1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "system/kvm_int.h" 32 #include "system/runstate.h" 33 #include "system/cpus.h" 34 #include "system/accel-blocker.h" 35 #include "accel/accel-ops.h" 36 #include "qemu/bswap.h" 37 #include "exec/tswap.h" 38 #include "system/memory.h" 39 #include "system/ram_addr.h" 40 #include "qemu/event_notifier.h" 41 #include "qemu/main-loop.h" 42 #include "trace.h" 43 #include "hw/irq.h" 44 #include "qapi/visitor.h" 45 #include "qapi/qapi-types-common.h" 46 #include "qapi/qapi-visit-common.h" 47 #include "system/reset.h" 48 #include "qemu/guest-random.h" 49 #include "system/hw_accel.h" 50 #include "kvm-cpus.h" 51 #include "system/dirtylimit.h" 52 #include "qemu/range.h" 53 54 #include "hw/boards.h" 55 #include "system/stats.h" 56 57 /* This check must be after config-host.h is included */ 58 #ifdef CONFIG_EVENTFD 59 #include <sys/eventfd.h> 60 #endif 61 62 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) 63 # define KVM_HAVE_MCE_INJECTION 1 64 #endif 65 66 67 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 68 * need to use the real host PAGE_SIZE, as that's what KVM will use. 69 */ 70 #ifdef PAGE_SIZE 71 #undef PAGE_SIZE 72 #endif 73 #define PAGE_SIZE qemu_real_host_page_size() 74 75 #ifndef KVM_GUESTDBG_BLOCKIRQ 76 #define KVM_GUESTDBG_BLOCKIRQ 0 77 #endif 78 79 /* Default num of memslots to be allocated when VM starts */ 80 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 81 /* Default max allowed memslots if kernel reported nothing */ 82 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32 83 84 struct KVMParkedVcpu { 85 unsigned long vcpu_id; 86 int kvm_fd; 87 QLIST_ENTRY(KVMParkedVcpu) node; 88 }; 89 90 KVMState *kvm_state; 91 bool kvm_kernel_irqchip; 92 bool kvm_split_irqchip; 93 bool kvm_async_interrupts_allowed; 94 bool kvm_halt_in_kernel_allowed; 95 bool kvm_resamplefds_allowed; 96 bool kvm_msi_via_irqfd_allowed; 97 bool kvm_gsi_routing_allowed; 98 bool kvm_gsi_direct_mapping; 99 bool kvm_allowed; 100 bool kvm_readonly_mem_allowed; 101 bool kvm_vm_attributes_allowed; 102 bool kvm_msi_use_devid; 103 bool kvm_pre_fault_memory_supported; 104 static bool kvm_has_guest_debug; 105 static int kvm_sstep_flags; 106 static bool kvm_immediate_exit; 107 static uint64_t kvm_supported_memory_attributes; 108 static bool kvm_guest_memfd_supported; 109 static hwaddr kvm_max_slot_size = ~0; 110 111 static const KVMCapabilityInfo kvm_required_capabilites[] = { 112 KVM_CAP_INFO(USER_MEMORY), 113 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 114 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 115 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 116 KVM_CAP_INFO(IOEVENTFD), 117 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 118 KVM_CAP_LAST_INFO 119 }; 120 121 static NotifierList kvm_irqchip_change_notifiers = 122 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 123 124 struct KVMResampleFd { 125 int gsi; 126 EventNotifier *resample_event; 127 QLIST_ENTRY(KVMResampleFd) node; 128 }; 129 typedef struct KVMResampleFd KVMResampleFd; 130 131 /* 132 * Only used with split irqchip where we need to do the resample fd 133 * kick for the kernel from userspace. 134 */ 135 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 136 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 137 138 static QemuMutex kml_slots_lock; 139 140 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 141 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 142 143 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 144 145 static inline void kvm_resample_fd_remove(int gsi) 146 { 147 KVMResampleFd *rfd; 148 149 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 150 if (rfd->gsi == gsi) { 151 QLIST_REMOVE(rfd, node); 152 g_free(rfd); 153 break; 154 } 155 } 156 } 157 158 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 159 { 160 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 161 162 rfd->gsi = gsi; 163 rfd->resample_event = event; 164 165 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 166 } 167 168 void kvm_resample_fd_notify(int gsi) 169 { 170 KVMResampleFd *rfd; 171 172 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 173 if (rfd->gsi == gsi) { 174 event_notifier_set(rfd->resample_event); 175 trace_kvm_resample_fd_notify(gsi); 176 return; 177 } 178 } 179 } 180 181 /** 182 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 183 * 184 * @kml: The KVMMemoryListener* to grow the slots[] array 185 * @nr_slots_new: The new size of slots[] array 186 * 187 * Returns: True if the array grows larger, false otherwise. 188 */ 189 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 190 { 191 unsigned int i, cur = kml->nr_slots_allocated; 192 KVMSlot *slots; 193 194 if (nr_slots_new > kvm_state->nr_slots_max) { 195 nr_slots_new = kvm_state->nr_slots_max; 196 } 197 198 if (cur >= nr_slots_new) { 199 /* Big enough, no need to grow, or we reached max */ 200 return false; 201 } 202 203 if (cur == 0) { 204 slots = g_new0(KVMSlot, nr_slots_new); 205 } else { 206 assert(kml->slots); 207 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 208 /* 209 * g_renew() doesn't initialize extended buffers, however kvm 210 * memslots require fields to be zero-initialized. E.g. pointers, 211 * memory_size field, etc. 212 */ 213 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 214 } 215 216 for (i = cur; i < nr_slots_new; i++) { 217 slots[i].slot = i; 218 } 219 220 kml->slots = slots; 221 kml->nr_slots_allocated = nr_slots_new; 222 trace_kvm_slots_grow(cur, nr_slots_new); 223 224 return true; 225 } 226 227 static bool kvm_slots_double(KVMMemoryListener *kml) 228 { 229 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 230 } 231 232 unsigned int kvm_get_max_memslots(void) 233 { 234 KVMState *s = KVM_STATE(current_accel()); 235 236 return s->nr_slots_max; 237 } 238 239 unsigned int kvm_get_free_memslots(void) 240 { 241 unsigned int used_slots = 0; 242 KVMState *s = kvm_state; 243 int i; 244 245 kvm_slots_lock(); 246 for (i = 0; i < s->nr_as; i++) { 247 if (!s->as[i].ml) { 248 continue; 249 } 250 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used); 251 } 252 kvm_slots_unlock(); 253 254 return s->nr_slots_max - used_slots; 255 } 256 257 /* Called with KVMMemoryListener.slots_lock held */ 258 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 259 { 260 unsigned int n; 261 int i; 262 263 for (i = 0; i < kml->nr_slots_allocated; i++) { 264 if (kml->slots[i].memory_size == 0) { 265 return &kml->slots[i]; 266 } 267 } 268 269 /* 270 * If no free slots, try to grow first by doubling. Cache the old size 271 * here to avoid another round of search: if the grow succeeded, it 272 * means slots[] now must have the existing "n" slots occupied, 273 * followed by one or more free slots starting from slots[n]. 274 */ 275 n = kml->nr_slots_allocated; 276 if (kvm_slots_double(kml)) { 277 return &kml->slots[n]; 278 } 279 280 return NULL; 281 } 282 283 /* Called with KVMMemoryListener.slots_lock held */ 284 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 285 { 286 KVMSlot *slot = kvm_get_free_slot(kml); 287 288 if (slot) { 289 return slot; 290 } 291 292 fprintf(stderr, "%s: no free slot available\n", __func__); 293 abort(); 294 } 295 296 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 297 hwaddr start_addr, 298 hwaddr size) 299 { 300 int i; 301 302 for (i = 0; i < kml->nr_slots_allocated; i++) { 303 KVMSlot *mem = &kml->slots[i]; 304 305 if (start_addr == mem->start_addr && size == mem->memory_size) { 306 return mem; 307 } 308 } 309 310 return NULL; 311 } 312 313 /* 314 * Calculate and align the start address and the size of the section. 315 * Return the size. If the size is 0, the aligned section is empty. 316 */ 317 static hwaddr kvm_align_section(MemoryRegionSection *section, 318 hwaddr *start) 319 { 320 hwaddr size = int128_get64(section->size); 321 hwaddr delta, aligned; 322 323 /* kvm works in page size chunks, but the function may be called 324 with sub-page size and unaligned start address. Pad the start 325 address to next and truncate size to previous page boundary. */ 326 aligned = ROUND_UP(section->offset_within_address_space, 327 qemu_real_host_page_size()); 328 delta = aligned - section->offset_within_address_space; 329 *start = aligned; 330 if (delta > size) { 331 return 0; 332 } 333 334 return (size - delta) & qemu_real_host_page_mask(); 335 } 336 337 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 338 hwaddr *phys_addr) 339 { 340 KVMMemoryListener *kml = &s->memory_listener; 341 int i, ret = 0; 342 343 kvm_slots_lock(); 344 for (i = 0; i < kml->nr_slots_allocated; i++) { 345 KVMSlot *mem = &kml->slots[i]; 346 347 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 348 *phys_addr = mem->start_addr + (ram - mem->ram); 349 ret = 1; 350 break; 351 } 352 } 353 kvm_slots_unlock(); 354 355 return ret; 356 } 357 358 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 359 { 360 KVMState *s = kvm_state; 361 struct kvm_userspace_memory_region2 mem; 362 int ret; 363 364 mem.slot = slot->slot | (kml->as_id << 16); 365 mem.guest_phys_addr = slot->start_addr; 366 mem.userspace_addr = (unsigned long)slot->ram; 367 mem.flags = slot->flags; 368 mem.guest_memfd = slot->guest_memfd; 369 mem.guest_memfd_offset = slot->guest_memfd_offset; 370 371 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 372 /* Set the slot size to 0 before setting the slot to the desired 373 * value. This is needed based on KVM commit 75d61fbc. */ 374 mem.memory_size = 0; 375 376 if (kvm_guest_memfd_supported) { 377 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 378 } else { 379 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 380 } 381 if (ret < 0) { 382 goto err; 383 } 384 } 385 mem.memory_size = slot->memory_size; 386 if (kvm_guest_memfd_supported) { 387 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 388 } else { 389 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 390 } 391 slot->old_flags = mem.flags; 392 err: 393 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 394 mem.guest_phys_addr, mem.memory_size, 395 mem.userspace_addr, mem.guest_memfd, 396 mem.guest_memfd_offset, ret); 397 if (ret < 0) { 398 if (kvm_guest_memfd_supported) { 399 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 400 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 401 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 402 " guest_memfd_offset=0x%" PRIx64 ": %s", 403 __func__, mem.slot, slot->start_addr, 404 (uint64_t)mem.memory_size, mem.flags, 405 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 406 strerror(errno)); 407 } else { 408 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 409 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 410 __func__, mem.slot, slot->start_addr, 411 (uint64_t)mem.memory_size, strerror(errno)); 412 } 413 } 414 return ret; 415 } 416 417 void kvm_park_vcpu(CPUState *cpu) 418 { 419 struct KVMParkedVcpu *vcpu; 420 421 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 422 423 vcpu = g_malloc0(sizeof(*vcpu)); 424 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 425 vcpu->kvm_fd = cpu->kvm_fd; 426 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 427 } 428 429 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 430 { 431 struct KVMParkedVcpu *cpu; 432 int kvm_fd = -ENOENT; 433 434 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 435 if (cpu->vcpu_id == vcpu_id) { 436 QLIST_REMOVE(cpu, node); 437 kvm_fd = cpu->kvm_fd; 438 g_free(cpu); 439 break; 440 } 441 } 442 443 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 444 445 return kvm_fd; 446 } 447 448 static void kvm_reset_parked_vcpus(KVMState *s) 449 { 450 struct KVMParkedVcpu *cpu; 451 452 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 453 kvm_arch_reset_parked_vcpu(cpu->vcpu_id, cpu->kvm_fd); 454 } 455 } 456 457 /** 458 * kvm_create_vcpu - Gets a parked KVM vCPU or creates a KVM vCPU 459 * @cpu: QOM CPUState object for which KVM vCPU has to be fetched/created. 460 * 461 * @returns: 0 when success, errno (<0) when failed. 462 */ 463 static int kvm_create_vcpu(CPUState *cpu) 464 { 465 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 466 KVMState *s = kvm_state; 467 int kvm_fd; 468 469 /* check if the KVM vCPU already exist but is parked */ 470 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 471 if (kvm_fd < 0) { 472 /* vCPU not parked: create a new KVM vCPU */ 473 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 474 if (kvm_fd < 0) { 475 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 476 return kvm_fd; 477 } 478 } 479 480 cpu->kvm_fd = kvm_fd; 481 cpu->kvm_state = s; 482 if (!s->guest_state_protected) { 483 cpu->vcpu_dirty = true; 484 } 485 cpu->dirty_pages = 0; 486 cpu->throttle_us_per_full = 0; 487 488 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 489 490 return 0; 491 } 492 493 int kvm_create_and_park_vcpu(CPUState *cpu) 494 { 495 int ret = 0; 496 497 ret = kvm_create_vcpu(cpu); 498 if (!ret) { 499 kvm_park_vcpu(cpu); 500 } 501 502 return ret; 503 } 504 505 static int do_kvm_destroy_vcpu(CPUState *cpu) 506 { 507 KVMState *s = kvm_state; 508 int mmap_size; 509 int ret = 0; 510 511 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 512 513 ret = kvm_arch_destroy_vcpu(cpu); 514 if (ret < 0) { 515 goto err; 516 } 517 518 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 519 if (mmap_size < 0) { 520 ret = mmap_size; 521 trace_kvm_failed_get_vcpu_mmap_size(); 522 goto err; 523 } 524 525 /* If I am the CPU that created coalesced_mmio_ring, then discard it */ 526 if (s->coalesced_mmio_ring == (void *)cpu->kvm_run + PAGE_SIZE) { 527 s->coalesced_mmio_ring = NULL; 528 } 529 530 ret = munmap(cpu->kvm_run, mmap_size); 531 if (ret < 0) { 532 goto err; 533 } 534 cpu->kvm_run = NULL; 535 536 if (cpu->kvm_dirty_gfns) { 537 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 538 if (ret < 0) { 539 goto err; 540 } 541 cpu->kvm_dirty_gfns = NULL; 542 } 543 544 kvm_park_vcpu(cpu); 545 err: 546 return ret; 547 } 548 549 void kvm_destroy_vcpu(CPUState *cpu) 550 { 551 if (do_kvm_destroy_vcpu(cpu) < 0) { 552 error_report("kvm_destroy_vcpu failed"); 553 exit(EXIT_FAILURE); 554 } 555 } 556 557 int kvm_init_vcpu(CPUState *cpu, Error **errp) 558 { 559 KVMState *s = kvm_state; 560 int mmap_size; 561 int ret; 562 563 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 564 565 ret = kvm_arch_pre_create_vcpu(cpu, errp); 566 if (ret < 0) { 567 goto err; 568 } 569 570 ret = kvm_create_vcpu(cpu); 571 if (ret < 0) { 572 error_setg_errno(errp, -ret, 573 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 574 kvm_arch_vcpu_id(cpu)); 575 goto err; 576 } 577 578 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 579 if (mmap_size < 0) { 580 ret = mmap_size; 581 error_setg_errno(errp, -mmap_size, 582 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 583 goto err; 584 } 585 586 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 587 cpu->kvm_fd, 0); 588 if (cpu->kvm_run == MAP_FAILED) { 589 ret = -errno; 590 error_setg_errno(errp, ret, 591 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 592 kvm_arch_vcpu_id(cpu)); 593 goto err; 594 } 595 