1118 return virq; 1119 } 1120 1121 route = g_malloc0(sizeof(KVMMSIRoute)); 1122 route->kroute.gsi = virq; 1123 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1124 route->kroute.flags = 0; 1125 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1126 route->kroute.u.msi.address_hi = msg.address >> 32; 1127 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1128 1129 kvm_add_routing_entry(s, &route->kroute); 1130 kvm_irqchip_commit_routes(s); 1131 1132 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1133 entry); 1134 } 1135 1136 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1137 1138 return kvm_set_irq(s, route->kroute.gsi, 1); 1139 } 1140 1141 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1142 { 1143 struct kvm_irq_routing_entry kroute = {}; 1144 int virq; 1145 MSIMessage msg = {0, 0}; 1146 1147 if (pci_available && dev) { 1148 msg = pci_get_msi_message(dev, vector); 1149 } 1150 1151 if (kvm_gsi_direct_mapping()) { 1152 return kvm_arch_msi_data_to_gsi(msg.data); 1153 } 1154 1155 if (!kvm_gsi_routing_enabled()) { 1156 return -ENOSYS; 1157 } 1158 1159 virq = kvm_irqchip_get_virq(s); 1160 if (virq < 0) { 1161 return virq; 1162 } 1163 1164 kroute.gsi = virq; 1165 kroute.type = KVM_IRQ_ROUTING_MSI; 1166 kroute.flags = 0; 1167 kroute.u.msi.address_lo = (uint32_t)msg.address; 1168 kroute.u.msi.address_hi = msg.address >> 32; 1169 kroute.u.msi.data = le32_to_cpu(msg.data); 1170 if (pci_available && kvm_msi_devid_required()) { 1171 kroute.flags = KVM_MSI_VALID_DEVID; 1172 kroute.u.msi.devid = pci_requester_id(dev); 1173 } 1174 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1175 kvm_irqchip_release_virq(s, virq); 1176 return -EINVAL; 1177 } 1178 1179 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1180 vector, virq); 1181 1182 kvm_add_routing_entry(s, &kroute); 1183 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1184 kvm_irqchip_commit_routes(s); 1185 1186 return virq; 1187 } 1188 1189 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1190 PCIDevice *dev) 1191 { 1192 struct kvm_irq_routing_entry kroute = {}; 1193 1194 if (kvm_gsi_direct_mapping()) { 1195 return 0; 1196 } 1197 1198 if (!kvm_irqchip_in_kernel()) { 1199 return -ENOSYS; 1200 } 1201 1202 kroute.gsi = virq; 1203 kroute.type = KVM_IRQ_ROUTING_MSI; 1204 kroute.flags = 0; 1205 kroute.u.msi.address_lo = (uint32_t)msg.address; 1206 kroute.u.msi.address_hi = msg.address >> 32; 1207 kroute.u.msi.data = le32_to_cpu(msg.data); 1208 if (pci_available && kvm_msi_devid_required()) { 1209 kroute.flags = KVM_MSI_VALID_DEVID; 1210 kroute.u.msi.devid = pci_requester_id(dev); 1211 } 1212 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1213 return -EINVAL; 1214 } 1215 1216 trace_kvm_irqchip_update_msi_route(virq); 1217 1218 return kvm_update_routing_entry(s, &kroute); 1219 } 1220 1221 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1222 bool assign) 1223 { 1224 struct kvm_irqfd irqfd = { 1225 .fd = fd, 1226 .gsi = virq, 1227 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1228 }; 1229 1230 if (rfd != -1) { 1231 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1232 irqfd.resamplefd = rfd; 1233 } 1234 1235 if (!kvm_irqfds_enabled()) { 1236 return -ENOSYS; 1237 } 1238 1239 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1240 } 1241 1242 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1243 { 1244 struct kvm_irq_routing_entry kroute = {}; 1245 int virq; 1246 1247 if (!kvm_gsi_routing_enabled()) { 1248 return -ENOSYS; 1249 } 1250 1251 virq = kvm_irqchip_get_virq(s); 1252 if (virq < 0) { 1253 return virq; 1254 } 1255 1256 kroute.gsi = virq; 1257 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1258 kroute.flags = 0; 1259 kroute.u.adapter.summary_addr = adapter->summary_addr; 1260 kroute.u.adapter.ind_addr = adapter->ind_addr; 1261 kroute.u.adapter.summary_offset = adapter->summary_offset; 1262 kroute.u.adapter.ind_offset = adapter->ind_offset; 1263 kroute.u.adapter.adapter_id = adapter->adapter_id; 1264 1265 kvm_add_routing_entry(s, &kroute); 1266 1267 return virq; 1268 } 1269 1270 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1271 { 1272 struct kvm_irq_routing_entry kroute = {}; 1273 int virq; 1274 1275 if (!kvm_gsi_routing_enabled()) { 1276 return -ENOSYS; 1277 } 1278 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1279 return -ENOSYS; 1280 } 1281 virq = kvm_irqchip_get_virq(s); 1282 if (virq < 