1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "qemu/event_notifier.h" 38 #include "qemu/main-loop.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 #include "qapi/visitor.h" 42 #include "qapi/qapi-types-common.h" 43 #include "qapi/qapi-visit-common.h" 44 #include "sysemu/reset.h" 45 #include "qemu/guest-random.h" 46 #include "sysemu/hw_accel.h" 47 #include "kvm-cpus.h" 48 49 #include "hw/boards.h" 50 51 /* This check must be after config-host.h is included */ 52 #ifdef CONFIG_EVENTFD 53 #include <sys/eventfd.h> 54 #endif 55 56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 57 * need to use the real host PAGE_SIZE, as that's what KVM will use. 58 */ 59 #ifdef PAGE_SIZE 60 #undef PAGE_SIZE 61 #endif 62 #define PAGE_SIZE qemu_real_host_page_size 63 64 //#define DEBUG_KVM 65 66 #ifdef DEBUG_KVM 67 #define DPRINTF(fmt, ...) \ 68 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 69 #else 70 #define DPRINTF(fmt, ...) \ 71 do { } while (0) 72 #endif 73 74 #define KVM_MSI_HASHTAB_SIZE 256 75 76 struct KVMParkedVcpu { 77 unsigned long vcpu_id; 78 int kvm_fd; 79 QLIST_ENTRY(KVMParkedVcpu) node; 80 }; 81 82 enum KVMDirtyRingReaperState { 83 KVM_DIRTY_RING_REAPER_NONE = 0, 84 /* The reaper is sleeping */ 85 KVM_DIRTY_RING_REAPER_WAIT, 86 /* The reaper is reaping for dirty pages */ 87 KVM_DIRTY_RING_REAPER_REAPING, 88 }; 89 90 /* 91 * KVM reaper instance, responsible for collecting the KVM dirty bits 92 * via the dirty ring. 93 */ 94 struct KVMDirtyRingReaper { 95 /* The reaper thread */ 96 QemuThread reaper_thr; 97 volatile uint64_t reaper_iteration; /* iteration number of reaper thr */ 98 volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */ 99 }; 100 101 struct KVMState 102 { 103 AccelState parent_obj; 104 105 int nr_slots; 106 int fd; 107 int vmfd; 108 int coalesced_mmio; 109 int coalesced_pio; 110 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 111 bool coalesced_flush_in_progress; 112 int vcpu_events; 113 int robust_singlestep; 114 int debugregs; 115 #ifdef KVM_CAP_SET_GUEST_DEBUG 116 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 117 #endif 118 int max_nested_state_len; 119 int many_ioeventfds; 120 int intx_set_mask; 121 int kvm_shadow_mem; 122 bool kernel_irqchip_allowed; 123 bool kernel_irqchip_required; 124 OnOffAuto kernel_irqchip_split; 125 bool sync_mmu; 126 uint64_t manual_dirty_log_protect; 127 /* The man page (and posix) say ioctl numbers are signed int, but 128 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 129 * unsigned, and treating them as signed here can break things */ 130 unsigned irq_set_ioctl; 131 unsigned int sigmask_len; 132 GHashTable *gsimap; 133 #ifdef KVM_CAP_IRQ_ROUTING 134 struct kvm_irq_routing *irq_routes; 135 int nr_allocated_irq_routes; 136 unsigned long *used_gsi_bitmap; 137 unsigned int gsi_count; 138 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 139 #endif 140 KVMMemoryListener memory_listener; 141 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 142 143 /* For "info mtree -f" to tell if an MR is registered in KVM */ 144 int nr_as; 145 struct KVMAs { 146 KVMMemoryListener *ml; 147 AddressSpace *as; 148 } *as; 149 uint64_t kvm_dirty_ring_bytes; /* Size of the per-vcpu dirty ring */ 150 uint32_t kvm_dirty_ring_size; /* Number of dirty GFNs per ring */ 151 struct KVMDirtyRingReaper reaper; 152 }; 153 154 KVMState *kvm_state; 155 bool kvm_kernel_irqchip; 156 bool kvm_split_irqchip; 157 bool kvm_async_interrupts_allowed; 158 bool kvm_halt_in_kernel_allowed; 159 bool kvm_eventfds_allowed; 160 bool kvm_irqfds_allowed; 161 bool kvm_resamplefds_allowed; 162 bool kvm_msi_via_irqfd_allowed; 163 bool kvm_gsi_routing_allowed; 164 bool kvm_gsi_direct_mapping; 165 bool kvm_allowed; 166 bool kvm_readonly_mem_allowed; 167 bool kvm_vm_attributes_allowed; 168 bool kvm_direct_msi_allowed; 169 bool kvm_ioeventfd_any_length_allowed; 170 bool kvm_msi_use_devid; 171 static bool kvm_immediate_exit; 172 static hwaddr kvm_max_slot_size = ~0; 173 174 static const KVMCapabilityInfo kvm_required_capabilites[] = { 175 KVM_CAP_INFO(USER_MEMORY), 176 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 177 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 178 KVM_CAP_LAST_INFO 179 }; 180 181 static NotifierList kvm_irqchip_change_notifiers = 182 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 183 184 struct KVMResampleFd { 185 int gsi; 186 EventNotifier *resample_event; 187 QLIST_ENTRY(KVMResampleFd) node; 188 }; 189 typedef struct KVMResampleFd KVMResampleFd; 190 191 /* 192 * Only used with split irqchip where we need to do the resample fd 193 * kick for the kernel from userspace. 194 */ 195 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 196 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 197 198 static QemuMutex kml_slots_lock; 199 200 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 201 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 202 203 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 204 205 static inline void kvm_resample_fd_remove(int gsi) 206 { 207 KVMResampleFd *rfd; 208 209 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 210 if (rfd->gsi == gsi) { 211 QLIST_REMOVE(rfd, node); 212 g_free(rfd); 213 break; 214 } 215 } 216 } 217 218 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 219 { 220 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 221 222 rfd->gsi = gsi; 223 rfd->resample_event = event; 224 225 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 226 } 227 228 void kvm_resample_fd_notify(int gsi) 229 { 230 KVMResampleFd *rfd; 231 232 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 233 if (rfd->gsi == gsi) { 234 event_notifier_set(rfd->resample_event); 235 trace_kvm_resample_fd_notify(gsi); 236 return; 237 } 238 } 239 } 240 241 int kvm_get_max_memslots(void) 242 { 243 KVMState *s = KVM_STATE(current_accel()); 244 245 return s->nr_slots; 246 } 247 248 /* Called with KVMMemoryListener.slots_lock held */ 249 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 250 { 251 KVMState *s = kvm_state; 252 int i; 253 254 for (i = 0; i < s->nr_slots; i++) { 255 if (kml->slots[i].memory_size == 0) { 256 return &kml->slots[i]; 257 } 258 } 259 260 return NULL; 261 } 262 263 bool kvm_has_free_slot(MachineState *ms) 264 { 265 KVMState *s = KVM_STATE(ms->accelerator); 266 bool result; 267 KVMMemoryListener *kml = &s->memory_listener; 268 269 kvm_slots_lock(); 270 result = !!kvm_get_free_slot(kml); 271 kvm_slots_unlock(); 272 273 return result; 274 } 275 276 /* Called with KVMMemoryListener.slots_lock held */ 277 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 278 { 279 KVMSlot *slot = kvm_get_free_slot(kml); 280 281 if (slot) { 282 return slot; 283 } 284 285 fprintf(stderr, "%s: no free slot available\n", __func__); 286 abort(); 287 } 288 289 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 290 hwaddr start_addr, 291 hwaddr size) 292 { 293 KVMState *s = kvm_state; 294 int i; 295 296 for (i = 0; i < s->nr_slots; i++) { 297 KVMSlot *mem = &kml->slots[i]; 298 299 if (start_addr == mem->start_addr && size == mem->memory_size) { 300 return mem; 301 } 302 } 303 304 return NULL; 305 } 306 307 /* 308 * Calculate and align the start address and the size of the section. 309 * Return the size. If the size is 0, the aligned section is empty. 310 */ 311 static hwaddr kvm_align_section(MemoryRegionSection *section, 312 hwaddr *start) 313 { 314 hwaddr size = int128_get64(section->size); 315 hwaddr delta, aligned; 316 317 /* kvm works in page size chunks, but the function may be called 318 with sub-page size and unaligned start address. Pad the start 319 address to next and truncate size to previous page boundary. */ 320 aligned = ROUND_UP(section->offset_within_address_space, 321 qemu_real_host_page_size); 322 delta = aligned - section->offset_within_address_space; 323 *start = aligned; 324 if (delta > size) { 325 return 0; 326 } 327 328 return (size - delta) & qemu_real_host_page_mask; 329 } 330 331 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 332 hwaddr *phys_addr) 333 { 334 KVMMemoryListener *kml = &s->memory_listener; 335 int i, ret = 0; 336 337 kvm_slots_lock(); 338 for (i = 0; i < s->nr_slots; i++) { 339 KVMSlot *mem = &kml->slots[i]; 340 341 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 342 *phys_addr = mem->start_addr + (ram - mem->ram); 343 ret = 1; 344 break; 345 } 346 } 347 kvm_slots_unlock(); 348 349 return ret; 350 } 351 352 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 353 { 354 KVMState *s = kvm_state; 355 struct kvm_userspace_memory_region mem; 356 int ret; 357 358 mem.slot = slot->slot | (kml->as_id << 16); 359 mem.guest_phys_addr = slot->start_addr; 360 mem.userspace_addr = (unsigned long)slot->ram; 361 mem.flags = slot->flags; 362 363 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 364 /* Set the slot size to 0 before setting the slot to the desired 365 * value. This is needed based on KVM commit 75d61fbc. */ 366 mem.memory_size = 0; 367 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 368 if (ret < 0) { 369 goto err; 370 } 371 } 372 mem.memory_size = slot->memory_size; 373 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 374 slot->old_flags = mem.flags; 375 err: 376 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 377 mem.memory_size, mem.userspace_addr, ret); 378 if (ret < 0) { 379 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 380 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 381 __func__, mem.slot, slot->start_addr, 382 (uint64_t)mem.memory_size, strerror(errno)); 383 } 384 return ret; 385 } 386 387 static int do_kvm_destroy_vcpu(CPUState *cpu) 388 { 389 KVMState *s = kvm_state; 390 long mmap_size; 391 struct KVMParkedVcpu *vcpu = NULL; 392 int ret = 0; 393 394 DPRINTF("kvm_destroy_vcpu\n"); 395 396 ret = kvm_arch_destroy_vcpu(cpu); 397 if (ret < 0) { 398 goto err; 399 } 400 401 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 402 if (mmap_size < 0) { 403 ret = mmap_size; 404 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 405 goto err; 406 } 407 408 ret = munmap(cpu->kvm_run, mmap_size); 409 if (ret < 0) { 410 goto err; 411 } 412 413 if (cpu->kvm_dirty_gfns) { 414 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 415 if (ret < 0) { 416 goto err; 417 } 418 } 419 420 vcpu = g_malloc0(sizeof(*vcpu)); 421 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 422 vcpu->kvm_fd = cpu->kvm_fd; 423 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 424 err: 425 return ret; 426 } 427 428 void kvm_destroy_vcpu(CPUState *cpu) 429 { 430 if (do_kvm_destroy_vcpu(cpu) < 0) { 431 error_report("kvm_destroy_vcpu failed"); 432 exit(EXIT_FAILURE); 433 } 434 } 435 436 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 437 { 438 struct KVMParkedVcpu *cpu; 439 440 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 441 if (cpu->vcpu_id == vcpu_id) { 442 int kvm_fd; 443 444 QLIST_REMOVE(cpu, node); 445 kvm_fd = cpu->kvm_fd; 446 g_free(cpu); 447 return kvm_fd; 448 } 449 } 450 451 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 452 } 453 454 int kvm_init_vcpu(CPUState *cpu, Error **errp) 455 { 456 KVMState *s = kvm_state; 457 long mmap_size; 458 int ret; 459 460 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 461 462 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 463 if (ret < 0) { 464 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 465 kvm_arch_vcpu_id(cpu)); 466 goto err; 467 } 468 469 cpu->kvm_fd = ret; 470 cpu->kvm_state = s; 471 cpu->vcpu_dirty = true; 472 cpu->dirty_pages = 0; 473 474 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 475 if (mmap_size < 0) { 476 ret = mmap_size; 477 error_setg_errno(errp, -mmap_size, 478 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 479 goto err; 480 } 481 482 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 483 cpu->kvm_fd, 0); 484 if (cpu->kvm_run == MAP_FAILED) { 485 ret = -errno; 486 error_setg_errno(errp, ret, 487 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 488 kvm_arch_vcpu_id(cpu)); 489 goto err; 490 } 491 