596 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 597 s->coalesced_mmio_ring = 598 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 599 } 600 601 if (s->kvm_dirty_ring_size) { 602 /* Use MAP_SHARED to share pages with the kernel */ 603 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 604 PROT_READ | PROT_WRITE, MAP_SHARED, 605 cpu->kvm_fd, 606 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 607 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 608 ret = -errno; 609 goto err; 610 } 611 } 612 613 ret = kvm_arch_init_vcpu(cpu); 614 if (ret < 0) { 615 error_setg_errno(errp, -ret, 616 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 617 kvm_arch_vcpu_id(cpu)); 618 } 619 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 620 621 err: 622 return ret; 623 } 624 625 void kvm_close(void) 626 { 627 CPUState *cpu; 628 629 if (!kvm_state || kvm_state->fd == -1) { 630 return; 631 } 632 633 CPU_FOREACH(cpu) { 634 cpu_remove_sync(cpu); 635 close(cpu->kvm_fd); 636 cpu->kvm_fd = -1; 637 close(cpu->kvm_vcpu_stats_fd); 638 cpu->kvm_vcpu_stats_fd = -1; 639 } 640 641 if (kvm_state && kvm_state->fd != -1) { 642 close(kvm_state->vmfd); 643 kvm_state->vmfd = -1; 644 close(kvm_state->fd); 645 kvm_state->fd = -1; 646 } 647 kvm_state = NULL; 648 } 649 650 /* 651 * dirty pages logging control 652 */ 653 654 static int kvm_mem_flags(MemoryRegion *mr) 655 { 656 bool readonly = mr->readonly || memory_region_is_romd(mr); 657 int flags = 0; 658 659 if (memory_region_get_dirty_log_mask(mr) != 0) { 660 flags |= KVM_MEM_LOG_DIRTY_PAGES; 661 } 662 if (readonly && kvm_readonly_mem_allowed) { 663 flags |= KVM_MEM_READONLY; 664 } 665 if (memory_region_has_guest_memfd(mr)) { 666 assert(kvm_guest_memfd_supported); 667 flags |= KVM_MEM_GUEST_MEMFD; 668 } 669 return flags; 670 } 671 672 /* Called with KVMMemoryListener.slots_lock held */ 673 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 674 MemoryRegion *mr) 675 { 676 mem->flags = kvm_mem_flags(mr); 677 678 /* If nothing changed effectively, no need to issue ioctl */ 679 if (mem->flags == mem->old_flags) { 680 return 0; 681 } 682 683 kvm_slot_init_dirty_bitmap(mem); 684 return kvm_set_user_memory_region(kml, mem, false); 685 } 686 687 static int kvm_section_update_flags(KVMMemoryListener *kml, 688 MemoryRegionSection *section) 689 { 690 hwaddr start_addr, size, slot_size; 691 KVMSlot *mem; 692 int ret = 0; 693 694 size = kvm_align_section(section, &start_addr); 695 if (!size) { 696 return 0; 697 } 698 699 kvm_slots_lock(); 700 701 while (size && !ret) { 702 slot_size = MIN(kvm_max_slot_size, size); 703 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 704 if (!mem) { 705 /* We don't have a slot if we want to trap every access. */ 706 goto out; 707 } 708 709 ret = kvm_slot_update_flags(kml, mem, section->mr); 710 start_addr += slot_size; 711 size -= slot_size; 712 } 713 714 out: 715 kvm_slots_unlock(); 716 return ret; 717 } 718 719 static void kvm_log_start(MemoryListener *listener, 720 MemoryRegionSection *section, 721 int old, int new) 722 { 723 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 724 int r; 725 726 if (old != 0) { 727 return; 728 } 729 730 r = kvm_section_update_flags(kml, section); 731 if (r < 0) { 732 abort(); 733 } 734 } 735 736 static void kvm_log_stop(MemoryListener *listener, 737 MemoryRegionSection *section, 738 int old, int new) 739 { 740 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 741 int r; 742 743 if (new != 0) { 744 return; 745 } 746 747 r = kvm_section_update_flags(kml, section); 748 if (r < 0) { 749 abort(); 750 } 751 } 752 753 /* get kvm's dirty pages bitmap and update qemu's */ 754 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 755 { 756 ram_addr_t start = slot->ram_start_offset; 757 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 758 759 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 760 } 761 762 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 763 { 764 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 765 } 766 767 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 768 769 /* Allocate the dirty bitmap for a slot */ 770 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 771 { 772 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 773 return; 774 } 775 776 /* 777 * XXX bad kernel interface alert 778 * For dirty bitmap, kernel allocates array of size aligned to 779 * bits-per-long. But for case when the kernel is 64bits and 780 * the userspace is 32bits, userspace can't align to the same 781 * bits-per-long, since sizeof(long) is different between kernel 782 * and user space. This way, userspace will provide buffer which 783 * may be 4 bytes less than the kernel will use, resulting in 784 * userspace memory corruption (which is not detectable by valgrind 785 * too, in most cases). 786 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 787 * a hope that sizeof(long) won't become >8 any time soon. 788 * 789 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 790 * And mem->memory_size is aligned to it (otherwise this mem can't 791 * be registered to KVM). 792 */ 793 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 794 /*HOST_LONG_BITS*/ 64) / 8; 795 mem->dirty_bmap = g_malloc0(bitmap_size); 796 mem->dirty_bmap_size = bitmap_size; 797 } 798 799 /* 800 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 801 * succeeded, false otherwise 802 */ 803 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 804 { 805 struct kvm_dirty_log d = {}; 806 int ret; 807 808 d.dirty_bitmap = slot->dirty_bmap; 809 d.slot = slot->slot | (slot->as_id << 16); 810 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 811 812 if (ret == -ENOENT) { 813 /* kernel does not have dirty bitmap in this slot */ 814 ret = 0; 815 } 816 if (ret) { 817 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 818 __func__, ret); 819 } 820 return ret == 0; 821 } 822 823 /* Should be with all slots_lock held for the address spaces. */ 824 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 825 uint32_t slot_id, uint64_t offset) 826 { 827 KVMMemoryListener *kml; 828 KVMSlot *mem; 829 830 if (as_id >= s->nr_as) { 831 return; 832 } 833 834 kml = s->as[as_id].ml; 835 mem = &kml->slots[slot_id]; 836 837 if (!mem->memory_size || offset >= 838 (mem->memory_size / qemu_real_host_page_size())) { 839 return; 840 } 841 842 set_bit(offset, mem->dirty_bmap); 843 } 844 845 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 846 { 847 /* 848 * Read the flags before the value. Pairs with barrier in 849 * KVM's kvm_dirty_ring_push() function. 850 */ 851 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 852 } 853 854 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 855 { 856 /* 857 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 858 * sees the full content of the ring: 859 * 860 * CPU0 CPU1 CPU2 861 * ------------------------------------------------------------------------------ 862 * fill gfn0 863 * store-rel flags for gfn0 864 * load-acq flags for gfn0 865 * store-rel RESET for gfn0 866 * ioctl(RESET_RINGS) 867 * load-acq flags for gfn0 868 * check if flags have RESET 869 * 870 * The synchronization goes from CPU2 to CPU0 to CPU1. 871 */ 872 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 873 } 874 875 /* 876 * Should be with all slots_lock held for the address spaces. It returns the 877 * dirty page we've collected on this dirty ring. 878 */ 879 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 880 { 881 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 882 uint32_t ring_size = s->kvm_dirty_ring_size; 883 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 884 885 /* 886 * It's possible that we race with vcpu creation code where the vcpu is 887 * put onto the vcpus list but not yet initialized the dirty ring 888 * structures. If so, skip it. 889 */ 890 if (!cpu->created) { 891 return 0; 892 } 893 894 assert(dirty_gfns && ring_size); 895 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 896 897 while (true) { 898 cur = &dirty_gfns[fetch % ring_size]; 899 if (!dirty_gfn_is_dirtied(cur)) { 900 break; 901 } 902 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 903 cur->offset); 904 dirty_gfn_set_collected(cur); 905 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 906 fetch++; 907 count++; 908 } 909 cpu->kvm_fetch_index = fetch; 910 cpu->dirty_pages += count; 911 912 return count; 913 } 914 915 /* Must be with slots_lock held */ 916 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 917 { 918 int ret; 919 uint64_t total = 0; 920 int64_t stamp; 921 922 stamp = get_clock(); 923 924 if (cpu) { 925 total = kvm_dirty_ring_reap_one(s, cpu); 926 } else { 927 CPU_FOREACH(cpu) { 928 total += kvm_dirty_ring_reap_one(s, cpu); 929 } 930 } 931 932 if (total) { 933 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 934 assert(ret == total); 935 } 936 937 stamp = get_clock() - stamp; 938 939 if (total) { 940 trace_kvm_dirty_ring_reap(total, stamp / 1000); 941 } 942 943 return total; 944 } 945 946 /* 947 * Currently for simplicity, we must hold BQL before calling this. We can 948 * consider to drop the BQL if we're clear with all the race conditions. 949 */ 950 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 951 { 952 uint64_t total; 953 954 /* 955 * We need to lock all kvm slots for all address spaces here, 956 * because: 957 * 958 * (1) We need to mark dirty for dirty bitmaps in multiple slots 959 * and for tons of pages, so it's better to take the lock here 960 * once rather than once per page. And more importantly, 961 * 962 * (2) We must _NOT_ publish dirty bits to the other threads 963 * (e.g., the migration thread) via the kvm memory slot dirty 964 * bitmaps before correctly re-protect those dirtied pages. 965 * Otherwise we can have potential risk of data corruption if 966 * the page data is read in the other thread before we do 967 * reset below. 968 */ 969 kvm_slots_lock(); 970 total = kvm_dirty_ring_reap_locked(s, cpu); 971 kvm_slots_unlock(); 972 973 return total; 974 } 975 976 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 977 { 978 /* No need to do anything */ 979 } 980 981 /* 982 * Kick all vcpus out in a synchronized way. When returned, we 983 * guarantee that every vcpu has been kicked and at least returned to 984 * userspace once. 985 */ 986 static void kvm_cpu_synchronize_kick_all(void) 987 { 988 CPUState *cpu; 989 990 CPU_FOREACH(cpu) { 991 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 992 } 993 } 994 995 /* 996 * Flush all the existing dirty pages to the KVM slot buffers. When 997 * this call returns, we guarantee that all the touched dirty pages 998 * before calling this function have been put into the per-kvmslot 999 * dirty bitmap. 1000 * 1001 * This function must be called with BQL held. 1002 */ 1003 static void kvm_dirty_ring_flush(void) 1004 { 1005 trace_kvm_dirty_ring_flush(0); 1006 /* 1007 * The function needs to be serialized. Since this function 1008 * should always be with BQL held, serialization is guaranteed. 1009 * However, let's be sure of it. 1010 */ 1011 assert(bql_locked()); 1012 /* 1013 * First make sure to flush the hardware buffers by kicking all 1014 * vcpus out in a synchronous way. 1015 */ 1016 kvm_cpu_synchronize_kick_all(); 1017 kvm_dirty_ring_reap(kvm_state, NULL); 1018 trace_kvm_dirty_ring_flush(1); 1019 } 1020 1021 /** 1022 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 1023 * 1024 * This function will first try to fetch dirty bitmap from the kernel, 1025 * and then updates qemu's dirty bitmap. 1026 * 1027 * NOTE: caller must be with kml->slots_lock held. 1028 * 1029 * @kml: the KVM memory listener object 1030 * @section: the memory section to sync the dirty bitmap with 1031 */ 1032 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 1033 MemoryRegionSection *section) 1034 { 1035 KVMState *s = kvm_state; 1036 KVMSlot *mem; 1037 hwaddr start_addr, size; 1038 hwaddr slot_size; 1039 1040 size = kvm_align_section(section, &start_addr); 1041 while (size) { 1042 slot_size = MIN(kvm_max_slot_size, size); 1043 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1044 if (!mem) { 1045 /* We don't have a slot if we want to trap every access. */ 1046 return; 1047 } 1048 if (kvm_slot_get_dirty_log(s, mem)) { 1049 kvm_slot_sync_dirty_pages(mem); 1050 } 1051 start_addr += slot_size; 1052 size -= slot_size; 1053 } 1054 } 1055 1056 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 1057 #define KVM_CLEAR_LOG_SHIFT 6 1058 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 1059 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 1060 1061 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 1062 uint64_t size) 1063 { 1064 KVMState *s = kvm_state; 1065 uint64_t end, bmap_start, start_delta, bmap_npages; 1066 struct kvm_clear_dirty_log d; 1067 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1068 int ret; 1069 1070 /* 1071 * We need to extend either the start or the size or both to 1072 * satisfy the KVM interface requirement. Firstly, do the start 1073 * page alignment on 64 host pages 1074 */ 1075 bmap_start = start & KVM_CLEAR_LOG_MASK; 1076 start_delta = start - bmap_start; 1077 bmap_start /= psize; 1078 1079 /* 1080 * The kernel interface has restriction on the size too, that either: 1081 * 1082 * (1) the size is 64 host pages aligned (just like the start), or 1083 * (2) the size fills up until the end of the KVM memslot. 1084 */ 1085 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1086 << KVM_CLEAR_LOG_SHIFT; 1087 end = mem->memory_size / psize; 1088 if (bmap_npages > end - bmap_start) { 1089 bmap_npages = end - bmap_start; 1090 } 1091 start_delta /= psize; 1092 1093 /* 1094 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1095 * that we won't clear any unknown dirty bits otherwise we might 1096 * accidentally clear some set bits which are not yet synced from 1097 * the kernel into QEMU's bitmap, then we'll lose track of the 1098 * guest modifications upon those pages (which can directly lead 1099 * to guest data loss or panic after migration). 1100 * 1101 * Layout of the KVMSlot.dirty_bmap: 1102 * 1103 * |<-------- bmap_npages -----------..