1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 struct KVMParkedVcpu { 73 unsigned long vcpu_id; 74 int kvm_fd; 75 QLIST_ENTRY(KVMParkedVcpu) node; 76 }; 77 78 KVMState *kvm_state; 79 bool kvm_kernel_irqchip; 80 bool kvm_split_irqchip; 81 bool kvm_async_interrupts_allowed; 82 bool kvm_halt_in_kernel_allowed; 83 bool kvm_resamplefds_allowed; 84 bool kvm_msi_via_irqfd_allowed; 85 bool kvm_gsi_routing_allowed; 86 bool kvm_gsi_direct_mapping; 87 bool kvm_allowed; 88 bool kvm_readonly_mem_allowed; 89 bool kvm_vm_attributes_allowed; 90 bool kvm_msi_use_devid; 91 static bool kvm_has_guest_debug; 92 static int kvm_sstep_flags; 93 static bool kvm_immediate_exit; 94 static uint64_t kvm_supported_memory_attributes; 95 static bool kvm_guest_memfd_supported; 96 static hwaddr kvm_max_slot_size = ~0; 97 98 static const KVMCapabilityInfo kvm_required_capabilites[] = { 99 KVM_CAP_INFO(USER_MEMORY), 100 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 101 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 102 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 103 KVM_CAP_INFO(IOEVENTFD), 104 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 105 KVM_CAP_LAST_INFO 106 }; 107 108 static NotifierList kvm_irqchip_change_notifiers = 109 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 110 111 struct KVMResampleFd { 112 int gsi; 113 EventNotifier *resample_event; 114 QLIST_ENTRY(KVMResampleFd) node; 115 }; 116 typedef struct KVMResampleFd KVMResampleFd; 117 118 /* 119 * Only used with split irqchip where we need to do the resample fd 120 * kick for the kernel from userspace. 121 */ 122 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 123 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 124 125 static QemuMutex kml_slots_lock; 126 127 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 128 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 129 130 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 131 132 static inline void kvm_resample_fd_remove(int gsi) 133 { 134 KVMResampleFd *rfd; 135 136 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 137 if (rfd->gsi == gsi) { 138 QLIST_REMOVE(rfd, node); 139 g_free(rfd); 140 break; 141 } 142 } 143 } 144 145 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 146 { 147 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 148 149 rfd->gsi = gsi; 150 rfd->resample_event = event; 151 152 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 153 } 154 155 void kvm_resample_fd_notify(int gsi) 156 { 157 KVMResampleFd *rfd; 158 159 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 160 if (rfd->gsi == gsi) { 161 event_notifier_set(rfd->resample_event); 162 trace_kvm_resample_fd_notify(gsi); 163 return; 164 } 165 } 166 } 167 168 unsigned int kvm_get_max_memslots(void) 169 { 170 KVMState *s = KVM_STATE(current_accel()); 171 172 return s->nr_slots; 173 } 174 175 unsigned int kvm_get_free_memslots(void) 176 { 177 unsigned int used_slots = 0; 178 KVMState *s = kvm_state; 179 int i; 180 181 kvm_slots_lock(); 182 for (i = 0; i < s->nr_as; i++) { 183 if (!s->as[i].ml) { 184 continue; 185 } 186 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); 187 } 188 kvm_slots_unlock(); 189 190 return s->nr_slots - used_slots; 191 } 192 193 /* Called with KVMMemoryListener.slots_lock held */ 194 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 195 { 196 KVMState *s = kvm_state; 197 int i; 198 199 for (i = 0; i < s->nr_slots; i++) { 200 if (kml->slots[i].memory_size == 0) { 201 return &kml->slots[i]; 202 } 203 } 204 205 return NULL; 206 } 207 208 /* Called with KVMMemoryListener.slots_lock held */ 209 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 210 { 211 KVMSlot *slot = kvm_get_free_slot(kml); 212 213 if (slot) { 214 return slot; 215 } 216 217 fprintf(stderr, "%s: no free slot available\n", __func__); 218 abort(); 219 } 220 221 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 222 hwaddr start_addr, 223 hwaddr size) 224 { 225 KVMState *s = kvm_state; 226 int i; 227 228 for (i = 0; i < s->nr_slots; i++) { 229 KVMSlot *mem = &kml->slots[i]; 230 231 if (start_addr == mem->start_addr && size == mem->memory_size) { 232 return mem; 233 } 234 } 235 236 return NULL; 237 } 238 239 /* 240 * Calculate and align the start address and the size of the section. 241 * Return the size. If the size is 0, the aligned section is empty. 242 */ 243 static hwaddr kvm_align_section(MemoryRegionSection *section, 244 hwaddr *start) 245 { 246 hwaddr size = int128_get64(section->size); 247 hwaddr delta, aligned; 248 249 /* kvm works in page size chunks, but the function may be called 250 with sub-page size and unaligned start address. Pad the start 251 address to next and truncate size to previous page boundary. */ 252 aligned = ROUND_UP(section->offset_within_address_space, 253 qemu_real_host_page_size()); 254 delta = aligned - section->offset_within_address_space; 255 *start = aligned; 256 if (delta > size) { 257 return 0; 258 } 259 260 return (size - delta) & qemu_real_host_page_mask(); 261 } 262 263 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 264 hwaddr *phys_addr) 265 { 266 KVMMemoryListener *kml = &s->memory_listener; 267 int i, ret = 0; 268 269 kvm_slots_lock(); 270 for (i = 0; i < s->nr_slots; i++) { 271 KVMSlot *mem = &kml->slots[i]; 272 273 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 274 *phys_addr = mem->start_addr + (ram - mem->ram); 275 ret = 1; 276 break; 277 } 278 } 279 kvm_slots_unlock(); 280 281 return ret; 282 } 283 284 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 285 { 286 KVMState *s = kvm_state; 287 struct kvm_userspace_memory_region mem; 288 int ret; 289 290 mem.slot = slot->slot | (kml->as_id << 16); 291 mem.guest_phys_addr = slot->start_addr; 292 mem.userspace_addr = (unsigned long)slot->ram; 293 mem.flags = slot->flags; 294 295 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 296 /* Set the slot size to 0 before setting the slot to the desired 297 * value. This is needed based on KVM commit 75d61fbc. */ 298 mem.memory_size = 0; 299 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 300 if (ret < 0) { 301 goto err; 302 } 303 } 304 mem.memory_size = slot->memory_size; 305 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 306 slot->old_flags = mem.flags; 307 err: 308 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 309 mem.guest_phys_addr, mem.memory_size, 310 mem.userspace_addr, ret); 311 if (ret < 0) { 312 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 313 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 314 __func__, mem.slot, slot->start_addr, 315 (uint64_t)mem.memory_size, strerror(errno)); 316 } 317 return ret; 318 } 319 320 static int do_kvm_destroy_vcpu(CPUState *cpu) 321 { 322 KVMState *s = kvm_state; 323 long mmap_size; 324 struct KVMParkedVcpu *vcpu = NULL; 325 int ret = 0; 326 327 trace_kvm_destroy_vcpu(); 328 329 ret = kvm_arch_destroy_vcpu(cpu); 330 if (ret < 0) { 331 goto err; 332 } 333 334 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 335 if (mmap_size < 0) { 336 ret = mmap_size; 337 trace_kvm_failed_get_vcpu_mmap_size(); 338 goto err; 339 } 340 341 ret = munmap(cpu->kvm_run, mmap_size); 342 if (ret < 0) { 343 goto err; 344 } 345 346 if (cpu->kvm_dirty_gfns) { 347 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 348 if (ret < 0) { 349 goto err; 350 } 351 } 352 353 vcpu = g_malloc0(sizeof(*vcpu)); 354 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 355 vcpu->kvm_fd = cpu->kvm_fd; 356 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 357 err: 358 return ret; 359 } 360 361 void kvm_destroy_vcpu(CPUState *cpu) 362 { 363 if (do_kvm_destroy_vcpu(cpu) < 0) { 364 error_report("kvm_destroy_vcpu failed"); 365 exit(EXIT_FAILURE); 366 } 367 } 368 369 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 370 { 371 struct KVMParkedVcpu *cpu; 372 373 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 374 if (cpu->vcpu_id == vcpu_id) { 375 int kvm_fd; 376 377 QLIST_REMOVE(cpu, node); 378 kvm_fd = cpu->kvm_fd; 379 g_free(cpu); 380 return kvm_fd; 381 } 382 } 383 384 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 385 } 386 387 int kvm_init_vcpu(CPUState *cpu, Error **errp) 388 { 389 KVMState *s = kvm_state; 390 long mmap_size; 391 int ret; 392 393 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 394 395 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 396 if (ret < 0) { 397 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 398 kvm_arch_vcpu_id(cpu)); 399 goto err; 400 } 401 402 cpu->kvm_fd = ret; 403 cpu->kvm_state = s; 404 cpu->vcpu_dirty = true; 405 cpu->dirty_pages = 0; 406 cpu->throttle_us_per_full = 0; 407 408 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 409 if (mmap_size < 0) { 410 ret = mmap_size; 411 error_setg_errno(errp, -mmap_size, 412 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 413 goto err; 414 } 415 416 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 417 cpu->kvm_fd, 0); 418 if (cpu->kvm_run == MAP_FAILED) { 419 ret = -errno; 420 error_setg_errno(errp, ret, 421 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 422 kvm_arch_vcpu_id(cpu)); 423 goto err; 424 } 425 426 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 427 s->coalesced_mmio_ring = 428 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 429 } 430 431 if (s->kvm_dirty_ring_size) { 432 /* Use MAP_SHARED to share pages with the kernel */ 433 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 434 PROT_READ | PROT_WRITE, MAP_SHARED, 435 cpu->kvm_fd, 436 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 437 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 438 ret = -errno; 439 goto err; 440 } 441 } 442 443 ret = kvm_arch_init_vcpu(cpu); 444 if (ret < 0) { 445 error_setg_errno(errp, -ret, 446 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 447 kvm_arch_vcpu_id(cpu)); 448 } 449 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 450 451 err: 452 return ret; 453 } 454 455 /* 456 * dirty pages logging control 457 */ 458 459 static int kvm_mem_flags(MemoryRegion *mr) 460 { 461 bool readonly = mr->readonly || memory_region_is_romd(mr); 462 int flags = 0; 463 464 if (memory_region_get_dirty_log_mask(mr) != 0) { 465 flags |= KVM_MEM_LOG_DIRTY_PAGES; 466 } 467 if (readonly && kvm_readonly_mem_allowed) { 468 flags |= KVM_MEM_READONLY; 469 } 470 return flags; 471 } 472 473 /* Called with KVMMemoryListener.slots_lock held */ 474 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 475 MemoryRegion *mr) 476 { 477 mem->flags = kvm_mem_flags(mr); 478 479 /* If nothing changed effectively, no need to issue ioctl */ 480 if (mem->flags == mem->old_flags) { 481 return 0; 482 } 483 484 kvm_slot_init_dirty_bitmap(mem); 485 return kvm_set_user_memory_region(kml, mem, false); 486 } 487 488 static int kvm_section_update_flags(KVMMemoryListener *kml, 489 MemoryRegionSection *section) 490 { 491 hwaddr start_addr, size, slot_size; 492 KVMSlot *mem; 493 int ret = 0; 494 495 size = kvm_align_section(section, &start_addr); 496 if (!size) { 497 return 0; 498 } 499 500 kvm_slots_lock(); 501 502 while (size && !ret) { 503 slot_size = MIN(kvm_max_slot_size, size); 504 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 505 if (!mem) { 506 /* We don't have a slot if we want to trap every access. */ 507 goto out; 508 } 509 510 ret = kvm_slot_update_flags(kml, mem, section->mr); 511 start_addr += slot_size; 512 size -= slot_size; 513 } 514 515 out: 516 kvm_slots_unlock(); 517 return ret; 518 } 519 520 static void kvm_log_start(MemoryListener *listener, 521 MemoryRegionSection *section, 522 int old, int new) 523 { 524 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 525 int r; 526 527 if (old != 0) { 528 return; 529 } 530 531 r = kvm_section_update_flags(kml, section); 532 if (r < 0) { 533 abort(); 534 } 535 } 536 537 static void kvm_log_stop(MemoryListener *listener, 538 MemoryRegionSection *section, 539 int old, int new) 540 { 541 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 542 int r; 543 544 if (new != 0) { 545 return; 546 } 547 548 r = kvm_section_update_flags(kml, section); 549 if (r < 0) { 550 abort(); 551 } 552 } 553 554 /* get kvm's dirty pages bitmap and update qemu's */ 555 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 556 { 557 ram_addr_t start = slot->ram_start_offset; 558 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 559 560 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 561 } 562 563 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 564 { 565 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 566 } 567 568 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 569 570 /* Allocate the dirty bitmap for a slot */ 571 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 572 { 573 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 574 return; 575 } 576 577 /* 578 * XXX bad kernel interface alert 579 * For dirty bitmap, kernel allocates array of size aligned to 580 * bits-per-long. But for case when the kernel is 64bits and 581 * the userspace is 32bits, userspace can't align to the same 582 * bits-per-long, since sizeof(long) is different between kernel 583 * and user space. This way, userspace will provide buffer which 584 * may be 4 bytes less than the kernel will use, resulting in 585 * userspace memory corruption (which is not detectable by valgrind 586 * too, in most cases). 