492 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 493 s->coalesced_mmio_ring = 494 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 495 } 496 497 if (s->kvm_dirty_ring_size) { 498 /* Use MAP_SHARED to share pages with the kernel */ 499 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 500 PROT_READ | PROT_WRITE, MAP_SHARED, 501 cpu->kvm_fd, 502 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 503 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 504 ret = -errno; 505 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 506 goto err; 507 } 508 } 509 510 ret = kvm_arch_init_vcpu(cpu); 511 if (ret < 0) { 512 error_setg_errno(errp, -ret, 513 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 514 kvm_arch_vcpu_id(cpu)); 515 } 516 err: 517 return ret; 518 } 519 520 /* 521 * dirty pages logging control 522 */ 523 524 static int kvm_mem_flags(MemoryRegion *mr) 525 { 526 bool readonly = mr->readonly || memory_region_is_romd(mr); 527 int flags = 0; 528 529 if (memory_region_get_dirty_log_mask(mr) != 0) { 530 flags |= KVM_MEM_LOG_DIRTY_PAGES; 531 } 532 if (readonly && kvm_readonly_mem_allowed) { 533 flags |= KVM_MEM_READONLY; 534 } 535 return flags; 536 } 537 538 /* Called with KVMMemoryListener.slots_lock held */ 539 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 540 MemoryRegion *mr) 541 { 542 mem->flags = kvm_mem_flags(mr); 543 544 /* If nothing changed effectively, no need to issue ioctl */ 545 if (mem->flags == mem->old_flags) { 546 return 0; 547 } 548 549 kvm_slot_init_dirty_bitmap(mem); 550 return kvm_set_user_memory_region(kml, mem, false); 551 } 552 553 static int kvm_section_update_flags(KVMMemoryListener *kml, 554 MemoryRegionSection *section) 555 { 556 hwaddr start_addr, size, slot_size; 557 KVMSlot *mem; 558 int ret = 0; 559 560 size = kvm_align_section(section, &start_addr); 561 if (!size) { 562 return 0; 563 } 564 565 kvm_slots_lock(); 566 567 while (size && !ret) { 568 slot_size = MIN(kvm_max_slot_size, size); 569 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 570 if (!mem) { 571 /* We don't have a slot if we want to trap every access. */ 572 goto out; 573 } 574 575 ret = kvm_slot_update_flags(kml, mem, section->mr); 576 start_addr += slot_size; 577 size -= slot_size; 578 } 579 580 out: 581 kvm_slots_unlock(); 582 return ret; 583 } 584 585 static void kvm_log_start(MemoryListener *listener, 586 MemoryRegionSection *section, 587 int old, int new) 588 { 589 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 590 int r; 591 592 if (old != 0) { 593 return; 594 } 595 596 r = kvm_section_update_flags(kml, section); 597 if (r < 0) { 598 abort(); 599 } 600 } 601 602 static void kvm_log_stop(MemoryListener *listener, 603 MemoryRegionSection *section, 604 int old, int new) 605 { 606 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 607 int r; 608 609 if (new != 0) { 610 return; 611 } 612 613 r = kvm_section_update_flags(kml, section); 614 if (r < 0) { 615 abort(); 616 } 617 } 618 619 /* get kvm's dirty pages bitmap and update qemu's */ 620 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 621 { 622 ram_addr_t start = slot->ram_start_offset; 623 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size; 624 625 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 626 } 627 628 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 629 { 630 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 631 } 632 633 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 634 635 /* Allocate the dirty bitmap for a slot */ 636 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 637 { 638 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 639 return; 640 } 641 642 /* 643 * XXX bad kernel interface alert 644 * For dirty bitmap, kernel allocates array of size aligned to 645 * bits-per-long. But for case when the kernel is 64bits and 646 * the userspace is 32bits, userspace can't align to the same 647 * bits-per-long, since sizeof(long) is different between kernel 648 * and user space. This way, userspace will provide buffer which 649 * may be 4 bytes less than the kernel will use, resulting in 650 * userspace memory corruption (which is not detectable by valgrind 651 * too, in most cases). 652 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 653 * a hope that sizeof(long) won't become >8 any time soon. 654 * 655 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 656 * And mem->memory_size is aligned to it (otherwise this mem can't 657 * be registered to KVM). 658 */ 659 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size, 660 /*HOST_LONG_BITS*/ 64) / 8; 661 mem->dirty_bmap = g_malloc0(bitmap_size); 662 mem->dirty_bmap_size = bitmap_size; 663 } 664 665 /* 666 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 667 * succeeded, false otherwise 668 */ 669 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 670 { 671 struct kvm_dirty_log d = {}; 672 int ret; 673 674 d.dirty_bitmap = slot->dirty_bmap; 675 d.slot = slot->slot | (slot->as_id << 16); 676 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 677 678 if (ret == -ENOENT) { 679 /* kernel does not have dirty bitmap in this slot */ 680 ret = 0; 681 } 682 if (ret) { 683 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 684 __func__, ret); 685 } 686 return ret == 0; 687 } 688 689 /* Should be with all slots_lock held for the address spaces. */ 690 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 691 uint32_t slot_id, uint64_t offset) 692 { 693 KVMMemoryListener *kml; 694 KVMSlot *mem; 695 696 if (as_id >= s->nr_as) { 697 return; 698 } 699 700 kml = s->as[as_id].ml; 701 mem = &kml->slots[slot_id]; 702 703 if (!mem->memory_size || offset >= 704 (mem->memory_size / qemu_real_host_page_size)) { 705 return; 706 } 707 708 set_bit(offset, mem->dirty_bmap); 709 } 710 711 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 712 { 713 return gfn->flags == KVM_DIRTY_GFN_F_DIRTY; 714 } 715 716 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 717 { 718 gfn->flags = KVM_DIRTY_GFN_F_RESET; 719 } 720 721 /* 722 * Should be with all slots_lock held for the address spaces. It returns the 723 * dirty page we've collected on this dirty ring. 724 */ 725 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 726 { 727 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 728 uint32_t ring_size = s->kvm_dirty_ring_size; 729 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 730 731 assert(dirty_gfns && ring_size); 732 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 733 734 while (true) { 735 cur = &dirty_gfns[fetch % ring_size]; 736 if (!dirty_gfn_is_dirtied(cur)) { 737 break; 738 } 739 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 740 cur->offset); 741 dirty_gfn_set_collected(cur); 742 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 743 fetch++; 744 count++; 745 } 746 cpu->kvm_fetch_index = fetch; 747 cpu->dirty_pages += count; 748 749 return count; 750 } 751 752 /* Must be with slots_lock held */ 753 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s) 754 { 755 int ret; 756 CPUState *cpu; 757 uint64_t total = 0; 758 int64_t stamp; 759 760 stamp = get_clock(); 761 762 CPU_FOREACH(cpu) { 763 total += kvm_dirty_ring_reap_one(s, cpu); 764 } 765 766 if (total) { 767 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 768 assert(ret == total); 769 } 770 771 stamp = get_clock() - stamp; 772 773 if (total) { 774 trace_kvm_dirty_ring_reap(total, stamp / 1000); 775 } 776 777 return total; 778 } 779 780 /* 781 * Currently for simplicity, we must hold BQL before calling this. We can 782 * consider to drop the BQL if we're clear with all the race conditions. 783 */ 784 static uint64_t kvm_dirty_ring_reap(KVMState *s) 785 { 786 uint64_t total; 787 788 /* 789 * We need to lock all kvm slots for all address spaces here, 790 * because: 791 * 792 * (1) We need to mark dirty for dirty bitmaps in multiple slots 793 * and for tons of pages, so it's better to take the lock here 794 * once rather than once per page. And more importantly, 795 * 796 * (2) We must _NOT_ publish dirty bits to the other threads 797 * (e.g., the migration thread) via the kvm memory slot dirty 798 * bitmaps before correctly re-protect those dirtied pages. 799 * Otherwise we can have potential risk of data corruption if 800 * the page data is read in the other thread before we do 801 * reset below. 802 */ 803 kvm_slots_lock(); 804 total = kvm_dirty_ring_reap_locked(s); 805 kvm_slots_unlock(); 806 807 return total; 808 } 809 810 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 811 { 812 /* No need to do anything */ 813 } 814 815 /* 816 * Kick all vcpus out in a synchronized way. When returned, we 817 * guarantee that every vcpu has been kicked and at least returned to 818 * userspace once. 819 */ 820 static void kvm_cpu_synchronize_kick_all(void) 821 { 822 CPUState *cpu; 823 824 CPU_FOREACH(cpu) { 825 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 826 } 827 } 828 829 /* 830 * Flush all the existing dirty pages to the KVM slot buffers. When 831 * this call returns, we guarantee that all the touched dirty pages 832 * before calling this function have been put into the per-kvmslot 833 * dirty bitmap. 834 * 835 * This function must be called with BQL held. 836 */ 837 static void kvm_dirty_ring_flush(void) 838 { 839 trace_kvm_dirty_ring_flush(0); 840 /* 841 * The function needs to be serialized. Since this function 842 * should always be with BQL held, serialization is guaranteed. 843 * However, let's be sure of it. 844 */ 845 assert(qemu_mutex_iothread_locked()); 846 /* 847 * First make sure to flush the hardware buffers by kicking all 848 * vcpus out in a synchronous way. 849 */ 850 kvm_cpu_synchronize_kick_all(); 851 kvm_dirty_ring_reap(kvm_state); 852 trace_kvm_dirty_ring_flush(1); 853 } 854 855 /** 856 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 857 * 858 * This function will first try to fetch dirty bitmap from the kernel, 859 * and then updates qemu's dirty bitmap. 860 * 861 * NOTE: caller must be with kml->slots_lock held. 862 * 863 * @kml: the KVM memory listener object 864 * @section: the memory section to sync the dirty bitmap with 865 */ 866 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 867 MemoryRegionSection *section) 868 { 869 KVMState *s = kvm_state; 870 KVMSlot *mem; 871 hwaddr start_addr, size; 872 hwaddr slot_size; 873 874 size = kvm_align_section(section, &start_addr); 875 while (size) { 876 slot_size = MIN(kvm_max_slot_size, size); 877 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 878 if (!mem) { 879 /* We don't have a slot if we want to trap every access. */ 880 return; 881 } 882 if (kvm_slot_get_dirty_log(s, mem)) { 883 kvm_slot_sync_dirty_pages(mem); 884 } 885 start_addr += slot_size; 886 size -= slot_size; 887 } 888 } 889 890 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 891 #define KVM_CLEAR_LOG_SHIFT 6 892 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 893 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 894 895 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 896 uint64_t size) 897 { 898 KVMState *s = kvm_state; 899 uint64_t end, bmap_start, start_delta, bmap_npages; 900 struct kvm_clear_dirty_log d; 901 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 902 int ret; 903 904 /* 905 * We need to extend either the start or the size or both to 906 * satisfy the KVM interface requirement. Firstly, do the start 907 * page alignment on 64 host pages 908 */ 909 bmap_start = start & KVM_CLEAR_LOG_MASK; 910 start_delta = start - bmap_start; 911 bmap_start /= psize; 912 913 /* 914 * The kernel interface has restriction on the size too, that either: 915 * 916 * (1) the size is 64 host pages aligned (just like the start), or 917 * (2) the size fills up until the end of the KVM memslot. 