>| 1104 * [1] 1105 * start_delta size 1106 * |----------------|-------------|------------------|------------| 1107 * ^ ^ ^ ^ 1108 * | | | | 1109 * start bmap_start (start) end 1110 * of memslot of memslot 1111 * 1112 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1113 */ 1114 1115 assert(bmap_start % BITS_PER_LONG == 0); 1116 /* We should never do log_clear before log_sync */ 1117 assert(mem->dirty_bmap); 1118 if (start_delta || bmap_npages - size / psize) { 1119 /* Slow path - we need to manipulate a temp bitmap */ 1120 bmap_clear = bitmap_new(bmap_npages); 1121 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1122 bmap_start, start_delta + size / psize); 1123 /* 1124 * We need to fill the holes at start because that was not 1125 * specified by the caller and we extended the bitmap only for 1126 * 64 pages alignment 1127 */ 1128 bitmap_clear(bmap_clear, 0, start_delta); 1129 d.dirty_bitmap = bmap_clear; 1130 } else { 1131 /* 1132 * Fast path - both start and size align well with BITS_PER_LONG 1133 * (or the end of memory slot) 1134 */ 1135 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1136 } 1137 1138 d.first_page = bmap_start; 1139 /* It should never overflow. If it happens, say something */ 1140 assert(bmap_npages <= UINT32_MAX); 1141 d.num_pages = bmap_npages; 1142 d.slot = mem->slot | (as_id << 16); 1143 1144 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1145 if (ret < 0 && ret != -ENOENT) { 1146 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1147 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1148 __func__, d.slot, (uint64_t)d.first_page, 1149 (uint32_t)d.num_pages, ret); 1150 } else { 1151 ret = 0; 1152 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1153 } 1154 1155 /* 1156 * After we have updated the remote dirty bitmap, we update the 1157 * cached bitmap as well for the memslot, then if another user 1158 * clears the same region we know we shouldn't clear it again on 1159 * the remote otherwise it's data loss as well. 1160 */ 1161 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1162 size / psize); 1163 /* This handles the NULL case well */ 1164 g_free(bmap_clear); 1165 return ret; 1166 } 1167 1168 1169 /** 1170 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1171 * 1172 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1173 * protection in the host kernel because in that case this operation 1174 * will be done within log_sync(). 1175 * 1176 * @kml: the kvm memory listener 1177 * @section: the memory range to clear dirty bitmap 1178 */ 1179 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1180 MemoryRegionSection *section) 1181 { 1182 KVMState *s = kvm_state; 1183 uint64_t start, size, offset, count; 1184 KVMSlot *mem; 1185 int ret = 0, i; 1186 1187 if (!s->manual_dirty_log_protect) { 1188 /* No need to do explicit clear */ 1189 return ret; 1190 } 1191 1192 start = section->offset_within_address_space; 1193 size = int128_get64(section->size); 1194 1195 if (!size) { 1196 /* Nothing more we can do... */ 1197 return ret; 1198 } 1199 1200 kvm_slots_lock(); 1201 1202 for (i = 0; i < kml->nr_slots_allocated; i++) { 1203 mem = &kml->slots[i]; 1204 /* Discard slots that are empty or do not overlap the section */ 1205 if (!mem->memory_size || 1206 mem->start_addr > start + size - 1 || 1207 start > mem->start_addr + mem->memory_size - 1) { 1208 continue; 1209 } 1210 1211 if (start >= mem->start_addr) { 1212 /* The slot starts before section or is aligned to it. */ 1213 offset = start - mem->start_addr; 1214 count = MIN(mem->memory_size - offset, size); 1215 } else { 1216 /* The slot starts after section. */ 1217 offset = 0; 1218 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1219 } 1220 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1221 if (ret < 0) { 1222 break; 1223 } 1224 } 1225 1226 kvm_slots_unlock(); 1227 1228 return ret; 1229 } 1230 1231 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1232 MemoryRegionSection *secion, 1233 hwaddr start, hwaddr size) 1234 { 1235 KVMState *s = kvm_state; 1236 1237 if (s->coalesced_mmio) { 1238 struct kvm_coalesced_mmio_zone zone; 1239 1240 zone.addr = start; 1241 zone.size = size; 1242 zone.pad = 0; 1243 1244 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1245 } 1246 } 1247 1248 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1249 MemoryRegionSection *secion, 1250 hwaddr start, hwaddr size) 1251 { 1252 KVMState *s = kvm_state; 1253 1254 if (s->coalesced_mmio) { 1255 struct kvm_coalesced_mmio_zone zone; 1256 1257 zone.addr = start; 1258 zone.size = size; 1259 zone.pad = 0; 1260 1261 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1262 } 1263 } 1264 1265 static void kvm_coalesce_pio_add(MemoryListener *listener, 1266 MemoryRegionSection *section, 1267 hwaddr start, hwaddr size) 1268 { 1269 KVMState *s = kvm_state; 1270 1271 if (s->coalesced_pio) { 1272 struct kvm_coalesced_mmio_zone zone; 1273 1274 zone.addr = start; 1275 zone.size = size; 1276 zone.pio = 1; 1277 1278 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1279 } 1280 } 1281 1282 static void kvm_coalesce_pio_del(MemoryListener *listener, 1283 MemoryRegionSection *section, 1284 hwaddr start, hwaddr size) 1285 { 1286 KVMState *s = kvm_state; 1287 1288 if (s->coalesced_pio) { 1289 struct kvm_coalesced_mmio_zone zone; 1290 1291 zone.addr = start; 1292 zone.size = size; 1293 zone.pio = 1; 1294 1295 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1296 } 1297 } 1298 1299 int kvm_check_extension(KVMState *s, unsigned int extension) 1300 { 1301 int ret; 1302 1303 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1304 if (ret < 0) { 1305 ret = 0; 1306 } 1307 1308 return ret; 1309 } 1310 1311 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1312 { 1313 int ret; 1314 1315 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1316 if (ret < 0) { 1317 /* VM wide version not implemented, use global one instead */ 1318 ret = kvm_check_extension(s, extension); 1319 } 1320 1321 return ret; 1322 } 1323 1324 /* 1325 * We track the poisoned pages to be able to: 1326 * - replace them on VM reset 1327 * - block a migration for a VM with a poisoned page 1328 */ 1329 typedef struct HWPoisonPage { 1330 ram_addr_t ram_addr; 1331 QLIST_ENTRY(HWPoisonPage) list; 1332 } HWPoisonPage; 1333 1334 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1335 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1336 1337 static void kvm_unpoison_all(void *param) 1338 { 1339 HWPoisonPage *page, *next_page; 1340 1341 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1342 QLIST_REMOVE(page, list); 1343 qemu_ram_remap(page->ram_addr); 1344 g_free(page); 1345 } 1346 } 1347 1348 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1349 { 1350 HWPoisonPage *page; 1351 1352 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1353 if (page->ram_addr == ram_addr) { 1354 return; 1355 } 1356 } 1357 page = g_new(HWPoisonPage, 1); 1358 page->ram_addr = ram_addr; 1359 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1360 } 1361 1362 bool kvm_hwpoisoned_mem(void) 1363 { 1364 return !QLIST_EMPTY(&hwpoison_page_list); 1365 } 1366 1367 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1368 { 1369 if (target_needs_bswap()) { 1370 /* 1371 * The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1372 * endianness, but the memory core hands them in target endianness. 1373 * For example, PPC is always treated as big-endian even if running 1374 * on KVM and on PPC64LE. Correct here, swapping back. 1375 */ 1376 switch (size) { 1377 case 2: 1378 val = bswap16(val); 1379 break; 1380 case 4: 1381 val = bswap32(val); 1382 break; 1383 } 1384 } 1385 return val; 1386 } 1387 1388 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1389 bool assign, uint32_t size, bool datamatch) 1390 { 1391 int ret; 1392 struct kvm_ioeventfd iofd = { 1393 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1394 .addr = addr, 1395 .len = size, 1396 .flags = 0, 1397 .fd = fd, 1398 }; 1399 1400 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1401 datamatch); 1402 if (!kvm_enabled()) { 1403 return -ENOSYS; 1404 } 1405 1406 if (datamatch) { 1407 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1408 } 1409 if (!assign) { 1410 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1411 } 1412 1413 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1414 1415 if (ret < 0) { 1416 return -errno; 1417 } 1418 1419 return 0; 1420 } 1421 1422 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1423 bool assign, uint32_t size, bool datamatch) 1424 { 1425 struct kvm_ioeventfd kick = { 1426 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1427 .addr = addr, 1428 .flags = KVM_IOEVENTFD_FLAG_PIO, 1429 .len = size, 1430 .fd = fd, 1431 }; 1432 int r; 1433 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1434 if (!kvm_enabled()) { 1435 return -ENOSYS; 1436 } 1437 if (datamatch) { 1438 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1439 } 1440 if (!assign) { 1441 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1442 } 1443 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1444 if (r < 0) { 1445 return r; 1446 } 1447 return 0; 1448 } 1449 1450 1451 static const KVMCapabilityInfo * 1452 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1453 { 1454 while (list->name) { 1455 if (!kvm_check_extension(s, list->value)) { 1456 return list; 1457 } 1458 list++; 1459 } 1460 return NULL; 1461 } 1462 1463 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1464 { 1465 g_assert( 1466 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1467 ); 1468 kvm_max_slot_size = max_slot_size; 1469 } 1470 1471 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1472 { 1473 struct kvm_memory_attributes attrs; 1474 int r; 1475 1476 assert((attr & kvm_supported_memory_attributes) == attr); 1477 attrs.attributes = attr; 1478 attrs.address = start; 1479 attrs.size = size; 1480 attrs.flags = 0; 1481 1482 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1483 if (r) { 1484 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1485 "with attr 0x%" PRIx64 " error '%s'", 1486 start, size, attr, strerror(errno)); 1487 } 1488 return r; 1489 } 1490 1491 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1492 { 1493 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1494 } 1495 1496 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1497 { 1498 return kvm_set_memory_attributes(start, size, 0); 1499 } 1500 1501 /* Called with KVMMemoryListener.slots_lock held */ 1502 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1503 MemoryRegionSection *section, bool add) 1504 { 1505 KVMSlot *mem; 1506 int err; 1507 MemoryRegion *mr = section->mr; 1508 bool writable = !mr->readonly && !mr->rom_device; 1509 hwaddr start_addr, size, slot_size, mr_offset; 1510 ram_addr_t ram_start_offset; 1511 void *ram; 1512 1513 if (!memory_region_is_ram(mr)) { 1514 if (writable || !kvm_readonly_mem_allowed) { 1515 return; 1516 } else if (!mr->romd_mode) { 1517 /* If the memory device is not in romd_mode, then we actually want 1518 * to remove the kvm memory slot so all accesses will trap. */ 1519 add = false; 1520 } 1521 } 1522 1523 size = kvm_align_section(section, &start_addr); 1524 if (!size) { 1525 return; 1526 } 1527 1528 /* The offset of the kvmslot within the memory region */ 1529 mr_offset = section->offset_within_region + start_addr - 1530 section->offset_within_address_space; 1531 1532 /* use aligned delta to align the ram address and offset */ 1533 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1534 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1535 1536 if (!add) { 1537 do { 1538 slot_size = MIN(kvm_max_slot_size, size); 1539 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1540 if (!mem) { 1541 return; 1542 } 1543 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1544 /* 1545 * NOTE: We should be aware of the fact that here we're only 1546 * doing a best effort to sync dirty bits. No matter whether 1547 * we're using dirty log or dirty ring, we ignored two facts: 1548 * 1549 * (1) dirty bits can reside in hardware buffers (PML) 1550 * 1551 * (2) after we collected dirty bits here, pages can be dirtied 1552 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1553 * remove the slot. 1554 * 1555 * Not easy. Let's cross the fingers until it's fixed. 1556 */ 1557 if (kvm_state->kvm_dirty_ring_size) { 1558 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1559 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1560 kvm_slot_sync_dirty_pages(mem); 1561 kvm_slot_get_dirty_log(kvm_state, mem); 1562 } 1563 } else { 1564 kvm_slot_get_dirty_log(kvm_state, mem); 1565 } 1566 kvm_slot_sync_dirty_pages(mem); 1567 } 1568 1569 /* unregister the slot */ 1570 g_free(mem->dirty_bmap); 1571 mem->dirty_bmap = NULL; 1572 mem->memory_size = 0; 1573 mem->flags = 0; 1574 err = kvm_set_user_memory_region(kml, mem, false); 1575 if (err) { 1576 fprintf(stderr, "%s: error unregistering slot: %s\n", 1577 __func__, strerror(-err)); 1578 abort(); 1579 } 1580 start_addr += slot_size; 1581 size -= slot_size; 1582 kml->nr_slots_used--; 1583 } while (size); 1584 return; 1585 } 1586 1587 /* register the new slot */ 1588 do { 1589 slot_size = MIN(kvm_max_slot_size, size); 1590 mem = kvm_alloc_slot(kml); 1591 mem->as_id = kml->as_id; 1592 mem->memory_size = slot_size; 1593 mem->start_addr = start_addr; 1594 mem->ram_start_offset = ram_start_offset; 1595 mem->ram = ram; 1596 mem->flags = kvm_mem_flags(mr); 1597 mem->guest_memfd = mr->ram_block->guest_memfd; 1598 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1599 1600 kvm_slot_init_dirty_bitmap(mem); 1601 err = kvm_set_user_memory_region(kml, mem, true); 1602 if (err) { 1603 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1604 strerror(-err)); 1605 abort(); 1606 } 1607 1608 if (memory_region_has_guest_memfd(mr)) { 1609 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1610 if (err) { 1611 error_report("%s: failed to set memory attribute private: %s", 1612 __func__, strerror(-err)); 1613 exit(1); 1614 } 1615 } 1616 1617 start_addr += slot_size; 1618 ram_start_offset += slot_size; 1619 ram += slot_size; 1620 size -= slot_size; 1621 kml->nr_slots_used++; 1622 } while (size); 1623 } 1624 1625 static void *kvm_dirty_ring_reaper_thread(void *data) 1626 { 1627 KVMState *s = data; 1628 struct KVMDirtyRingReaper *r = &s->reaper; 1629 1630 rcu_register_thread(); 1631 1632 trace_kvm_dirty_ring_reaper("init"); 1633 1634 while (true) { 1635 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1636 trace_kvm_dirty_ring_reaper("wait"); 1637 /* 1638 * TODO: provide a smarter timeout rather than a constant? 1639 */ 1640 sleep(1); 1641 1642 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1643 if (dirtylimit_in_service()) { 1644 continue; 1645 } 1646 1647 trace_kvm_dirty_ring_reaper("wakeup"); 1648 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1649 1650 bql_lock(); 1651 kvm_dirty_ring_reap(s, NULL); 1652 bql_unlock(); 1653 1654 r->reaper_iteration++; 1655 } 1656 1657 g_assert_not_reached(); 1658 } 1659 1660 static void kvm_dirty_ring_reaper_init(KVMState *s) 1661 { 1662 struct KVMDirtyRingReaper *r = &s->reaper; 1663 1664 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1665 kvm_dirty_ring_reaper_thread, 1666 s, QEMU_THREAD_JOINABLE); 1667 } 1668 1669 static int kvm_dirty_ring_init(KVMState *s) 1670 { 1671 uint32_t ring_size = s->kvm_dirty_ring_size; 1672 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1673 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1674 int ret; 1675 1676 s->kvm_dirty_ring_size = 0; 1677 s->kvm_dirty_ring_bytes = 0; 1678 1679 /* Bail if the dirty ring size isn't specified */ 1680 if (!ring_size) { 1681 return 0; 1682 } 1683 1684 /* 1685 * Read the max supported pages. Fall back to dirty logging mode 1686 * if the dirty ring isn't supported. 