587 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 588 * a hope that sizeof(long) won't become >8 any time soon. 589 * 590 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 591 * And mem->memory_size is aligned to it (otherwise this mem can't 592 * be registered to KVM). 593 */ 594 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 595 /*HOST_LONG_BITS*/ 64) / 8; 596 mem->dirty_bmap = g_malloc0(bitmap_size); 597 mem->dirty_bmap_size = bitmap_size; 598 } 599 600 /* 601 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 602 * succeeded, false otherwise 603 */ 604 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 605 { 606 struct kvm_dirty_log d = {}; 607 int ret; 608 609 d.dirty_bitmap = slot->dirty_bmap; 610 d.slot = slot->slot | (slot->as_id << 16); 611 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 612 613 if (ret == -ENOENT) { 614 /* kernel does not have dirty bitmap in this slot */ 615 ret = 0; 616 } 617 if (ret) { 618 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 619 __func__, ret); 620 } 621 return ret == 0; 622 } 623 624 /* Should be with all slots_lock held for the address spaces. */ 625 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 626 uint32_t slot_id, uint64_t offset) 627 { 628 KVMMemoryListener *kml; 629 KVMSlot *mem; 630 631 if (as_id >= s->nr_as) { 632 return; 633 } 634 635 kml = s->as[as_id].ml; 636 mem = &kml->slots[slot_id]; 637 638 if (!mem->memory_size || offset >= 639 (mem->memory_size / qemu_real_host_page_size())) { 640 return; 641 } 642 643 set_bit(offset, mem->dirty_bmap); 644 } 645 646 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 647 { 648 /* 649 * Read the flags before the value. Pairs with barrier in 650 * KVM's kvm_dirty_ring_push() function. 651 */ 652 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 653 } 654 655 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 656 { 657 /* 658 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 659 * sees the full content of the ring: 660 * 661 * CPU0 CPU1 CPU2 662 * ------------------------------------------------------------------------------ 663 * fill gfn0 664 * store-rel flags for gfn0 665 * load-acq flags for gfn0 666 * store-rel RESET for gfn0 667 * ioctl(RESET_RINGS) 668 * load-acq flags for gfn0 669 * check if flags have RESET 670 * 671 * The synchronization goes from CPU2 to CPU0 to CPU1. 672 */ 673 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 674 } 675 676 /* 677 * Should be with all slots_lock held for the address spaces. It returns the 678 * dirty page we've collected on this dirty ring. 679 */ 680 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 681 { 682 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 683 uint32_t ring_size = s->kvm_dirty_ring_size; 684 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 685 686 /* 687 * It's possible that we race with vcpu creation code where the vcpu is 688 * put onto the vcpus list but not yet initialized the dirty ring 689 * structures. If so, skip it. 690 */ 691 if (!cpu->created) { 692 return 0; 693 } 694 695 assert(dirty_gfns && ring_size); 696 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 697 698 while (true) { 699 cur = &dirty_gfns[fetch % ring_size]; 700 if (!dirty_gfn_is_dirtied(cur)) { 701 break; 702 } 703 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 704 cur->offset); 705 dirty_gfn_set_collected(cur); 706 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 707 fetch++; 708 count++; 709 } 710 cpu->kvm_fetch_index = fetch; 711 cpu->dirty_pages += count; 712 713 return count; 714 } 715 716 /* Must be with slots_lock held */ 717 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 718 { 719 int ret; 720 uint64_t total = 0; 721 int64_t stamp; 722 723 stamp = get_clock(); 724 725 if (cpu) { 726 total = kvm_dirty_ring_reap_one(s, cpu); 727 } else { 728 CPU_FOREACH(cpu) { 729 total += kvm_dirty_ring_reap_one(s, cpu); 730 } 731 } 732 733 if (total) { 734 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 735 assert(ret == total); 736 } 737 738 stamp = get_clock() - stamp; 739 740 if (total) { 741 trace_kvm_dirty_ring_reap(total, stamp / 1000); 742 } 743 744 return total; 745 } 746 747 /* 748 * Currently for simplicity, we must hold BQL before calling this. We can 749 * consider to drop the BQL if we're clear with all the race conditions. 750 */ 751 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 752 { 753 uint64_t total; 754 755 /* 756 * We need to lock all kvm slots for all address spaces here, 757 * because: 758 * 759 * (1) We need to mark dirty for dirty bitmaps in multiple slots 760 * and for tons of pages, so it's better to take the lock here 761 * once rather than once per page. And more importantly, 762 * 763 * (2) We must _NOT_ publish dirty bits to the other threads 764 * (e.g., the migration thread) via the kvm memory slot dirty 765 * bitmaps before correctly re-protect those dirtied pages. 766 * Otherwise we can have potential risk of data corruption if 767 * the page data is read in the other thread before we do 768 * reset below. 769 */ 770 kvm_slots_lock(); 771 total = kvm_dirty_ring_reap_locked(s, cpu); 772 kvm_slots_unlock(); 773 774 return total; 775 } 776 777 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 778 { 779 /* No need to do anything */ 780 } 781 782 /* 783 * Kick all vcpus out in a synchronized way. When returned, we 784 * guarantee that every vcpu has been kicked and at least returned to 785 * userspace once. 786 */ 787 static void kvm_cpu_synchronize_kick_all(void) 788 { 789 CPUState *cpu; 790 791 CPU_FOREACH(cpu) { 792 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 793 } 794 } 795 796 /* 797 * Flush all the existing dirty pages to the KVM slot buffers. When 798 * this call returns, we guarantee that all the touched dirty pages 799 * before calling this function have been put into the per-kvmslot 800 * dirty bitmap. 801 * 802 * This function must be called with BQL held. 803 */ 804 static void kvm_dirty_ring_flush(void) 805 { 806 trace_kvm_dirty_ring_flush(0); 807 /* 808 * The function needs to be serialized. Since this function 809 * should always be with BQL held, serialization is guaranteed. 810 * However, let's be sure of it. 811 */ 812 assert(bql_locked()); 813 /* 814 * First make sure to flush the hardware buffers by kicking all 815 * vcpus out in a synchronous way. 816 */ 817 kvm_cpu_synchronize_kick_all(); 818 kvm_dirty_ring_reap(kvm_state, NULL); 819 trace_kvm_dirty_ring_flush(1); 820 } 821 822 /** 823 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 824 * 825 * This function will first try to fetch dirty bitmap from the kernel, 826 * and then updates qemu's dirty bitmap. 827 * 828 * NOTE: caller must be with kml->slots_lock held. 829 * 830 * @kml: the KVM memory listener object 831 * @section: the memory section to sync the dirty bitmap with 832 */ 833 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 834 MemoryRegionSection *section) 835 { 836 KVMState *s = kvm_state; 837 KVMSlot *mem; 838 hwaddr start_addr, size; 839 hwaddr slot_size; 840 841 size = kvm_align_section(section, &start_addr); 842 while (size) { 843 slot_size = MIN(kvm_max_slot_size, size); 844 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 845 if (!mem) { 846 /* We don't have a slot if we want to trap every access. */ 847 return; 848 } 849 if (kvm_slot_get_dirty_log(s, mem)) { 850 kvm_slot_sync_dirty_pages(mem); 851 } 852 start_addr += slot_size; 853 size -= slot_size; 854 } 855 } 856 857 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 858 #define KVM_CLEAR_LOG_SHIFT 6 859 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 860 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 861 862 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 863 uint64_t size) 864 { 865 KVMState *s = kvm_state; 866 uint64_t end, bmap_start, start_delta, bmap_npages; 867 struct kvm_clear_dirty_log d; 868 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 869 int ret; 870 871 /* 872 * We need to extend either the start or the size or both to 873 * satisfy the KVM interface requirement. Firstly, do the start 874 * page alignment on 64 host pages 875 */ 876 bmap_start = start & KVM_CLEAR_LOG_MASK; 877 start_delta = start - bmap_start; 878 bmap_start /= psize; 879 880 /* 881 * The kernel interface has restriction on the size too, that either: 882 * 883 * (1) the size is 64 host pages aligned (just like the start), or 884 * (2) the size fills up until the end of the KVM memslot. 885 */ 886 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 887 << KVM_CLEAR_LOG_SHIFT; 888 end = mem->memory_size / psize; 889 if (bmap_npages > end - bmap_start) { 890 bmap_npages = end - bmap_start; 891 } 892 start_delta /= psize; 893 894 /* 895 * Prepare the bitmap to clear dirty bits. Here we must guarantee 896 * that we won't clear any unknown dirty bits otherwise we might 897 * accidentally clear some set bits which are not yet synced from 898 * the kernel into QEMU's bitmap, then we'll lose track of the 899 * guest modifications upon those pages (which can directly lead 900 * to guest data loss or panic after migration). 901 * 902 * Layout of the KVMSlot.dirty_bmap: 903 * 904 * |<-------- bmap_npages -----------..>| 905 * [1] 906 * start_delta size 907 * |----------------|-------------|------------------|------------| 908 * ^ ^ ^ ^ 909 * | | | | 910 * start bmap_start (start) end 911 * of memslot of memslot 912 * 913 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 914 */ 915 916 assert(bmap_start % BITS_PER_LONG == 0); 917 /* We should never do log_clear before log_sync */ 918 assert(mem->dirty_bmap); 919 if (start_delta || bmap_npages - size / psize) { 920 /* Slow path - we need to manipulate a temp bitmap */ 921 bmap_clear = bitmap_new(bmap_npages); 922 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 923 bmap_start, start_delta + size / psize); 924 /* 925 * We need to fill the holes at start because that was not 926 * specified by the caller and we extended the bitmap only for 927 * 64 pages alignment 928 */ 929 bitmap_clear(bmap_clear, 0, start_delta); 930 d.dirty_bitmap = bmap_clear; 931 } else { 932 /* 933 * Fast path - both start and size align well with BITS_PER_LONG 934 * (or the end of memory slot) 935 */ 936 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 937 } 938 939 d.first_page = bmap_start; 940 /* It should never overflow. If it happens, say something */ 941 assert(bmap_npages <= UINT32_MAX); 942 d.num_pages = bmap_npages; 943 d.slot = mem->slot | (as_id << 16); 944 945 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 946 if (ret < 0 && ret != -ENOENT) { 947 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 948 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 949 __func__, d.slot, (uint64_t)d.first_page, 950 (uint32_t)d.num_pages, ret); 951 } else { 952 ret = 0; 953 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 954 } 955 956 /* 957 * After we have updated the remote dirty bitmap, we update the 958 * cached bitmap as well for the memslot, then if another user 959 * clears the same region we know we shouldn't clear it again on 960 * the remote otherwise it's data loss as well. 961 */ 962 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 963 size / psize); 964 /* This handles the NULL case well */ 965 g_free(bmap_clear); 966 return ret; 967 } 968 969 970 /** 971 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 972 * 973 * NOTE: this will be a no-op if we haven't enabled manual dirty log 974 * protection in the host kernel because in that case this operation 975 * will be done within log_sync(). 