918 */ 919 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 920 << KVM_CLEAR_LOG_SHIFT; 921 end = mem->memory_size / psize; 922 if (bmap_npages > end - bmap_start) { 923 bmap_npages = end - bmap_start; 924 } 925 start_delta /= psize; 926 927 /* 928 * Prepare the bitmap to clear dirty bits. Here we must guarantee 929 * that we won't clear any unknown dirty bits otherwise we might 930 * accidentally clear some set bits which are not yet synced from 931 * the kernel into QEMU's bitmap, then we'll lose track of the 932 * guest modifications upon those pages (which can directly lead 933 * to guest data loss or panic after migration). 934 * 935 * Layout of the KVMSlot.dirty_bmap: 936 * 937 * |<-------- bmap_npages -----------..>| 938 * [1] 939 * start_delta size 940 * |----------------|-------------|------------------|------------| 941 * ^ ^ ^ ^ 942 * | | | | 943 * start bmap_start (start) end 944 * of memslot of memslot 945 * 946 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 947 */ 948 949 assert(bmap_start % BITS_PER_LONG == 0); 950 /* We should never do log_clear before log_sync */ 951 assert(mem->dirty_bmap); 952 if (start_delta || bmap_npages - size / psize) { 953 /* Slow path - we need to manipulate a temp bitmap */ 954 bmap_clear = bitmap_new(bmap_npages); 955 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 956 bmap_start, start_delta + size / psize); 957 /* 958 * We need to fill the holes at start because that was not 959 * specified by the caller and we extended the bitmap only for 960 * 64 pages alignment 961 */ 962 bitmap_clear(bmap_clear, 0, start_delta); 963 d.dirty_bitmap = bmap_clear; 964 } else { 965 /* 966 * Fast path - both start and size align well with BITS_PER_LONG 967 * (or the end of memory slot) 968 */ 969 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 970 } 971 972 d.first_page = bmap_start; 973 /* It should never overflow. If it happens, say something */ 974 assert(bmap_npages <= UINT32_MAX); 975 d.num_pages = bmap_npages; 976 d.slot = mem->slot | (as_id << 16); 977 978 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 979 if (ret < 0 && ret != -ENOENT) { 980 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 981 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 982 __func__, d.slot, (uint64_t)d.first_page, 983 (uint32_t)d.num_pages, ret); 984 } else { 985 ret = 0; 986 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 987 } 988 989 /* 990 * After we have updated the remote dirty bitmap, we update the 991 * cached bitmap as well for the memslot, then if another user 992 * clears the same region we know we shouldn't clear it again on 993 * the remote otherwise it's data loss as well. 994 */ 995 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 996 size / psize); 997 /* This handles the NULL case well */ 998 g_free(bmap_clear); 999 return ret; 1000 } 1001 1002 1003 /** 1004 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1005 * 1006 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1007 * protection in the host kernel because in that case this operation 1008 * will be done within log_sync(). 1009 * 1010 * @kml: the kvm memory listener 1011 * @section: the memory range to clear dirty bitmap 1012 */ 1013 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1014 MemoryRegionSection *section) 1015 { 1016 KVMState *s = kvm_state; 1017 uint64_t start, size, offset, count; 1018 KVMSlot *mem; 1019 int ret = 0, i; 1020 1021 if (!s->manual_dirty_log_protect) { 1022 /* No need to do explicit clear */ 1023 return ret; 1024 } 1025 1026 start = section->offset_within_address_space; 1027 size = int128_get64(section->size); 1028 1029 if (!size) { 1030 /* Nothing more we can do... */ 1031 return ret; 1032 } 1033 1034 kvm_slots_lock(); 1035 1036 for (i = 0; i < s->nr_slots; i++) { 1037 mem = &kml->slots[i]; 1038 /* Discard slots that are empty or do not overlap the section */ 1039 if (!mem->memory_size || 1040 mem->start_addr > start + size - 1 || 1041 start > mem->start_addr + mem->memory_size - 1) { 1042 continue; 1043 } 1044 1045 if (start >= mem->start_addr) { 1046 /* The slot starts before section or is aligned to it. */ 1047 offset = start - mem->start_addr; 1048 count = MIN(mem->memory_size - offset, size); 1049 } else { 1050 /* The slot starts after section. */ 1051 offset = 0; 1052 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1053 } 1054 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1055 if (ret < 0) { 1056 break; 1057 } 1058 } 1059 1060 kvm_slots_unlock(); 1061 1062 return ret; 1063 } 1064 1065 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1066 MemoryRegionSection *secion, 1067 hwaddr start, hwaddr size) 1068 { 1069 KVMState *s = kvm_state; 1070 1071 if (s->coalesced_mmio) { 1072 struct kvm_coalesced_mmio_zone zone; 1073 1074 zone.addr = start; 1075 zone.size = size; 1076 zone.pad = 0; 1077 1078 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1079 } 1080 } 1081 1082 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1083 MemoryRegionSection *secion, 1084 hwaddr start, hwaddr size) 1085 { 1086 KVMState *s = kvm_state; 1087 1088 if (s->coalesced_mmio) { 1089 struct kvm_coalesced_mmio_zone zone; 1090 1091 zone.addr = start; 1092 zone.size = size; 1093 zone.pad = 0; 1094 1095 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1096 } 1097 } 1098 1099 static void kvm_coalesce_pio_add(MemoryListener *listener, 1100 MemoryRegionSection *section, 1101 hwaddr start, hwaddr size) 1102 { 1103 KVMState *s = kvm_state; 1104 1105 if (s->coalesced_pio) { 1106 struct kvm_coalesced_mmio_zone zone; 1107 1108 zone.addr = start; 1109 zone.size = size; 1110 zone.pio = 1; 1111 1112 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1113 } 1114 } 1115 1116 static void kvm_coalesce_pio_del(MemoryListener *listener, 1117 MemoryRegionSection *section, 1118 hwaddr start, hwaddr size) 1119 { 1120 KVMState *s = kvm_state; 1121 1122 if (s->coalesced_pio) { 1123 struct kvm_coalesced_mmio_zone zone; 1124 1125 zone.addr = start; 1126 zone.size = size; 1127 zone.pio = 1; 1128 1129 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1130 } 1131 } 1132 1133 static MemoryListener kvm_coalesced_pio_listener = { 1134 .name = "kvm-coalesced-pio", 1135 .coalesced_io_add = kvm_coalesce_pio_add, 1136 .coalesced_io_del = kvm_coalesce_pio_del, 1137 }; 1138 1139 int kvm_check_extension(KVMState *s, unsigned int extension) 1140 { 1141 int ret; 1142 1143 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1144 if (ret < 0) { 1145 ret = 0; 1146 } 1147 1148 return ret; 1149 } 1150 1151 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1152 { 1153 int ret; 1154 1155 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1156 if (ret < 0) { 1157 /* VM wide version not implemented, use global one instead */ 1158 ret = kvm_check_extension(s, extension); 1159 } 1160 1161 return ret; 1162 } 1163 1164 typedef struct HWPoisonPage { 1165 ram_addr_t ram_addr; 1166 QLIST_ENTRY(HWPoisonPage) list; 1167 } HWPoisonPage; 1168 1169 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1170 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1171 1172 static void kvm_unpoison_all(void *param) 1173 { 1174 HWPoisonPage *page, *next_page; 1175 1176 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1177 QLIST_REMOVE(page, list); 1178 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1179 g_free(page); 1180 } 1181 } 1182 1183 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1184 { 1185 HWPoisonPage *page; 1186 1187 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1188 if (page->ram_addr == ram_addr) { 1189 return; 1190 } 1191 } 1192 page = g_new(HWPoisonPage, 1); 1193 page->ram_addr = ram_addr; 1194 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1195 } 1196 1197 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1198 { 1199 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 1200 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 1201 * endianness, but the memory core hands them in target endianness. 1202 * For example, PPC is always treated as big-endian even if running 1203 * on KVM and on PPC64LE. Correct here. 1204 */ 1205 switch (size) { 1206 case 2: 1207 val = bswap16(val); 1208 break; 1209 case 4: 1210 val = bswap32(val); 1211 break; 1212 } 1213 #endif 1214 return val; 1215 } 1216 1217 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1218 bool assign, uint32_t size, bool datamatch) 1219 { 1220 int ret; 1221 struct kvm_ioeventfd iofd = { 1222 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1223 .addr = addr, 1224 .len = size, 1225 .flags = 0, 1226 .fd = fd, 1227 }; 1228 1229 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1230 datamatch); 1231 if (!kvm_enabled()) { 1232 return -ENOSYS; 1233 } 1234 1235 if (datamatch) { 1236 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1237 } 1238 if (!assign) { 1239 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1240 } 1241 1242 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1243 1244 if (ret < 0) { 1245 return -errno; 1246 } 1247 1248 return 0; 1249 } 1250 1251 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1252 bool assign, uint32_t size, bool datamatch) 1253 { 1254 struct kvm_ioeventfd kick = { 1255 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1256 .addr = addr, 1257 .flags = KVM_IOEVENTFD_FLAG_PIO, 1258 .len = size, 1259 .fd = fd, 1260 }; 1261 int r; 1262 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1263 if (!kvm_enabled()) { 1264 return -ENOSYS; 1265 } 1266 if (datamatch) { 1267 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1268 } 1269 if (!assign) { 1270 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1271 } 1272 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1273 if (r < 0) { 1274 return r; 1275 } 1276 return 0; 1277 } 1278 1279 1280 static int kvm_check_many_ioeventfds(void) 1281 { 1282 /* Userspace can use ioeventfd for io notification. This requires a host 1283 * that supports eventfd(2) and an I/O thread; since eventfd does not 1284 * support SIGIO it cannot interrupt the vcpu. 1285 * 1286 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1287 * can avoid creating too many ioeventfds. 1288 */ 1289 #if defined(CONFIG_EVENTFD) 1290 int ioeventfds[7]; 1291 int i, ret = 0; 1292 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1293 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1294 if (ioeventfds[i] < 0) { 1295 break; 1296 } 1297 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1298 if (ret < 0) { 1299 close(ioeventfds[i]); 1300 break; 1301 } 1302 } 1303 1304 /* Decide whether many devices are supported or not */ 1305 ret = i == ARRAY_SIZE(ioeventfds); 1306 1307 while (i-- > 0) { 1308 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1309 close(ioeventfds[i]); 1310 } 1311 return ret; 1312 #else 1313 return 0; 1314 #endif 1315 } 1316 1317 static const KVMCapabilityInfo * 1318 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1319 { 1320 while (list->name) { 1321 if (!kvm_check_extension(s, list->value)) { 1322 return list; 1323 } 1324 list++; 1325 } 1326 return NULL; 1327 } 1328 1329 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1330 { 1331 g_assert( 1332 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1333 ); 1334 kvm_max_slot_size = max_slot_size; 1335 } 1336 1337 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1338 MemoryRegionSection *section, bool add) 1339 { 1340 KVMSlot *mem; 1341 int err; 1342 MemoryRegion *mr = section->mr; 1343 bool writeable = !mr->readonly && !mr->rom_device; 1344 hwaddr start_addr, size, slot_size, mr_offset; 1345 ram_addr_t ram_start_offset; 1346 void *ram; 1347 1348 if (!memory_region_is_ram(mr)) { 1349 if (writeable || !kvm_readonly_mem_allowed) { 1350 return; 1351 } else if (!mr->romd_mode) { 1352 /* If the memory device is not in romd_mode, then we actually want 1353 * to remove the kvm memory slot so all accesses will trap. */ 1354 add = false; 1355 } 1356 } 1357 1358 size = kvm_align_section(section, &start_addr); 1359 if (!size) { 1360 return; 1361 } 1362 1363 /* The offset of the kvmslot within the memory region */ 1364 mr_offset = section->offset_within_region + start_addr - 1365 section->offset_within_address_space; 1366 1367 /* use aligned delta to align the ram address and offset */ 1368 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1369 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1370 1371 kvm_slots_lock(); 1372 1373 if (!add) { 1374 do { 1375 slot_size = MIN(kvm_max_slot_size, size); 1376 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1377 if (!mem) { 1378 goto out; 1379 } 1380 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1381 /* 1382 * NOTE: We should be aware of the fact that here we're only 1383 * doing a best effort to sync dirty bits. No matter whether 1384 * we're using dirty log or dirty ring, we ignored two facts: 1385 * 1386 * (1) dirty bits can reside in hardware buffers (PML) 1387 * 1388 * (2) after we collected dirty bits here, pages can be dirtied 1389 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1390 * remove the slot. 1391 * 1392 * Not easy. Let's cross the fingers until it's fixed. 