1687 */ 1688 ret = kvm_vm_check_extension(s, capability); 1689 if (ret <= 0) { 1690 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1691 ret = kvm_vm_check_extension(s, capability); 1692 } 1693 1694 if (ret <= 0) { 1695 warn_report("KVM dirty ring not available, using bitmap method"); 1696 return 0; 1697 } 1698 1699 if (ring_bytes > ret) { 1700 error_report("KVM dirty ring size %" PRIu32 " too big " 1701 "(maximum is %ld). Please use a smaller value.", 1702 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1703 return -EINVAL; 1704 } 1705 1706 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1707 if (ret) { 1708 error_report("Enabling of KVM dirty ring failed: %s. " 1709 "Suggested minimum value is 1024.", strerror(-ret)); 1710 return -EIO; 1711 } 1712 1713 /* Enable the backup bitmap if it is supported */ 1714 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1715 if (ret > 0) { 1716 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1717 if (ret) { 1718 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1719 "%s. ", strerror(-ret)); 1720 return -EIO; 1721 } 1722 1723 s->kvm_dirty_ring_with_bitmap = true; 1724 } 1725 1726 s->kvm_dirty_ring_size = ring_size; 1727 s->kvm_dirty_ring_bytes = ring_bytes; 1728 1729 return 0; 1730 } 1731 1732 static void kvm_region_add(MemoryListener *listener, 1733 MemoryRegionSection *section) 1734 { 1735 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1736 KVMMemoryUpdate *update; 1737 1738 update = g_new0(KVMMemoryUpdate, 1); 1739 update->section = *section; 1740 1741 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1742 } 1743 1744 static void kvm_region_del(MemoryListener *listener, 1745 MemoryRegionSection *section) 1746 { 1747 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1748 KVMMemoryUpdate *update; 1749 1750 update = g_new0(KVMMemoryUpdate, 1); 1751 update->section = *section; 1752 1753 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1754 } 1755 1756 static void kvm_region_commit(MemoryListener *listener) 1757 { 1758 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1759 listener); 1760 KVMMemoryUpdate *u1, *u2; 1761 bool need_inhibit = false; 1762 1763 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1764 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1765 return; 1766 } 1767 1768 /* 1769 * We have to be careful when regions to add overlap with ranges to remove. 1770 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1771 * is currently active. 1772 * 1773 * The lists are order by addresses, so it's easy to find overlaps. 1774 */ 1775 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1776 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1777 while (u1 && u2) { 1778 Range r1, r2; 1779 1780 range_init_nofail(&r1, u1->section.offset_within_address_space, 1781 int128_get64(u1->section.size)); 1782 range_init_nofail(&r2, u2->section.offset_within_address_space, 1783 int128_get64(u2->section.size)); 1784 1785 if (range_overlaps_range(&r1, &r2)) { 1786 need_inhibit = true; 1787 break; 1788 } 1789 if (range_lob(&r1) < range_lob(&r2)) { 1790 u1 = QSIMPLEQ_NEXT(u1, next); 1791 } else { 1792 u2 = QSIMPLEQ_NEXT(u2, next); 1793 } 1794 } 1795 1796 kvm_slots_lock(); 1797 if (need_inhibit) { 1798 accel_ioctl_inhibit_begin(); 1799 } 1800 1801 /* Remove all memslots before adding the new ones. */ 1802 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1803 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1804 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1805 1806 kvm_set_phys_mem(kml, &u1->section, false); 1807 memory_region_unref(u1->section.mr); 1808 1809 g_free(u1); 1810 } 1811 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1812 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1813 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1814 1815 memory_region_ref(u1->section.mr); 1816 kvm_set_phys_mem(kml, &u1->section, true); 1817 1818 g_free(u1); 1819 } 1820 1821 if (need_inhibit) { 1822 accel_ioctl_inhibit_end(); 1823 } 1824 kvm_slots_unlock(); 1825 } 1826 1827 static void kvm_log_sync(MemoryListener *listener, 1828 MemoryRegionSection *section) 1829 { 1830 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1831 1832 kvm_slots_lock(); 1833 kvm_physical_sync_dirty_bitmap(kml, section); 1834 kvm_slots_unlock(); 1835 } 1836 1837 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1838 { 1839 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1840 KVMState *s = kvm_state; 1841 KVMSlot *mem; 1842 int i; 1843 1844 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1845 kvm_dirty_ring_flush(); 1846 1847 kvm_slots_lock(); 1848 for (i = 0; i < kml->nr_slots_allocated; i++) { 1849 mem = &kml->slots[i]; 1850 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1851 kvm_slot_sync_dirty_pages(mem); 1852 1853 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1854 kvm_slot_get_dirty_log(s, mem)) { 1855 kvm_slot_sync_dirty_pages(mem); 1856 } 1857 1858 /* 1859 * This is not needed by KVM_GET_DIRTY_LOG because the 1860 * ioctl will unconditionally overwrite the whole region. 1861 * However kvm dirty ring has no such side effect. 1862 */ 1863 kvm_slot_reset_dirty_pages(mem); 1864 } 1865 } 1866 kvm_slots_unlock(); 1867 } 1868 1869 static void kvm_log_clear(MemoryListener *listener, 1870 MemoryRegionSection *section) 1871 { 1872 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1873 int r; 1874 1875 r = kvm_physical_log_clear(kml, section); 1876 if (r < 0) { 1877 error_report_once("%s: kvm log clear failed: mr=%s " 1878 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1879 section->mr->name, section->offset_within_region, 1880 int128_get64(section->size)); 1881 abort(); 1882 } 1883 } 1884 1885 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1886 MemoryRegionSection *section, 1887 bool match_data, uint64_t data, 1888 EventNotifier *e) 1889 { 1890 int fd = event_notifier_get_fd(e); 1891 int r; 1892 1893 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1894 data, true, int128_get64(section->size), 1895 match_data); 1896 if (r < 0) { 1897 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1898 __func__, strerror(-r), -r); 1899 abort(); 1900 } 1901 } 1902 1903 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1904 MemoryRegionSection *section, 1905 bool match_data, uint64_t data, 1906 EventNotifier *e) 1907 { 1908 int fd = event_notifier_get_fd(e); 1909 int r; 1910 1911 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1912 data, false, int128_get64(section->size), 1913 match_data); 1914 if (r < 0) { 1915 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1916 __func__, strerror(-r), -r); 1917 abort(); 1918 } 1919 } 1920 1921 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1922 MemoryRegionSection *section, 1923 bool match_data, uint64_t data, 1924 EventNotifier *e) 1925 { 1926 int fd = event_notifier_get_fd(e); 1927 int r; 1928 1929 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1930 data, true, int128_get64(section->size), 1931 match_data); 1932 if (r < 0) { 1933 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1934 __func__, strerror(-r), -r); 1935 abort(); 1936 } 1937 } 1938 1939 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1940 MemoryRegionSection *section, 1941 bool match_data, uint64_t data, 1942 EventNotifier *e) 1943 1944 { 1945 int fd = event_notifier_get_fd(e); 1946 int r; 1947 1948 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1949 data, false, int128_get64(section->size), 1950 match_data); 1951 if (r < 0) { 1952 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1953 __func__, strerror(-r), -r); 1954 abort(); 1955 } 1956 } 1957 1958 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1959 AddressSpace *as, int as_id, const char *name) 1960 { 1961 int i; 1962 1963 kml->as_id = as_id; 1964 1965 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1966 1967 QSIMPLEQ_INIT(&kml->transaction_add); 1968 QSIMPLEQ_INIT(&kml->transaction_del); 1969 1970 kml->listener.region_add = kvm_region_add; 1971 kml->listener.region_del = kvm_region_del; 1972 kml->listener.commit = kvm_region_commit; 1973 kml->listener.log_start = kvm_log_start; 1974 kml->listener.log_stop = kvm_log_stop; 1975 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1976 kml->listener.name = name; 1977 1978 if (s->kvm_dirty_ring_size) { 1979 kml->listener.log_sync_global = kvm_log_sync_global; 1980 } else { 1981 kml->listener.log_sync = kvm_log_sync; 1982 kml->listener.log_clear = kvm_log_clear; 1983 } 1984 1985 memory_listener_register(&kml->listener, as); 1986 1987 for (i = 0; i < s->nr_as; ++i) { 1988 if (!s->as[i].as) { 1989 s->as[i].as = as; 1990 s->as[i].ml = kml; 1991 break; 1992 } 1993 } 1994 } 1995 1996 static MemoryListener kvm_io_listener = { 1997 .name = "kvm-io", 1998 .coalesced_io_add = kvm_coalesce_pio_add, 1999 .coalesced_io_del = kvm_coalesce_pio_del, 2000 .eventfd_add = kvm_io_ioeventfd_add, 2001 .eventfd_del = kvm_io_ioeventfd_del, 2002 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 2003 }; 2004 2005 int kvm_set_irq(KVMState *s, int irq, int level) 2006 { 2007 struct kvm_irq_level event; 2008 int ret; 2009 2010 assert(kvm_async_interrupts_enabled()); 2011 2012 event.level = level; 2013 event.irq = irq; 2014 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 2015 if (ret < 0) { 2016 perror("kvm_set_irq"); 2017 abort(); 2018 } 2019 2020 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 2021 } 2022 2023 #ifdef KVM_CAP_IRQ_ROUTING 2024 typedef struct KVMMSIRoute { 2025 struct kvm_irq_routing_entry kroute; 2026 QTAILQ_ENTRY(KVMMSIRoute) entry; 2027 } KVMMSIRoute; 2028 2029 static void set_gsi(KVMState *s, unsigned int gsi) 2030 { 2031 set_bit(gsi, s->used_gsi_bitmap); 2032 } 2033 2034 static void clear_gsi(KVMState *s, unsigned int gsi) 2035 { 2036 clear_bit(gsi, s->used_gsi_bitmap); 2037 } 2038 2039 void kvm_init_irq_routing(KVMState *s) 2040 { 2041 int gsi_count; 2042 2043 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 2044 if (gsi_count > 0) { 2045 /* Round up so we can search ints using ffs */ 2046 s->used_gsi_bitmap = bitmap_new(gsi_count); 2047 s->gsi_count = gsi_count; 2048 } 2049 2050 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 2051 s->nr_allocated_irq_routes = 0; 2052 2053 kvm_arch_init_irq_routing(s); 2054 } 2055 2056 void kvm_irqchip_commit_routes(KVMState *s) 2057 { 2058 int ret; 2059 2060 if (kvm_gsi_direct_mapping()) { 2061 return; 2062 } 2063 2064 if (!kvm_gsi_routing_enabled()) { 2065 return; 2066 } 2067 2068 s->irq_routes->flags = 0; 2069 trace_kvm_irqchip_commit_routes(); 2070 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2071 assert(ret == 0); 2072 } 2073 2074 void kvm_add_routing_entry(KVMState *s, 2075 struct kvm_irq_routing_entry *entry) 2076 { 2077 struct kvm_irq_routing_entry *new; 2078 int n, size; 2079 2080 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2081 n = s->nr_allocated_irq_routes * 2; 2082 if (n < 64) { 2083 n = 64; 2084 } 2085 size = sizeof(struct kvm_irq_routing); 2086 size += n * sizeof(*new); 2087 s->irq_routes = g_realloc(s->irq_routes, size); 2088 s->nr_allocated_irq_routes = n; 2089 } 2090 n = s->irq_routes->nr++; 2091 new = &s->irq_routes->entries[n]; 2092 2093 *new = *entry; 2094 2095 set_gsi(s, entry->gsi); 2096 } 2097 2098 static int kvm_update_routing_entry(KVMState *s, 2099 struct kvm_irq_routing_entry *new_entry) 2100 { 2101 struct kvm_irq_routing_entry *entry; 2102 int n; 2103 2104 for (n = 0; n < s->irq_routes->nr; n++) { 2105 entry = &s->irq_routes->entries[n]; 2106 if (entry->gsi != new_entry->gsi) { 2107 continue; 2108 } 2109 2110 if(!memcmp(entry, new_entry, sizeof *entry)) { 2111 return 0; 2112 } 2113 2114 *entry = *new_entry; 2115 2116 return 0; 2117 } 2118 2119 return -ESRCH; 2120 } 2121 2122 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2123 { 2124 struct kvm_irq_routing_entry e = {}; 2125 2126 assert(pin < s->gsi_count); 2127 2128 e.gsi = irq; 2129 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2130 e.flags = 0; 2131 e.u.irqchip.irqchip = irqchip; 2132 e.u.irqchip.pin = pin; 2133 kvm_add_routing_entry(s, &e); 2134 } 2135 2136 void kvm_irqchip_release_virq(KVMState *s, int virq) 2137 { 2138 struct kvm_irq_routing_entry *e; 2139 int i; 2140 2141 if (kvm_gsi_direct_mapping()) { 2142 return; 2143 } 2144 2145 for (i = 0; i < s->irq_routes->nr; i++) { 2146 e = &s->irq_routes->entries[i]; 2147 if (e->gsi == virq) { 2148 s->irq_routes->nr--; 2149 *e = s->irq_routes->entries[s->irq_routes->nr]; 2150 } 2151 } 2152 clear_gsi(s, virq); 2153 kvm_arch_release_virq_post(virq); 2154 trace_kvm_irqchip_release_virq(virq); 2155 } 2156 2157 void kvm_irqchip_add_change_notifier(Notifier *n) 2158 { 2159 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2160 } 2161 2162 void kvm_irqchip_remove_change_notifier(Notifier *n) 2163 { 2164 notifier_remove(n); 2165 } 2166 2167 void kvm_irqchip_change_notify(void) 2168 { 2169 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2170 } 2171 2172 int kvm_irqchip_get_virq(KVMState *s) 2173 { 2174 int next_virq; 2175 2176 /* Return the lowest unused GSI in the bitmap */ 2177 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2178 if (next_virq >= s->gsi_count) { 2179 return -ENOSPC; 2180 } else { 2181 return next_virq; 2182 } 2183 } 2184 2185 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2186 { 2187 struct kvm_msi msi; 2188 2189 msi.address_lo = (uint32_t)msg.address; 2190 msi.address_hi = msg.address >> 32; 2191 msi.data = le32_to_cpu(msg.data); 2192 msi.flags = 0; 2193 memset(msi.pad, 0, sizeof(msi.pad)); 2194 2195 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2196 } 2197 2198 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2199 { 2200 struct kvm_irq_routing_entry kroute = {}; 2201 int virq; 2202 KVMState *s = c->s; 2203 MSIMessage msg = {0, 0}; 2204 2205 if (pci_available && dev) { 2206 msg = pci_get_msi_message(dev, vector); 2207 } 2208 2209 if (kvm_gsi_direct_mapping()) { 2210 return kvm_arch_msi_data_to_gsi(msg.data); 2211 } 2212 2213 if (!kvm_gsi_routing_enabled()) { 2214 return -ENOSYS; 2215 } 2216 2217 virq = kvm_irqchip_get_virq(s); 2218 if (virq < 0) { 2219 return virq; 2220 } 2221 2222 kroute.gsi = virq; 2223 kroute.type = KVM_IRQ_ROUTING_MSI; 2224 kroute.flags = 0; 2225 kroute.u.msi.address_lo = (uint32_t)msg.address; 2226 kroute.u.msi.address_hi = msg.address >> 32; 2227 kroute.u.msi.data = le32_to_cpu(msg.data); 2228 if (pci_available && kvm_msi_devid_required()) { 2229 kroute.flags = KVM_MSI_VALID_DEVID; 2230 kroute.u.msi.devid = pci_requester_id(dev); 2231 } 2232 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2233 kvm_irqchip_release_virq(s, virq); 2234 return -EINVAL; 2235 } 2236 2237 if (s->irq_routes->nr < s->gsi_count) { 2238 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2239 vector, virq); 2240 2241 kvm_add_routing_entry(s, &kroute); 2242 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2243 c->changes++; 2244 } else { 2245 kvm_irqchip_release_virq(s, virq); 2246 return -ENOSPC; 2247 } 2248 2249 return virq; 2250 } 2251 2252 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2253 PCIDevice *dev) 2254 { 2255 struct kvm_irq_routing_entry kroute = {}; 2256 2257 if (kvm_gsi_direct_mapping()) { 2258 return 0; 2259 } 2260 2261 if (!kvm_irqchip_in_kernel()) { 2262 return -ENOSYS; 2263 } 2264 2265 kroute.gsi = virq; 2266 kroute.type = KVM_IRQ_ROUTING_MSI; 2267 kroute.flags = 0; 2268 kroute.u.msi.address_lo = (uint32_t)msg.address; 2269 kroute.u.msi.address_hi = msg.address >> 32; 2270 kroute.u.msi.data = le32_to_cpu(msg.data); 2271 if (pci_available && kvm_msi_devid_required()) { 2272 kroute.flags = KVM_MSI_VALID_DEVID; 2273 kroute.u.msi.devid = pci_requester_id(dev); 2274 } 2275 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2276 return -EINVAL; 2277 } 2278 2279 trace_kvm_irqchip_update_msi_route(virq); 2280 2281 return kvm_update_routing_entry(s, &kroute); 2282 } 2283 2284 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2285 EventNotifier *resample, int virq, 2286 bool assign) 2287 { 2288 int fd = event_notifier_get_fd(event); 2289 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2290 2291 struct kvm_irqfd irqfd = { 2292 .fd = fd, 2293 .gsi = virq, 2294 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2295 }; 2296 2297 if (rfd != -1) { 2298 assert(assign); 2299 if (kvm_irqchip_is_split()) { 2300 /* 2301 * When the slow irqchip (e.g. IOAPIC) is in the 2302 * userspace, KVM kernel resamplefd will not work because 2303 * the EOI of the interrupt will be delivered to userspace 2304 * instead, so the KVM kernel resamplefd kick will be 2305 * skipped. The userspace here mimics what the kernel 2306 * provides with resamplefd, remember the resamplefd and 2307 * kick it when we receive EOI of this IRQ. 2308 * 2309 * This is hackery because IOAPIC is mostly bypassed 2310 * (except EOI broadcasts) when irqfd is used. However 2311 * this can bring much performance back for split irqchip 2312 * with INTx IRQs (for VFIO, this gives 93% perf of the 2313 * full fast path, which is 46% perf boost comparing to 2314 * the INTx slow path). 