0) { 1283 return virq; 1284 } 1285 1286 kroute.gsi = virq; 1287 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1288 kroute.flags = 0; 1289 kroute.u.hv_sint.vcpu = vcpu; 1290 kroute.u.hv_sint.sint = sint; 1291 1292 kvm_add_routing_entry(s, &kroute); 1293 kvm_irqchip_commit_routes(s); 1294 1295 return virq; 1296 } 1297 1298 #else /* !KVM_CAP_IRQ_ROUTING */ 1299 1300 void kvm_init_irq_routing(KVMState *s) 1301 { 1302 } 1303 1304 void kvm_irqchip_release_virq(KVMState *s, int virq) 1305 { 1306 } 1307 1308 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1309 { 1310 abort(); 1311 } 1312 1313 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1314 { 1315 return -ENOSYS; 1316 } 1317 1318 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1319 { 1320 return -ENOSYS; 1321 } 1322 1323 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1324 { 1325 return -ENOSYS; 1326 } 1327 1328 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1329 { 1330 abort(); 1331 } 1332 1333 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1334 { 1335 return -ENOSYS; 1336 } 1337 #endif /* !KVM_CAP_IRQ_ROUTING */ 1338 1339 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1340 EventNotifier *rn, int virq) 1341 { 1342 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1343 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1344 } 1345 1346 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1347 int virq) 1348 { 1349 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1350 false); 1351 } 1352 1353 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1354 EventNotifier *rn, qemu_irq irq) 1355 { 1356 gpointer key, gsi; 1357 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1358 1359 if (!found) { 1360 return -ENXIO; 1361 } 1362 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1363 } 1364 1365 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1366 qemu_irq irq) 1367 { 1368 gpointer key, gsi; 1369 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1370 1371 if (!found) { 1372 return -ENXIO; 1373 } 1374 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1375 } 1376 1377 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1378 { 1379 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1380 } 1381 1382 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1383 { 1384 int ret; 1385 1386 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1387 ; 1388 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1389 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1390 if (ret < 0) { 1391 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1392 exit(1); 1393 } 1394 } else { 1395 return; 1396 } 1397 1398 /* First probe and see if there's a arch-specific hook to create the 1399 * in-kernel irqchip for us */ 1400 ret = kvm_arch_irqchip_create(machine, s); 1401 if (ret == 0) { 1402 if (machine_kernel_irqchip_split(machine)) { 1403 perror("Split IRQ chip mode not supported."); 1404 exit(1); 1405 } else { 1406 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1407 } 1408 } 1409 if (ret < 0) { 1410 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1411 exit(1); 1412 } 1413 1414 kvm_kernel_irqchip = true; 1415 /* If we have an in-kernel IRQ chip then we must have asynchronous 1416 * interrupt delivery (though the reverse is not necessarily true) 1417 */ 1418 kvm_async_interrupts_allowed = true; 1419 kvm_halt_in_kernel_allowed = true; 1420 1421 kvm_init_irq_routing(s); 1422 1423 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1424 } 1425 1426 /* Find number of supported CPUs using the recommended 1427 * procedure from the kernel API documentation to cope with 1428 * older kernels that may be missing capabilities. 1429 */ 1430 static int kvm_recommended_vcpus(KVMState *s) 1431 { 1432 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1433 return (ret) ? ret : 4; 1434 } 1435 1436 static int kvm_max_vcpus(KVMState *s) 1437 { 1438 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1439 return (ret) ? ret : kvm_recommended_vcpus(s); 1440 } 1441 1442 static int kvm_max_vcpu_id(KVMState *s) 1443 { 1444 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1445 return (ret) ? ret : kvm_max_vcpus(s); 1446 } 1447 1448 bool kvm_vcpu_id_is_valid(int vcpu_id) 1449 { 1450 KVMState *s = KVM_STATE(current_machine->accelerator); 1451 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1452 } 1453 1454 static int kvm_init(MachineState *ms) 1455 { 1456 MachineClass *mc = MACHINE_GET_CLASS(ms); 1457 static const char upgrade_note[] = 1458 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1459 "(see http://sourceforge.net/projects/kvm).