1393 */ 1394 if (kvm_state->kvm_dirty_ring_size) { 1395 kvm_dirty_ring_reap_locked(kvm_state); 1396 } else { 1397 kvm_slot_get_dirty_log(kvm_state, mem); 1398 } 1399 kvm_slot_sync_dirty_pages(mem); 1400 } 1401 1402 /* unregister the slot */ 1403 g_free(mem->dirty_bmap); 1404 mem->dirty_bmap = NULL; 1405 mem->memory_size = 0; 1406 mem->flags = 0; 1407 err = kvm_set_user_memory_region(kml, mem, false); 1408 if (err) { 1409 fprintf(stderr, "%s: error unregistering slot: %s\n", 1410 __func__, strerror(-err)); 1411 abort(); 1412 } 1413 start_addr += slot_size; 1414 size -= slot_size; 1415 } while (size); 1416 goto out; 1417 } 1418 1419 /* register the new slot */ 1420 do { 1421 slot_size = MIN(kvm_max_slot_size, size); 1422 mem = kvm_alloc_slot(kml); 1423 mem->as_id = kml->as_id; 1424 mem->memory_size = slot_size; 1425 mem->start_addr = start_addr; 1426 mem->ram_start_offset = ram_start_offset; 1427 mem->ram = ram; 1428 mem->flags = kvm_mem_flags(mr); 1429 kvm_slot_init_dirty_bitmap(mem); 1430 err = kvm_set_user_memory_region(kml, mem, true); 1431 if (err) { 1432 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1433 strerror(-err)); 1434 abort(); 1435 } 1436 start_addr += slot_size; 1437 ram_start_offset += slot_size; 1438 ram += slot_size; 1439 size -= slot_size; 1440 } while (size); 1441 1442 out: 1443 kvm_slots_unlock(); 1444 } 1445 1446 static void *kvm_dirty_ring_reaper_thread(void *data) 1447 { 1448 KVMState *s = data; 1449 struct KVMDirtyRingReaper *r = &s->reaper; 1450 1451 rcu_register_thread(); 1452 1453 trace_kvm_dirty_ring_reaper("init"); 1454 1455 while (true) { 1456 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1457 trace_kvm_dirty_ring_reaper("wait"); 1458 /* 1459 * TODO: provide a smarter timeout rather than a constant? 1460 */ 1461 sleep(1); 1462 1463 trace_kvm_dirty_ring_reaper("wakeup"); 1464 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1465 1466 qemu_mutex_lock_iothread(); 1467 kvm_dirty_ring_reap(s); 1468 qemu_mutex_unlock_iothread(); 1469 1470 r->reaper_iteration++; 1471 } 1472 1473 trace_kvm_dirty_ring_reaper("exit"); 1474 1475 rcu_unregister_thread(); 1476 1477 return NULL; 1478 } 1479 1480 static int kvm_dirty_ring_reaper_init(KVMState *s) 1481 { 1482 struct KVMDirtyRingReaper *r = &s->reaper; 1483 1484 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1485 kvm_dirty_ring_reaper_thread, 1486 s, QEMU_THREAD_JOINABLE); 1487 1488 return 0; 1489 } 1490 1491 static void kvm_region_add(MemoryListener *listener, 1492 MemoryRegionSection *section) 1493 { 1494 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1495 1496 memory_region_ref(section->mr); 1497 kvm_set_phys_mem(kml, section, true); 1498 } 1499 1500 static void kvm_region_del(MemoryListener *listener, 1501 MemoryRegionSection *section) 1502 { 1503 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1504 1505 kvm_set_phys_mem(kml, section, false); 1506 memory_region_unref(section->mr); 1507 } 1508 1509 static void kvm_log_sync(MemoryListener *listener, 1510 MemoryRegionSection *section) 1511 { 1512 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1513 1514 kvm_slots_lock(); 1515 kvm_physical_sync_dirty_bitmap(kml, section); 1516 kvm_slots_unlock(); 1517 } 1518 1519 static void kvm_log_sync_global(MemoryListener *l) 1520 { 1521 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1522 KVMState *s = kvm_state; 1523 KVMSlot *mem; 1524 int i; 1525 1526 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1527 kvm_dirty_ring_flush(); 1528 1529 /* 1530 * TODO: make this faster when nr_slots is big while there are 1531 * only a few used slots (small VMs). 1532 */ 1533 kvm_slots_lock(); 1534 for (i = 0; i < s->nr_slots; i++) { 1535 mem = &kml->slots[i]; 1536 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1537 kvm_slot_sync_dirty_pages(mem); 1538 /* 1539 * This is not needed by KVM_GET_DIRTY_LOG because the 1540 * ioctl will unconditionally overwrite the whole region. 1541 * However kvm dirty ring has no such side effect. 1542 */ 1543 kvm_slot_reset_dirty_pages(mem); 1544 } 1545 } 1546 kvm_slots_unlock(); 1547 } 1548 1549 static void kvm_log_clear(MemoryListener *listener, 1550 MemoryRegionSection *section) 1551 { 1552 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1553 int r; 1554 1555 r = kvm_physical_log_clear(kml, section); 1556 if (r < 0) { 1557 error_report_once("%s: kvm log clear failed: mr=%s " 1558 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1559 section->mr->name, section->offset_within_region, 1560 int128_get64(section->size)); 1561 abort(); 1562 } 1563 } 1564 1565 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1566 MemoryRegionSection *section, 1567 bool match_data, uint64_t data, 1568 EventNotifier *e) 1569 { 1570 int fd = event_notifier_get_fd(e); 1571 int r; 1572 1573 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1574 data, true, int128_get64(section->size), 1575 match_data); 1576 if (r < 0) { 1577 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1578 __func__, strerror(-r), -r); 1579 abort(); 1580 } 1581 } 1582 1583 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1584 MemoryRegionSection *section, 1585 bool match_data, uint64_t data, 1586 EventNotifier *e) 1587 { 1588 int fd = event_notifier_get_fd(e); 1589 int r; 1590 1591 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1592 data, false, int128_get64(section->size), 1593 match_data); 1594 if (r < 0) { 1595 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1596 __func__, strerror(-r), -r); 1597 abort(); 1598 } 1599 } 1600 1601 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1602 MemoryRegionSection *section, 1603 bool match_data, uint64_t data, 1604 EventNotifier *e) 1605 { 1606 int fd = event_notifier_get_fd(e); 1607 int r; 1608 1609 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1610 data, true, int128_get64(section->size), 1611 match_data); 1612 if (r < 0) { 1613 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1614 __func__, strerror(-r), -r); 1615 abort(); 1616 } 1617 } 1618 1619 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1620 MemoryRegionSection *section, 1621 bool match_data, uint64_t data, 1622 EventNotifier *e) 1623 1624 { 1625 int fd = event_notifier_get_fd(e); 1626 int r; 1627 1628 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1629 data, false, int128_get64(section->size), 1630 match_data); 1631 if (r < 0) { 1632 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1633 __func__, strerror(-r), -r); 1634 abort(); 1635 } 1636 } 1637 1638 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1639 AddressSpace *as, int as_id, const char *name) 1640 { 1641 int i; 1642 1643 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1644 kml->as_id = as_id; 1645 1646 for (i = 0; i < s->nr_slots; i++) { 1647 kml->slots[i].slot = i; 1648 } 1649 1650 kml->listener.region_add = kvm_region_add; 1651 kml->listener.region_del = kvm_region_del; 1652 kml->listener.log_start = kvm_log_start; 1653 kml->listener.log_stop = kvm_log_stop; 1654 kml->listener.priority = 10; 1655 kml->listener.name = name; 1656 1657 if (s->kvm_dirty_ring_size) { 1658 kml->listener.log_sync_global = kvm_log_sync_global; 1659 } else { 1660 kml->listener.log_sync = kvm_log_sync; 1661 kml->listener.log_clear = kvm_log_clear; 1662 } 1663 1664 memory_listener_register(&kml->listener, as); 1665 1666 for (i = 0; i < s->nr_as; ++i) { 1667 if (!s->as[i].as) { 1668 s->as[i].as = as; 1669 s->as[i].ml = kml; 1670 break; 1671 } 1672 } 1673 } 1674 1675 static MemoryListener kvm_io_listener = { 1676 .name = "kvm-io", 1677 .eventfd_add = kvm_io_ioeventfd_add, 1678 .eventfd_del = kvm_io_ioeventfd_del, 1679 .priority = 10, 1680 }; 1681 1682 int kvm_set_irq(KVMState *s, int irq, int level) 1683 { 1684 struct kvm_irq_level event; 1685 int ret; 1686 1687 assert(kvm_async_interrupts_enabled()); 1688 1689 event.level = level; 1690 event.irq = irq; 1691 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1692 if (ret < 0) { 1693 perror("kvm_set_irq"); 1694 abort(); 1695 } 1696 1697 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1698 } 1699 1700 #ifdef KVM_CAP_IRQ_ROUTING 1701 typedef struct KVMMSIRoute { 1702 struct kvm_irq_routing_entry kroute; 1703 QTAILQ_ENTRY(KVMMSIRoute) entry; 1704 } KVMMSIRoute; 1705 1706 static void set_gsi(KVMState *s, unsigned int gsi) 1707 { 1708 set_bit(gsi, s->used_gsi_bitmap); 1709 } 1710 1711 static void clear_gsi(KVMState *s, unsigned int gsi) 1712 { 1713 clear_bit(gsi, s->used_gsi_bitmap); 1714 } 1715 1716 void kvm_init_irq_routing(KVMState *s) 1717 { 1718 int gsi_count, i; 1719 1720 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1721 if (gsi_count > 0) { 1722 /* Round up so we can search ints using ffs */ 1723 s->used_gsi_bitmap = bitmap_new(gsi_count); 1724 s->gsi_count = gsi_count; 1725 } 1726 1727 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1728 s->nr_allocated_irq_routes = 0; 1729 1730 if (!kvm_direct_msi_allowed) { 1731 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1732 QTAILQ_INIT(&s->msi_hashtab[i]); 1733 } 1734 } 1735 1736 kvm_arch_init_irq_routing(s); 1737 } 1738 1739 void kvm_irqchip_commit_routes(KVMState *s) 1740 { 1741 int ret; 1742 1743 if (kvm_gsi_direct_mapping()) { 1744 return; 1745 } 1746 1747 if (!kvm_gsi_routing_enabled()) { 1748 return; 1749 } 1750 1751 s->irq_routes->flags = 0; 1752 trace_kvm_irqchip_commit_routes(); 1753 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1754 assert(ret == 0); 1755 } 1756 1757 static void kvm_add_routing_entry(KVMState *s, 1758 struct kvm_irq_routing_entry *entry) 1759 { 1760 struct kvm_irq_routing_entry *new; 1761 int n, size; 1762 1763 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1764 n = s->nr_allocated_irq_routes * 2; 1765 if (n < 64) { 1766 n = 64; 1767 } 1768 size = sizeof(struct kvm_irq_routing); 1769 size += n * sizeof(*new); 1770 s->irq_routes = g_realloc(s->irq_routes, size); 1771 s->nr_allocated_irq_routes = n; 1772 } 1773 n = s->irq_routes->nr++; 1774 new = &s->irq_routes->entries[n]; 1775 1776 *new = *entry; 1777 1778 set_gsi(s, entry->gsi); 1779 } 1780 1781 static int kvm_update_routing_entry(KVMState *s, 1782 struct kvm_irq_routing_entry *new_entry) 1783 { 1784 struct kvm_irq_routing_entry *entry; 1785 int n; 1786 1787 for (n = 0; n < s->irq_routes->nr; n++) { 1788 entry = &s->irq_routes->entries[n]; 1789 if (entry->gsi != new_entry->gsi) { 1790 continue; 1791 } 1792 1793 if(!memcmp(entry, new_entry, sizeof *entry)) { 1794 return 0; 1795 } 1796 1797 *entry = *new_entry; 1798 1799 return 0; 1800 } 1801 1802 return -ESRCH; 1803 } 1804 1805 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1806 { 1807 struct kvm_irq_routing_entry e = {}; 1808 1809 assert(pin < s->gsi_count); 1810 1811 e.gsi = irq; 1812 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1813 e.flags = 0; 1814 e.u.irqchip.irqchip = irqchip; 1815 e.u.irqchip.pin = pin; 1816 kvm_add_routing_entry(s, &e); 1817 } 1818 1819 void kvm_irqchip_release_virq(KVMState *s, int virq) 1820 { 1821 struct kvm_irq_routing_entry *e; 1822 int i; 1823 1824 if (kvm_gsi_direct_mapping()) { 1825 return; 1826 } 1827 1828 for (i = 0; i < s->irq_routes->nr; i++) { 1829 e = &s->irq_routes->entries[i]; 1830 if (e->gsi == virq) { 1831 s->irq_routes->nr--; 1832 *e = s->irq_routes->entries[s->irq_routes->nr]; 1833 } 1834 } 1835 clear_gsi(s, virq); 1836 kvm_arch_release_virq_post(virq); 1837 trace_kvm_irqchip_release_virq(virq); 1838 } 1839 1840 void kvm_irqchip_add_change_notifier(Notifier *n) 1841 { 1842 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1843 } 1844 1845 void kvm_irqchip_remove_change_notifier(Notifier *n) 1846 { 1847 notifier_remove(n); 1848 } 1849 1850 void kvm_irqchip_change_notify(void) 1851 { 1852 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1853 } 1854 1855 static unsigned int kvm_hash_msi(uint32_t data) 1856 { 1857 /* This is optimized for IA32 MSI layout. However, no other arch shall 1858 * repeat the mistake of not providing a direct MSI injection API. */ 1859 return data & 0xff; 1860 } 1861 1862 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1863 { 1864 KVMMSIRoute *route, *next; 1865 unsigned int hash; 1866 1867 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1868 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1869 kvm_irqchip_release_virq(s, route->kroute.gsi); 1870 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1871 g_free(route); 1872 } 1873 } 1874 } 1875 1876 static int kvm_irqchip_get_virq(KVMState *s) 1877 { 1878 int next_virq; 1879 1880 /* 1881 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1882 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1883 * number can succeed even though a new route entry cannot be added. 