2315 */ 2316 kvm_resample_fd_insert(virq, resample); 2317 } else { 2318 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2319 irqfd.resamplefd = rfd; 2320 } 2321 } else if (!assign) { 2322 if (kvm_irqchip_is_split()) { 2323 kvm_resample_fd_remove(virq); 2324 } 2325 } 2326 2327 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2328 } 2329 2330 #else /* !KVM_CAP_IRQ_ROUTING */ 2331 2332 void kvm_init_irq_routing(KVMState *s) 2333 { 2334 } 2335 2336 void kvm_irqchip_release_virq(KVMState *s, int virq) 2337 { 2338 } 2339 2340 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2341 { 2342 abort(); 2343 } 2344 2345 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2346 { 2347 return -ENOSYS; 2348 } 2349 2350 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2351 { 2352 return -ENOSYS; 2353 } 2354 2355 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2356 { 2357 return -ENOSYS; 2358 } 2359 2360 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2361 EventNotifier *resample, int virq, 2362 bool assign) 2363 { 2364 abort(); 2365 } 2366 2367 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2368 { 2369 return -ENOSYS; 2370 } 2371 #endif /* !KVM_CAP_IRQ_ROUTING */ 2372 2373 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2374 EventNotifier *rn, int virq) 2375 { 2376 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2377 } 2378 2379 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2380 int virq) 2381 { 2382 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2383 } 2384 2385 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2386 EventNotifier *rn, qemu_irq irq) 2387 { 2388 gpointer key, gsi; 2389 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2390 2391 if (!found) { 2392 return -ENXIO; 2393 } 2394 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2395 } 2396 2397 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2398 qemu_irq irq) 2399 { 2400 gpointer key, gsi; 2401 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2402 2403 if (!found) { 2404 return -ENXIO; 2405 } 2406 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2407 } 2408 2409 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2410 { 2411 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2412 } 2413 2414 static void kvm_irqchip_create(KVMState *s) 2415 { 2416 int ret; 2417 2418 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2419 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2420 ; 2421 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2422 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2423 if (ret < 0) { 2424 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2425 exit(1); 2426 } 2427 } else { 2428 return; 2429 } 2430 2431 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2432 fprintf(stderr, "kvm: irqfd not implemented\n"); 2433 exit(1); 2434 } 2435 2436 /* First probe and see if there's a arch-specific hook to create the 2437 * in-kernel irqchip for us */ 2438 ret = kvm_arch_irqchip_create(s); 2439 if (ret == 0) { 2440 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2441 error_report("Split IRQ chip mode not supported."); 2442 exit(1); 2443 } else { 2444 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2445 } 2446 } 2447 if (ret < 0) { 2448 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2449 exit(1); 2450 } 2451 2452 kvm_kernel_irqchip = true; 2453 /* If we have an in-kernel IRQ chip then we must have asynchronous 2454 * interrupt delivery (though the reverse is not necessarily true) 2455 */ 2456 kvm_async_interrupts_allowed = true; 2457 kvm_halt_in_kernel_allowed = true; 2458 2459 kvm_init_irq_routing(s); 2460 2461 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2462 } 2463 2464 /* Find number of supported CPUs using the recommended 2465 * procedure from the kernel API documentation to cope with 2466 * older kernels that may be missing capabilities. 2467 */ 2468 static int kvm_recommended_vcpus(KVMState *s) 2469 { 2470 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2471 return (ret) ? ret : 4; 2472 } 2473 2474 static int kvm_max_vcpus(KVMState *s) 2475 { 2476 int ret = kvm_vm_check_extension(s, KVM_CAP_MAX_VCPUS); 2477 return (ret) ? ret : kvm_recommended_vcpus(s); 2478 } 2479 2480 static int kvm_max_vcpu_id(KVMState *s) 2481 { 2482 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2483 return (ret) ? ret : kvm_max_vcpus(s); 2484 } 2485 2486 bool kvm_vcpu_id_is_valid(int vcpu_id) 2487 { 2488 KVMState *s = KVM_STATE(current_accel()); 2489 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2490 } 2491 2492 bool kvm_dirty_ring_enabled(void) 2493 { 2494 return kvm_state && kvm_state->kvm_dirty_ring_size; 2495 } 2496 2497 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2498 strList *names, strList *targets, Error **errp); 2499 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2500 2501 uint32_t kvm_dirty_ring_size(void) 2502 { 2503 return kvm_state->kvm_dirty_ring_size; 2504 } 2505 2506 static int do_kvm_create_vm(KVMState *s, int type) 2507 { 2508 int ret; 2509 2510 do { 2511 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2512 } while (ret == -EINTR); 2513 2514 if (ret < 0) { 2515 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret)); 2516 2517 #ifdef TARGET_S390X 2518 if (ret == -EINVAL) { 2519 error_printf("Host kernel setup problem detected." 2520 " Please verify:\n"); 2521 error_printf("- for kernels supporting the" 2522 " switch_amode or user_mode parameters, whether"); 2523 error_printf(" user space is running in primary address space\n"); 2524 error_printf("- for kernels supporting the vm.allocate_pgste" 2525 " sysctl, whether it is enabled\n"); 2526 } 2527 #elif defined(TARGET_PPC) 2528 if (ret == -EINVAL) { 2529 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2530 (type == 2) ? "pr" : "hv"); 2531 } 2532 #endif 2533 } 2534 2535 return ret; 2536 } 2537 2538 static int find_kvm_machine_type(MachineState *ms) 2539 { 2540 MachineClass *mc = MACHINE_GET_CLASS(ms); 2541 int type; 2542 2543 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2544 g_autofree char *kvm_type; 2545 kvm_type = object_property_get_str(OBJECT(current_machine), 2546 "kvm-type", 2547 &error_abort); 2548 type = mc->kvm_type(ms, kvm_type); 2549 } else if (mc->kvm_type) { 2550 type = mc->kvm_type(ms, NULL); 2551 } else { 2552 type = kvm_arch_get_default_type(ms); 2553 } 2554 return type; 2555 } 2556 2557 static int kvm_setup_dirty_ring(KVMState *s) 2558 { 2559 uint64_t dirty_log_manual_caps; 2560 int ret; 2561 2562 /* 2563 * Enable KVM dirty ring if supported, otherwise fall back to 2564 * dirty logging mode 2565 */ 2566 ret = kvm_dirty_ring_init(s); 2567 if (ret < 0) { 2568 return ret; 2569 } 2570 2571 /* 2572 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2573 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2574 * page is wr-protected initially, which is against how kvm dirty ring is 2575 * usage - kvm dirty ring requires all pages are wr-protected at the very 2576 * beginning. Enabling this feature for dirty ring causes data corruption. 2577 * 2578 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2579 * we may expect a higher stall time when starting the migration. In the 2580 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2581 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2582 * guest pages. 2583 */ 2584 if (!s->kvm_dirty_ring_size) { 2585 dirty_log_manual_caps = 2586 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2587 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2588 KVM_DIRTY_LOG_INITIALLY_SET); 2589 s->manual_dirty_log_protect = dirty_log_manual_caps; 2590 if (dirty_log_manual_caps) { 2591 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2592 dirty_log_manual_caps); 2593 if (ret) { 2594 warn_report("Trying to enable capability %"PRIu64" of " 2595 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2596 "Falling back to the legacy mode. ", 2597 dirty_log_manual_caps); 2598 s->manual_dirty_log_protect = 0; 2599 } 2600 } 2601 } 2602 2603 return 0; 2604 } 2605 2606 static int kvm_init(AccelState *as, MachineState *ms) 2607 { 2608 MachineClass *mc = MACHINE_GET_CLASS(ms); 2609 static const char upgrade_note[] = 2610 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2611 "(see http://sourceforge.net/projects/kvm).\n"; 2612 const struct { 2613 const char *name; 2614 int num; 2615 } num_cpus[] = { 2616 { "SMP", ms->smp.cpus }, 2617 { "hotpluggable", ms->smp.max_cpus }, 2618 { /* end of list */ } 2619 }, *nc = num_cpus; 2620 int soft_vcpus_limit, hard_vcpus_limit; 2621 KVMState *s = KVM_STATE(as); 2622 const KVMCapabilityInfo *missing_cap; 2623 int ret; 2624 int type; 2625 2626 qemu_mutex_init(&kml_slots_lock); 2627 2628 /* 2629 * On systems where the kernel can support different base page 2630 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2631 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2632 * page size for the system though. 2633 */ 2634 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2635 2636 s->sigmask_len = 8; 2637 accel_blocker_init(); 2638 2639 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2640 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2641 #endif 2642 QLIST_INIT(&s->kvm_parked_vcpus); 2643 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2644 if (s->fd == -1) { 2645 error_report("Could not access KVM kernel module: %m"); 2646 ret = -errno; 2647 goto err; 2648 } 2649 2650 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2651 if (ret < KVM_API_VERSION) { 2652 if (ret >= 0) { 2653 ret = -EINVAL; 2654 } 2655 error_report("kvm version too old"); 2656 goto err; 2657 } 2658 2659 if (ret > KVM_API_VERSION) { 2660 ret = -EINVAL; 2661 error_report("kvm version not supported"); 2662 goto err; 2663 } 2664 2665 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2666 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2667 2668 /* If unspecified, use the default value */ 2669 if (!s->nr_slots_max) { 2670 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT; 2671 } 2672 2673 type = find_kvm_machine_type(ms); 2674 if (type < 0) { 2675 ret = -EINVAL; 2676 goto err; 2677 } 2678 2679 ret = do_kvm_create_vm(s, type); 2680 if (ret < 0) { 2681 goto err; 2682 } 2683 2684 s->vmfd = ret; 2685 2686 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2687 if (s->nr_as <= 1) { 2688 s->nr_as = 1; 2689 } 2690 s->as = g_new0(struct KVMAs, s->nr_as); 2691 2692 /* check the vcpu limits */ 2693 soft_vcpus_limit = kvm_recommended_vcpus(s); 2694 hard_vcpus_limit = kvm_max_vcpus(s); 2695 2696 while (nc->name) { 2697 if (nc->num > soft_vcpus_limit) { 2698 warn_report("Number of %s cpus requested (%d) exceeds " 2699 "the recommended cpus supported by KVM (%d)", 2700 nc->name, nc->num, soft_vcpus_limit); 2701 2702 if (nc->num > hard_vcpus_limit) { 2703 error_report("Number of %s cpus requested (%d) exceeds " 2704 "the maximum cpus supported by KVM (%d)", 2705 nc->name, nc->num, hard_vcpus_limit); 2706 exit(1); 2707 } 2708 } 2709 nc++; 2710 } 2711 2712 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2713 if (!missing_cap) { 2714 missing_cap = 2715 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2716 } 2717 if (missing_cap) { 2718 ret = -EINVAL; 2719 error_report("kvm does not support %s", missing_cap->name); 2720 error_printf("%s", upgrade_note); 2721 goto err; 2722 } 2723 2724 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2725 s->coalesced_pio = s->coalesced_mmio && 2726 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2727 2728 ret = kvm_setup_dirty_ring(s); 2729 if (ret < 0) { 2730 goto err; 2731 } 2732 2733 #ifdef KVM_CAP_VCPU_EVENTS 2734 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2735 #endif 2736 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2737 2738 s->irq_set_ioctl = KVM_IRQ_LINE; 2739 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2740 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2741 } 2742 2743 kvm_readonly_mem_allowed = 2744 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2745 2746 kvm_resamplefds_allowed = 2747 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2748 2749 kvm_vm_attributes_allowed = 2750 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2751 2752 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2753 kvm_has_guest_debug = 2754 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2755 #endif 2756 2757 kvm_sstep_flags = 0; 2758 if (kvm_has_guest_debug) { 2759 kvm_sstep_flags = SSTEP_ENABLE; 2760 2761 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2762 int guest_debug_flags = 2763 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2764 2765 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2766 kvm_sstep_flags |= SSTEP_NOIRQ; 2767 } 2768 #endif 2769 } 2770 2771 kvm_state = s; 2772 2773 ret = kvm_arch_init(ms, s); 2774 if (ret < 0) { 2775 goto err; 2776 } 2777 2778 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2779 kvm_guest_memfd_supported = 2780 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2781 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2782 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2783 kvm_pre_fault_memory_supported = kvm_vm_check_extension(s, KVM_CAP_PRE_FAULT_MEMORY); 2784 2785 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2786 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2787 } 2788 2789 qemu_register_reset(kvm_unpoison_all, NULL); 2790 2791 if (s->kernel_irqchip_allowed) { 2792 kvm_irqchip_create(s); 2793 } 2794 2795 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2796 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2797 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2798 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2799 2800 kvm_memory_listener_register(s, &s->memory_listener, 2801 &address_space_memory, 0, "kvm-memory"); 2802 memory_listener_register(&kvm_io_listener, 2803 &address_space_io); 2804 2805 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2806 if (!s->sync_mmu) { 2807 ret = ram_block_discard_disable(true); 2808 assert(!ret); 2809 } 2810 2811 if (s->kvm_dirty_ring_size) { 2812 kvm_dirty_ring_reaper_init(s); 2813 } 2814 2815 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2816 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2817 query_stats_schemas_cb); 2818 } 2819 2820 return 0; 2821 2822 err: 2823 assert(ret < 0); 2824 if (s->vmfd >= 0) { 2825 close(s->vmfd); 2826 } 2827 if (s->fd != -1) { 2828 close(s->fd); 2829 } 2830 g_free(s->as); 2831 g_free(s->memory_listener.slots); 2832 2833 return ret; 2834 } 2835 2836 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2837 { 2838 s->sigmask_len = sigmask_len; 2839 } 2840 2841 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2842 int size, uint32_t count) 2843 { 2844 int i; 2845 uint8_t *ptr = data; 2846 2847 for (i = 0; i < count; i++) { 2848 address_space_rw(&address_space_io, port, attrs, 2849 ptr, size, 2850 direction == KVM_EXIT_IO_OUT); 2851 ptr += size; 2852 } 2853 } 2854 2855 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2856 { 2857 int i; 2858 2859 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2860 run->internal.suberror); 2861 2862 for (i = 0; i < run->internal.ndata; ++i) { 2863 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2864 i, (uint64_t)run->internal.data[i]); 2865 } 2866 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2867 fprintf(stderr, "emulation failure\n"); 2868 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2869 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2870 return EXCP_INTERRUPT; 2871 } 2872 } 2873 /* FIXME: Should trigger a qmp message to let management know 2874 * something went wrong. 