\n"; 1460 struct { 1461 const char *name; 1462 int num; 1463 } num_cpus[] = { 1464 { "SMP", smp_cpus }, 1465 { "hotpluggable", max_cpus }, 1466 { NULL, } 1467 }, *nc = num_cpus; 1468 int soft_vcpus_limit, hard_vcpus_limit; 1469 KVMState *s; 1470 const KVMCapabilityInfo *missing_cap; 1471 int ret; 1472 int type = 0; 1473 const char *kvm_type; 1474 1475 s = KVM_STATE(ms->accelerator); 1476 1477 /* 1478 * On systems where the kernel can support different base page 1479 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1480 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1481 * page size for the system though. 1482 */ 1483 assert(TARGET_PAGE_SIZE <= getpagesize()); 1484 1485 s->sigmask_len = 8; 1486 1487 #ifdef KVM_CAP_SET_GUEST_DEBUG 1488 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1489 #endif 1490 QLIST_INIT(&s->kvm_parked_vcpus); 1491 s->vmfd = -1; 1492 s->fd = qemu_open("/dev/kvm", O_RDWR); 1493 if (s->fd == -1) { 1494 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1495 ret = -errno; 1496 goto err; 1497 } 1498 1499 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1500 if (ret < KVM_API_VERSION) { 1501 if (ret >= 0) { 1502 ret = -EINVAL; 1503 } 1504 fprintf(stderr, "kvm version too old\n"); 1505 goto err; 1506 } 1507 1508 if (ret > KVM_API_VERSION) { 1509 ret = -EINVAL; 1510 fprintf(stderr, "kvm version not supported\n"); 1511 goto err; 1512 } 1513 1514 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1515 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1516 1517 /* If unspecified, use the default value */ 1518 if (!s->nr_slots) { 1519 s->nr_slots = 32; 1520 } 1521 1522 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1523 if (mc->kvm_type) { 1524 type = mc->kvm_type(kvm_type); 1525 } else if (kvm_type) { 1526 ret = -EINVAL; 1527 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1528 goto err; 1529 } 1530 1531 do { 1532 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1533 } while (ret == -EINTR); 1534 1535 if (ret < 0) { 1536 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1537 strerror(-ret)); 1538 1539 #ifdef TARGET_S390X 1540 if (ret == -EINVAL) { 1541 fprintf(stderr, 1542 "Host kernel setup problem detected. Please verify:\n"); 1543 fprintf(stderr, "- for kernels supporting the switch_amode or" 1544 " user_mode parameters, whether\n"); 1545 fprintf(stderr, 1546 " user space is running in primary address space\n"); 1547 fprintf(stderr, 1548 "- for kernels supporting the vm.allocate_pgste sysctl, " 1549 "whether it is enabled\n"); 1550 } 1551 #endif 1552 goto err; 1553 } 1554 1555 s->vmfd = ret; 1556 1557 /* check the vcpu limits */ 1558 soft_vcpus_limit = kvm_recommended_vcpus(s); 1559 hard_vcpus_limit = kvm_max_vcpus(s); 1560 1561 while (nc->name) { 1562 if (nc->num > soft_vcpus_limit) { 1563 warn_report("Number of %s cpus requested (%d) exceeds " 1564 "the recommended cpus supported by KVM (%d)", 1565 nc->name, nc->num, soft_vcpus_limit); 1566 1567 if (nc->num > hard_vcpus_limit) { 1568 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1569 "the maximum cpus supported by KVM (%d)\n", 1570 nc->name, nc->num, hard_vcpus_limit); 1571 exit(1); 1572 } 1573 } 1574 nc++; 1575 } 1576 1577 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1578 if (!missing_cap) { 1579 missing_cap = 1580 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1581 } 1582 if (missing_cap) { 1583 ret = -EINVAL; 1584 fprintf(stderr, "kvm does not support %s\n%s", 1585 missing_cap->name, upgrade_note); 1586 goto err; 1587 } 1588 1589 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1590 1591 #ifdef KVM_CAP_VCPU_EVENTS 1592 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1593 #endif 1594 1595 s->robust_singlestep = 1596 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1597 1598 #ifdef KVM_CAP_DEBUGREGS 1599 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1600 #endif 1601 1602 #ifdef KVM_CAP_IRQ_ROUTING 1603 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1604 #endif 1605 1606 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1607 1608 s->irq_set_ioctl = KVM_IRQ_LINE; 1609 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1610 