1884 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1885 */ 1886 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1887 kvm_flush_dynamic_msi_routes(s); 1888 } 1889 1890 /* Return the lowest unused GSI in the bitmap */ 1891 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1892 if (next_virq >= s->gsi_count) { 1893 return -ENOSPC; 1894 } else { 1895 return next_virq; 1896 } 1897 } 1898 1899 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1900 { 1901 unsigned int hash = kvm_hash_msi(msg.data); 1902 KVMMSIRoute *route; 1903 1904 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1905 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1906 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1907 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1908 return route; 1909 } 1910 } 1911 return NULL; 1912 } 1913 1914 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1915 { 1916 struct kvm_msi msi; 1917 KVMMSIRoute *route; 1918 1919 if (kvm_direct_msi_allowed) { 1920 msi.address_lo = (uint32_t)msg.address; 1921 msi.address_hi = msg.address >> 32; 1922 msi.data = le32_to_cpu(msg.data); 1923 msi.flags = 0; 1924 memset(msi.pad, 0, sizeof(msi.pad)); 1925 1926 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1927 } 1928 1929 route = kvm_lookup_msi_route(s, msg); 1930 if (!route) { 1931 int virq; 1932 1933 virq = kvm_irqchip_get_virq(s); 1934 if (virq < 0) { 1935 return virq; 1936 } 1937 1938 route = g_malloc0(sizeof(KVMMSIRoute)); 1939 route->kroute.gsi = virq; 1940 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1941 route->kroute.flags = 0; 1942 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1943 route->kroute.u.msi.address_hi = msg.address >> 32; 1944 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1945 1946 kvm_add_routing_entry(s, &route->kroute); 1947 kvm_irqchip_commit_routes(s); 1948 1949 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1950 entry); 1951 } 1952 1953 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1954 1955 return kvm_set_irq(s, route->kroute.gsi, 1); 1956 } 1957 1958 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1959 { 1960 struct kvm_irq_routing_entry kroute = {}; 1961 int virq; 1962 MSIMessage msg = {0, 0}; 1963 1964 if (pci_available && dev) { 1965 msg = pci_get_msi_message(dev, vector); 1966 } 1967 1968 if (kvm_gsi_direct_mapping()) { 1969 return kvm_arch_msi_data_to_gsi(msg.data); 1970 } 1971 1972 if (!kvm_gsi_routing_enabled()) { 1973 return -ENOSYS; 1974 } 1975 1976 virq = kvm_irqchip_get_virq(s); 1977 if (virq < 0) { 1978 return virq; 1979 } 1980 1981 kroute.gsi = virq; 1982 kroute.type = KVM_IRQ_ROUTING_MSI; 1983 kroute.flags = 0; 1984 kroute.u.msi.address_lo = (uint32_t)msg.address; 1985 kroute.u.msi.address_hi = msg.address >> 32; 1986 kroute.u.msi.data = le32_to_cpu(msg.data); 1987 if (pci_available && kvm_msi_devid_required()) { 1988 kroute.flags = KVM_MSI_VALID_DEVID; 1989 kroute.u.msi.devid = pci_requester_id(dev); 1990 } 1991 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1992 kvm_irqchip_release_virq(s, virq); 1993 return -EINVAL; 1994 } 1995 1996 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1997 vector, virq); 1998 1999 kvm_add_routing_entry(s, &kroute); 2000 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2001 kvm_irqchip_commit_routes(s); 2002 2003 return virq; 2004 } 2005 2006 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2007 PCIDevice *dev) 2008 { 2009 struct kvm_irq_routing_entry kroute = {}; 2010 2011 if (kvm_gsi_direct_mapping()) { 2012 return 0; 2013 } 2014 2015 if (!kvm_irqchip_in_kernel()) { 2016 return -ENOSYS; 2017 } 2018 2019 kroute.gsi = virq; 2020 kroute.type = KVM_IRQ_ROUTING_MSI; 2021 kroute.flags = 0; 2022 kroute.u.msi.address_lo = (uint32_t)msg.address; 2023 kroute.u.msi.address_hi = msg.address >> 32; 2024 kroute.u.msi.data = le32_to_cpu(msg.data); 2025 if (pci_available && kvm_msi_devid_required()) { 2026 kroute.flags = KVM_MSI_VALID_DEVID; 2027 kroute.u.msi.devid = pci_requester_id(dev); 2028 } 2029 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2030 return -EINVAL; 2031 } 2032 2033 trace_kvm_irqchip_update_msi_route(virq); 2034 2035 return kvm_update_routing_entry(s, &kroute); 2036 } 2037 2038 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2039 EventNotifier *resample, int virq, 2040 bool assign) 2041 { 2042 int fd = event_notifier_get_fd(event); 2043 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2044 2045 struct kvm_irqfd irqfd = { 2046 .fd = fd, 2047 .gsi = virq, 2048 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2049 }; 2050 2051 if (rfd != -1) { 2052 assert(assign); 2053 if (kvm_irqchip_is_split()) { 2054 /* 2055 * When the slow irqchip (e.g. IOAPIC) is in the 2056 * userspace, KVM kernel resamplefd will not work because 2057 * the EOI of the interrupt will be delivered to userspace 2058 * instead, so the KVM kernel resamplefd kick will be 2059 * skipped. The userspace here mimics what the kernel 2060 * provides with resamplefd, remember the resamplefd and 2061 * kick it when we receive EOI of this IRQ. 2062 * 2063 * This is hackery because IOAPIC is mostly bypassed 2064 * (except EOI broadcasts) when irqfd is used. However 2065 * this can bring much performance back for split irqchip 2066 * with INTx IRQs (for VFIO, this gives 93% perf of the 2067 * full fast path, which is 46% perf boost comparing to 2068 * the INTx slow path). 2069 */ 2070 kvm_resample_fd_insert(virq, resample); 2071 } else { 2072 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2073 irqfd.resamplefd = rfd; 2074 } 2075 } else if (!assign) { 2076 if (kvm_irqchip_is_split()) { 2077 kvm_resample_fd_remove(virq); 2078 } 2079 } 2080 2081 if (!kvm_irqfds_enabled()) { 2082 return -ENOSYS; 2083 } 2084 2085 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2086 } 2087 2088 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2089 { 2090 struct kvm_irq_routing_entry kroute = {}; 2091 int virq; 2092 2093 if (!kvm_gsi_routing_enabled()) { 2094 return -ENOSYS; 2095 } 2096 2097 virq = kvm_irqchip_get_virq(s); 2098 if (virq < 0) { 2099 return virq; 2100 } 2101 2102 kroute.gsi = virq; 2103 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2104 kroute.flags = 0; 2105 kroute.u.adapter.summary_addr = adapter->summary_addr; 2106 kroute.u.adapter.ind_addr = adapter->ind_addr; 2107 kroute.u.adapter.summary_offset = adapter->summary_offset; 2108 kroute.u.adapter.ind_offset = adapter->ind_offset; 2109 kroute.u.adapter.adapter_id = adapter->adapter_id; 2110 2111 kvm_add_routing_entry(s, &kroute); 2112 2113 return virq; 2114 } 2115 2116 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2117 { 2118 struct kvm_irq_routing_entry kroute = {}; 2119 int virq; 2120 2121 if (!kvm_gsi_routing_enabled()) { 2122 return -ENOSYS; 2123 } 2124 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2125 return -ENOSYS; 2126 } 2127 virq = kvm_irqchip_get_virq(s); 2128 if (virq < 0) { 2129 return virq; 2130 } 2131 2132 kroute.gsi = virq; 2133 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2134 kroute.flags = 0; 2135 kroute.u.hv_sint.vcpu = vcpu; 2136 kroute.u.hv_sint.sint = sint; 2137 2138 kvm_add_routing_entry(s, &kroute); 2139 kvm_irqchip_commit_routes(s); 2140 2141 return virq; 2142 } 2143 2144 #else /* !KVM_CAP_IRQ_ROUTING */ 2145 2146 void kvm_init_irq_routing(KVMState *s) 2147 { 2148 } 2149 2150 void kvm_irqchip_release_virq(KVMState *s, int virq) 2151 { 2152 } 2153 2154 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2155 { 2156 abort(); 2157 } 2158 2159 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 2160 { 2161 return -ENOSYS; 2162 } 2163 2164 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2165 { 2166 return -ENOSYS; 2167 } 2168 2169 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2170 { 2171 return -ENOSYS; 2172 } 2173 2174 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2175 EventNotifier *resample, int virq, 2176 bool assign) 2177 { 2178 abort(); 2179 } 2180 2181 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2182 { 2183 return -ENOSYS; 2184 } 2185 #endif /* !KVM_CAP_IRQ_ROUTING */ 2186 2187 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2188 EventNotifier *rn, int virq) 2189 { 2190 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2191 } 2192 2193 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2194 int virq) 2195 { 2196 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2197 } 2198 2199 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2200 EventNotifier *rn, qemu_irq irq) 2201 { 2202 gpointer key, gsi; 2203 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2204 2205 if (!found) { 2206 return -ENXIO; 2207 } 2208 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2209 } 2210 2211 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2212 qemu_irq irq) 2213 { 2214 gpointer key, gsi; 2215 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2216 2217 if (!found) { 2218 return -ENXIO; 2219 } 2220 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2221 } 2222 2223 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2224 { 2225 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2226 } 2227 2228 static void kvm_irqchip_create(KVMState *s) 2229 { 2230 int ret; 2231 2232 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2233 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2234 ; 2235 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2236 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2237 if (ret < 0) { 2238 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2239 exit(1); 2240 } 2241 } else { 2242 return; 2243 } 2244 2245 /* First probe and see if there's a arch-specific hook to create the 2246 * in-kernel irqchip for us */ 2247 ret = kvm_arch_irqchip_create(s); 2248 if (ret == 0) { 2249 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2250 perror("Split IRQ chip mode not supported."); 2251 exit(1); 2252 } else { 2253 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2254 } 2255 } 2256 if (ret < 0) { 2257 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2258 exit(1); 2259 } 2260 2261 kvm_kernel_irqchip = true; 2262 /* If we have an in-kernel IRQ chip then we must have asynchronous 2263 * interrupt delivery (though the reverse is not necessarily true) 2264 */ 2265 kvm_async_interrupts_allowed = true; 2266 kvm_halt_in_kernel_allowed = true; 2267 2268 kvm_init_irq_routing(s); 2269 2270 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2271 } 2272 2273 /* Find number of supported CPUs using the recommended 2274 * procedure from the kernel API documentation to cope with 2275 * older kernels that may be missing capabilities. 