976 * 977 * @kml: the kvm memory listener 978 * @section: the memory range to clear dirty bitmap 979 */ 980 static int kvm_physical_log_clear(KVMMemoryListener *kml, 981 MemoryRegionSection *section) 982 { 983 KVMState *s = kvm_state; 984 uint64_t start, size, offset, count; 985 KVMSlot *mem; 986 int ret = 0, i; 987 988 if (!s->manual_dirty_log_protect) { 989 /* No need to do explicit clear */ 990 return ret; 991 } 992 993 start = section->offset_within_address_space; 994 size = int128_get64(section->size); 995 996 if (!size) { 997 /* Nothing more we can do... */ 998 return ret; 999 } 1000 1001 kvm_slots_lock(); 1002 1003 for (i = 0; i < s->nr_slots; i++) { 1004 mem = &kml->slots[i]; 1005 /* Discard slots that are empty or do not overlap the section */ 1006 if (!mem->memory_size || 1007 mem->start_addr > start + size - 1 || 1008 start > mem->start_addr + mem->memory_size - 1) { 1009 continue; 1010 } 1011 1012 if (start >= mem->start_addr) { 1013 /* The slot starts before section or is aligned to it. */ 1014 offset = start - mem->start_addr; 1015 count = MIN(mem->memory_size - offset, size); 1016 } else { 1017 /* The slot starts after section. */ 1018 offset = 0; 1019 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1020 } 1021 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1022 if (ret < 0) { 1023 break; 1024 } 1025 } 1026 1027 kvm_slots_unlock(); 1028 1029 return ret; 1030 } 1031 1032 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1033 MemoryRegionSection *secion, 1034 hwaddr start, hwaddr size) 1035 { 1036 KVMState *s = kvm_state; 1037 1038 if (s->coalesced_mmio) { 1039 struct kvm_coalesced_mmio_zone zone; 1040 1041 zone.addr = start; 1042 zone.size = size; 1043 zone.pad = 0; 1044 1045 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1046 } 1047 } 1048 1049 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1050 MemoryRegionSection *secion, 1051 hwaddr start, hwaddr size) 1052 { 1053 KVMState *s = kvm_state; 1054 1055 if (s->coalesced_mmio) { 1056 struct kvm_coalesced_mmio_zone zone; 1057 1058 zone.addr = start; 1059 zone.size = size; 1060 zone.pad = 0; 1061 1062 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1063 } 1064 } 1065 1066 static void kvm_coalesce_pio_add(MemoryListener *listener, 1067 MemoryRegionSection *section, 1068 hwaddr start, hwaddr size) 1069 { 1070 KVMState *s = kvm_state; 1071 1072 if (s->coalesced_pio) { 1073 struct kvm_coalesced_mmio_zone zone; 1074 1075 zone.addr = start; 1076 zone.size = size; 1077 zone.pio = 1; 1078 1079 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1080 } 1081 } 1082 1083 static void kvm_coalesce_pio_del(MemoryListener *listener, 1084 MemoryRegionSection *section, 1085 hwaddr start, hwaddr size) 1086 { 1087 KVMState *s = kvm_state; 1088 1089 if (s->coalesced_pio) { 1090 struct kvm_coalesced_mmio_zone zone; 1091 1092 zone.addr = start; 1093 zone.size = size; 1094 zone.pio = 1; 1095 1096 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1097 } 1098 } 1099 1100 int kvm_check_extension(KVMState *s, unsigned int extension) 1101 { 1102 int ret; 1103 1104 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1105 if (ret < 0) { 1106 ret = 0; 1107 } 1108 1109 return ret; 1110 } 1111 1112 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1113 { 1114 int ret; 1115 1116 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1117 if (ret < 0) { 1118 /* VM wide version not implemented, use global one instead */ 1119 ret = kvm_check_extension(s, extension); 1120 } 1121 1122 return ret; 1123 } 1124 1125 /* 1126 * We track the poisoned pages to be able to: 1127 * - replace them on VM reset 1128 * - block a migration for a VM with a poisoned page 1129 */ 1130 typedef struct HWPoisonPage { 1131 ram_addr_t ram_addr; 1132 QLIST_ENTRY(HWPoisonPage) list; 1133 } HWPoisonPage; 1134 1135 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1136 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1137 1138 static void kvm_unpoison_all(void *param) 1139 { 1140 HWPoisonPage *page, *next_page; 1141 1142 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1143 QLIST_REMOVE(page, list); 1144 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1145 g_free(page); 1146 } 1147 } 1148 1149 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1150 { 1151 HWPoisonPage *page; 1152 1153 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1154 if (page->ram_addr == ram_addr) { 1155 return; 1156 } 1157 } 1158 page = g_new(HWPoisonPage, 1); 1159 page->ram_addr = ram_addr; 1160 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1161 } 1162 1163 bool kvm_hwpoisoned_mem(void) 1164 { 1165 return !QLIST_EMPTY(&hwpoison_page_list); 1166 } 1167 1168 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1169 { 1170 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1171 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1172 * endianness, but the memory core hands them in target endianness. 1173 * For example, PPC is always treated as big-endian even if running 1174 * on KVM and on PPC64LE. Correct here. 1175 */ 1176 switch (size) { 1177 case 2: 1178 val = bswap16(val); 1179 break; 1180 case 4: 1181 val = bswap32(val); 1182 break; 1183 } 1184 #endif 1185 return val; 1186 } 1187 1188 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1189 bool assign, uint32_t size, bool datamatch) 1190 { 1191 int ret; 1192 struct kvm_ioeventfd iofd = { 1193 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1194 .addr = addr, 1195 .len = size, 1196 .flags = 0, 1197 .fd = fd, 1198 }; 1199 1200 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1201 datamatch); 1202 if (!kvm_enabled()) { 1203 return -ENOSYS; 1204 } 1205 1206 if (datamatch) { 1207 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1208 } 1209 if (!assign) { 1210 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1211 } 1212 1213 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1214 1215 if (ret < 0) { 1216 return -errno; 1217 } 1218 1219 return 0; 1220 } 1221 1222 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1223 bool assign, uint32_t size, bool datamatch) 1224 { 1225 struct kvm_ioeventfd kick = { 1226 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1227 .addr = addr, 1228 .flags = KVM_IOEVENTFD_FLAG_PIO, 1229 .len = size, 1230 .fd = fd, 1231 }; 1232 int r; 1233 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1234 if (!kvm_enabled()) { 1235 return -ENOSYS; 1236 } 1237 if (datamatch) { 1238 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1239 } 1240 if (!assign) { 1241 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1242 } 1243 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1244 if (r < 0) { 1245 return r; 1246 } 1247 return 0; 1248 } 1249 1250 1251 static const KVMCapabilityInfo * 1252 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1253 { 1254 while (list->name) { 1255 if (!kvm_check_extension(s, list->value)) { 1256 return list; 1257 } 1258 list++; 1259 } 1260 return NULL; 1261 } 1262 1263 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1264 { 1265 g_assert( 1266 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1267 ); 1268 kvm_max_slot_size = max_slot_size; 1269 } 1270 1271 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1272 { 1273 struct kvm_memory_attributes attrs; 1274 int r; 1275 1276 assert((attr & kvm_supported_memory_attributes) == attr); 1277 attrs.attributes = attr; 1278 attrs.address = start; 1279 attrs.size = size; 1280 attrs.flags = 0; 1281 1282 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1283 if (r) { 1284 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1285 "with attr 0x%" PRIx64 " error '%s'", 1286 start, size, attr, strerror(errno)); 1287 } 1288 return r; 1289 } 1290 1291 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1292 { 1293 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1294 } 1295 1296 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1297 { 1298 return kvm_set_memory_attributes(start, size, 0); 1299 } 1300 1301 /* Called with KVMMemoryListener.slots_lock held */ 1302 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1303 MemoryRegionSection *section, bool add) 1304 { 1305 KVMSlot *mem; 1306 int err; 1307 MemoryRegion *mr = section->mr; 1308 bool writable = !mr->readonly && !mr->rom_device; 1309 hwaddr start_addr, size, slot_size, mr_offset; 1310 ram_addr_t ram_start_offset; 1311 void *ram; 1312 1313 if (!memory_region_is_ram(mr)) { 1314 if (writable || !kvm_readonly_mem_allowed) { 1315 return; 1316 } else if (!mr->romd_mode) { 1317 /* If the memory device is not in romd_mode, then we actually want 1318 * to remove the kvm memory slot so all accesses will trap. */ 1319 add = false; 1320 } 1321 } 1322 1323 size = kvm_align_section(section, &start_addr); 1324 if (!size) { 1325 return; 1326 } 1327 1328 /* The offset of the kvmslot within the memory region */ 1329 mr_offset = section->offset_within_region + start_addr - 1330 section->offset_within_address_space; 1331 1332 /* use aligned delta to align the ram address and offset */ 1333 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1334 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1335 1336 if (!add) { 1337 do { 1338 slot_size = MIN(kvm_max_slot_size, size); 1339 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1340 if (!mem) { 1341 return; 1342 } 1343 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1344 /* 1345 * NOTE: We should be aware of the fact that here we're only 1346 * doing a best effort to sync dirty bits. No matter whether 1347 * we're using dirty log or dirty ring, we ignored two facts: 1348 * 1349 * (1) dirty bits can reside in hardware buffers (PML) 1350 * 1351 * (2) after we collected dirty bits here, pages can be dirtied 1352 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1353 * remove the slot. 1354 * 1355 * Not easy. Let's cross the fingers until it's fixed. 1356 */ 1357 if (kvm_state->kvm_dirty_ring_size) { 1358 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1359 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1360 kvm_slot_sync_dirty_pages(mem); 1361 kvm_slot_get_dirty_log(kvm_state, mem); 1362 } 1363 } else { 1364 kvm_slot_get_dirty_log(kvm_state, mem); 1365 } 1366 kvm_slot_sync_dirty_pages(mem); 1367 } 1368 1369 /* unregister the slot */ 1370 g_free(mem->dirty_bmap); 1371 mem->dirty_bmap = NULL; 1372 mem->memory_size = 0; 1373 mem->flags = 0; 1374 err = kvm_set_user_memory_region(kml, mem, false); 1375 if (err) { 1376 fprintf(stderr, "%s: error unregistering slot: %s\n", 1377 __func__, strerror(-err)); 1378 abort(); 1379 } 1380 start_addr += slot_size; 1381 size -= slot_size; 1382 kml->nr_used_slots--; 1383 } while (size); 1384 return; 1385 } 1386 1387 /* register the new slot */ 1388 do { 1389 slot_size = MIN(kvm_max_slot_size, size); 1390 mem = kvm_alloc_slot(kml); 1391 mem->as_id = kml->as_id; 1392 mem->memory_size = slot_size; 1393 mem->start_addr = start_addr; 1394 mem->ram_start_offset = ram_start_offset; 1395 mem->ram = ram; 1396 mem->flags = kvm_mem_flags(mr); 1397 kvm_slot_init_dirty_bitmap(mem); 1398 err = kvm_set_user_memory_region(kml, mem, true); 1399 if (err) { 1400 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1401 strerror(-err)); 1402 abort(); 1403 } 1404 start_addr += slot_size; 1405 ram_start_offset += slot_size; 1406 ram += slot_size; 1407 size -= slot_size; 1408 kml->nr_used_slots++; 1409 } while (size); 1410 } 1411 1412 static void *kvm_dirty_ring_reaper_thread(void *data) 1413 { 1414 KVMState *s = data; 1415 struct KVMDirtyRingReaper *r = &s->reaper; 1416 1417 rcu_register_thread(); 1418 1419 trace_kvm_dirty_ring_reaper("init"); 1420 1421 while (true) { 1422 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1423 trace_kvm_dirty_ring_reaper("wait"); 1424 /* 1425 * TODO: provide a smarter timeout rather than a constant? 1426 */ 1427 sleep(1); 1428 1429 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1430 if (dirtylimit_in_service()) { 1431 continue; 1432 } 1433 1434 trace_kvm_dirty_ring_reaper("wakeup"); 1435 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1436 1437 bql_lock(); 1438 kvm_dirty_ring_reap(s, NULL); 1439 bql_unlock(); 1440 1441 r->reaper_iteration++; 1442 } 1443 1444 trace_kvm_dirty_ring_reaper("exit"); 1445 1446 rcu_unregister_thread(); 1447 1448 return NULL; 1449 } 1450 1451 static void kvm_dirty_ring_reaper_init(KVMState *s) 1452 { 1453 struct KVMDirtyRingReaper *r = &s->reaper; 1454 1455 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1456 kvm_dirty_ring_reaper_thread, 1457 s, QEMU_THREAD_JOINABLE); 1458 } 1459 1460 static int kvm_dirty_ring_init(KVMState *s) 1461 { 1462 uint32_t ring_size = s->kvm_dirty_ring_size; 1463 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1464 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1465 int ret; 1466 1467 s->kvm_dirty_ring_size = 0; 1468 s->kvm_dirty_ring_bytes = 0; 1469 1470 /* Bail if the dirty ring size isn't specified */ 1471 if (!ring_size) { 1472 return 0; 1473 } 1474 1475 /* 1476 * Read the max supported pages. Fall back to dirty logging mode 1477 * if the dirty ring isn't supported. 