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1611 } 1612 1613 #ifdef KVM_CAP_READONLY_MEM 1614 kvm_readonly_mem_allowed = 1615 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1616 #endif 1617 1618 kvm_eventfds_allowed = 1619 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1620 1621 kvm_irqfds_allowed = 1622 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1623 1624 kvm_resamplefds_allowed = 1625 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1626 1627 kvm_vm_attributes_allowed = 1628 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1629 1630 kvm_ioeventfd_any_length_allowed = 1631 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1632 1633 kvm_state = s; 1634 1635 ret = kvm_arch_init(ms, s); 1636 if (ret < 0) { 1637 goto err; 1638 } 1639 1640 if (machine_kernel_irqchip_allowed(ms)) { 1641 kvm_irqchip_create(ms, s); 1642 } 1643 1644 if (kvm_eventfds_allowed) { 1645 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1646 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1647 } 1648 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; 1649 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; 1650 1651 kvm_memory_listener_register(s, &s->memory_listener, 1652 &address_space_memory, 0); 1653 memory_listener_register(&kvm_io_listener, 1654 &address_space_io); 1655 1656 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1657 1658 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 1659 1660 return 0; 1661 1662 err: 1663 assert(ret < 0); 1664 if (s->vmfd >= 0) { 1665 close(s->vmfd); 1666 } 1667 if (s->fd != -1) { 1668 close(s->fd); 1669 } 1670 g_free(s->memory_listener.slots); 1671 1672 return ret; 1673 } 1674 1675 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1676 { 1677 s->sigmask_len = sigmask_len; 1678 } 1679 1680 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1681 int size, uint32_t count) 1682 { 1683 int i; 1684 uint8_t *ptr = data; 1685 1686 for (i = 0; i < count; i++) { 1687 address_space_rw(&address_space_io, port, attrs, 1688 ptr, size, 1689 direction == KVM_EXIT_IO_OUT); 1690 ptr += size; 1691 } 1692 } 1693 1694 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1695 { 1696 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1697 run->internal.suberror); 1698 1699 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1700 int i; 1701 1702 for (i = 0; i < run->internal.ndata; ++i) { 1703 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1704 i, (uint64_t)run->internal.data[i]); 1705 } 1706 } 1707 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1708 fprintf(stderr, "emulation failure\n"); 1709 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1710 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 1711 return EXCP_INTERRUPT; 1712 } 1713 } 1714 /* FIXME: Should trigger a qmp message to let management know 1715 * something went wrong. 1716 */ 1717 return -1; 1718 } 1719 1720 void kvm_flush_coalesced_mmio_buffer(void) 1721 { 1722 KVMState *s = kvm_state; 1723 1724 if (s->coalesced_flush_in_progress) { 1725 return; 1726 } 1727 1728 s->coalesced_flush_in_progress = true; 1729 1730 if (s->coalesced_mmio_ring) { 1731 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1732 while (ring->first != ring->last) { 1733 struct kvm_coalesced_mmio *ent; 1734 1735 ent = &ring->coalesced_mmio[ring->first]; 1736 1737 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1738 smp_wmb(); 1739 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1740 } 1741 } 1742 1743 s->coalesced_flush_in_progress = false; 1744 } 1745 1746 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1747 { 1748 if (!cpu->vcpu_dirty) { 1749 kvm_arch_get_registers(cpu); 1750 cpu->vcpu_dirty = true; 1751 } 1752 } 1753 1754 void kvm_cpu_synchronize_state(CPUState *cpu) 1755 { 1756 if (!cpu->vcpu_dirty) { 1757 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1758 } 1759 } 1760 1761 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1762 { 1763 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1764 cpu->vcpu_dirty = false; 1765 } 1766 1767 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1768 { 1769 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1770 } 1771 1772 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1773 { 1774 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1775 cpu->vcpu_dirty = false; 1776 } 1777 1778 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1779 { 1780 