2276 */ 2277 static int kvm_recommended_vcpus(KVMState *s) 2278 { 2279 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2280 return (ret) ? ret : 4; 2281 } 2282 2283 static int kvm_max_vcpus(KVMState *s) 2284 { 2285 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2286 return (ret) ? ret : kvm_recommended_vcpus(s); 2287 } 2288 2289 static int kvm_max_vcpu_id(KVMState *s) 2290 { 2291 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2292 return (ret) ? ret : kvm_max_vcpus(s); 2293 } 2294 2295 bool kvm_vcpu_id_is_valid(int vcpu_id) 2296 { 2297 KVMState *s = KVM_STATE(current_accel()); 2298 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2299 } 2300 2301 bool kvm_dirty_ring_enabled(void) 2302 { 2303 return kvm_state->kvm_dirty_ring_size ? true : false; 2304 } 2305 2306 static int kvm_init(MachineState *ms) 2307 { 2308 MachineClass *mc = MACHINE_GET_CLASS(ms); 2309 static const char upgrade_note[] = 2310 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2311 "(see http://sourceforge.net/projects/kvm).\n"; 2312 struct { 2313 const char *name; 2314 int num; 2315 } num_cpus[] = { 2316 { "SMP", ms->smp.cpus }, 2317 { "hotpluggable", ms->smp.max_cpus }, 2318 { NULL, } 2319 }, *nc = num_cpus; 2320 int soft_vcpus_limit, hard_vcpus_limit; 2321 KVMState *s; 2322 const KVMCapabilityInfo *missing_cap; 2323 int ret; 2324 int type = 0; 2325 uint64_t dirty_log_manual_caps; 2326 2327 qemu_mutex_init(&kml_slots_lock); 2328 2329 s = KVM_STATE(ms->accelerator); 2330 2331 /* 2332 * On systems where the kernel can support different base page 2333 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2334 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2335 * page size for the system though. 2336 */ 2337 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2338 2339 s->sigmask_len = 8; 2340 2341 #ifdef KVM_CAP_SET_GUEST_DEBUG 2342 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2343 #endif 2344 QLIST_INIT(&s->kvm_parked_vcpus); 2345 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2346 if (s->fd == -1) { 2347 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2348 ret = -errno; 2349 goto err; 2350 } 2351 2352 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2353 if (ret < KVM_API_VERSION) { 2354 if (ret >= 0) { 2355 ret = -EINVAL; 2356 } 2357 fprintf(stderr, "kvm version too old\n"); 2358 goto err; 2359 } 2360 2361 if (ret > KVM_API_VERSION) { 2362 ret = -EINVAL; 2363 fprintf(stderr, "kvm version not supported\n"); 2364 goto err; 2365 } 2366 2367 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2368 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2369 2370 /* If unspecified, use the default value */ 2371 if (!s->nr_slots) { 2372 s->nr_slots = 32; 2373 } 2374 2375 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2376 if (s->nr_as <= 1) { 2377 s->nr_as = 1; 2378 } 2379 s->as = g_new0(struct KVMAs, s->nr_as); 2380 2381 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2382 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2383 "kvm-type", 2384 &error_abort); 2385 type = mc->kvm_type(ms, kvm_type); 2386 } else if (mc->kvm_type) { 2387 type = mc->kvm_type(ms, NULL); 2388 } 2389 2390 do { 2391 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2392 } while (ret == -EINTR); 2393 2394 if (ret < 0) { 2395 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2396 strerror(-ret)); 2397 2398 #ifdef TARGET_S390X 2399 if (ret == -EINVAL) { 2400 fprintf(stderr, 2401 "Host kernel setup problem detected. Please verify:\n"); 2402 fprintf(stderr, "- for kernels supporting the switch_amode or" 2403 " user_mode parameters, whether\n"); 2404 fprintf(stderr, 2405 " user space is running in primary address space\n"); 2406 fprintf(stderr, 2407 "- for kernels supporting the vm.allocate_pgste sysctl, " 2408 "whether it is enabled\n"); 2409 } 2410 #elif defined(TARGET_PPC) 2411 if (ret == -EINVAL) { 2412 fprintf(stderr, 2413 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2414 (type == 2) ? "pr" : "hv"); 2415 } 2416 #endif 2417 goto err; 2418 } 2419 2420 s->vmfd = ret; 2421 2422 /* check the vcpu limits */ 2423 soft_vcpus_limit = kvm_recommended_vcpus(s); 2424 hard_vcpus_limit = kvm_max_vcpus(s); 2425 2426 while (nc->name) { 2427 if (nc->num > soft_vcpus_limit) { 2428 warn_report("Number of %s cpus requested (%d) exceeds " 2429 "the recommended cpus supported by KVM (%d)", 2430 nc->name, nc->num, soft_vcpus_limit); 2431 2432 if (nc->num > hard_vcpus_limit) { 2433 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2434 "the maximum cpus supported by KVM (%d)\n", 2435 nc->name, nc->num, hard_vcpus_limit); 2436 exit(1); 2437 } 2438 } 2439 nc++; 2440 } 2441 2442 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2443 if (!missing_cap) { 2444 missing_cap = 2445 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2446 } 2447 if (missing_cap) { 2448 ret = -EINVAL; 2449 fprintf(stderr, "kvm does not support %s\n%s", 2450 missing_cap->name, upgrade_note); 2451 goto err; 2452 } 2453 2454 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2455 s->coalesced_pio = s->coalesced_mmio && 2456 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2457 2458 /* 2459 * Enable KVM dirty ring if supported, otherwise fall back to 2460 * dirty logging mode 2461 */ 2462 if (s->kvm_dirty_ring_size > 0) { 2463 uint64_t ring_bytes; 2464 2465 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn); 2466 2467 /* Read the max supported pages */ 2468 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING); 2469 if (ret > 0) { 2470 if (ring_bytes > ret) { 2471 error_report("KVM dirty ring size %" PRIu32 " too big " 2472 "(maximum is %ld). Please use a smaller value.", 2473 s->kvm_dirty_ring_size, 2474 (long)ret / sizeof(struct kvm_dirty_gfn)); 2475 ret = -EINVAL; 2476 goto err; 2477 } 2478 2479 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes); 2480 if (ret) { 2481 error_report("Enabling of KVM dirty ring failed: %s. " 2482 "Suggested minimum value is 1024.", strerror(-ret)); 2483 goto err; 2484 } 2485 2486 s->kvm_dirty_ring_bytes = ring_bytes; 2487 } else { 2488 warn_report("KVM dirty ring not available, using bitmap method"); 2489 s->kvm_dirty_ring_size = 0; 2490 } 2491 } 2492 2493 /* 2494 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2495 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2496 * page is wr-protected initially, which is against how kvm dirty ring is 2497 * usage - kvm dirty ring requires all pages are wr-protected at the very 2498 * beginning. Enabling this feature for dirty ring causes data corruption. 2499 * 2500 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2501 * we may expect a higher stall time when starting the migration. In the 2502 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2503 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2504 * guest pages. 2505 */ 2506 if (!s->kvm_dirty_ring_size) { 2507 dirty_log_manual_caps = 2508 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2509 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2510 KVM_DIRTY_LOG_INITIALLY_SET); 2511 s->manual_dirty_log_protect = dirty_log_manual_caps; 2512 if (dirty_log_manual_caps) { 2513 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2514 dirty_log_manual_caps); 2515 if (ret) { 2516 warn_report("Trying to enable capability %"PRIu64" of " 2517 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2518 "Falling back to the legacy mode. ", 2519 dirty_log_manual_caps); 2520 s->manual_dirty_log_protect = 0; 2521 } 2522 } 2523 } 2524 2525 #ifdef KVM_CAP_VCPU_EVENTS 2526 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2527 #endif 2528 2529 s->robust_singlestep = 2530 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2531 2532 #ifdef KVM_CAP_DEBUGREGS 2533 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2534 #endif 2535 2536 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2537 2538 #ifdef KVM_CAP_IRQ_ROUTING 2539 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2540 #endif 2541 2542 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2543 2544 s->irq_set_ioctl = KVM_IRQ_LINE; 2545 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2546 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2547 } 2548 2549 kvm_readonly_mem_allowed = 2550 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2551 2552 kvm_eventfds_allowed = 2553 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2554 2555 kvm_irqfds_allowed = 2556 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2557 2558 kvm_resamplefds_allowed = 2559 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2560 2561 kvm_vm_attributes_allowed = 2562 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2563 2564 kvm_ioeventfd_any_length_allowed = 2565 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2566 2567 kvm_state = s; 2568 2569 ret = kvm_arch_init(ms, s); 2570 if (ret < 0) { 2571 goto err; 2572 } 2573 2574 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2575 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2576 } 2577 2578 qemu_register_reset(kvm_unpoison_all, NULL); 2579 2580 if (s->kernel_irqchip_allowed) { 2581 kvm_irqchip_create(s); 2582 } 2583 2584 if (kvm_eventfds_allowed) { 2585 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2586 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2587 } 2588 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2589 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2590 2591 kvm_memory_listener_register(s, &s->memory_listener, 2592 &address_space_memory, 0, "kvm-memory"); 2593 if (kvm_eventfds_allowed) { 2594 memory_listener_register(&kvm_io_listener, 2595 &address_space_io); 2596 } 2597 memory_listener_register(&kvm_coalesced_pio_listener, 2598 &address_space_io); 2599 2600 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2601 2602 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2603 if (!s->sync_mmu) { 2604 ret = ram_block_discard_disable(true); 2605 assert(!ret); 2606 } 2607 2608 if (s->kvm_dirty_ring_size) { 2609 ret = kvm_dirty_ring_reaper_init(s); 2610 if (ret) { 2611 goto err; 2612 } 2613 } 2614 2615 return 0; 2616 2617 err: 2618 assert(ret < 0); 2619 if (s->vmfd >= 0) { 2620 close(s->vmfd); 2621 } 2622 if (s->fd != -1) { 2623 close(s->fd); 2624 } 2625 g_free(s->memory_listener.slots); 2626 2627 return ret; 2628 } 2629 2630 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2631 { 2632 s->sigmask_len = sigmask_len; 2633 } 2634 2635 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2636 int size, uint32_t count) 2637 { 2638 int i; 2639 uint8_t *ptr = data; 2640 2641 for (i = 0; i < count; i++) { 2642 address_space_rw(&address_space_io, port, attrs, 2643 ptr, size, 2644 direction == KVM_EXIT_IO_OUT); 2645 ptr += size; 2646 } 2647 } 2648 2649 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2650 { 2651 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2652 run->internal.suberror); 2653 2654 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2655 int i; 2656 2657 for (i = 0; i < run->internal.ndata; ++i) { 2658 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2659 i, (uint64_t)run->internal.data[i]); 2660 } 2661 } 2662 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2663 fprintf(stderr, "emulation failure\n"); 2664 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2665 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2666 return EXCP_INTERRUPT; 2667 } 2668 } 2669 /* FIXME: Should trigger a qmp message to let management know 2670 * something went wrong. 