1478 */ 1479 ret = kvm_vm_check_extension(s, capability); 1480 if (ret <= 0) { 1481 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1482 ret = kvm_vm_check_extension(s, capability); 1483 } 1484 1485 if (ret <= 0) { 1486 warn_report("KVM dirty ring not available, using bitmap method"); 1487 return 0; 1488 } 1489 1490 if (ring_bytes > ret) { 1491 error_report("KVM dirty ring size %" PRIu32 " too big " 1492 "(maximum is %ld). Please use a smaller value.", 1493 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1494 return -EINVAL; 1495 } 1496 1497 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1498 if (ret) { 1499 error_report("Enabling of KVM dirty ring failed: %s. " 1500 "Suggested minimum value is 1024.", strerror(-ret)); 1501 return -EIO; 1502 } 1503 1504 /* Enable the backup bitmap if it is supported */ 1505 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1506 if (ret > 0) { 1507 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1508 if (ret) { 1509 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1510 "%s. ", strerror(-ret)); 1511 return -EIO; 1512 } 1513 1514 s->kvm_dirty_ring_with_bitmap = true; 1515 } 1516 1517 s->kvm_dirty_ring_size = ring_size; 1518 s->kvm_dirty_ring_bytes = ring_bytes; 1519 1520 return 0; 1521 } 1522 1523 static void kvm_region_add(MemoryListener *listener, 1524 MemoryRegionSection *section) 1525 { 1526 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1527 KVMMemoryUpdate *update; 1528 1529 update = g_new0(KVMMemoryUpdate, 1); 1530 update->section = *section; 1531 1532 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1533 } 1534 1535 static void kvm_region_del(MemoryListener *listener, 1536 MemoryRegionSection *section) 1537 { 1538 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1539 KVMMemoryUpdate *update; 1540 1541 update = g_new0(KVMMemoryUpdate, 1); 1542 update->section = *section; 1543 1544 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1545 } 1546 1547 static void kvm_region_commit(MemoryListener *listener) 1548 { 1549 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1550 listener); 1551 KVMMemoryUpdate *u1, *u2; 1552 bool need_inhibit = false; 1553 1554 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1555 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1556 return; 1557 } 1558 1559 /* 1560 * We have to be careful when regions to add overlap with ranges to remove. 1561 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1562 * is currently active. 1563 * 1564 * The lists are order by addresses, so it's easy to find overlaps. 1565 */ 1566 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1567 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1568 while (u1 && u2) { 1569 Range r1, r2; 1570 1571 range_init_nofail(&r1, u1->section.offset_within_address_space, 1572 int128_get64(u1->section.size)); 1573 range_init_nofail(&r2, u2->section.offset_within_address_space, 1574 int128_get64(u2->section.size)); 1575 1576 if (range_overlaps_range(&r1, &r2)) { 1577 need_inhibit = true; 1578 break; 1579 } 1580 if (range_lob(&r1) < range_lob(&r2)) { 1581 u1 = QSIMPLEQ_NEXT(u1, next); 1582 } else { 1583 u2 = QSIMPLEQ_NEXT(u2, next); 1584 } 1585 } 1586 1587 kvm_slots_lock(); 1588 if (need_inhibit) { 1589 accel_ioctl_inhibit_begin(); 1590 } 1591 1592 /* Remove all memslots before adding the new ones. */ 1593 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1594 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1595 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1596 1597 kvm_set_phys_mem(kml, &u1->section, false); 1598 memory_region_unref(u1->section.mr); 1599 1600 g_free(u1); 1601 } 1602 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1603 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1604 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1605 1606 memory_region_ref(u1->section.mr); 1607 kvm_set_phys_mem(kml, &u1->section, true); 1608 1609 g_free(u1); 1610 } 1611 1612 if (need_inhibit) { 1613 accel_ioctl_inhibit_end(); 1614 } 1615 kvm_slots_unlock(); 1616 } 1617 1618 static void kvm_log_sync(MemoryListener *listener, 1619 MemoryRegionSection *section) 1620 { 1621 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1622 1623 kvm_slots_lock(); 1624 kvm_physical_sync_dirty_bitmap(kml, section); 1625 kvm_slots_unlock(); 1626 } 1627 1628 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1629 { 1630 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1631 KVMState *s = kvm_state; 1632 KVMSlot *mem; 1633 int i; 1634 1635 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1636 kvm_dirty_ring_flush(); 1637 1638 /* 1639 * TODO: make this faster when nr_slots is big while there are 1640 * only a few used slots (small VMs). 1641 */ 1642 kvm_slots_lock(); 1643 for (i = 0; i < s->nr_slots; i++) { 1644 mem = &kml->slots[i]; 1645 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1646 kvm_slot_sync_dirty_pages(mem); 1647 1648 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1649 kvm_slot_get_dirty_log(s, mem)) { 1650 kvm_slot_sync_dirty_pages(mem); 1651 } 1652 1653 /* 1654 * This is not needed by KVM_GET_DIRTY_LOG because the 1655 * ioctl will unconditionally overwrite the whole region. 1656 * However kvm dirty ring has no such side effect. 1657 */ 1658 kvm_slot_reset_dirty_pages(mem); 1659 } 1660 } 1661 kvm_slots_unlock(); 1662 } 1663 1664 static void kvm_log_clear(MemoryListener *listener, 1665 MemoryRegionSection *section) 1666 { 1667 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1668 int r; 1669 1670 r = kvm_physical_log_clear(kml, section); 1671 if (r < 0) { 1672 error_report_once("%s: kvm log clear failed: mr=%s " 1673 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1674 section->mr->name, section->offset_within_region, 1675 int128_get64(section->size)); 1676 abort(); 1677 } 1678 } 1679 1680 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1681 MemoryRegionSection *section, 1682 bool match_data, uint64_t data, 1683 EventNotifier *e) 1684 { 1685 int fd = event_notifier_get_fd(e); 1686 int r; 1687 1688 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1689 data, true, int128_get64(section->size), 1690 match_data); 1691 if (r < 0) { 1692 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1693 __func__, strerror(-r), -r); 1694 abort(); 1695 } 1696 } 1697 1698 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1699 MemoryRegionSection *section, 1700 bool match_data, uint64_t data, 1701 EventNotifier *e) 1702 { 1703 int fd = event_notifier_get_fd(e); 1704 int r; 1705 1706 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1707 data, false, int128_get64(section->size), 1708 match_data); 1709 if (r < 0) { 1710 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1711 __func__, strerror(-r), -r); 1712 abort(); 1713 } 1714 } 1715 1716 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1717 MemoryRegionSection *section, 1718 bool match_data, uint64_t data, 1719 EventNotifier *e) 1720 { 1721 int fd = event_notifier_get_fd(e); 1722 int r; 1723 1724 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1725 data, true, int128_get64(section->size), 1726 match_data); 1727 if (r < 0) { 1728 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1729 __func__, strerror(-r), -r); 1730 abort(); 1731 } 1732 } 1733 1734 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1735 MemoryRegionSection *section, 1736 bool match_data, uint64_t data, 1737 EventNotifier *e) 1738 1739 { 1740 int fd = event_notifier_get_fd(e); 1741 int r; 1742 1743 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1744 data, false, int128_get64(section->size), 1745 match_data); 1746 if (r < 0) { 1747 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1748 __func__, strerror(-r), -r); 1749 abort(); 1750 } 1751 } 1752 1753 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1754 AddressSpace *as, int as_id, const char *name) 1755 { 1756 int i; 1757 1758 kml->slots = g_new0(KVMSlot, s->nr_slots); 1759 kml->as_id = as_id; 1760 1761 for (i = 0; i < s->nr_slots; i++) { 1762 kml->slots[i].slot = i; 1763 } 1764 1765 QSIMPLEQ_INIT(&kml->transaction_add); 1766 QSIMPLEQ_INIT(&kml->transaction_del); 1767 1768 kml->listener.region_add = kvm_region_add; 1769 kml->listener.region_del = kvm_region_del; 1770 kml->listener.commit = kvm_region_commit; 1771 kml->listener.log_start = kvm_log_start; 1772 kml->listener.log_stop = kvm_log_stop; 1773 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1774 kml->listener.name = name; 1775 1776 if (s->kvm_dirty_ring_size) { 1777 kml->listener.log_sync_global = kvm_log_sync_global; 1778 } else { 1779 kml->listener.log_sync = kvm_log_sync; 1780 kml->listener.log_clear = kvm_log_clear; 1781 } 1782 1783 memory_listener_register(&kml->listener, as); 1784 1785 for (i = 0; i < s->nr_as; ++i) { 1786 if (!s->as[i].as) { 1787 s->as[i].as = as; 1788 s->as[i].ml = kml; 1789 break; 1790 } 1791 } 1792 } 1793 1794 static MemoryListener kvm_io_listener = { 1795 .name = "kvm-io", 1796 .coalesced_io_add = kvm_coalesce_pio_add, 1797 .coalesced_io_del = kvm_coalesce_pio_del, 1798 .eventfd_add = kvm_io_ioeventfd_add, 1799 .eventfd_del = kvm_io_ioeventfd_del, 1800 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1801 }; 1802 1803 int kvm_set_irq(KVMState *s, int irq, int level) 1804 { 1805 struct kvm_irq_level event; 1806 int ret; 1807 1808 assert(kvm_async_interrupts_enabled()); 1809 1810 event.level = level; 1811 event.irq = irq; 1812 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1813 if (ret < 0) { 1814 perror("kvm_set_irq"); 1815 abort(); 1816 } 1817 1818 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1819 } 1820 1821 #ifdef KVM_CAP_IRQ_ROUTING 1822 typedef struct KVMMSIRoute { 1823 struct kvm_irq_routing_entry kroute; 1824 QTAILQ_ENTRY(KVMMSIRoute) entry; 1825 } KVMMSIRoute; 1826 1827 static void set_gsi(KVMState *s, unsigned int gsi) 1828 { 1829 set_bit(gsi, s->used_gsi_bitmap); 1830 } 1831 1832 static void clear_gsi(KVMState *s, unsigned int gsi) 1833 { 1834 clear_bit(gsi, s->used_gsi_bitmap); 1835 } 1836 1837 void kvm_init_irq_routing(KVMState *s) 1838 { 1839 int gsi_count; 1840 1841 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1842 if (gsi_count > 0) { 1843 /* Round up so we can search ints using ffs */ 1844 s->used_gsi_bitmap = bitmap_new(gsi_count); 1845 s->gsi_count = gsi_count; 1846 } 1847 1848 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1849 s->nr_allocated_irq_routes = 0; 1850 1851 kvm_arch_init_irq_routing(s); 1852 } 1853 1854 void kvm_irqchip_commit_routes(KVMState *s) 1855 { 1856 int ret; 1857 1858 if (kvm_gsi_direct_mapping()) { 1859 return; 1860 } 1861 1862 if (!kvm_gsi_routing_enabled()) { 1863 return; 1864 } 1865 1866 s->irq_routes->flags = 0; 1867 trace_kvm_irqchip_commit_routes(); 1868 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1869 assert(ret == 0); 1870 } 1871 1872 static void kvm_add_routing_entry(KVMState *s, 1873 struct kvm_irq_routing_entry *entry) 1874 { 1875 struct kvm_irq_routing_entry *new; 1876 int n, size; 1877 1878 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1879 n = s->nr_allocated_irq_routes * 2; 1880 if (n < 64) { 1881 n = 64; 1882 } 1883 size = sizeof(struct kvm_irq_routing); 1884 size += n * sizeof(*new); 1885 s->irq_routes = g_realloc(s->irq_routes, size); 1886 s->nr_allocated_irq_routes = n; 1887 } 1888 n = s->irq_routes->nr++; 1889 new = &s->irq_routes->entries[n]; 1890 1891 *new = *entry; 1892 1893 set_gsi(s, entry->gsi); 1894 } 1895 1896 static int kvm_update_routing_entry(KVMState *s, 1897 struct kvm_irq_routing_entry *new_entry) 1898 { 1899 struct kvm_irq_routing_entry *entry; 1900 int n; 1901 1902 for (n = 0; n < s->irq_routes->nr; n++) { 1903 entry = &s->irq_routes->entries[n]; 1904 if (entry->gsi != new_entry->gsi) { 1905 continue; 1906 } 1907 1908 if(!memcmp(entry, new_entry, sizeof *entry)) { 1909 return 0; 1910 } 1911 1912 *entry = *new_entry; 1913 1914 return 0; 1915 } 1916 1917 return -ESRCH; 1918 } 1919 1920 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1921 { 1922 struct kvm_irq_routing_entry e = {}; 1923 1924 assert(pin < s->gsi_count); 1925 1926 e.gsi = irq; 1927 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1928 e.flags = 0; 1929 e.u.irqchip.irqchip = irqchip; 1930 e.u.irqchip.pin = pin; 1931 kvm_add_routing_entry(s, &e); 1932 } 1933 1934 void kvm_irqchip_release_virq(KVMState *s, int virq) 1935 { 1936 struct kvm_irq_routing_entry *e; 1937 int i; 1938 1939 if (kvm_gsi_direct_mapping()) { 1940 return; 1941 } 1942 1943 for (i = 0; i < s->irq_routes->nr; i++) { 1944 e = &s->irq_routes->entries[i]; 1945 if (e->gsi == virq) { 1946 s->irq_routes->nr--; 1947 *e = s->irq_routes->entries[s->irq_routes->nr]; 1948 } 1949 } 1950 clear_gsi(s, virq); 1951 kvm_arch_release_virq_post(virq); 1952 trace_kvm_irqchip_release_virq(virq); 1953 } 1954 1955 void kvm_irqchip_add_change_notifier(Notifier *n) 1956 { 1957 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1958 } 1959 1960 void kvm_irqchip_remove_change_notifier(Notifier *n) 1961 { 1962 notifier_remove(n); 1963 } 1964 1965 void kvm_irqchip_change_notify(void) 1966 { 1967 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1968 } 1969 1970 static int kvm_irqchip_get_virq(KVMState *s) 1971 { 1972 int next_virq; 1973 1974 /* Return the lowest unused GSI in the bitmap */ 1975 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1976 if (next_virq >= s->gsi_count) { 1977 return -ENOSPC; 1978 } else { 1979 return next_virq; 1980 } 1981 } 1982 1983 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1984 { 1985 struct kvm_msi msi; 1986 1987 msi.address_lo = (uint32_t)msg.address; 1988 msi.address_hi = msg.address >> 32; 1989 msi.data = le32_to_cpu(msg.data); 1990 msi.flags = 0; 1991 memset(msi.pad, 0, sizeof(msi.pad)); 1992 1993 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1994 } 1995 1996 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 1997 { 1998 struct kvm_irq_routing_entry kroute = {}; 1999 int virq; 2000 KVMState *s = c->s; 2001 MSIMessage msg = {0, 0}; 2002 2003 if (pci_available && dev) { 2004 msg = pci_get_msi_message(dev, vector); 2005 } 2006 2007 if (kvm_gsi_direct_mapping()) { 2008 return kvm_arch_msi_data_to_gsi(msg.data); 2009 } 2010 2011 if (!kvm_gsi_routing_enabled()) { 2012 return -ENOSYS; 2013 } 2014 2015 virq = kvm_irqchip_get_virq(s); 2016 if (virq < 0) { 2017 return virq; 2018 } 2019 2020 kroute.gsi = virq; 2021 kroute.type = KVM_IRQ_ROUTING_MSI; 2022 kroute.flags = 0; 2023 kroute.u.msi.address_lo = (uint32_t)msg.address; 2024 kroute.u.msi.address_hi = msg.address >> 32; 2025 kroute.u.msi.data = le32_to_cpu(msg.data); 2026 if (pci_available && kvm_msi_devid_required()) { 2027 kroute.flags = KVM_MSI_VALID_DEVID; 2028 kroute.u.msi.devid = pci_requester_id(dev); 2029 } 2030 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2031 kvm_irqchip_release_virq(s, virq); 2032 return -EINVAL; 2033 } 2034 2035 if (s->irq_routes->nr < s->gsi_count) { 2036 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2037 vector, virq); 2038 2039 kvm_add_routing_entry(s, &kroute); 2040 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2041 c->changes++; 2042 } else { 2043 kvm_irqchip_release_virq(s, virq); 2044 return -ENOSPC; 2045 } 2046 2047 return virq; 2048 } 2049 2050 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2051 PCIDevice *dev) 2052 { 2053 struct kvm_irq_routing_entry kroute = {}; 2054 2055 if (kvm_gsi_direct_mapping()) { 2056 return 0; 2057 } 2058 2059 if (!kvm_irqchip_in_kernel()) { 2060 return -ENOSYS; 2061 } 2062 2063 kroute.gsi = virq; 2064 kroute.type = KVM_IRQ_ROUTING_MSI; 2065 kroute.flags = 0; 2066 kroute.u.msi.address_lo = (uint32_t)msg.address; 2067 kroute.u.msi.address_hi = msg.address >> 32; 2068 kroute.u.msi.data = le32_to_cpu(msg.data); 2069 if (pci_available && kvm_msi_devid_required()) { 2070 kroute.flags = KVM_MSI_VALID_DEVID; 2071 kroute.u.msi.devid = pci_requester_id(dev); 2072 } 2073 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2074 return -EINVAL; 2075 } 2076 2077 trace_kvm_irqchip_update_msi_route(virq); 2078 2079 return kvm_update_routing_entry(s, &kroute); 2080 } 2081 2082 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2083 EventNotifier *resample, int virq, 2084 bool assign) 2085 { 2086 int fd = event_notifier_get_fd(event); 2087 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2088 2089 struct kvm_irqfd irqfd = { 2090 .fd = fd, 2091 .gsi = virq, 2092 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2093 }; 2094 2095 if (rfd != -1) { 2096 assert(assign); 2097 if (kvm_irqchip_is_split()) { 2098 /* 2099 * When the slow irqchip (e.g. IOAPIC) is in the 2100 * userspace, KVM kernel resamplefd will not work because 2101 * the EOI of the interrupt will be delivered to userspace 2102 * instead, so the KVM kernel resamplefd kick will be 2103 * skipped. The userspace here mimics what the kernel 2104 * provides with resamplefd, remember the resamplefd and 2105 * kick it when we receive EOI of this IRQ. 2106 * 2107 * This is hackery because IOAPIC is mostly bypassed 2108 * (except EOI broadcasts) when irqfd is used. However 2109 * this can bring much performance back for split irqchip 2110 * with INTx IRQs (for VFIO, this gives 93% perf of the 2111 * full fast path, which is 46% perf boost comparing to 2112 * the INTx slow path). 2113 */ 2114 kvm_resample_fd_insert(virq, resample); 2115 } else { 2116 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2117 irqfd.resamplefd = rfd; 2118 } 2119 } else if (!assign) { 2120 if (kvm_irqchip_is_split()) { 2121 kvm_resample_fd_remove(virq); 2122 } 2123 } 2124 2125 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2126 } 2127 2128 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2129 { 2130 struct kvm_irq_routing_entry kroute = {}; 2131 int virq; 2132 2133 if (!kvm_gsi_routing_enabled()) { 2134 return -ENOSYS; 2135 } 2136 2137 virq = kvm_irqchip_get_virq(s); 2138 if (virq < 0) { 2139 return virq; 2140 } 2141 2142 kroute.gsi = virq; 2143 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2144 kroute.flags = 0; 2145 kroute.u.adapter.summary_addr = adapter->summary_addr; 2146 kroute.u.adapter.ind_addr = adapter->ind_addr; 2147 kroute.u.adapter.summary_offset = adapter->summary_offset; 2148 kroute.u.adapter.ind_offset = adapter->ind_offset; 2149 kroute.u.adapter.adapter_id = adapter->adapter_id; 2150 2151 kvm_add_routing_entry(s, &kroute); 2152 2153 return virq; 2154 } 2155 2156 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2157 { 2158 struct kvm_irq_routing_entry kroute = {}; 2159 int virq; 2160 2161 if (!kvm_gsi_routing_enabled()) { 2162 return -ENOSYS; 2163 } 2164 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2165 return -ENOSYS; 2166 } 2167 virq = kvm_irqchip_get_virq(s); 2168 if (virq < 0) { 2169 return virq; 2170 } 2171 2172 kroute.gsi = virq; 2173 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2174 kroute.flags = 0; 2175 kroute.u.hv_sint.vcpu = vcpu; 2176 kroute.u.hv_sint.sint = sint; 2177 2178 kvm_add_routing_entry(s, &kroute); 2179 kvm_irqchip_commit_routes(s); 2180 2181 return virq; 2182 } 2183 2184 #else /* !KVM_CAP_IRQ_ROUTING */ 2185 2186 void kvm_init_irq_routing(KVMState *s) 2187 { 2188 } 2189 2190 void kvm_irqchip_release_virq(KVMState *s, int virq) 2191 { 2192 } 2193 2194 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2195 { 2196 abort(); 2197 } 2198 2199 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2200 { 2201 return -ENOSYS; 2202 } 2203 2204 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2205 { 2206 return -ENOSYS; 2207 } 2208 2209 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2210 { 2211 return -ENOSYS; 2212 } 2213 2214 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2215 EventNotifier *resample, int virq, 2216 bool assign) 2217 { 2218 abort(); 2219 } 2220 2221 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2222 { 2223 return -ENOSYS; 2224 } 2225 #endif /* !KVM_CAP_IRQ_ROUTING */ 2226 2227 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2228 EventNotifier *rn, int virq) 2229 { 2230 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2231 } 2232 2233 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2234 int virq) 2235 { 2236 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2237 } 2238 2239 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2240 EventNotifier *rn, qemu_irq irq) 2241 { 2242 gpointer key, gsi; 2243 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2244 2245 if (!found) { 2246 return -ENXIO; 2247 } 2248 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2249 } 2250 2251 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2252 qemu_irq irq) 2253 { 2254 gpointer key, gsi; 2255 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2256 2257 if (!found) { 2258 return -ENXIO; 2259 } 2260 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2261 } 2262 2263 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2264 { 2265 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2266 } 2267 2268 static void kvm_irqchip_create(KVMState *s) 2269 { 2270 int ret; 2271 2272 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2273 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2274 ; 2275 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2276 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2277 if (ret < 0) { 2278 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2279 exit(1); 2280 } 2281 } else { 2282 return; 2283 } 2284 2285 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2286 fprintf(stderr, "kvm: irqfd not implemented\n"); 2287 exit(1); 2288 } 2289 2290 /* First probe and see if there's a arch-specific hook to create the 2291 * in-kernel irqchip for us */ 2292 ret = kvm_arch_irqchip_create(s); 2293 if (ret == 0) { 2294 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2295 error_report("Split IRQ chip mode not supported."); 2296 exit(1); 2297 } else { 2298 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2299 } 2300 } 2301 if (ret < 0) { 2302 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2303 exit(1); 2304 } 2305 2306 kvm_kernel_irqchip = true; 2307 /* If we have an in-kernel IRQ chip then we must have asynchronous 2308 * interrupt delivery (though the reverse is not necessarily true) 2309 */ 2310 kvm_async_interrupts_allowed = true; 2311 kvm_halt_in_kernel_allowed = true; 2312 2313 kvm_init_irq_routing(s); 2314 2315 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2316 } 2317 2318 /* Find number of supported CPUs using the recommended 2319 * procedure from the kernel API documentation to cope with 2320 * older kernels that may be missing capabilities. 2321 */ 2322 static int kvm_recommended_vcpus(KVMState *s) 2323 { 2324 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2325 return (ret) ? ret : 4; 2326 } 2327 2328 static int kvm_max_vcpus(KVMState *s) 2329 { 2330 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2331 return (ret) ? ret : kvm_recommended_vcpus(s); 2332 } 2333 2334 static int kvm_max_vcpu_id(KVMState *s) 2335 { 2336 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2337 return (ret) ? ret : kvm_max_vcpus(s); 2338 } 2339 2340 bool kvm_vcpu_id_is_valid(int vcpu_id) 2341 { 2342 KVMState *s = KVM_STATE(current_accel()); 2343 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2344 } 2345 2346 bool kvm_dirty_ring_enabled(void) 2347 { 2348 return kvm_state->kvm_dirty_ring_size ? true : false; 2349 } 2350 2351 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2352 strList *names, strList *targets, Error **errp); 2353 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2354 2355 uint32_t kvm_dirty_ring_size(void) 2356 { 2357 return kvm_state->kvm_dirty_ring_size; 2358 } 2359 2360 static int kvm_init(MachineState *ms) 2361 { 2362 MachineClass *mc = MACHINE_GET_CLASS(ms); 2363 static const char upgrade_note[] = 2364 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2365 "(see http://sourceforge.net/projects/kvm).\n"; 2366 const struct { 2367 const char *name; 2368 int num; 2369 } num_cpus[] = { 2370 { "SMP", ms->smp.cpus }, 2371 { "hotpluggable", ms->smp.max_cpus }, 2372 { /* end of list */ } 2373 }, *nc = num_cpus; 2374 int soft_vcpus_limit, hard_vcpus_limit; 2375 KVMState *s; 2376 const KVMCapabilityInfo *missing_cap; 2377 int ret; 2378 int type; 2379 uint64_t dirty_log_manual_caps; 2380 2381 qemu_mutex_init(&kml_slots_lock); 2382 2383 s = KVM_STATE(ms->accelerator); 2384 2385 /* 2386 * On systems where the kernel can support different base page 2387 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2388 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2389 * page size for the system though. 