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1781 } 1782 1783 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1784 { 1785 cpu->vcpu_dirty = true; 1786 } 1787 1788 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1789 { 1790 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1791 } 1792 1793 #ifdef KVM_HAVE_MCE_INJECTION 1794 static __thread void *pending_sigbus_addr; 1795 static __thread int pending_sigbus_code; 1796 static __thread bool have_sigbus_pending; 1797 #endif 1798 1799 static void kvm_cpu_kick(CPUState *cpu) 1800 { 1801 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1802 } 1803 1804 static void kvm_cpu_kick_self(void) 1805 { 1806 if (kvm_immediate_exit) { 1807 kvm_cpu_kick(current_cpu); 1808 } else { 1809 qemu_cpu_kick_self(); 1810 } 1811 } 1812 1813 static void kvm_eat_signals(CPUState *cpu) 1814 { 1815 struct timespec ts = { 0, 0 }; 1816 siginfo_t siginfo; 1817 sigset_t waitset; 1818 sigset_t chkset; 1819 int r; 1820 1821 if (kvm_immediate_exit) { 1822 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1823 /* Write kvm_run->immediate_exit before the cpu->exit_request 1824 * write in kvm_cpu_exec. 1825 */ 1826 smp_wmb(); 1827 return; 1828 } 1829 1830 sigemptyset(&waitset); 1831 sigaddset(&waitset, SIG_IPI); 1832 1833 do { 1834 r = sigtimedwait(&waitset, &siginfo, &ts); 1835 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1836 perror("sigtimedwait"); 1837 exit(1); 1838 } 1839 1840 r = sigpending(&chkset); 1841 if (r == -1) { 1842 perror("sigpending"); 1843 exit(1); 1844 } 1845 } while (sigismember(&chkset, SIG_IPI)); 1846 } 1847 1848 int kvm_cpu_exec(CPUState *cpu) 1849 { 1850 struct kvm_run *run = cpu->kvm_run; 1851 int ret, run_ret; 1852 1853 DPRINTF("kvm_cpu_exec()\n"); 1854 1855 if (kvm_arch_process_async_events(cpu)) { 1856 atomic_set(&cpu->exit_request, 0); 1857 return EXCP_HLT; 1858 } 1859 1860 qemu_mutex_unlock_iothread(); 1861 cpu_exec_start(cpu); 1862 1863 do { 1864 MemTxAttrs attrs; 1865 1866 if (cpu->vcpu_dirty) { 1867 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 1868 cpu->vcpu_dirty = false; 1869 } 1870 1871 kvm_arch_pre_run(cpu, run); 1872 if (atomic_read(&cpu->exit_request)) { 1873 DPRINTF("interrupt exit requested\n"); 1874 /* 1875 * KVM requires us to reenter the kernel after IO exits to complete 1876 * instruction emulation. This self-signal will ensure that we 1877 * leave ASAP again. 1878 */ 1879 kvm_cpu_kick_self(); 1880 } 1881 1882 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 1883 * Matching barrier in kvm_eat_signals. 1884 */ 1885 smp_rmb(); 1886 1887 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 1888 1889 attrs = kvm_arch_post_run(cpu, run); 1890 1891 #ifdef KVM_HAVE_MCE_INJECTION 1892 if (unlikely(have_sigbus_pending)) { 1893 qemu_mutex_lock_iothread(); 1894 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 1895 pending_sigbus_addr); 1896 have_sigbus_pending = false; 1897 qemu_mutex_unlock_iothread(); 1898 } 1899 #endif 1900 1901 if (run_ret < 0) { 1902 if (run_ret == -EINTR || run_ret == -EAGAIN) { 1903 DPRINTF("io window exit\n"); 1904 kvm_eat_signals(cpu); 1905 ret = EXCP_INTERRUPT; 1906 break; 1907 } 1908 fprintf(stderr, "error: kvm run failed %s\n", 1909 strerror(-run_ret)); 1910 #ifdef TARGET_PPC 1911 if (run_ret == -EBUSY) { 1912 fprintf(stderr, 1913 "This is probably because your SMT is enabled.\n" 1914 "VCPU can only run on primary threads with all " 1915 "secondary threads offline.\n"); 1916 } 1917 #endif 1918 ret = -1; 1919 break; 1920 } 1921 1922 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 1923 switch (run->exit_reason) { 1924 case KVM_EXIT_IO: 1925 DPRINTF("handle_io\n"); 1926 /* Called outside BQL */ 1927 kvm_handle_io(run->io.port, attrs, 1928 (uint8_t *)run + run->io.data_offset, 1929 run->io.direction, 1930 run->io.size, 1931 run->io.count); 1932 ret = 0; 1933 break; 1934 case KVM_EXIT_MMIO: 1935 DPRINTF("handle_mmio\n"); 1936 /* Called outside BQL */ 1937 address_space_rw(&address_space_memory, 1938 run->mmio.phys_addr, attrs, 1939 run->mmio.data, 1940 run->mmio.len, 1941 run->mmio.is_write); 1942 ret = 0; 1943 break; 1944 case KVM_EXIT_IRQ_WINDOW_OPEN: 1945 DPRINTF("irq_window_open\n"); 1946 ret = EXCP_INTERRUPT; 1947 break; 1948 case KVM_EXIT_SHUTDOWN: 1949 DPRINTF("shutdown\n"); 1950 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1951 ret = EXCP_INTERRUPT; 1952 break; 1953 case