2875 */ 2876 return -1; 2877 } 2878 2879 void kvm_flush_coalesced_mmio_buffer(void) 2880 { 2881 KVMState *s = kvm_state; 2882 2883 if (!s || s->coalesced_flush_in_progress) { 2884 return; 2885 } 2886 2887 s->coalesced_flush_in_progress = true; 2888 2889 if (s->coalesced_mmio_ring) { 2890 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2891 while (ring->first != ring->last) { 2892 struct kvm_coalesced_mmio *ent; 2893 2894 ent = &ring->coalesced_mmio[ring->first]; 2895 2896 if (ent->pio == 1) { 2897 address_space_write(&address_space_io, ent->phys_addr, 2898 MEMTXATTRS_UNSPECIFIED, ent->data, 2899 ent->len); 2900 } else { 2901 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2902 } 2903 smp_wmb(); 2904 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2905 } 2906 } 2907 2908 s->coalesced_flush_in_progress = false; 2909 } 2910 2911 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2912 { 2913 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2914 Error *err = NULL; 2915 int ret = kvm_arch_get_registers(cpu, &err); 2916 if (ret) { 2917 if (err) { 2918 error_reportf_err(err, "Failed to synchronize CPU state: "); 2919 } else { 2920 error_report("Failed to get registers: %s", strerror(-ret)); 2921 } 2922 2923 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2924 vm_stop(RUN_STATE_INTERNAL_ERROR); 2925 } 2926 2927 cpu->vcpu_dirty = true; 2928 } 2929 } 2930 2931 void kvm_cpu_synchronize_state(CPUState *cpu) 2932 { 2933 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2934 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2935 } 2936 } 2937 2938 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2939 { 2940 Error *err = NULL; 2941 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err); 2942 if (ret) { 2943 if (err) { 2944 error_reportf_err(err, "Restoring resisters after reset: "); 2945 } else { 2946 error_report("Failed to put registers after reset: %s", 2947 strerror(-ret)); 2948 } 2949 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2950 vm_stop(RUN_STATE_INTERNAL_ERROR); 2951 } 2952 2953 cpu->vcpu_dirty = false; 2954 } 2955 2956 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2957 { 2958 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2959 2960 if (cpu == first_cpu) { 2961 kvm_reset_parked_vcpus(kvm_state); 2962 } 2963 } 2964 2965 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2966 { 2967 Error *err = NULL; 2968 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err); 2969 if (ret) { 2970 if (err) { 2971 error_reportf_err(err, "Putting registers after init: "); 2972 } else { 2973 error_report("Failed to put registers after init: %s", 2974 strerror(-ret)); 2975 } 2976 exit(1); 2977 } 2978 2979 cpu->vcpu_dirty = false; 2980 } 2981 2982 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2983 { 2984 if (!kvm_state->guest_state_protected) { 2985 /* 2986 * This runs before the machine_init_done notifiers, and is the last 2987 * opportunity to synchronize the state of confidential guests. 2988 */ 2989 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2990 } 2991 } 2992 2993 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2994 { 2995 cpu->vcpu_dirty = true; 2996 } 2997 2998 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2999 { 3000 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 3001 } 3002 3003 #ifdef KVM_HAVE_MCE_INJECTION 3004 static __thread void *pending_sigbus_addr; 3005 static __thread int pending_sigbus_code; 3006 static __thread bool have_sigbus_pending; 3007 #endif 3008 3009 static void kvm_cpu_kick(CPUState *cpu) 3010 { 3011 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 3012 } 3013 3014 static void kvm_cpu_kick_self(void) 3015 { 3016 if (kvm_immediate_exit) { 3017 kvm_cpu_kick(current_cpu); 3018 } else { 3019 qemu_cpu_kick_self(); 3020 } 3021 } 3022 3023 static void kvm_eat_signals(CPUState *cpu) 3024 { 3025 struct timespec ts = { 0, 0 }; 3026 siginfo_t siginfo; 3027 sigset_t waitset; 3028 sigset_t chkset; 3029 int r; 3030 3031 if (kvm_immediate_exit) { 3032 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 3033 /* Write kvm_run->immediate_exit before the cpu->exit_request 3034 * write in kvm_cpu_exec. 3035 */ 3036 smp_wmb(); 3037 return; 3038 } 3039 3040 sigemptyset(&waitset); 3041 sigaddset(&waitset, SIG_IPI); 3042 3043 do { 3044 r = sigtimedwait(&waitset, &siginfo, &ts); 3045 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 3046 perror("sigtimedwait"); 3047 exit(1); 3048 } 3049 3050 r = sigpending(&chkset); 3051 if (r == -1) { 3052 perror("sigpending"); 3053 exit(1); 3054 } 3055 } while (sigismember(&chkset, SIG_IPI)); 3056 } 3057 3058 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 3059 { 3060 MemoryRegionSection section; 3061 ram_addr_t offset; 3062 MemoryRegion *mr; 3063 RAMBlock *rb; 3064 void *addr; 3065 int ret = -EINVAL; 3066 3067 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 3068 3069 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 3070 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 3071 return ret; 3072 } 3073 3074 if (!size) { 3075 return ret; 3076 } 3077 3078 section = memory_region_find(get_system_memory(), start, size); 3079 mr = section.mr; 3080 if (!mr) { 3081 /* 3082 * Ignore converting non-assigned region to shared. 3083 * 3084 * TDX requires vMMIO region to be shared to inject #VE to guest. 3085 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 3086 * and vIO-APIC 0xFEC00000 4K page. 3087 * OVMF assigns 32bit PCI MMIO region to 3088 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 3089 */ 3090 if (!to_private) { 3091 return 0; 3092 } 3093 return ret; 3094 } 3095 3096 if (!memory_region_has_guest_memfd(mr)) { 3097 /* 3098 * Because vMMIO region must be shared, guest TD may convert vMMIO 3099 * region to shared explicitly. Don't complain such case. See 3100 * memory_region_type() for checking if the region is MMIO region. 3101 */ 3102 if (!to_private && 3103 !memory_region_is_ram(mr) && 3104 !memory_region_is_ram_device(mr) && 3105 !memory_region_is_rom(mr) && 3106 !memory_region_is_romd(mr)) { 3107 ret = 0; 3108 } else { 3109 error_report("Convert non guest_memfd backed memory region " 3110 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3111 start, size, to_private ? "private" : "shared"); 3112 } 3113 goto out_unref; 3114 } 3115 3116 if (to_private) { 3117 ret = kvm_set_memory_attributes_private(start, size); 3118 } else { 3119 ret = kvm_set_memory_attributes_shared(start, size); 3120 } 3121 if (ret) { 3122 goto out_unref; 3123 } 3124 3125 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3126 rb = qemu_ram_block_from_host(addr, false, &offset); 3127 3128 ret = ram_block_attributes_state_change(RAM_BLOCK_ATTRIBUTES(mr->rdm), 3129 offset, size, to_private); 3130 if (ret) { 3131 error_report("Failed to notify the listener the state change of " 3132 "(0x%"HWADDR_PRIx" + 0x%"HWADDR_PRIx") to %s", 3133 start, size, to_private ? "private" : "shared"); 3134 goto out_unref; 3135 } 3136 3137 if (to_private) { 3138 if (rb->page_size != qemu_real_host_page_size()) { 3139 /* 3140 * shared memory is backed by hugetlb, which is supposed to be 3141 * pre-allocated and doesn't need to be discarded 3142 */ 3143 goto out_unref; 3144 } 3145 ret = ram_block_discard_range(rb, offset, size); 3146 } else { 3147 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3148 } 3149 3150 out_unref: 3151 memory_region_unref(mr); 3152 return ret; 3153 } 3154 3155 int kvm_cpu_exec(CPUState *cpu) 3156 { 3157 struct kvm_run *run = cpu->kvm_run; 3158 int ret, run_ret; 3159 3160 trace_kvm_cpu_exec(); 3161 3162 if (kvm_arch_process_async_events(cpu)) { 3163 qatomic_set(&cpu->exit_request, 0); 3164 return EXCP_HLT; 3165 } 3166 3167 bql_unlock(); 3168 cpu_exec_start(cpu); 3169 3170 do { 3171 MemTxAttrs attrs; 3172 3173 if (cpu->vcpu_dirty) { 3174 Error *err = NULL; 3175 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err); 3176 if (ret) { 3177 if (err) { 3178 error_reportf_err(err, "Putting registers after init: "); 3179 } else { 3180 error_report("Failed to put registers after init: %s", 3181 strerror(-ret)); 3182 } 3183 ret = -1; 3184 break; 3185 } 3186 3187 cpu->vcpu_dirty = false; 3188 } 3189 3190 kvm_arch_pre_run(cpu, run); 3191 if (qatomic_read(&cpu->exit_request)) { 3192 trace_kvm_interrupt_exit_request(); 3193 /* 3194 * KVM requires us to reenter the kernel after IO exits to complete 3195 * instruction emulation. This self-signal will ensure that we 3196 * leave ASAP again. 3197 */ 3198 kvm_cpu_kick_self(); 3199 } 3200 3201 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3202 * Matching barrier in kvm_eat_signals. 3203 */ 3204 smp_rmb(); 3205 3206 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3207 3208 attrs = kvm_arch_post_run(cpu, run); 3209 3210 #ifdef KVM_HAVE_MCE_INJECTION 3211 if (unlikely(have_sigbus_pending)) { 3212 bql_lock(); 3213 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3214 pending_sigbus_addr); 3215 have_sigbus_pending = false; 3216 bql_unlock(); 3217 } 3218 #endif 3219 3220 if (run_ret < 0) { 3221 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3222 trace_kvm_io_window_exit(); 3223 kvm_eat_signals(cpu); 3224 ret = EXCP_INTERRUPT; 3225 break; 3226 } 3227 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3228 fprintf(stderr, "error: kvm run failed %s\n", 3229 strerror(-run_ret)); 3230 #ifdef TARGET_PPC 3231 if (run_ret == -EBUSY) { 3232 fprintf(stderr, 3233 "This is probably because your SMT is enabled.\n" 3234 "VCPU can only run on primary threads with all " 3235 "secondary threads offline.\n"); 3236 } 3237 #endif 3238 ret = -1; 3239 break; 3240 } 3241 } 3242 3243 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3244 switch (run->exit_reason) { 3245 case KVM_EXIT_IO: 3246 /* Called outside BQL */ 3247 kvm_handle_io(run->io.port, attrs, 3248 (uint8_t *)run + run->io.data_offset, 3249 run->io.direction, 3250 run->io.size, 3251 run->io.count); 3252 ret = 0; 3253 break; 3254 case KVM_EXIT_MMIO: 3255 /* Called outside BQL */ 3256 address_space_rw(&address_space_memory, 3257 run->mmio.phys_addr, attrs, 3258 run->mmio.data, 3259 run->mmio.len, 3260 run->mmio.is_write); 3261 ret = 0; 3262 break; 3263 case KVM_EXIT_IRQ_WINDOW_OPEN: 3264 ret = EXCP_INTERRUPT; 3265 break; 3266 case KVM_EXIT_SHUTDOWN: 3267 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3268 ret = EXCP_INTERRUPT; 3269 break; 3270 case KVM_EXIT_UNKNOWN: 3271 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3272 (uint64_t)run->hw.hardware_exit_reason); 3273 ret = -1; 3274 break; 3275 case KVM_EXIT_INTERNAL_ERROR: 3276 ret = kvm_handle_internal_error(cpu, run); 3277 break; 3278 case KVM_EXIT_DIRTY_RING_FULL: 3279 /* 3280 * We shouldn't continue if the dirty ring of this vcpu is 3281 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3282 */ 3283 trace_kvm_dirty_ring_full(cpu->cpu_index); 3284 bql_lock(); 3285 /* 3286 * We throttle vCPU by making it sleep once it exit from kernel 3287 * due to dirty ring full. In the dirtylimit scenario, reaping 3288 * all vCPUs after a single vCPU dirty ring get full result in 3289 * the miss of sleep, so just reap the ring-fulled vCPU. 3290 */ 3291 if (dirtylimit_in_service()) { 3292 kvm_dirty_ring_reap(kvm_state, cpu); 3293 } else { 3294 kvm_dirty_ring_reap(kvm_state, NULL); 3295 } 3296 bql_unlock(); 3297 dirtylimit_vcpu_execute(cpu); 3298 ret = 0; 3299 break; 3300 case KVM_EXIT_SYSTEM_EVENT: 3301 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3302 switch (run->system_event.type) { 3303 case KVM_SYSTEM_EVENT_SHUTDOWN: 3304 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3305 ret = EXCP_INTERRUPT; 3306 break; 3307 case KVM_SYSTEM_EVENT_RESET: 3308 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3309 ret = EXCP_INTERRUPT; 3310 break; 3311 case KVM_SYSTEM_EVENT_CRASH: 3312 kvm_cpu_synchronize_state(cpu); 3313 bql_lock(); 3314 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3315 bql_unlock(); 3316 ret = 0; 3317 break; 3318 default: 3319 ret = kvm_arch_handle_exit(cpu, run); 3320 break; 3321 } 3322 break; 3323 case KVM_EXIT_MEMORY_FAULT: 3324 trace_kvm_memory_fault(run->memory_fault.gpa, 3325 run->memory_fault.size, 3326 run->memory_fault.flags); 3327 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3328 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3329 (uint64_t)run->memory_fault.flags); 3330 ret = -1; 3331 break; 3332 } 3333 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3334 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3335 break; 3336 default: 3337 ret = kvm_arch_handle_exit(cpu, run); 3338 break; 3339 } 3340 } while (ret == 0); 3341 3342 cpu_exec_end(cpu); 3343 bql_lock(); 3344 3345 if (ret < 0) { 3346 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3347 vm_stop(RUN_STATE_INTERNAL_ERROR); 3348 } 3349 3350 qatomic_set(&cpu->exit_request, 0); 3351 return ret; 3352 } 3353 3354 int kvm_ioctl(KVMState *s, unsigned long type, ...) 