2390 */ 2391 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2392 2393 s->sigmask_len = 8; 2394 accel_blocker_init(); 2395 2396 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2397 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2398 #endif 2399 QLIST_INIT(&s->kvm_parked_vcpus); 2400 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2401 if (s->fd == -1) { 2402 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2403 ret = -errno; 2404 goto err; 2405 } 2406 2407 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2408 if (ret < KVM_API_VERSION) { 2409 if (ret >= 0) { 2410 ret = -EINVAL; 2411 } 2412 fprintf(stderr, "kvm version too old\n"); 2413 goto err; 2414 } 2415 2416 if (ret > KVM_API_VERSION) { 2417 ret = -EINVAL; 2418 fprintf(stderr, "kvm version not supported\n"); 2419 goto err; 2420 } 2421 2422 kvm_supported_memory_attributes = kvm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2423 kvm_guest_memfd_supported = 2424 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2425 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2426 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2427 2428 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2429 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2430 2431 /* If unspecified, use the default value */ 2432 if (!s->nr_slots) { 2433 s->nr_slots = 32; 2434 } 2435 2436 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2437 if (s->nr_as <= 1) { 2438 s->nr_as = 1; 2439 } 2440 s->as = g_new0(struct KVMAs, s->nr_as); 2441 2442 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2443 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2444 "kvm-type", 2445 &error_abort); 2446 type = mc->kvm_type(ms, kvm_type); 2447 } else if (mc->kvm_type) { 2448 type = mc->kvm_type(ms, NULL); 2449 } else { 2450 type = kvm_arch_get_default_type(ms); 2451 } 2452 2453 if (type < 0) { 2454 ret = -EINVAL; 2455 goto err; 2456 } 2457 2458 do { 2459 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2460 } while (ret == -EINTR); 2461 2462 if (ret < 0) { 2463 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2464 strerror(-ret)); 2465 2466 #ifdef TARGET_S390X 2467 if (ret == -EINVAL) { 2468 fprintf(stderr, 2469 "Host kernel setup problem detected. Please verify:\n"); 2470 fprintf(stderr, "- for kernels supporting the switch_amode or" 2471 " user_mode parameters, whether\n"); 2472 fprintf(stderr, 2473 " user space is running in primary address space\n"); 2474 fprintf(stderr, 2475 "- for kernels supporting the vm.allocate_pgste sysctl, " 2476 "whether it is enabled\n"); 2477 } 2478 #elif defined(TARGET_PPC) 2479 if (ret == -EINVAL) { 2480 fprintf(stderr, 2481 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2482 (type == 2) ? "pr" : "hv"); 2483 } 2484 #endif 2485 goto err; 2486 } 2487 2488 s->vmfd = ret; 2489 2490 /* check the vcpu limits */ 2491 soft_vcpus_limit = kvm_recommended_vcpus(s); 2492 hard_vcpus_limit = kvm_max_vcpus(s); 2493 2494 while (nc->name) { 2495 if (nc->num > soft_vcpus_limit) { 2496 warn_report("Number of %s cpus requested (%d) exceeds " 2497 "the recommended cpus supported by KVM (%d)", 2498 nc->name, nc->num, soft_vcpus_limit); 2499 2500 if (nc->num > hard_vcpus_limit) { 2501 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2502 "the maximum cpus supported by KVM (%d)\n", 2503 nc->name, nc->num, hard_vcpus_limit); 2504 exit(1); 2505 } 2506 } 2507 nc++; 2508 } 2509 2510 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2511 if (!missing_cap) { 2512 missing_cap = 2513 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2514 } 2515 if (missing_cap) { 2516 ret = -EINVAL; 2517 fprintf(stderr, "kvm does not support %s\n%s", 2518 missing_cap->name, upgrade_note); 2519 goto err; 2520 } 2521 2522 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2523 s->coalesced_pio = s->coalesced_mmio && 2524 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2525 2526 /* 2527 * Enable KVM dirty ring if supported, otherwise fall back to 2528 * dirty logging mode 2529 */ 2530 ret = kvm_dirty_ring_init(s); 2531 if (ret < 0) { 2532 goto err; 2533 } 2534 2535 /* 2536 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2537 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2538 * page is wr-protected initially, which is against how kvm dirty ring is 2539 * usage - kvm dirty ring requires all pages are wr-protected at the very 2540 * beginning. Enabling this feature for dirty ring causes data corruption. 2541 * 2542 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2543 * we may expect a higher stall time when starting the migration. In the 2544 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2545 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2546 * guest pages. 2547 */ 2548 if (!s->kvm_dirty_ring_size) { 2549 dirty_log_manual_caps = 2550 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2551 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2552 KVM_DIRTY_LOG_INITIALLY_SET); 2553 s->manual_dirty_log_protect = dirty_log_manual_caps; 2554 if (dirty_log_manual_caps) { 2555 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2556 dirty_log_manual_caps); 2557 if (ret) { 2558 warn_report("Trying to enable capability %"PRIu64" of " 2559 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2560 "Falling back to the legacy mode. ", 2561 dirty_log_manual_caps); 2562 s->manual_dirty_log_protect = 0; 2563 } 2564 } 2565 } 2566 2567 #ifdef KVM_CAP_VCPU_EVENTS 2568 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2569 #endif 2570 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2571 2572 s->irq_set_ioctl = KVM_IRQ_LINE; 2573 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2574 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2575 } 2576 2577 kvm_readonly_mem_allowed = 2578 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2579 2580 kvm_resamplefds_allowed = 2581 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2582 2583 kvm_vm_attributes_allowed = 2584 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2585 2586 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2587 kvm_has_guest_debug = 2588 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2589 #endif 2590 2591 kvm_sstep_flags = 0; 2592 if (kvm_has_guest_debug) { 2593 kvm_sstep_flags = SSTEP_ENABLE; 2594 2595 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2596 int guest_debug_flags = 2597 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2598 2599 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2600 kvm_sstep_flags |= SSTEP_NOIRQ; 2601 } 2602 #endif 2603 } 2604 2605 kvm_state = s; 2606 2607 ret = kvm_arch_init(ms, s); 2608 if (ret < 0) { 2609 goto err; 2610 } 2611 2612 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2613 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2614 } 2615 2616 qemu_register_reset(kvm_unpoison_all, NULL); 2617 2618 if (s->kernel_irqchip_allowed) { 2619 kvm_irqchip_create(s); 2620 } 2621 2622 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2623 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2624 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2625 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2626 2627 kvm_memory_listener_register(s, &s->memory_listener, 2628 &address_space_memory, 0, "kvm-memory"); 2629 memory_listener_register(&kvm_io_listener, 2630 &address_space_io); 2631 2632 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2633 if (!s->sync_mmu) { 2634 ret = ram_block_discard_disable(true); 2635 assert(!ret); 2636 } 2637 2638 if (s->kvm_dirty_ring_size) { 2639 kvm_dirty_ring_reaper_init(s); 2640 } 2641 2642 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2643 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2644 query_stats_schemas_cb); 2645 } 2646 2647 return 0; 2648 2649 err: 2650 assert(ret < 0); 2651 if (s->vmfd >= 0) { 2652 close(s->vmfd); 2653 } 2654 if (s->fd != -1) { 2655 close(s->fd); 2656 } 2657 g_free(s->as); 2658 g_free(s->memory_listener.slots); 2659 2660 return ret; 2661 } 2662 2663 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2664 { 2665 s->sigmask_len = sigmask_len; 2666 } 2667 2668 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2669 int size, uint32_t count) 2670 { 2671 int i; 2672 uint8_t *ptr = data; 2673 2674 for (i = 0; i < count; i++) { 2675 address_space_rw(&address_space_io, port, attrs, 2676 ptr, size, 2677 direction == KVM_EXIT_IO_OUT); 2678 ptr += size; 2679 } 2680 } 2681 2682 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2683 { 2684 int i; 2685 2686 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2687 run->internal.suberror); 2688 2689 for (i = 0; i < run->internal.ndata; ++i) { 2690 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2691 i, (uint64_t)run->internal.data[i]); 2692 } 2693 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2694 fprintf(stderr, "emulation failure\n"); 2695 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2696 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2697 return EXCP_INTERRUPT; 2698 } 2699 } 2700 /* FIXME: Should trigger a qmp message to let management know 2701 * something went wrong. 2702 */ 2703 return -1; 2704 } 2705 2706 void kvm_flush_coalesced_mmio_buffer(void) 2707 { 2708 KVMState *s = kvm_state; 2709 2710 if (!s || s->coalesced_flush_in_progress) { 2711 return; 2712 } 2713 2714 s->coalesced_flush_in_progress = true; 2715 2716 if (s->coalesced_mmio_ring) { 2717 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2718 while (ring->first != ring->last) { 2719 struct kvm_coalesced_mmio *ent; 2720 2721 ent = &ring->coalesced_mmio[ring->first]; 2722 2723 if (ent->pio == 1) { 2724 address_space_write(&address_space_io, ent->phys_addr, 2725 MEMTXATTRS_UNSPECIFIED, ent->data, 2726 ent->len); 2727 } else { 2728 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2729 } 2730 smp_wmb(); 2731 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2732 } 2733 } 2734 2735 s->coalesced_flush_in_progress = false; 2736 } 2737 2738 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2739 { 2740 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2741 int ret = kvm_arch_get_registers(cpu); 2742 if (ret) { 2743 error_report("Failed to get registers: %s", strerror(-ret)); 2744 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2745 vm_stop(RUN_STATE_INTERNAL_ERROR); 2746 } 2747 2748 cpu->vcpu_dirty = true; 2749 } 2750 } 2751 2752 void kvm_cpu_synchronize_state(CPUState *cpu) 2753 { 2754 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2755 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2756 } 2757 } 2758 2759 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2760 { 2761 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2762 if (ret) { 2763 error_report("Failed to put registers after reset: %s", strerror(-ret)); 2764 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2765 vm_stop(RUN_STATE_INTERNAL_ERROR); 2766 } 2767 2768 cpu->vcpu_dirty = false; 2769 } 2770 2771 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2772 { 2773 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2774 } 2775 2776 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2777 { 2778 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2779 if (ret) { 2780 error_report("Failed to put registers after init: %s", strerror(-ret)); 2781 exit(1); 2782 } 2783 2784 cpu->vcpu_dirty = false; 2785 } 2786 2787 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2788 { 2789 if (!kvm_state->guest_state_protected) { 2790 /* 2791 * This runs before the machine_init_done notifiers, and is the last 2792 * opportunity to synchronize the state of confidential guests. 2793 */ 2794 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2795 } 2796 } 2797 2798 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2799 { 2800 cpu->vcpu_dirty = true; 2801 } 2802 2803 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2804 { 2805 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2806 } 2807 2808 #ifdef KVM_HAVE_MCE_INJECTION 2809 static __thread void *pending_sigbus_addr; 2810 static __thread int pending_sigbus_code; 2811 static __thread bool have_sigbus_pending; 2812 #endif 2813 2814 static void kvm_cpu_kick(CPUState *cpu) 2815 { 2816 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2817 } 2818 2819 static void kvm_cpu_kick_self(void) 2820 { 2821 if (kvm_immediate_exit) { 2822 kvm_cpu_kick(current_cpu); 2823 } else { 2824 qemu_cpu_kick_self(); 2825 } 2826 } 2827 2828 static void kvm_eat_signals(CPUState *cpu) 2829 { 2830 struct timespec ts = { 0, 0 }; 2831 siginfo_t siginfo; 2832 sigset_t waitset; 2833 sigset_t chkset; 2834 int r; 2835 2836 if (kvm_immediate_exit) { 2837 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2838 /* Write kvm_run->immediate_exit before the cpu->exit_request 2839 * write in kvm_cpu_exec. 2840 */ 2841 smp_wmb(); 2842 return; 2843 } 2844 2845 sigemptyset(&waitset); 2846 sigaddset(&waitset, SIG_IPI); 2847 2848 do { 2849 r = sigtimedwait(&waitset, &siginfo, &ts); 2850 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2851 perror("sigtimedwait"); 2852 exit(1); 2853 } 2854 2855 r = sigpending(&chkset); 2856 if (r == -1) { 2857 perror("sigpending"); 2858 exit(1); 2859 } 2860 } while (sigismember(&chkset, SIG_IPI)); 2861 } 2862 2863 int kvm_cpu_exec(CPUState *cpu) 2864 { 2865 struct kvm_run *run = cpu->kvm_run; 2866 int ret, run_ret; 2867 2868 trace_kvm_cpu_exec(); 2869 2870 if (kvm_arch_process_async_events(cpu)) { 2871 qatomic_set(&cpu->exit_request, 0); 2872 return EXCP_HLT; 2873 } 2874 2875 bql_unlock(); 2876 cpu_exec_start(cpu); 2877 2878 do { 2879 MemTxAttrs attrs; 2880 2881 if (cpu->vcpu_dirty) { 2882 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2883 if (ret) { 2884 error_report("Failed to put registers after init: %s", 2885 strerror(-ret)); 2886 ret = -1; 2887 break; 2888 } 2889 2890 cpu->vcpu_dirty = false; 2891 } 2892 2893 kvm_arch_pre_run(cpu, run); 2894 if (qatomic_read(&cpu->exit_request)) { 2895 trace_kvm_interrupt_exit_request(); 2896 /* 2897 * KVM requires us to reenter the kernel after IO exits to complete 2898 * instruction emulation. This self-signal will ensure that we 2899 * leave ASAP again. 