2671 */ 2672 return -1; 2673 } 2674 2675 void kvm_flush_coalesced_mmio_buffer(void) 2676 { 2677 KVMState *s = kvm_state; 2678 2679 if (s->coalesced_flush_in_progress) { 2680 return; 2681 } 2682 2683 s->coalesced_flush_in_progress = true; 2684 2685 if (s->coalesced_mmio_ring) { 2686 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2687 while (ring->first != ring->last) { 2688 struct kvm_coalesced_mmio *ent; 2689 2690 ent = &ring->coalesced_mmio[ring->first]; 2691 2692 if (ent->pio == 1) { 2693 address_space_write(&address_space_io, ent->phys_addr, 2694 MEMTXATTRS_UNSPECIFIED, ent->data, 2695 ent->len); 2696 } else { 2697 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2698 } 2699 smp_wmb(); 2700 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2701 } 2702 } 2703 2704 s->coalesced_flush_in_progress = false; 2705 } 2706 2707 bool kvm_cpu_check_are_resettable(void) 2708 { 2709 return kvm_arch_cpu_check_are_resettable(); 2710 } 2711 2712 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2713 { 2714 if (!cpu->vcpu_dirty) { 2715 kvm_arch_get_registers(cpu); 2716 cpu->vcpu_dirty = true; 2717 } 2718 } 2719 2720 void kvm_cpu_synchronize_state(CPUState *cpu) 2721 { 2722 if (!cpu->vcpu_dirty) { 2723 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2724 } 2725 } 2726 2727 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2728 { 2729 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2730 cpu->vcpu_dirty = false; 2731 } 2732 2733 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2734 { 2735 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2736 } 2737 2738 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2739 { 2740 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2741 cpu->vcpu_dirty = false; 2742 } 2743 2744 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2745 { 2746 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2747 } 2748 2749 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2750 { 2751 cpu->vcpu_dirty = true; 2752 } 2753 2754 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2755 { 2756 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2757 } 2758 2759 #ifdef KVM_HAVE_MCE_INJECTION 2760 static __thread void *pending_sigbus_addr; 2761 static __thread int pending_sigbus_code; 2762 static __thread bool have_sigbus_pending; 2763 #endif 2764 2765 static void kvm_cpu_kick(CPUState *cpu) 2766 { 2767 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2768 } 2769 2770 static void kvm_cpu_kick_self(void) 2771 { 2772 if (kvm_immediate_exit) { 2773 kvm_cpu_kick(current_cpu); 2774 } else { 2775 qemu_cpu_kick_self(); 2776 } 2777 } 2778 2779 static void kvm_eat_signals(CPUState *cpu) 2780 { 2781 struct timespec ts = { 0, 0 }; 2782 siginfo_t siginfo; 2783 sigset_t waitset; 2784 sigset_t chkset; 2785 int r; 2786 2787 if (kvm_immediate_exit) { 2788 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2789 /* Write kvm_run->immediate_exit before the cpu->exit_request 2790 * write in kvm_cpu_exec. 2791 */ 2792 smp_wmb(); 2793 return; 2794 } 2795 2796 sigemptyset(&waitset); 2797 sigaddset(&waitset, SIG_IPI); 2798 2799 do { 2800 r = sigtimedwait(&waitset, &siginfo, &ts); 2801 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2802 perror("sigtimedwait"); 2803 exit(1); 2804 } 2805 2806 r = sigpending(&chkset); 2807 if (r == -1) { 2808 perror("sigpending"); 2809 exit(1); 2810 } 2811 } while (sigismember(&chkset, SIG_IPI)); 2812 } 2813 2814 int kvm_cpu_exec(CPUState *cpu) 2815 { 2816 struct kvm_run *run = cpu->kvm_run; 2817 int ret, run_ret; 2818 2819 DPRINTF("kvm_cpu_exec()\n"); 2820 2821 if (kvm_arch_process_async_events(cpu)) { 2822 qatomic_set(&cpu->exit_request, 0); 2823 return EXCP_HLT; 2824 } 2825 2826 qemu_mutex_unlock_iothread(); 2827 cpu_exec_start(cpu); 2828 2829 do { 2830 MemTxAttrs attrs; 2831 2832 if (cpu->vcpu_dirty) { 2833 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2834 cpu->vcpu_dirty = false; 2835 } 2836 2837 kvm_arch_pre_run(cpu, run); 2838 if (qatomic_read(&cpu->exit_request)) { 2839 DPRINTF("interrupt exit requested\n"); 2840 /* 2841 * KVM requires us to reenter the kernel after IO exits to complete 2842 * instruction emulation. This self-signal will ensure that we 2843 * leave ASAP again. 2844 */ 2845 kvm_cpu_kick_self(); 2846 } 2847 2848 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2849 * Matching barrier in kvm_eat_signals. 2850 */ 2851 smp_rmb(); 2852 2853 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2854 2855 attrs = kvm_arch_post_run(cpu, run); 2856 2857 #ifdef KVM_HAVE_MCE_INJECTION 2858 if (unlikely(have_sigbus_pending)) { 2859 qemu_mutex_lock_iothread(); 2860 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2861 pending_sigbus_addr); 2862 have_sigbus_pending = false; 2863 qemu_mutex_unlock_iothread(); 2864 } 2865 #endif 2866 2867 if (run_ret < 0) { 2868 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2869 DPRINTF("io window exit\n"); 2870 kvm_eat_signals(cpu); 2871 ret = EXCP_INTERRUPT; 2872 break; 2873 } 2874 fprintf(stderr, "error: kvm run failed %s\n", 2875 strerror(-run_ret)); 2876 #ifdef TARGET_PPC 2877 if (run_ret == -EBUSY) { 2878 fprintf(stderr, 2879 "This is probably because your SMT is enabled.\n" 2880 "VCPU can only run on primary threads with all " 2881 "secondary threads offline.\n"); 2882 } 2883 #endif 2884 ret = -1; 2885 break; 2886 } 2887 2888 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2889 switch (run->exit_reason) { 2890 case KVM_EXIT_IO: 2891 DPRINTF("handle_io\n"); 2892 /* Called outside BQL */ 2893 kvm_handle_io(run->io.port, attrs, 2894 (uint8_t *)run + run->io.data_offset, 2895 run->io.direction, 2896 run->io.size, 2897 run->io.count); 2898 ret = 0; 2899 break; 2900 case KVM_EXIT_MMIO: 2901 DPRINTF("handle_mmio\n"); 2902 /* Called outside BQL */ 2903 address_space_rw(&address_space_memory, 2904 run->mmio.phys_addr, attrs, 2905 run->mmio.data, 2906 run->mmio.len, 2907 run->mmio.is_write); 2908 ret = 0; 2909 break; 2910 case KVM_EXIT_IRQ_WINDOW_OPEN: 2911 DPRINTF("irq_window_open\n"); 2912 ret = EXCP_INTERRUPT; 2913 break; 2914 case KVM_EXIT_SHUTDOWN: 2915 DPRINTF("shutdown\n"); 2916 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2917 ret = EXCP_INTERRUPT; 2918 break; 2919 case KVM_EXIT_UNKNOWN: 2920 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2921 (uint64_t)run->hw.hardware_exit_reason); 2922 ret = -1; 2923 break; 2924 case KVM_EXIT_INTERNAL_ERROR: 2925 ret = kvm_handle_internal_error(cpu, run); 2926 break; 2927 case KVM_EXIT_DIRTY_RING_FULL: 2928 /* 2929 * We shouldn't continue if the dirty ring of this vcpu is 2930 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 2931 */ 2932 trace_kvm_dirty_ring_full(cpu->cpu_index); 2933 qemu_mutex_lock_iothread(); 2934 kvm_dirty_ring_reap(kvm_state); 2935 qemu_mutex_unlock_iothread(); 2936 ret = 0; 2937 break; 2938 case KVM_EXIT_SYSTEM_EVENT: 2939 switch (run->system_event.type) { 2940 case KVM_SYSTEM_EVENT_SHUTDOWN: 2941 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2942 ret = EXCP_INTERRUPT; 2943 break; 2944 case KVM_SYSTEM_EVENT_RESET: 2945 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2946 ret = EXCP_INTERRUPT; 2947 break; 2948 case KVM_SYSTEM_EVENT_CRASH: 2949 kvm_cpu_synchronize_state(cpu); 2950 qemu_mutex_lock_iothread(); 2951 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2952 qemu_mutex_unlock_iothread(); 2953 ret = 0; 2954 break; 2955 default: 2956 DPRINTF("kvm_arch_handle_exit\n"); 2957 ret = kvm_arch_handle_exit(cpu, run); 2958 break; 2959 } 2960 break; 2961 default: 2962 DPRINTF("kvm_arch_handle_exit\n"); 2963 ret = kvm_arch_handle_exit(cpu, run); 2964 break; 2965 } 2966 } while (ret == 0); 2967 2968 cpu_exec_end(cpu); 2969 qemu_mutex_lock_iothread(); 2970 2971 if (ret < 0) { 2972 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2973 vm_stop(RUN_STATE_INTERNAL_ERROR); 2974 } 2975 2976 qatomic_set(&cpu->exit_request, 0); 2977 return ret; 2978 } 2979 2980 int kvm_ioctl(KVMState *s, int type, ...) 2981 { 2982 int ret; 2983 void *arg; 2984 va_list ap; 2985 2986 va_start(ap, type); 2987 arg = va_arg(ap, void *); 2988 va_end(ap); 2989 2990 trace_kvm_ioctl(type, arg); 2991 ret = ioctl(s->fd, type, arg); 2992 if (ret == -1) { 2993 ret = -errno; 2994 } 2995 return ret; 2996 } 2997 2998 int kvm_vm_ioctl(KVMState *s, int type, ...) 2999 { 3000 int ret; 3001 void *arg; 3002 va_list ap; 3003 3004 va_start(ap, type); 3005 arg = va_arg(ap, void *); 3006 va_end(ap); 3007 3008 trace_kvm_vm_ioctl(type, arg); 3009 ret = ioctl(s->vmfd, type, arg); 3010 if (ret == -1) { 3011 ret = -errno; 3012 } 3013 return ret; 3014 } 3015 3016 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3017 { 3018 int ret; 3019 void *arg; 3020 va_list ap; 3021 3022 va_start(ap, type); 3023 arg = va_arg(ap, void *); 3024 va_end(ap); 3025 3026 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3027 ret = ioctl(cpu->kvm_fd, type, arg); 3028 if (ret == -1) { 3029 ret = -errno; 3030 } 3031 return ret; 3032 } 3033 3034 int kvm_device_ioctl(int fd, int type, ...) 3035 { 3036 int ret; 3037 void *arg; 3038 va_list ap; 3039 3040 va_start(ap, type); 3041 arg = va_arg(ap, void *); 3042 va_end(ap); 3043 3044 trace_kvm_device_ioctl(fd, type, arg); 3045 ret = ioctl(fd, type, arg); 3046 if (ret == -1) { 3047 ret = -errno; 3048 } 3049 return ret; 3050 } 3051 3052 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3053 { 3054 int ret; 3055 struct kvm_device_attr attribute = { 3056 .group = group, 3057 .attr = attr, 3058 }; 3059 3060 if (!kvm_vm_attributes_allowed) { 3061 return 0; 3062 } 3063 3064 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3065 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3066 return ret ? 0 : 1; 3067 } 3068 3069 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3070 { 3071 struct kvm_device_attr attribute = { 3072 .group = group, 3073 .attr = attr, 3074 .flags = 0, 3075 }; 3076 3077 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3078 } 3079 3080 int kvm_device_access(int fd, int group, uint64_t attr, 3081 void *val, bool write, Error **errp) 3082 { 3083 struct kvm_device_attr kvmattr; 3084 int err; 3085 3086 kvmattr.flags = 0; 3087 kvmattr.group = group; 3088 kvmattr.attr = attr; 3089 kvmattr.addr = (uintptr_t)val; 3090 3091 err = kvm_device_ioctl(fd, 3092 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3093 &kvmattr); 3094 if (err < 0) { 3095 error_setg_errno(errp, -err, 3096 "KVM_%s_DEVICE_ATTR failed: Group %d " 3097 "attr 0x%016" PRIx64, 3098 write ? "SET" : "GET", group, attr); 3099 } 3100 return err; 3101 } 3102 3103 bool kvm_has_sync_mmu(void) 3104 { 3105 return kvm_state->sync_mmu; 3106 } 3107 3108 int kvm_has_vcpu_events(void) 3109 { 3110 return kvm_state->vcpu_events; 3111 } 3112 3113 int kvm_has_robust_singlestep(void) 3114 { 3115 return kvm_state->robust_singlestep; 3116 } 3117 3118 int kvm_has_debugregs(void) 3119 { 3120 return kvm_state->debugregs; 3121 } 3122 3123 int kvm_max_nested_state_length(void) 3124 { 3125 return kvm_state->max_nested_state_len; 3126 } 3127 3128 int kvm_has_many_ioeventfds(void) 3129 { 3130 if (!kvm_enabled()) { 3131 return 0; 3132 } 3133 return kvm_state->many_ioeventfds; 3134 } 3135 3136 int kvm_has_gsi_routing(void) 3137 { 3138 #ifdef KVM_CAP_IRQ_ROUTING 3139 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3140 #else 3141 return false; 3142 #endif 3143 } 3144 3145 int kvm_has_intx_set_mask(void) 3146 { 3147 return kvm_state->intx_set_mask; 3148 } 3149 3150 bool kvm_arm_supports_user_irq(void) 3151 { 3152 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3153 } 3154 3155 #ifdef KVM_CAP_SET_GUEST_DEBUG 3156 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3157 target_ulong pc) 3158 { 3159 struct kvm_sw_breakpoint *bp; 3160 3161 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3162 if (bp->pc == pc) { 3163 return bp; 3164 } 3165 } 3166 return NULL; 3167 } 3168 3169 int kvm_sw_breakpoints_active(CPUState *cpu) 3170 { 3171 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3172 } 3173 3174 struct kvm_set_guest_debug_data { 3175 struct kvm_guest_debug dbg; 3176 int err; 3177 }; 3178 3179 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3180 { 3181 struct kvm_set_guest_debug_data *dbg_data = 3182 (struct kvm_set_guest_debug_data *) data.host_ptr; 3183 3184 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3185 &dbg_data->dbg); 3186 } 3187 3188 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3189 { 3190 struct