3355 { 3356 int ret; 3357 void *arg; 3358 va_list ap; 3359 3360 va_start(ap, type); 3361 arg = va_arg(ap, void *); 3362 va_end(ap); 3363 3364 trace_kvm_ioctl(type, arg); 3365 ret = ioctl(s->fd, type, arg); 3366 if (ret == -1) { 3367 ret = -errno; 3368 } 3369 return ret; 3370 } 3371 3372 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...) 3373 { 3374 int ret; 3375 void *arg; 3376 va_list ap; 3377 3378 va_start(ap, type); 3379 arg = va_arg(ap, void *); 3380 va_end(ap); 3381 3382 trace_kvm_vm_ioctl(type, arg); 3383 accel_ioctl_begin(); 3384 ret = ioctl(s->vmfd, type, arg); 3385 accel_ioctl_end(); 3386 if (ret == -1) { 3387 ret = -errno; 3388 } 3389 return ret; 3390 } 3391 3392 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...) 3393 { 3394 int ret; 3395 void *arg; 3396 va_list ap; 3397 3398 va_start(ap, type); 3399 arg = va_arg(ap, void *); 3400 va_end(ap); 3401 3402 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3403 accel_cpu_ioctl_begin(cpu); 3404 ret = ioctl(cpu->kvm_fd, type, arg); 3405 accel_cpu_ioctl_end(cpu); 3406 if (ret == -1) { 3407 ret = -errno; 3408 } 3409 return ret; 3410 } 3411 3412 int kvm_device_ioctl(int fd, unsigned long type, ...) 3413 { 3414 int ret; 3415 void *arg; 3416 va_list ap; 3417 3418 va_start(ap, type); 3419 arg = va_arg(ap, void *); 3420 va_end(ap); 3421 3422 trace_kvm_device_ioctl(fd, type, arg); 3423 accel_ioctl_begin(); 3424 ret = ioctl(fd, type, arg); 3425 accel_ioctl_end(); 3426 if (ret == -1) { 3427 ret = -errno; 3428 } 3429 return ret; 3430 } 3431 3432 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3433 { 3434 int ret; 3435 struct kvm_device_attr attribute = { 3436 .group = group, 3437 .attr = attr, 3438 }; 3439 3440 if (!kvm_vm_attributes_allowed) { 3441 return 0; 3442 } 3443 3444 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3445 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3446 return ret ? 0 : 1; 3447 } 3448 3449 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3450 { 3451 struct kvm_device_attr attribute = { 3452 .group = group, 3453 .attr = attr, 3454 .flags = 0, 3455 }; 3456 3457 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3458 } 3459 3460 int kvm_device_access(int fd, int group, uint64_t attr, 3461 void *val, bool write, Error **errp) 3462 { 3463 struct kvm_device_attr kvmattr; 3464 int err; 3465 3466 kvmattr.flags = 0; 3467 kvmattr.group = group; 3468 kvmattr.attr = attr; 3469 kvmattr.addr = (uintptr_t)val; 3470 3471 err = kvm_device_ioctl(fd, 3472 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3473 &kvmattr); 3474 if (err < 0) { 3475 error_setg_errno(errp, -err, 3476 "KVM_%s_DEVICE_ATTR failed: Group %d " 3477 "attr 0x%016" PRIx64, 3478 write ? "SET" : "GET", group, attr); 3479 } 3480 return err; 3481 } 3482 3483 bool kvm_has_sync_mmu(void) 3484 { 3485 return kvm_state->sync_mmu; 3486 } 3487 3488 int kvm_has_vcpu_events(void) 3489 { 3490 return kvm_state->vcpu_events; 3491 } 3492 3493 int kvm_max_nested_state_length(void) 3494 { 3495 return kvm_state->max_nested_state_len; 3496 } 3497 3498 int kvm_has_gsi_routing(void) 3499 { 3500 #ifdef KVM_CAP_IRQ_ROUTING 3501 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3502 #else 3503 return false; 3504 #endif 3505 } 3506 3507 bool kvm_arm_supports_user_irq(void) 3508 { 3509 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3510 } 3511 3512 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3513 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3514 { 3515 struct kvm_sw_breakpoint *bp; 3516 3517 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3518 if (bp->pc == pc) { 3519 return bp; 3520 } 3521 } 3522 return NULL; 3523 } 3524 3525 int kvm_sw_breakpoints_active(CPUState *cpu) 3526 { 3527 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3528 } 3529 3530 struct kvm_set_guest_debug_data { 3531 struct kvm_guest_debug dbg; 3532 int err; 3533 }; 3534 3535 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3536 { 3537 struct kvm_set_guest_debug_data *dbg_data = 3538 (struct kvm_set_guest_debug_data *) data.host_ptr; 3539 3540 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3541 &dbg_data->dbg); 3542 } 3543 3544 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3545 { 3546 struct kvm_set_guest_debug_data data; 3547 3548 data.dbg.control = reinject_trap; 3549 3550 if (cpu->singlestep_enabled) { 3551 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3552 3553 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3554 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3555 } 3556 } 3557 kvm_arch_update_guest_debug(cpu, &data.dbg); 3558 3559 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3560 RUN_ON_CPU_HOST_PTR(&data)); 3561 return data.err; 3562 } 3563 3564 bool kvm_supports_guest_debug(void) 3565 { 3566 /* probed during kvm_init() */ 3567 return kvm_has_guest_debug; 3568 } 3569 3570 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3571 { 3572 struct kvm_sw_breakpoint *bp; 3573 int err; 3574 3575 if (type == GDB_BREAKPOINT_SW) { 3576 bp = kvm_find_sw_breakpoint(cpu, addr); 3577 if (bp) { 3578 bp->use_count++; 3579 return 0; 3580 } 3581 3582 bp = g_new(struct kvm_sw_breakpoint, 1); 3583 bp->pc = addr; 3584 bp->use_count = 1; 3585 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3586 if (err) { 3587 g_free(bp); 3588 return err; 3589 } 3590 3591 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3592 } else { 3593 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3594 if (err) { 3595 return err; 3596 } 3597 } 3598 3599 CPU_FOREACH(cpu) { 3600 err = kvm_update_guest_debug(cpu, 0); 3601 if (err) { 3602 return err; 3603 } 3604 } 3605 return 0; 3606 } 3607 3608 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3609 { 3610 struct kvm_sw_breakpoint *bp; 3611 int err; 3612 3613 if (type == GDB_BREAKPOINT_SW) { 3614 bp = kvm_find_sw_breakpoint(cpu, addr); 3615 if (!bp) { 3616 return -ENOENT; 3617 } 3618 3619 if (bp->use_count > 1) { 3620 bp->use_count--; 3621 return 0; 3622 } 3623 3624 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3625 if (err) { 3626 return err; 3627 } 3628 3629 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3630 g_free(bp); 3631 } else { 3632 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3633 if (err) { 3634 return err; 3635 } 3636 } 3637 3638 CPU_FOREACH(cpu) { 3639 err = kvm_update_guest_debug(cpu, 0); 3640 if (err) { 3641 return err; 3642 } 3643 } 3644 return 0; 3645 } 3646 3647 void kvm_remove_all_breakpoints(CPUState *cpu) 3648 { 3649 struct kvm_sw_breakpoint *bp, *next; 3650 KVMState *s = cpu->kvm_state; 3651 CPUState *tmpcpu; 3652 3653 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3654 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3655 /* Try harder to find a CPU that currently sees the breakpoint. */ 3656 CPU_FOREACH(tmpcpu) { 3657 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3658 break; 3659 } 3660 } 3661 } 3662 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3663 g_free(bp); 3664 } 3665 kvm_arch_remove_all_hw_breakpoints(); 3666 3667 CPU_FOREACH(cpu) { 3668 kvm_update_guest_debug(cpu, 0); 3669 } 3670 } 3671 3672 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3673 3674 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3675 { 3676 KVMState *s = kvm_state; 3677 struct kvm_signal_mask *sigmask; 3678 int r; 3679 3680 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3681 3682 sigmask->len = s->sigmask_len; 3683 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3684 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3685 g_free(sigmask); 3686 3687 return r; 3688 } 3689 3690 static void kvm_ipi_signal(int sig) 3691 { 3692 if (current_cpu) { 3693 assert(kvm_immediate_exit); 3694 kvm_cpu_kick(current_cpu); 3695 } 3696 } 3697 3698 void kvm_init_cpu_signals(CPUState *cpu) 3699 { 3700 int r; 3701 sigset_t set; 3702 struct sigaction sigact; 3703 3704 memset(&sigact, 0, sizeof(sigact)); 3705 sigact.sa_handler = kvm_ipi_signal; 3706 sigaction(SIG_IPI, &sigact, NULL); 3707 3708 pthread_sigmask(SIG_BLOCK, NULL, &set); 3709 #if defined KVM_HAVE_MCE_INJECTION 3710 sigdelset(&set, SIGBUS); 3711 pthread_sigmask(SIG_SETMASK, &set, NULL); 3712 #endif 3713 sigdelset(&set, SIG_IPI); 3714 if (kvm_immediate_exit) { 3715 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3716 } else { 3717 r = kvm_set_signal_mask(cpu, &set); 3718 } 3719 if (r) { 3720 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3721 exit(1); 3722 } 3723 } 3724 3725 /* Called asynchronously in VCPU thread. */ 3726 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3727 { 3728 #ifdef KVM_HAVE_MCE_INJECTION 3729 if (have_sigbus_pending) { 3730 return 1; 3731 } 3732 have_sigbus_pending = true; 3733 pending_sigbus_addr = addr; 3734 pending_sigbus_code = code; 3735 qatomic_set(&cpu->exit_request, 1); 3736 return 0; 3737 #else 3738 return 1; 3739 #endif 3740 } 3741 3742 /* Called synchronously (via signalfd) in main thread. */ 3743 int kvm_on_sigbus(int code, void *addr) 3744 { 3745 #ifdef KVM_HAVE_MCE_INJECTION 3746 /* Action required MCE kills the process if SIGBUS is blocked. Because 3747 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3748 * we can only get action optional here. 3749 */ 3750 assert(code != BUS_MCEERR_AR); 3751 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3752 return 0; 3753 #else 3754 return 1; 3755 #endif 3756 } 3757 3758 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3759 { 3760 int ret; 3761 struct kvm_create_device create_dev; 3762 3763 create_dev.type = type; 3764 create_dev.fd = -1; 3765 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3766 3767 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3768 return -ENOTSUP; 3769 } 3770 3771 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3772 if (ret) { 3773 return ret; 3774 } 3775 3776 return test ? 0 : create_dev.fd; 3777 } 3778 3779 bool kvm_device_supported(int vmfd, uint64_t type) 3780 { 3781 struct kvm_create_device create_dev = { 3782 .type = type, 3783 .fd = -1, 3784 .flags = KVM_CREATE_DEVICE_TEST, 3785 }; 3786 3787 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3788 return false; 3789 } 3790 3791 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3792 } 3793 3794 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3795 { 3796 struct kvm_one_reg reg; 3797 int r; 3798 3799 reg.id = id; 3800 reg.addr = (uintptr_t) source; 3801 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3802 if (r) { 3803 trace_kvm_failed_reg_set(id, strerror(-r)); 3804 } 3805 return r; 3806 } 3807 3808 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3809 { 3810 struct kvm_one_reg reg; 3811 int r; 3812 3813 reg.id = id; 3814 reg.addr = (uintptr_t) target; 3815 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3816 if (r) { 3817 trace_kvm_failed_reg_get(id, strerror(-r)); 3818 } 3819 return r; 3820 } 3821 3822 static bool kvm_accel_has_memory(AccelState *accel, AddressSpace *as, 3823 hwaddr start_addr, hwaddr size) 3824 { 3825 KVMState *kvm = KVM_STATE(accel); 3826 int i; 3827 3828 for (i = 0; i < kvm->nr_as; ++i) { 3829 if (kvm->as[i].as == as && kvm->as[i].ml) { 3830 size = MIN(kvm_max_slot_size, size); 3831 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3832 start_addr, size); 3833 } 3834 } 3835 3836 return false; 3837 } 3838 3839 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3840 const char *name, void *opaque, 3841 Error **errp) 3842 { 3843 KVMState *s = KVM_STATE(obj); 3844 int64_t value = s->kvm_shadow_mem; 3845 3846 visit_type_int(v, name, &value, errp); 3847 } 3848 3849 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3850 const char *name, void *opaque, 3851 Error **errp) 3852 { 3853 KVMState *s = KVM_STATE(obj); 3854 int64_t value; 3855 3856 if (s->fd != -1) { 3857 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3858 return; 3859 } 3860 3861 if (!visit_type_int(v, name, &value, errp)) { 3862 return; 3863 } 3864 3865 s->kvm_shadow_mem = value; 3866 } 3867 3868 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3869 const char *name, void *opaque, 3870 Error **errp) 3871 { 3872 KVMState *s = KVM_STATE(obj); 3873 OnOffSplit mode; 3874 3875 if (s->fd != -1) { 3876 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3877 return; 3878 } 3879 3880 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3881 return; 3882 } 3883 switch (mode) { 3884 case ON_OFF_SPLIT_ON: 3885 s->kernel_irqchip_allowed = true; 3886 s->kernel_irqchip_required = true; 3887 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3888 break; 3889 case ON_OFF_SPLIT_OFF: 3890 s->kernel_irqchip_allowed = false; 3891 s->kernel_irqchip_required = false; 3892 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3893 break; 3894 case ON_OFF_SPLIT_SPLIT: 3895 s->kernel_irqchip_allowed = true; 3896 s->kernel_irqchip_required = true; 3897 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3898 break; 3899 default: 3900 /* The value was checked in visit_type_OnOffSplit() above. If 3901 * we get here, then something is wrong in QEMU. 3902 */ 3903 abort(); 3904 } 3905 } 3906 3907 bool kvm_kernel_irqchip_allowed(void) 3908 { 3909 return kvm_state->kernel_irqchip_allowed; 3910 } 3911 3912 bool kvm_kernel_irqchip_required(void) 3913 { 3914 return kvm_state->kernel_irqchip_required; 3915 } 3916 3917 bool kvm_kernel_irqchip_split(void) 3918 { 3919 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3920 } 3921 3922 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3923 const char *name, void *opaque, 3924 Error **errp) 3925 { 3926 KVMState *s = KVM_STATE(obj); 3927 uint32_t value = s->kvm_dirty_ring_size; 3928 3929 visit_type_uint32(v, name, &value, errp); 3930 } 3931 3932 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3933 const char *name, void *opaque, 3934 Error **errp) 3935 { 3936 KVMState *s = KVM_STATE(obj); 3937 uint32_t value; 3938 3939 if (s->fd != -1) { 3940 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3941 return; 3942 } 3943 3944 if (!visit_type_uint32(v, name, &value, errp)) { 3945 return; 3946 } 3947 if (value & (value - 1)) { 3948 error_setg(errp, "dirty-ring-size must be a power of two."); 3949 return; 3950 } 3951 3952 s->kvm_dirty_ring_size = value; 3953 } 3954 3955 static char *kvm_get_device(Object *obj, 3956 Error **errp G_GNUC_UNUSED) 3957 { 3958 KVMState *s = KVM_STATE(obj); 3959 3960 return g_strdup(s->device); 3961 } 3962 3963 static void kvm_set_device(Object *obj, 3964 const char *value, 3965 Error **errp G_GNUC_UNUSED) 3966 { 3967 KVMState *s = KVM_STATE(obj); 3968 3969 g_free(s->device); 3970 s->device = g_strdup(value); 3971 } 3972 3973 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3974 { 3975 KVMState *s = KVM_STATE(obj); 3976 s->msr_energy.enable = value; 3977 } 3978 3979 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3980 const char *str, 3981 Error **errp) 3982 { 3983 KVMState *s = KVM_STATE(obj); 3984 g_free(s->msr_energy.socket_path); 3985 s->msr_energy.socket_path = g_strdup(str); 3986 } 3987 3988 static void kvm_accel_instance_init(Object *obj) 3989 { 3990 KVMState *s = KVM_STATE(obj); 3991 3992 s->fd = -1; 3993 s->vmfd = -1; 3994 s->kvm_shadow_mem = -1; 3995 s->kernel_irqchip_allowed = true; 3996 