2900 */ 2901 kvm_cpu_kick_self(); 2902 } 2903 2904 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2905 * Matching barrier in kvm_eat_signals. 2906 */ 2907 smp_rmb(); 2908 2909 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2910 2911 attrs = kvm_arch_post_run(cpu, run); 2912 2913 #ifdef KVM_HAVE_MCE_INJECTION 2914 if (unlikely(have_sigbus_pending)) { 2915 bql_lock(); 2916 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2917 pending_sigbus_addr); 2918 have_sigbus_pending = false; 2919 bql_unlock(); 2920 } 2921 #endif 2922 2923 if (run_ret < 0) { 2924 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2925 trace_kvm_io_window_exit(); 2926 kvm_eat_signals(cpu); 2927 ret = EXCP_INTERRUPT; 2928 break; 2929 } 2930 fprintf(stderr, "error: kvm run failed %s\n", 2931 strerror(-run_ret)); 2932 #ifdef TARGET_PPC 2933 if (run_ret == -EBUSY) { 2934 fprintf(stderr, 2935 "This is probably because your SMT is enabled.\n" 2936 "VCPU can only run on primary threads with all " 2937 "secondary threads offline.\n"); 2938 } 2939 #endif 2940 ret = -1; 2941 break; 2942 } 2943 2944 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2945 switch (run->exit_reason) { 2946 case KVM_EXIT_IO: 2947 /* Called outside BQL */ 2948 kvm_handle_io(run->io.port, attrs, 2949 (uint8_t *)run + run->io.data_offset, 2950 run->io.direction, 2951 run->io.size, 2952 run->io.count); 2953 ret = 0; 2954 break; 2955 case KVM_EXIT_MMIO: 2956 /* Called outside BQL */ 2957 address_space_rw(&address_space_memory, 2958 run->mmio.phys_addr, attrs, 2959 run->mmio.data, 2960 run->mmio.len, 2961 run->mmio.is_write); 2962 ret = 0; 2963 break; 2964 case KVM_EXIT_IRQ_WINDOW_OPEN: 2965 ret = EXCP_INTERRUPT; 2966 break; 2967 case KVM_EXIT_SHUTDOWN: 2968 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2969 ret = EXCP_INTERRUPT; 2970 break; 2971 case KVM_EXIT_UNKNOWN: 2972 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2973 (uint64_t)run->hw.hardware_exit_reason); 2974 ret = -1; 2975 break; 2976 case KVM_EXIT_INTERNAL_ERROR: 2977 ret = kvm_handle_internal_error(cpu, run); 2978 break; 2979 case KVM_EXIT_DIRTY_RING_FULL: 2980 /* 2981 * We shouldn't continue if the dirty ring of this vcpu is 2982 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 2983 */ 2984 trace_kvm_dirty_ring_full(cpu->cpu_index); 2985 bql_lock(); 2986 /* 2987 * We throttle vCPU by making it sleep once it exit from kernel 2988 * due to dirty ring full. In the dirtylimit scenario, reaping 2989 * all vCPUs after a single vCPU dirty ring get full result in 2990 * the miss of sleep, so just reap the ring-fulled vCPU. 2991 */ 2992 if (dirtylimit_in_service()) { 2993 kvm_dirty_ring_reap(kvm_state, cpu); 2994 } else { 2995 kvm_dirty_ring_reap(kvm_state, NULL); 2996 } 2997 bql_unlock(); 2998 dirtylimit_vcpu_execute(cpu); 2999 ret = 0; 3000 break; 3001 case KVM_EXIT_SYSTEM_EVENT: 3002 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3003 switch (run->system_event.type) { 3004 case KVM_SYSTEM_EVENT_SHUTDOWN: 3005 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3006 ret = EXCP_INTERRUPT; 3007 break; 3008 case KVM_SYSTEM_EVENT_RESET: 3009 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3010 ret = EXCP_INTERRUPT; 3011 break; 3012 case KVM_SYSTEM_EVENT_CRASH: 3013 kvm_cpu_synchronize_state(cpu); 3014 bql_lock(); 3015 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3016 bql_unlock(); 3017 ret = 0; 3018 break; 3019 default: 3020 ret = kvm_arch_handle_exit(cpu, run); 3021 break; 3022 } 3023 break; 3024 default: 3025 ret = kvm_arch_handle_exit(cpu, run); 3026 break; 3027 } 3028 } while (ret == 0); 3029 3030 cpu_exec_end(cpu); 3031 bql_lock(); 3032 3033 if (ret < 0) { 3034 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3035 vm_stop(RUN_STATE_INTERNAL_ERROR); 3036 } 3037 3038 qatomic_set(&cpu->exit_request, 0); 3039 return ret; 3040 } 3041 3042 int kvm_ioctl(KVMState *s, int type, ...) 3043 { 3044 int ret; 3045 void *arg; 3046 va_list ap; 3047 3048 va_start(ap, type); 3049 arg = va_arg(ap, void *); 3050 va_end(ap); 3051 3052 trace_kvm_ioctl(type, arg); 3053 ret = ioctl(s->fd, type, arg); 3054 if (ret == -1) { 3055 ret = -errno; 3056 } 3057 return ret; 3058 } 3059 3060 int kvm_vm_ioctl(KVMState *s, int type, ...) 3061 { 3062 int ret; 3063 void *arg; 3064 va_list ap; 3065 3066 va_start(ap, type); 3067 arg = va_arg(ap, void *); 3068 va_end(ap); 3069 3070 trace_kvm_vm_ioctl(type, arg); 3071 accel_ioctl_begin(); 3072 ret = ioctl(s->vmfd, type, arg); 3073 accel_ioctl_end(); 3074 if (ret == -1) { 3075 ret = -errno; 3076 } 3077 return ret; 3078 } 3079 3080 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3081 { 3082 int ret; 3083 void *arg; 3084 va_list ap; 3085 3086 va_start(ap, type); 3087 arg = va_arg(ap, void *); 3088 va_end(ap); 3089 3090 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3091 accel_cpu_ioctl_begin(cpu); 3092 ret = ioctl(cpu->kvm_fd, type, arg); 3093 accel_cpu_ioctl_end(cpu); 3094 if (ret == -1) { 3095 ret = -errno; 3096 } 3097 return ret; 3098 } 3099 3100 int kvm_device_ioctl(int fd, int type, ...) 3101 { 3102 int ret; 3103 void *arg; 3104 va_list ap; 3105 3106 va_start(ap, type); 3107 arg = va_arg(ap, void *); 3108 va_end(ap); 3109 3110 trace_kvm_device_ioctl(fd, type, arg); 3111 accel_ioctl_begin(); 3112 ret = ioctl(fd, type, arg); 3113 accel_ioctl_end(); 3114 if (ret == -1) { 3115 ret = -errno; 3116 } 3117 return ret; 3118 } 3119 3120 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3121 { 3122 int ret; 3123 struct kvm_device_attr attribute = { 3124 .group = group, 3125 .attr = attr, 3126 }; 3127 3128 if (!kvm_vm_attributes_allowed) { 3129 return 0; 3130 } 3131 3132 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3133 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3134 return ret ? 0 : 1; 3135 } 3136 3137 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3138 { 3139 struct kvm_device_attr attribute = { 3140 .group = group, 3141 .attr = attr, 3142 .flags = 0, 3143 }; 3144 3145 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3146 } 3147 3148 int kvm_device_access(int fd, int group, uint64_t attr, 3149 void *val, bool write, Error **errp) 3150 { 3151 struct kvm_device_attr kvmattr; 3152 int err; 3153 3154 kvmattr.flags = 0; 3155 kvmattr.group = group; 3156 kvmattr.attr = attr; 3157 kvmattr.addr = (uintptr_t)val; 3158 3159 err = kvm_device_ioctl(fd, 3160 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3161 &kvmattr); 3162 if (err < 0) { 3163 error_setg_errno(errp, -err, 3164 "KVM_%s_DEVICE_ATTR failed: Group %d " 3165 "attr 0x%016" PRIx64, 3166 write ? "SET" : "GET", group, attr); 3167 } 3168 return err; 3169 } 3170 3171 bool kvm_has_sync_mmu(void) 3172 { 3173 return kvm_state->sync_mmu; 3174 } 3175 3176 int kvm_has_vcpu_events(void) 3177 { 3178 return kvm_state->vcpu_events; 3179 } 3180 3181 int kvm_max_nested_state_length(void) 3182 { 3183 return kvm_state->max_nested_state_len; 3184 } 3185 3186 int kvm_has_gsi_routing(void) 3187 { 3188 #ifdef KVM_CAP_IRQ_ROUTING 3189 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3190 #else 3191 return false; 3192 #endif 3193 } 3194 3195 bool kvm_arm_supports_user_irq(void) 3196 { 3197 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3198 } 3199 3200 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3201 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3202 { 3203 struct kvm_sw_breakpoint *bp; 3204 3205 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3206 if (bp->pc == pc) { 3207 return bp; 3208 } 3209 } 3210 return NULL; 3211 } 3212 3213 int kvm_sw_breakpoints_active(CPUState *cpu) 3214 { 3215 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3216 } 3217 3218 struct kvm_set_guest_debug_data { 3219 struct kvm_guest_debug dbg; 3220 int err; 3221 }; 3222 3223 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3224 { 3225 struct kvm_set_guest_debug_data *dbg_data = 3226 (struct kvm_set_guest_debug_data *) data.host_ptr; 3227 3228 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3229 &dbg_data->dbg); 3230 } 3231 3232 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3233 { 3234 struct kvm_set_guest_debug_data data; 3235 3236 data.dbg.control = reinject_trap; 3237 3238 if (cpu->singlestep_enabled) { 3239 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3240 3241 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3242 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3243 } 3244 } 3245 kvm_arch_update_guest_debug(cpu, &data.dbg); 3246 3247 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3248 RUN_ON_CPU_HOST_PTR(&data)); 3249 return data.err; 3250 } 3251 3252 bool kvm_supports_guest_debug(void) 3253 { 3254 /* probed during kvm_init() */ 3255 return kvm_has_guest_debug; 3256 } 3257 3258 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3259 { 3260 struct kvm_sw_breakpoint *bp; 3261 int err; 3262 3263 if (type == GDB_BREAKPOINT_SW) { 3264 bp = kvm_find_sw_breakpoint(cpu, addr); 3265 if (bp) { 3266 bp->use_count++; 3267 return 0; 3268 } 3269 3270 bp = g_new(struct kvm_sw_breakpoint, 1); 3271 bp->pc = addr; 3272 bp->use_count = 1; 3273 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3274 if (err) { 3275 g_free(bp); 3276 return err; 3277 } 3278 3279 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3280 } else { 3281 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3282 if (err) { 3283 return err; 3284 } 3285 } 3286 3287 CPU_FOREACH(cpu) { 3288 err = kvm_update_guest_debug(cpu, 0); 3289 if (err) { 3290 return err; 3291 } 3292 } 3293 return 0; 3294 } 3295 3296 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3297 { 3298 struct kvm_sw_breakpoint *bp; 3299 int err; 3300 3301 if (type == GDB_BREAKPOINT_SW) { 3302 bp = kvm_find_sw_breakpoint(cpu, addr); 3303 if (!bp) { 3304 return -ENOENT; 3305 } 3306 3307 if (bp->use_count > 1) { 3308 bp->use_count--; 3309 return 0; 3310 } 3311 3312 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3313 if (err) { 3314 return err; 3315 } 3316 3317 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3318 g_free(bp); 3319 } else { 3320 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3321 if (err) { 3322 return err; 3323 } 3324 } 3325 3326 CPU_FOREACH(cpu) { 3327 err = kvm_update_guest_debug(cpu, 0); 3328 if (err) { 3329 return err; 3330 } 3331 } 3332 return 0; 3333 } 3334 3335 void kvm_remove_all_breakpoints(CPUState *cpu) 3336 { 3337 struct kvm_sw_breakpoint *bp, *next; 3338 KVMState *s = cpu->kvm_state; 3339 CPUState *tmpcpu; 3340 3341 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3342 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3343 /* Try harder to find a CPU that currently sees the breakpoint. */ 3344 CPU_FOREACH(tmpcpu) { 3345 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3346 break; 3347 } 3348 } 3349 } 3350 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3351 g_free(bp); 3352 } 3353 kvm_arch_remove_all_hw_breakpoints(); 3354 3355 CPU_FOREACH(cpu) { 3356 kvm_update_guest_debug(cpu, 0); 3357 } 3358 } 3359 3360 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3361 3362 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3363 { 3364 KVMState *s = kvm_state; 3365 struct kvm_signal_mask *sigmask; 3366 int r; 3367 3368 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3369 3370 sigmask->len = s->sigmask_len; 3371 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3372 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3373 g_free(sigmask); 3374 3375 return r; 3376 } 3377 3378 static void kvm_ipi_signal(int sig) 3379 { 3380 if (current_cpu) { 3381 assert(kvm_immediate_exit); 3382 kvm_cpu_kick(current_cpu); 3383 } 3384 } 3385 3386 void kvm_init_cpu_signals(CPUState *cpu) 3387 { 3388 int r; 3389 sigset_t set; 3390 struct sigaction sigact; 3391 3392 memset(&sigact, 0, sizeof(sigact)); 3393 sigact.sa_handler = kvm_ipi_signal; 3394 sigaction(SIG_IPI, &sigact, NULL); 3395 3396 pthread_sigmask(SIG_BLOCK, NULL, &set); 3397 #if defined KVM_HAVE_MCE_INJECTION 3398 sigdelset(&set, SIGBUS); 3399 pthread_sigmask(SIG_SETMASK, &set, NULL); 3400 #endif 3401 sigdelset(&set, SIG_IPI); 3402 if (kvm_immediate_exit) { 3403 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3404 } else { 3405 r = kvm_set_signal_mask(cpu, &set); 3406 } 3407 if (r) { 3408 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3409 exit(1); 3410 } 3411 } 3412 3413 /* Called asynchronously in VCPU thread. */ 3414 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3415 { 3416 #ifdef KVM_HAVE_MCE_INJECTION 3417 if (have_sigbus_pending) { 3418 return 1; 3419 } 3420 have_sigbus_pending = true; 3421 pending_sigbus_addr = addr; 3422 pending_sigbus_code = code; 3423 qatomic_set(&cpu->exit_request, 1); 3424 return 0; 3425 #else 3426 return 1; 3427 #endif 3428 } 3429 3430 /* Called synchronously (via signalfd) in main thread. */ 3431 int kvm_on_sigbus(int code, void *addr) 3432 { 3433 #ifdef KVM_HAVE_MCE_INJECTION 3434 /* Action required MCE kills the process if SIGBUS is blocked. Because 3435 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3436 * we can only get action optional here. 3437 */ 3438 assert(code != BUS_MCEERR_AR); 3439 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3440 return 0; 3441 #else 3442 return 1; 3443 #endif 3444 } 3445 3446 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3447 { 3448 int ret; 3449 struct kvm_create_device create_dev; 3450 3451 create_dev.type = type; 3452 create_dev.fd = -1; 3453 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3454 3455 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3456 return -ENOTSUP; 3457 } 3458 3459 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3460 if (ret) { 3461 return ret; 3462 } 3463 3464 return test ? 