KVM_EXIT_UNKNOWN: 1954 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 1955 (uint64_t)run->hw.hardware_exit_reason); 1956 ret = -1; 1957 break; 1958 case KVM_EXIT_INTERNAL_ERROR: 1959 ret = kvm_handle_internal_error(cpu, run); 1960 break; 1961 case KVM_EXIT_SYSTEM_EVENT: 1962 switch (run->system_event.type) { 1963 case KVM_SYSTEM_EVENT_SHUTDOWN: 1964 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 1965 ret = EXCP_INTERRUPT; 1966 break; 1967 case KVM_SYSTEM_EVENT_RESET: 1968 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1969 ret = EXCP_INTERRUPT; 1970 break; 1971 case KVM_SYSTEM_EVENT_CRASH: 1972 kvm_cpu_synchronize_state(cpu); 1973 qemu_mutex_lock_iothread(); 1974 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 1975 qemu_mutex_unlock_iothread(); 1976 ret = 0; 1977 break; 1978 default: 1979 DPRINTF("kvm_arch_handle_exit\n"); 1980 ret = kvm_arch_handle_exit(cpu, run); 1981 break; 1982 } 1983 break; 1984 default: 1985 DPRINTF("kvm_arch_handle_exit\n"); 1986 ret = kvm_arch_handle_exit(cpu, run); 1987 break; 1988 } 1989 } while (ret == 0); 1990 1991 cpu_exec_end(cpu); 1992 qemu_mutex_lock_iothread(); 1993 1994 if (ret < 0) { 1995 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 1996 vm_stop(RUN_STATE_INTERNAL_ERROR); 1997 } 1998 1999 atomic_set(&cpu->exit_request, 0); 2000 return ret; 2001 } 2002 2003 int kvm_ioctl(KVMState *s, int type, ...) 2004 { 2005 int ret; 2006 void *arg; 2007 va_list ap; 2008 2009 va_start(ap, type); 2010 arg = va_arg(ap, void *); 2011 va_end(ap); 2012 2013 trace_kvm_ioctl(type, arg); 2014 ret = ioctl(s->fd, type, arg); 2015 if (ret == -1) { 2016 ret = -errno; 2017 } 2018 return ret; 2019 } 2020 2021 int kvm_vm_ioctl(KVMState *s, int type, ...) 2022 { 2023 int ret; 2024 void *arg; 2025 va_list ap; 2026 2027 va_start(ap, type); 2028 arg = va_arg(ap, void *); 2029 va_end(ap); 2030 2031 trace_kvm_vm_ioctl(type, arg); 2032 ret = ioctl(s->vmfd, type, arg); 2033 if (ret == -1) { 2034 ret = -errno; 2035 } 2036 return ret; 2037 } 2038 2039 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2040 { 2041 int ret; 2042 void *arg; 2043 va_list ap; 2044 2045 va_start(ap, type); 2046 arg = va_arg(ap, void *); 2047 va_end(ap); 2048 2049 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2050 ret = ioctl(cpu->kvm_fd, type, arg); 2051 if (ret == -1) { 2052 ret = -errno; 2053 } 2054 return ret; 2055 } 2056 2057 int kvm_device_ioctl(int fd, int type, ...) 2058 { 2059 int ret; 2060 void *arg; 2061 va_list ap; 2062 2063 va_start(ap, type); 2064 arg = va_arg(ap, void *); 2065 va_end(ap); 2066 2067 trace_kvm_device_ioctl(fd, type, arg); 2068 ret = ioctl(fd, type, arg); 2069 if (ret == -1) { 2070 ret = -errno; 2071 } 2072 return ret; 2073 } 2074 2075 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2076 { 2077 int ret; 2078 struct kvm_device_attr attribute = { 2079 .group = group, 2080 .attr = attr, 2081 }; 2082 2083 if (!kvm_vm_attributes_allowed) { 2084 return 0; 2085 } 2086 2087 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2088 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2089 return ret ? 0 : 1; 2090 } 2091 2092 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2093 { 2094 struct kvm_device_attr attribute = { 2095 .group = group, 2096 .attr = attr, 2097 .flags = 0, 2098 }; 2099 2100 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2101 } 2102 2103 int kvm_device_access(int fd, int group, uint64_t attr, 2104 void *val, bool write, Error **errp) 2105 { 2106 struct kvm_device_attr kvmattr; 2107 int err; 2108 2109 kvmattr.flags = 0; 2110 kvmattr.group = group; 2111 kvmattr.attr = attr; 2112 kvmattr.addr = (uintptr_t)val; 2113 2114 err = kvm_device_ioctl(fd, 2115 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2116 &kvmattr); 2117 if (err < 0) { 2118 error_setg_errno(errp, -err, 2119 "KVM_%s_DEVICE_ATTR failed: Group %d " 2120 "attr 0x%016" PRIx64, 2121 write ? "SET" : "GET", group, attr); 2122 } 2123 return err; 2124 } 2125 2126 bool kvm_has_sync_mmu(void) 2127 { 2128 return kvm_state->sync_mmu; 2129 } 2130 2131 int kvm_has_vcpu_events(void) 2132 { 2133 return kvm_state->vcpu_events; 2134 } 2135 2136 int kvm_has_robust_singlestep(void) 2137 { 2138 return kvm_state->robust_singlestep; 2139 } 2140 2141 int kvm_has_debugregs(void) 2142 { 2143 return kvm_state->debugregs; 2144 } 2145 2146 int kvm_has_many_ioeventfds(void) 2147 { 2148 if (!kvm_enabled()) { 2149 