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3997 /* KVM dirty ring is by default off */ 3998 s->kvm_dirty_ring_size = 0; 3999 s->kvm_dirty_ring_with_bitmap = false; 4000 s->kvm_eager_split_size = 0; 4001 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 4002 s->notify_window = 0; 4003 s->xen_version = 0; 4004 s->xen_gnttab_max_frames = 64; 4005 s->xen_evtchn_max_pirq = 256; 4006 s->device = NULL; 4007 s->msr_energy.enable = false; 4008 } 4009 4010 /** 4011 * kvm_gdbstub_sstep_flags(): 4012 * 4013 * Returns: SSTEP_* flags that KVM supports for guest debug. The 4014 * support is probed during kvm_init() 4015 */ 4016 static int kvm_gdbstub_sstep_flags(AccelState *as) 4017 { 4018 return kvm_sstep_flags; 4019 } 4020 4021 static void kvm_accel_class_init(ObjectClass *oc, const void *data) 4022 { 4023 AccelClass *ac = ACCEL_CLASS(oc); 4024 ac->name = "KVM"; 4025 ac->init_machine = kvm_init; 4026 ac->has_memory = kvm_accel_has_memory; 4027 ac->allowed = &kvm_allowed; 4028 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 4029 4030 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 4031 NULL, kvm_set_kernel_irqchip, 4032 NULL, NULL); 4033 object_class_property_set_description(oc, "kernel-irqchip", 4034 "Configure KVM in-kernel irqchip"); 4035 4036 object_class_property_add(oc, "kvm-shadow-mem", "int", 4037 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 4038 NULL, NULL); 4039 object_class_property_set_description(oc, "kvm-shadow-mem", 4040 "KVM shadow MMU size"); 4041 4042 object_class_property_add(oc, "dirty-ring-size", "uint32", 4043 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 4044 NULL, NULL); 4045 object_class_property_set_description(oc, "dirty-ring-size", 4046 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 4047 4048 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 4049 object_class_property_set_description(oc, "device", 4050 "Path to the device node to use (default: /dev/kvm)"); 4051 4052 object_class_property_add_bool(oc, "rapl", 4053 NULL, 4054 kvm_set_kvm_rapl); 4055 object_class_property_set_description(oc, "rapl", 4056 "Allow energy related MSRs for RAPL interface in Guest"); 4057 4058 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 4059 kvm_set_kvm_rapl_socket_path); 4060 object_class_property_set_description(oc, "rapl-helper-socket", 4061 "Socket Path for comminucating with the Virtual MSR helper daemon"); 4062 4063 kvm_arch_accel_class_init(oc); 4064 } 4065 4066 static const TypeInfo kvm_accel_type = { 4067 .name = TYPE_KVM_ACCEL, 4068 .parent = TYPE_ACCEL, 4069 .instance_init = kvm_accel_instance_init, 4070 .class_init = kvm_accel_class_init, 4071 .instance_size = sizeof(KVMState), 4072 }; 4073 4074 static void kvm_type_init(void) 4075 { 4076 type_register_static(&kvm_accel_type); 4077 } 4078 4079 type_init(kvm_type_init); 4080 4081 typedef struct StatsArgs { 4082 union StatsResultsType { 4083 StatsResultList **stats; 4084 StatsSchemaList **schema; 4085 } result; 4086 strList *names; 4087 Error **errp; 4088 } StatsArgs; 4089 4090 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 4091 uint64_t *stats_data, 4092 StatsList *stats_list, 4093 Error **errp) 4094 { 4095 4096 Stats *stats; 4097 uint64List *val_list = NULL; 4098 4099 /* Only add stats that we understand. */ 4100 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4101 case KVM_STATS_TYPE_CUMULATIVE: 4102 case KVM_STATS_TYPE_INSTANT: 4103 case KVM_STATS_TYPE_PEAK: 4104 case KVM_STATS_TYPE_LINEAR_HIST: 4105 case KVM_STATS_TYPE_LOG_HIST: 4106 break; 4107 default: 4108 return stats_list; 4109 } 4110 4111 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4112 case KVM_STATS_UNIT_NONE: 4113 case KVM_STATS_UNIT_BYTES: 4114 case KVM_STATS_UNIT_CYCLES: 4115 case KVM_STATS_UNIT_SECONDS: 4116 case KVM_STATS_UNIT_BOOLEAN: 4117 break; 4118 default: 4119 return stats_list; 4120 } 4121 4122 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4123 case KVM_STATS_BASE_POW10: 4124 case KVM_STATS_BASE_POW2: 4125 break; 4126 default: 4127 return stats_list; 4128 } 4129 4130 /* Alloc and populate data list */ 4131 stats = g_new0(Stats, 1); 4132 stats->name = g_strdup(pdesc->name); 4133 stats->value = g_new0(StatsValue, 1); 4134 4135 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4136 stats->value->u.boolean = *stats_data; 4137 stats->value->type = QTYPE_QBOOL; 4138 } else if (pdesc->size == 1) { 4139 stats->value->u.scalar = *stats_data; 4140 stats->value->type = QTYPE_QNUM; 4141 } else { 4142 int i; 4143 for (i = 0; i < pdesc->size; i++) { 4144 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4145 } 4146 stats->value->u.list = val_list; 4147 stats->value->type = QTYPE_QLIST; 4148 } 4149 4150 QAPI_LIST_PREPEND(stats_list, stats); 4151 return stats_list; 4152 } 4153 4154 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4155 StatsSchemaValueList *list, 4156 Error **errp) 4157 { 4158 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4159 schema_entry->value = g_new0(StatsSchemaValue, 1); 4160 4161 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4162 case KVM_STATS_TYPE_CUMULATIVE: 4163 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4164 break; 4165 case KVM_STATS_TYPE_INSTANT: 4166 schema_entry->value->type = STATS_TYPE_INSTANT; 4167 break; 4168 case KVM_STATS_TYPE_PEAK: 4169 schema_entry->value->type = STATS_TYPE_PEAK; 4170 break; 4171 case KVM_STATS_TYPE_LINEAR_HIST: 4172 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4173 schema_entry->value->bucket_size = pdesc->bucket_size; 4174 schema_entry->value->has_bucket_size = true; 4175 break; 4176 case KVM_STATS_TYPE_LOG_HIST: 4177 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4178 break; 4179 default: 4180 goto exit; 4181 } 4182 4183 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4184 case KVM_STATS_UNIT_NONE: 4185 break; 4186 case KVM_STATS_UNIT_BOOLEAN: 4187 schema_entry->value->has_unit = true; 4188 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4189 break; 4190 case KVM_STATS_UNIT_BYTES: 4191 schema_entry->value->has_unit = true; 4192 schema_entry->value->unit = STATS_UNIT_BYTES; 4193 break; 4194 case KVM_STATS_UNIT_CYCLES: 4195 schema_entry->value->has_unit = true; 4196 schema_entry->value->unit = STATS_UNIT_CYCLES; 4197 break; 4198 case KVM_STATS_UNIT_SECONDS: 4199 schema_entry->value->has_unit = true; 4200 schema_entry->value->unit = STATS_UNIT_SECONDS; 4201 break; 4202 default: 4203 goto exit; 4204 } 4205 4206 schema_entry->value->exponent = pdesc->exponent; 4207 if (pdesc->exponent) { 4208 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4209 case KVM_STATS_BASE_POW10: 4210 schema_entry->value->has_base = true; 4211 schema_entry->value->base = 10; 4212 break; 4213 case KVM_STATS_BASE_POW2: 4214 schema_entry->value->has_base = true; 4215 schema_entry->value->base = 2; 4216 break; 4217 default: 4218 goto exit; 4219 } 4220 } 4221 4222 schema_entry->value->name = g_strdup(pdesc->name); 4223 schema_entry->next = list; 4224 return schema_entry; 4225 exit: 4226 g_free(schema_entry->value); 4227 g_free(schema_entry); 4228 return list; 4229 } 4230 4231 /* Cached stats descriptors */ 4232 typedef struct StatsDescriptors { 4233 const char *ident; /* cache key, currently the StatsTarget */ 4234 struct kvm_stats_desc *kvm_stats_desc; 4235 struct kvm_stats_header kvm_stats_header; 4236 QTAILQ_ENTRY(StatsDescriptors) next; 4237 } StatsDescriptors; 4238 4239 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4240 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4241 4242 /* 4243 * Return the descriptors for 'target', that either have already been read 4244 * or are retrieved from 'stats_fd'. 4245 */ 4246 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4247 Error **errp) 4248 { 4249 StatsDescriptors *descriptors; 4250 const char *ident; 4251 struct kvm_stats_desc *kvm_stats_desc; 4252 struct kvm_stats_header *kvm_stats_header; 4253 size_t size_desc; 4254 ssize_t ret; 4255 4256 ident = StatsTarget_str(target); 4257 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4258 if (g_str_equal(descriptors->ident, ident)) { 4259 return descriptors; 4260 } 4261 } 4262 4263 descriptors = g_new0(StatsDescriptors, 1); 4264 4265 /* Read stats header */ 4266 kvm_stats_header = &descriptors->kvm_stats_header; 4267 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4268 if (ret != sizeof(*kvm_stats_header)) { 4269 error_setg(errp, "KVM stats: failed to read stats header: " 4270 "expected %zu actual %zu", 4271 sizeof(*kvm_stats_header), ret); 4272 g_free(descriptors); 4273 return NULL; 4274 } 4275 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4276 4277 /* Read stats descriptors */ 4278 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4279 ret = pread(stats_fd, kvm_stats_desc, 4280 size_desc * kvm_stats_header->num_desc, 4281 kvm_stats_header->desc_offset); 4282 4283 if (ret != size_desc * kvm_stats_header->num_desc) { 4284 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4285 "expected %zu actual %zu", 4286 size_desc * kvm_stats_header->num_desc, ret); 4287 g_free(descriptors); 4288 g_free(kvm_stats_desc); 4289 return NULL; 4290 } 4291 descriptors->kvm_stats_desc = kvm_stats_desc; 4292 descriptors->ident = ident; 4293 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4294 return descriptors; 4295 } 4296 4297 static void query_stats(StatsResultList **result, StatsTarget target, 4298 strList *names, int stats_fd, CPUState *cpu, 4299 Error **errp) 4300 { 4301 struct kvm_stats_desc *kvm_stats_desc; 4302 struct kvm_stats_header *kvm_stats_header; 4303 StatsDescriptors *descriptors; 4304 g_autofree uint64_t *stats_data = NULL; 4305 struct kvm_stats_desc *pdesc; 4306 StatsList *stats_list = NULL; 4307 size_t size_desc, size_data = 0; 4308 ssize_t ret; 4309 int i; 4310 4311 descriptors = find_stats_descriptors(target, stats_fd, errp); 4312 if (!descriptors) { 4313 return; 4314 } 4315 4316 kvm_stats_header = &descriptors->kvm_stats_header; 4317 kvm_stats_desc = descriptors->kvm_stats_desc; 4318 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4319 4320 /* Tally the total data size; read schema data */ 4321 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4322 pdesc = (void *)kvm_stats_desc + i * size_desc; 4323 size_data += pdesc->size * sizeof(*stats_data); 4324 } 4325 4326 stats_data = g_malloc0(size_data); 4327 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4328 4329 if (ret != size_data) { 4330 error_setg(errp, "KVM stats: failed to read data: " 4331 "expected %zu actual %zu", size_data, ret); 4332 return; 4333 } 4334 4335 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4336 uint64_t *stats; 4337 pdesc = (void *)kvm_stats_desc + i * size_desc; 4338 4339 /* Add entry to the list */ 4340 stats = (void *)stats_data + pdesc->offset; 4341 if (!apply_str_list_filter(pdesc->name, names)) { 4342 continue; 4343 } 4344 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4345 } 4346 4347 if (!stats_list) { 4348 return; 4349 } 4350 4351 switch (target) { 4352 case STATS_TARGET_VM: 4353 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4354 break; 4355 case STATS_TARGET_VCPU: 4356 add_stats_entry(result, STATS_PROVIDER_KVM, 4357 cpu->parent_obj.canonical_path, 4358 stats_list); 4359 break; 4360 default: 4361 g_assert_not_reached(); 4362 } 4363 } 4364 4365 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4366 int stats_fd, Error **errp) 4367 { 4368 struct kvm_stats_desc *kvm_stats_desc; 4369 struct kvm_stats_header *kvm_stats_header; 4370 StatsDescriptors *descriptors; 4371 struct kvm_stats_desc *pdesc; 4372 StatsSchemaValueList *stats_list = NULL; 4373 size_t size_desc; 4374 int i; 4375 4376 descriptors = find_stats_descriptors(target, stats_fd, errp); 4377 if (!descriptors) { 4378 return; 4379 } 4380 4381 kvm_stats_header = &descriptors->kvm_stats_header; 4382 kvm_stats_desc = descriptors->kvm_stats_desc; 4383 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4384 4385 /* Tally the total data size; read schema data */ 4386 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4387 pdesc = (void *)kvm_stats_desc + i * size_desc; 4388 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4389 } 4390 4391 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4392 } 4393 4394 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4395 { 4396 int stats_fd = cpu->kvm_vcpu_stats_fd; 4397 Error *local_err = NULL; 4398 4399 if (stats_fd == -1) { 4400 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4401 error_propagate(kvm_stats_args->errp, local_err); 4402 return; 4403 } 4404 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4405 kvm_stats_args->names, stats_fd, cpu, 4406 kvm_stats_args->errp); 4407 } 4408 4409 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4410 { 4411 int stats_fd = cpu->kvm_vcpu_stats_fd; 4412 Error *local_err = NULL; 4413 4414 if (stats_fd == -1) { 4415 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4416 error_propagate(kvm_stats_args->errp, local_err); 4417 return; 4418 } 4419 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4420 kvm_stats_args->errp); 4421 } 4422 4423 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4424 strList *names, strList *targets, Error **errp) 4425 { 4426 KVMState *s = kvm_state; 4427 CPUState *cpu; 4428 int stats_fd; 4429 4430 switch (target) { 4431 case STATS_TARGET_VM: 4432 { 4433 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4434 if (stats_fd == -1) { 4435 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4436 return; 4437 } 4438 query_stats(result, target, names, stats_fd, NULL, errp); 4439 close(stats_fd); 4440 break; 4441 } 4442 case STATS_TARGET_VCPU: 4443 { 4444 StatsArgs stats_args; 4445 stats_args.result.stats = result; 4446 stats_args.names = names; 4447 stats_args.errp = errp; 4448 CPU_FOREACH(cpu) { 4449 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4450 continue; 4451 } 4452 query_stats_vcpu(cpu, &stats_args); 4453 } 4454 break; 4455 } 4456 default: 4457 break; 4458 } 4459 } 4460 4461 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4462 { 4463 StatsArgs stats_args; 4464 KVMState *s = kvm_state; 4465 int stats_fd; 4466 4467 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4468 if (stats_fd == -1) { 4469 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4470 return; 4471 } 4472 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4473 close(stats_fd); 4474 4475 if (first_cpu) { 4476 stats_args.result.schema = result; 4477 stats_args.errp = errp; 4478 query_stats_schema_vcpu(first_cpu, &stats_args); 4479 } 4480 } 4481 4482 void kvm_mark_guest_state_protected(void) 4483 { 4484 kvm_state->guest_state_protected = true; 4485 } 4486 4487 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4488 { 4489 int fd; 4490 struct kvm_create_guest_memfd guest_memfd = { 4491 .size = size, 4492 .flags = flags, 4493 }; 4494 4495 if (!kvm_guest_memfd_supported) { 4496 error_setg(errp, "KVM does not support guest_memfd"); 4497 return -1; 4498 } 4499 4500 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4501 if (fd < 0) { 4502 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4503 return -1; 4504 } 4505 4506 return fd; 4507 } 4508