kvm_set_guest_debug_data data; 3191 3192 data.dbg.control = reinject_trap; 3193 3194 if (cpu->singlestep_enabled) { 3195 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3196 } 3197 kvm_arch_update_guest_debug(cpu, &data.dbg); 3198 3199 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3200 RUN_ON_CPU_HOST_PTR(&data)); 3201 return data.err; 3202 } 3203 3204 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 3205 target_ulong len, int type) 3206 { 3207 struct kvm_sw_breakpoint *bp; 3208 int err; 3209 3210 if (type == GDB_BREAKPOINT_SW) { 3211 bp = kvm_find_sw_breakpoint(cpu, addr); 3212 if (bp) { 3213 bp->use_count++; 3214 return 0; 3215 } 3216 3217 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 3218 bp->pc = addr; 3219 bp->use_count = 1; 3220 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3221 if (err) { 3222 g_free(bp); 3223 return err; 3224 } 3225 3226 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3227 } else { 3228 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3229 if (err) { 3230 return err; 3231 } 3232 } 3233 3234 CPU_FOREACH(cpu) { 3235 err = kvm_update_guest_debug(cpu, 0); 3236 if (err) { 3237 return err; 3238 } 3239 } 3240 return 0; 3241 } 3242 3243 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 3244 target_ulong len, int type) 3245 { 3246 struct kvm_sw_breakpoint *bp; 3247 int err; 3248 3249 if (type == GDB_BREAKPOINT_SW) { 3250 bp = kvm_find_sw_breakpoint(cpu, addr); 3251 if (!bp) { 3252 return -ENOENT; 3253 } 3254 3255 if (bp->use_count > 1) { 3256 bp->use_count--; 3257 return 0; 3258 } 3259 3260 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3261 if (err) { 3262 return err; 3263 } 3264 3265 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3266 g_free(bp); 3267 } else { 3268 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3269 if (err) { 3270 return err; 3271 } 3272 } 3273 3274 CPU_FOREACH(cpu) { 3275 err = kvm_update_guest_debug(cpu, 0); 3276 if (err) { 3277 return err; 3278 } 3279 } 3280 return 0; 3281 } 3282 3283 void kvm_remove_all_breakpoints(CPUState *cpu) 3284 { 3285 struct kvm_sw_breakpoint *bp, *next; 3286 KVMState *s = cpu->kvm_state; 3287 CPUState *tmpcpu; 3288 3289 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3290 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3291 /* Try harder to find a CPU that currently sees the breakpoint. */ 3292 CPU_FOREACH(tmpcpu) { 3293 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3294 break; 3295 } 3296 } 3297 } 3298 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3299 g_free(bp); 3300 } 3301 kvm_arch_remove_all_hw_breakpoints(); 3302 3303 CPU_FOREACH(cpu) { 3304 kvm_update_guest_debug(cpu, 0); 3305 } 3306 } 3307 3308 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 3309 3310 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3311 { 3312 return -EINVAL; 3313 } 3314 3315 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 3316 target_ulong len, int type) 3317 { 3318 return -EINVAL; 3319 } 3320 3321 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 3322 target_ulong len, int type) 3323 { 3324 return -EINVAL; 3325 } 3326 3327 void kvm_remove_all_breakpoints(CPUState *cpu) 3328 { 3329 } 3330 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3331 3332 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3333 { 3334 KVMState *s = kvm_state; 3335 struct kvm_signal_mask *sigmask; 3336 int r; 3337 3338 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3339 3340 sigmask->len = s->sigmask_len; 3341 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3342 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3343 g_free(sigmask); 3344 3345 return r; 3346 } 3347 3348 static void kvm_ipi_signal(int sig) 3349 { 3350 if (current_cpu) { 3351 assert(kvm_immediate_exit); 3352 kvm_cpu_kick(current_cpu); 3353 } 3354 } 3355 3356 void kvm_init_cpu_signals(CPUState *cpu) 3357 { 3358 int r; 3359 sigset_t set; 3360 struct sigaction sigact; 3361 3362 memset(&sigact, 0, sizeof(sigact)); 3363 sigact.sa_handler = kvm_ipi_signal; 3364 sigaction(SIG_IPI, &sigact, NULL); 3365 3366 pthread_sigmask(SIG_BLOCK, NULL, &set); 3367 #if defined KVM_HAVE_MCE_INJECTION 3368 sigdelset(&set, SIGBUS); 3369 pthread_sigmask(SIG_SETMASK, &set, NULL); 3370 #endif 3371 sigdelset(&set, SIG_IPI); 3372 if (kvm_immediate_exit) { 3373 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3374 } else { 3375 r = kvm_set_signal_mask(cpu, &set); 3376 } 3377 if (r) { 3378 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3379 exit(1); 3380 } 3381 } 3382 3383 /* Called asynchronously in VCPU thread. */ 3384 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3385 { 3386 #ifdef KVM_HAVE_MCE_INJECTION 3387 if (have_sigbus_pending) { 3388 return 1; 3389 } 3390 have_sigbus_pending = true; 3391 pending_sigbus_addr = addr; 3392 pending_sigbus_code = code; 3393 qatomic_set(&cpu->exit_request, 1); 3394 return 0; 3395 #else 3396 return 1; 3397 #endif 3398 } 3399 3400 /* Called synchronously (via signalfd) in main thread. */ 3401 int kvm_on_sigbus(int code, void *addr) 3402 { 3403 #ifdef KVM_HAVE_MCE_INJECTION 3404 /* Action required MCE kills the process if SIGBUS is blocked. Because 3405 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3406 * we can only get action optional here. 3407 */ 3408 assert(code != BUS_MCEERR_AR); 3409 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3410 return 0; 3411 #else 3412 return 1; 3413 #endif 3414 } 3415 3416 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3417 { 3418 int ret; 3419 struct kvm_create_device create_dev; 3420 3421 create_dev.type = type; 3422 create_dev.fd = -1; 3423 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3424 3425 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3426 return -ENOTSUP; 3427 } 3428 3429 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3430 if (ret) { 3431 return ret; 3432 } 3433 3434 return test ? 0 : create_dev.fd; 3435 } 3436 3437 bool kvm_device_supported(int vmfd, uint64_t type) 3438 { 3439 struct kvm_create_device create_dev = { 3440 .type = type, 3441 .fd = -1, 3442 .flags = KVM_CREATE_DEVICE_TEST, 3443 }; 3444 3445 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3446 return false; 3447 } 3448 3449 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3450 } 3451 3452 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3453 { 3454 struct kvm_one_reg reg; 3455 int r; 3456 3457 reg.id = id; 3458 reg.addr = (uintptr_t) source; 3459 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3460 if (r) { 3461 trace_kvm_failed_reg_set(id, strerror(-r)); 3462 } 3463 return r; 3464 } 3465 3466 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3467 { 3468 struct kvm_one_reg reg; 3469 int r; 3470 3471 reg.id = id; 3472 reg.addr = (uintptr_t) target; 3473 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3474 if (r) { 3475 trace_kvm_failed_reg_get(id, strerror(-r)); 3476 } 3477 return r; 3478 } 3479 3480 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3481 hwaddr start_addr, hwaddr size) 3482 { 3483 KVMState *kvm = KVM_STATE(ms->accelerator); 3484 int i; 3485 3486 for (i = 0; i < kvm->nr_as; ++i) { 3487 if (kvm->as[i].as == as && kvm->as[i].ml) { 3488 size = MIN(kvm_max_slot_size, size); 3489 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3490 start_addr, size); 3491 } 3492 } 3493 3494 return false; 3495 } 3496 3497 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3498 const char *name, void *opaque, 3499 Error **errp) 3500 { 3501 KVMState *s = KVM_STATE(obj); 3502 int64_t value = s->kvm_shadow_mem; 3503 3504 visit_type_int(v, name, &value, errp); 3505 } 3506 3507 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3508 const char *name, void *opaque, 3509 Error **errp) 3510 { 3511 KVMState *s = KVM_STATE(obj); 3512 int64_t value; 3513 3514 if (s->fd != -1) { 3515 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3516 return; 3517 } 3518 3519 if (!visit_type_int(v, name, &value, errp)) { 3520 return; 3521 } 3522 3523 s->kvm_shadow_mem = value; 3524 } 3525 3526 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3527 const char *name, void *opaque, 3528 Error **errp) 3529 { 3530 KVMState *s = KVM_STATE(obj); 3531 OnOffSplit mode; 3532 3533 if (s->fd != -1) { 3534 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3535 return; 3536 } 3537 3538 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3539 return; 3540 } 3541 switch (mode) { 3542 case ON_OFF_SPLIT_ON: 3543 s->kernel_irqchip_allowed = true; 3544 s->kernel_irqchip_required = true; 3545 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3546 break; 3547 case ON_OFF_SPLIT_OFF: 3548 s->kernel_irqchip_allowed = false; 3549 s->kernel_irqchip_required = false; 3550 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3551 break; 3552 case ON_OFF_SPLIT_SPLIT: 3553 s->kernel_irqchip_allowed = true; 3554 s->kernel_irqchip_required = true; 3555 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3556 break; 3557 default: 3558 /* The value was checked in visit_type_OnOffSplit() above. If 3559 * we get here, then something is wrong in QEMU. 3560 */ 3561 abort(); 3562 } 3563 } 3564 3565 bool kvm_kernel_irqchip_allowed(void) 3566 { 3567 return kvm_state->kernel_irqchip_allowed; 3568 } 3569 3570 bool kvm_kernel_irqchip_required(void) 3571 { 3572 return kvm_state->kernel_irqchip_required; 3573 } 3574 3575 bool kvm_kernel_irqchip_split(void) 3576 { 3577 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3578 } 3579 3580 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3581 const char *name, void *opaque, 3582 Error **errp) 3583 { 3584 KVMState *s = KVM_STATE(obj); 3585 uint32_t value = s->kvm_dirty_ring_size; 3586 3587 visit_type_uint32(v, name, &value, errp); 3588 } 3589 3590 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3591 const char *name, void *opaque, 3592 Error **errp) 3593 { 3594 KVMState *s = KVM_STATE(obj); 3595 Error *error = NULL; 3596 uint32_t value; 3597 3598 if (s->fd != -1) { 3599 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3600 return; 3601 } 3602 3603 visit_type_uint32(v, name, &value, &error); 3604 if (error) { 3605 error_propagate(errp, error); 3606 return; 3607 } 3608 if (value & (value - 1)) { 3609 error_setg(errp, "dirty-ring-size must be a power of two."); 3610 return; 3611 } 3612 3613 s->kvm_dirty_ring_size = value; 3614 } 3615 3616 static void kvm_accel_instance_init(Object *obj) 3617 { 3618 KVMState *s = KVM_STATE(obj); 3619 3620 s->fd = -1; 3621 s->vmfd = -1; 3622 s->kvm_shadow_mem = -1; 3623 s->kernel_irqchip_allowed = true; 3624 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3625 /* KVM dirty ring is by default off */ 3626 s->kvm_dirty_ring_size = 0; 3627 } 3628 3629 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3630 { 3631 AccelClass *ac = ACCEL_CLASS(oc); 3632 ac->name = "KVM"; 3633 ac->init_machine = kvm_init; 3634 ac->has_memory = kvm_accel_has_memory; 3635 ac->allowed = &kvm_allowed; 3636 3637 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3638 NULL, kvm_set_kernel_irqchip, 3639 NULL, NULL); 3640 object_class_property_set_description(oc, "kernel-irqchip", 3641 "Configure KVM in-kernel irqchip"); 3642 3643 object_class_property_add(oc, "kvm-shadow-mem", "int", 3644 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3645 NULL, NULL); 3646 object_class_property_set_description(oc, "kvm-shadow-mem", 3647 "KVM shadow MMU size"); 3648 3649 object_class_property_add(oc, "dirty-ring-size", "uint32", 3650 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3651 NULL, NULL); 3652 object_class_property_set_description(oc, "dirty-ring-size", 3653 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3654 } 3655 3656 static const TypeInfo kvm_accel_type = { 3657 .name = TYPE_KVM_ACCEL, 3658 .parent = TYPE_ACCEL, 3659 .instance_init = kvm_accel_instance_init, 3660 .class_init = kvm_accel_class_init, 3661 .instance_size = sizeof(KVMState), 3662 }; 3663 3664 static void kvm_type_init(void) 3665 { 3666 type_register_static(&kvm_accel_type); 3667 } 3668 3669 type_init(kvm_type_init); 3670