return 0; 2150 } 2151 return kvm_state->many_ioeventfds; 2152 } 2153 2154 int kvm_has_gsi_routing(void) 2155 { 2156 #ifdef KVM_CAP_IRQ_ROUTING 2157 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2158 #else 2159 return false; 2160 #endif 2161 } 2162 2163 int kvm_has_intx_set_mask(void) 2164 { 2165 return kvm_state->intx_set_mask; 2166 } 2167 2168 bool kvm_arm_supports_user_irq(void) 2169 { 2170 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2171 } 2172 2173 #ifdef KVM_CAP_SET_GUEST_DEBUG 2174 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2175 target_ulong pc) 2176 { 2177 struct kvm_sw_breakpoint *bp; 2178 2179 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2180 if (bp->pc == pc) { 2181 return bp; 2182 } 2183 } 2184 return NULL; 2185 } 2186 2187 int kvm_sw_breakpoints_active(CPUState *cpu) 2188 { 2189 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2190 } 2191 2192 struct kvm_set_guest_debug_data { 2193 struct kvm_guest_debug dbg; 2194 int err; 2195 }; 2196 2197 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2198 { 2199 struct kvm_set_guest_debug_data *dbg_data = 2200 (struct kvm_set_guest_debug_data *) data.host_ptr; 2201 2202 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2203 &dbg_data->dbg); 2204 } 2205 2206 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2207 { 2208 struct kvm_set_guest_debug_data data; 2209 2210 data.dbg.control = reinject_trap; 2211 2212 if (cpu->singlestep_enabled) { 2213 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2214 } 2215 kvm_arch_update_guest_debug(cpu, &data.dbg); 2216 2217 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2218 RUN_ON_CPU_HOST_PTR(&data)); 2219 return data.err; 2220 } 2221 2222 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2223 target_ulong len, int type) 2224 { 2225 struct kvm_sw_breakpoint *bp; 2226 int err; 2227 2228 if (type == GDB_BREAKPOINT_SW) { 2229 bp = kvm_find_sw_breakpoint(cpu, addr); 2230 if (bp) { 2231 bp->use_count++; 2232 return 0; 2233 } 2234 2235 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2236 bp->pc = addr; 2237 bp->use_count = 1; 2238 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2239 if (err) { 2240 g_free(bp); 2241 return err; 2242 } 2243 2244 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2245 } else { 2246 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2247 if (err) { 2248 return err; 2249 } 2250 } 2251 2252 CPU_FOREACH(cpu) { 2253 err = kvm_update_guest_debug(cpu, 0); 2254 if (err) { 2255 return err; 2256 } 2257 } 2258 return 0; 2259 } 2260 2261 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2262 target_ulong len, int type) 2263 { 2264 struct kvm_sw_breakpoint *bp; 2265 int err; 2266 2267 if (type == GDB_BREAKPOINT_SW) { 2268 bp = kvm_find_sw_breakpoint(cpu, addr); 2269 if (!bp) { 2270 return -ENOENT; 2271 } 2272 2273 if (bp->use_count > 1) { 2274 bp->use_count--; 2275 return 0; 2276 } 2277 2278 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2279 if (err) { 2280 return err; 2281 } 2282 2283 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2284 g_free(bp); 2285 } else { 2286 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2287 if (err) { 2288 return err; 2289 } 2290 } 2291 2292 CPU_FOREACH(cpu) { 2293 err = kvm_update_guest_debug(cpu, 0); 2294 if (err) { 2295 return err; 2296 } 2297 } 2298 return 0; 2299 } 2300 2301 void kvm_remove_all_breakpoints(CPUState *cpu) 2302 { 2303 struct kvm_sw_breakpoint *bp, *next; 2304 KVMState *s = cpu->kvm_state; 2305 CPUState *tmpcpu; 2306 2307 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2308 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2309 /* Try harder to find a CPU that currently sees the breakpoint. */ 2310 CPU_FOREACH(tmpcpu) { 2311 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2312 break; 2313 } 2314 } 2315 } 2316 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2317 g_free(bp); 2318 } 2319 kvm_arch_remove_all_hw_breakpoints(); 2320 2321 CPU_FOREACH(cpu) { 2322 kvm_update_guest_debug(cpu, 0); 2323 } 2324 } 2325 2326 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2327 2328 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2329 { 2330 return -EINVAL; 2331 } 2332 2333 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2334 target_ulong len, int type) 2335 { 2336 return -EINVAL; 2337 } 2338 2339 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2340 target_ulong len, int type) 2341 { 2342 return -EINVAL; 2343 } 2344 2345 void kvm_remove_all_breakpoints(CPUState *cpu) 2346 { 2347 } 2348 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2349 2350 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2351 { 2352 KVMState *s = kvm_state; 2353 struct kvm_signal_mask *sigmask; 2354 int r; 2355 2356 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2357 2358 sigmask->len = s->sigmask_len; 2359 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2360 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2361 g_free(sigmask); 2362 2363 return r; 2364 } 2365 2366 static void kvm_ipi_signal(int sig) 2367 { 2368 if (current_cpu) { 2369 assert(kvm_immediate_exit); 2370 kvm_cpu_kick(current_cpu); 2371 } 2372 } 2373 2374 void kvm_init_cpu_signals(CPUState *cpu) 2375 { 2376 int r; 2377 sigset_t set; 2378 struct sigaction sigact; 2379 2380 memset(&sigact, 0, sizeof(sigact)); 2381 sigact.sa_handler = kvm_ipi_signal; 2382 sigaction(SIG_IPI, &sigact, NULL); 2383 2384 pthread_sigmask(SIG_BLOCK, NULL, &set); 2385 #if defined KVM_HAVE_MCE_INJECTION 2386 sigdelset(&set, SIGBUS); 2387 pthread_sigmask(SIG_SETMASK, &set, NULL); 2388 #endif 2389 sigdelset(&set, SIG_IPI); 2390 if (kvm_immediate_exit) { 2391 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2392 } else { 2393 r = kvm_set_signal_mask(cpu, &set); 2394 } 2395 if (r) { 2396 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2397 exit(1); 2398 } 2399 } 2400 2401 /* Called asynchronously in VCPU thread. */ 2402 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2403 { 2404 #ifdef KVM_HAVE_MCE_INJECTION 2405 if (have_sigbus_pending) { 2406 return 1; 2407 } 2408 have_sigbus_pending = true; 2409 pending_sigbus_addr = addr; 2410 pending_sigbus_code = code; 2411 atomic_set(&cpu->exit_request, 1); 2412 return 0; 2413 #else 2414 return 1; 2415 #endif 2416 } 2417 2418 /* Called synchronously (via signalfd) in main thread. */ 2419 int kvm_on_sigbus(int code, void *addr) 2420 { 2421 #ifdef KVM_HAVE_MCE_INJECTION 2422 /* Action required MCE kills the process if SIGBUS is blocked. Because 2423 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2424 * we can only get action optional here. 2425 */ 2426 assert(code != BUS_MCEERR_AR); 2427 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2428 return 0; 2429 #else 2430 return 1; 2431 #endif 2432 } 2433 2434 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2435 { 2436 int ret; 2437 struct kvm_create_device create_dev; 2438 2439 create_dev.type = type; 2440 create_dev.fd = -1; 2441 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2442 2443 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2444 return -ENOTSUP; 2445 } 2446 2447 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2448 if (ret) { 2449 return ret; 2450 } 2451 2452 return test ? 0 : create_dev.fd; 2453 } 2454 2455 bool kvm_device_supported(int vmfd, uint64_t type) 2456 { 2457 struct kvm_create_device create_dev = { 2458 .type = type, 2459 .fd = -1, 2460 .flags = KVM_CREATE_DEVICE_TEST, 2461 }; 2462 2463 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2464 return false; 2465 } 2466 2467 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2468 } 2469 2470 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2471 { 2472 struct kvm_one_reg reg; 2473 int r; 2474 2475 reg.id = id; 2476 reg.addr = (uintptr_t) source; 2477 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2478 if (r) { 2479 trace_kvm_failed_reg_set(id, strerror(-r)); 2480 } 2481 return r; 2482 } 2483 2484 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2485 { 2486 struct kvm_one_reg reg; 2487 int r; 2488 2489 reg.id = id; 2490 reg.addr = (uintptr_t) target; 2491 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2492 if (r) { 2493 trace_kvm_failed_reg_get(id, strerror(-r)); 2494 } 2495 return r; 2496 } 2497 2498 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2499 { 2500 AccelClass *ac = ACCEL_CLASS(oc); 2501 ac->name = "KVM"; 2502 ac->init_machine = kvm_init; 2503 ac->allowed = &kvm_allowed; 2504 } 2505 2506 static const TypeInfo kvm_accel_type = { 2507 .name = TYPE_KVM_ACCEL, 2508 .parent = TYPE_ACCEL, 2509 .class_init = kvm_accel_class_init, 2510 .instance_size = sizeof(KVMState), 2511 }; 2512 2513 static void kvm_type_init(void) 2514 { 2515 type_register_static(&kvm_accel_type); 2516 } 2517 2518 type_init(kvm_type_init); 2519