0 : create_dev.fd; 3465 } 3466 3467 bool kvm_device_supported(int vmfd, uint64_t type) 3468 { 3469 struct kvm_create_device create_dev = { 3470 .type = type, 3471 .fd = -1, 3472 .flags = KVM_CREATE_DEVICE_TEST, 3473 }; 3474 3475 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3476 return false; 3477 } 3478 3479 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3480 } 3481 3482 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3483 { 3484 struct kvm_one_reg reg; 3485 int r; 3486 3487 reg.id = id; 3488 reg.addr = (uintptr_t) source; 3489 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3490 if (r) { 3491 trace_kvm_failed_reg_set(id, strerror(-r)); 3492 } 3493 return r; 3494 } 3495 3496 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3497 { 3498 struct kvm_one_reg reg; 3499 int r; 3500 3501 reg.id = id; 3502 reg.addr = (uintptr_t) target; 3503 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3504 if (r) { 3505 trace_kvm_failed_reg_get(id, strerror(-r)); 3506 } 3507 return r; 3508 } 3509 3510 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3511 hwaddr start_addr, hwaddr size) 3512 { 3513 KVMState *kvm = KVM_STATE(ms->accelerator); 3514 int i; 3515 3516 for (i = 0; i < kvm->nr_as; ++i) { 3517 if (kvm->as[i].as == as && kvm->as[i].ml) { 3518 size = MIN(kvm_max_slot_size, size); 3519 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3520 start_addr, size); 3521 } 3522 } 3523 3524 return false; 3525 } 3526 3527 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3528 const char *name, void *opaque, 3529 Error **errp) 3530 { 3531 KVMState *s = KVM_STATE(obj); 3532 int64_t value = s->kvm_shadow_mem; 3533 3534 visit_type_int(v, name, &value, errp); 3535 } 3536 3537 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3538 const char *name, void *opaque, 3539 Error **errp) 3540 { 3541 KVMState *s = KVM_STATE(obj); 3542 int64_t value; 3543 3544 if (s->fd != -1) { 3545 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3546 return; 3547 } 3548 3549 if (!visit_type_int(v, name, &value, errp)) { 3550 return; 3551 } 3552 3553 s->kvm_shadow_mem = value; 3554 } 3555 3556 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3557 const char *name, void *opaque, 3558 Error **errp) 3559 { 3560 KVMState *s = KVM_STATE(obj); 3561 OnOffSplit mode; 3562 3563 if (s->fd != -1) { 3564 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3565 return; 3566 } 3567 3568 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3569 return; 3570 } 3571 switch (mode) { 3572 case ON_OFF_SPLIT_ON: 3573 s->kernel_irqchip_allowed = true; 3574 s->kernel_irqchip_required = true; 3575 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3576 break; 3577 case ON_OFF_SPLIT_OFF: 3578 s->kernel_irqchip_allowed = false; 3579 s->kernel_irqchip_required = false; 3580 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3581 break; 3582 case ON_OFF_SPLIT_SPLIT: 3583 s->kernel_irqchip_allowed = true; 3584 s->kernel_irqchip_required = true; 3585 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3586 break; 3587 default: 3588 /* The value was checked in visit_type_OnOffSplit() above. If 3589 * we get here, then something is wrong in QEMU. 3590 */ 3591 abort(); 3592 } 3593 } 3594 3595 bool kvm_kernel_irqchip_allowed(void) 3596 { 3597 return kvm_state->kernel_irqchip_allowed; 3598 } 3599 3600 bool kvm_kernel_irqchip_required(void) 3601 { 3602 return kvm_state->kernel_irqchip_required; 3603 } 3604 3605 bool kvm_kernel_irqchip_split(void) 3606 { 3607 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3608 } 3609 3610 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3611 const char *name, void *opaque, 3612 Error **errp) 3613 { 3614 KVMState *s = KVM_STATE(obj); 3615 uint32_t value = s->kvm_dirty_ring_size; 3616 3617 visit_type_uint32(v, name, &value, errp); 3618 } 3619 3620 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3621 const char *name, void *opaque, 3622 Error **errp) 3623 { 3624 KVMState *s = KVM_STATE(obj); 3625 uint32_t value; 3626 3627 if (s->fd != -1) { 3628 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3629 return; 3630 } 3631 3632 if (!visit_type_uint32(v, name, &value, errp)) { 3633 return; 3634 } 3635 if (value & (value - 1)) { 3636 error_setg(errp, "dirty-ring-size must be a power of two."); 3637 return; 3638 } 3639 3640 s->kvm_dirty_ring_size = value; 3641 } 3642 3643 static char *kvm_get_device(Object *obj, 3644 Error **errp G_GNUC_UNUSED) 3645 { 3646 KVMState *s = KVM_STATE(obj); 3647 3648 return g_strdup(s->device); 3649 } 3650 3651 static void kvm_set_device(Object *obj, 3652 const char *value, 3653 Error **errp G_GNUC_UNUSED) 3654 { 3655 KVMState *s = KVM_STATE(obj); 3656 3657 g_free(s->device); 3658 s->device = g_strdup(value); 3659 } 3660 3661 static void kvm_accel_instance_init(Object *obj) 3662 { 3663 KVMState *s = KVM_STATE(obj); 3664 3665 s->fd = -1; 3666 s->vmfd = -1; 3667 s->kvm_shadow_mem = -1; 3668 s->kernel_irqchip_allowed = true; 3669 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3670 /* KVM dirty ring is by default off */ 3671 s->kvm_dirty_ring_size = 0; 3672 s->kvm_dirty_ring_with_bitmap = false; 3673 s->kvm_eager_split_size = 0; 3674 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3675 s->notify_window = 0; 3676 s->xen_version = 0; 3677 s->xen_gnttab_max_frames = 64; 3678 s->xen_evtchn_max_pirq = 256; 3679 s->device = NULL; 3680 } 3681 3682 /** 3683 * kvm_gdbstub_sstep_flags(): 3684 * 3685 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3686 * support is probed during kvm_init() 3687 */ 3688 static int kvm_gdbstub_sstep_flags(void) 3689 { 3690 return kvm_sstep_flags; 3691 } 3692 3693 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3694 { 3695 AccelClass *ac = ACCEL_CLASS(oc); 3696 ac->name = "KVM"; 3697 ac->init_machine = kvm_init; 3698 ac->has_memory = kvm_accel_has_memory; 3699 ac->allowed = &kvm_allowed; 3700 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3701 3702 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3703 NULL, kvm_set_kernel_irqchip, 3704 NULL, NULL); 3705 object_class_property_set_description(oc, "kernel-irqchip", 3706 "Configure KVM in-kernel irqchip"); 3707 3708 object_class_property_add(oc, "kvm-shadow-mem", "int", 3709 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3710 NULL, NULL); 3711 object_class_property_set_description(oc, "kvm-shadow-mem", 3712 "KVM shadow MMU size"); 3713 3714 object_class_property_add(oc, "dirty-ring-size", "uint32", 3715 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3716 NULL, NULL); 3717 object_class_property_set_description(oc, "dirty-ring-size", 3718 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3719 3720 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 3721 object_class_property_set_description(oc, "device", 3722 "Path to the device node to use (default: /dev/kvm)"); 3723 3724 kvm_arch_accel_class_init(oc); 3725 } 3726 3727 static const TypeInfo kvm_accel_type = { 3728 .name = TYPE_KVM_ACCEL, 3729 .parent = TYPE_ACCEL, 3730 .instance_init = kvm_accel_instance_init, 3731 .class_init = kvm_accel_class_init, 3732 .instance_size = sizeof(KVMState), 3733 }; 3734 3735 static void kvm_type_init(void) 3736 { 3737 type_register_static(&kvm_accel_type); 3738 } 3739 3740 type_init(kvm_type_init); 3741 3742 typedef struct StatsArgs { 3743 union StatsResultsType { 3744 StatsResultList **stats; 3745 StatsSchemaList **schema; 3746 } result; 3747 strList *names; 3748 Error **errp; 3749 } StatsArgs; 3750 3751 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3752 uint64_t *stats_data, 3753 StatsList *stats_list, 3754 Error **errp) 3755 { 3756 3757 Stats *stats; 3758 uint64List *val_list = NULL; 3759 3760 /* Only add stats that we understand. */ 3761 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3762 case KVM_STATS_TYPE_CUMULATIVE: 3763 case KVM_STATS_TYPE_INSTANT: 3764 case KVM_STATS_TYPE_PEAK: 3765 case KVM_STATS_TYPE_LINEAR_HIST: 3766 case KVM_STATS_TYPE_LOG_HIST: 3767 break; 3768 default: 3769 return stats_list; 3770 } 3771 3772 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3773 case KVM_STATS_UNIT_NONE: 3774 case KVM_STATS_UNIT_BYTES: 3775 case KVM_STATS_UNIT_CYCLES: 3776 case KVM_STATS_UNIT_SECONDS: 3777 case KVM_STATS_UNIT_BOOLEAN: 3778 break; 3779 default: 3780 return stats_list; 3781 } 3782 3783 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3784 case KVM_STATS_BASE_POW10: 3785 case KVM_STATS_BASE_POW2: 3786 break; 3787 default: 3788 return stats_list; 3789 } 3790 3791 /* Alloc and populate data list */ 3792 stats = g_new0(Stats, 1); 3793 stats->name = g_strdup(pdesc->name); 3794 stats->value = g_new0(StatsValue, 1);; 3795 3796 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3797 stats->value->u.boolean = *stats_data; 3798 stats->value->type = QTYPE_QBOOL; 3799 } else if (pdesc->size == 1) { 3800 stats->value->u.scalar = *stats_data; 3801 stats->value->type = QTYPE_QNUM; 3802 } else { 3803 int i; 3804 for (i = 0; i < pdesc->size; i++) { 3805 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3806 } 3807 stats->value->u.list = val_list; 3808 stats->value->type = QTYPE_QLIST; 3809 } 3810 3811 QAPI_LIST_PREPEND(stats_list, stats); 3812 return stats_list; 3813 } 3814 3815 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3816 StatsSchemaValueList *list, 3817 Error **errp) 3818 { 3819 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3820 schema_entry->value = g_new0(StatsSchemaValue, 1); 3821 3822 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3823 case KVM_STATS_TYPE_CUMULATIVE: 3824 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3825 break; 3826 case KVM_STATS_TYPE_INSTANT: 3827 schema_entry->value->type = STATS_TYPE_INSTANT; 3828 break; 3829 case KVM_STATS_TYPE_PEAK: 3830 schema_entry->value->type = STATS_TYPE_PEAK; 3831 break; 3832 case KVM_STATS_TYPE_LINEAR_HIST: 3833 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3834 schema_entry->value->bucket_size = pdesc->bucket_size; 3835 schema_entry->value->has_bucket_size = true; 3836 break; 3837 case KVM_STATS_TYPE_LOG_HIST: 3838 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3839 break; 3840 default: 3841 goto exit; 3842 } 3843 3844 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3845 case KVM_STATS_UNIT_NONE: 3846 break; 3847 case KVM_STATS_UNIT_BOOLEAN: 3848 schema_entry->value->has_unit = true; 3849 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3850 break; 3851 case KVM_STATS_UNIT_BYTES: 3852 schema_entry->value->has_unit = true; 3853 schema_entry->value->unit = STATS_UNIT_BYTES; 3854 break; 3855 case KVM_STATS_UNIT_CYCLES: 3856 schema_entry->value->has_unit = true; 3857 schema_entry->value->unit = STATS_UNIT_CYCLES; 3858 break; 3859 case KVM_STATS_UNIT_SECONDS: 3860 schema_entry->value->has_unit = true; 3861 schema_entry->value->unit = STATS_UNIT_SECONDS; 3862 break; 3863 default: 3864 goto exit; 3865 } 3866 3867 schema_entry->value->exponent = pdesc->exponent; 3868 if (pdesc->exponent) { 3869 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3870 case KVM_STATS_BASE_POW10: 3871 schema_entry->value->has_base = true; 3872 schema_entry->value->base = 10; 3873 break; 3874 case KVM_STATS_BASE_POW2: 3875 schema_entry->value->has_base = true; 3876 schema_entry->value->base = 2; 3877 break; 3878 default: 3879 goto exit; 3880 } 3881 } 3882 3883 schema_entry->value->name = g_strdup(pdesc->name); 3884 schema_entry->next = list; 3885 return schema_entry; 3886 exit: 3887 g_free(schema_entry->value); 3888 g_free(schema_entry); 3889 return list; 3890 } 3891 3892 /* Cached stats descriptors */ 3893 typedef struct StatsDescriptors { 3894 const char *ident; /* cache key, currently the StatsTarget */ 3895 struct kvm_stats_desc *kvm_stats_desc; 3896 struct kvm_stats_header kvm_stats_header; 3897 QTAILQ_ENTRY(StatsDescriptors) next; 3898 } StatsDescriptors; 3899 3900 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3901 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3902 3903 /* 3904 * Return the descriptors for 'target', that either have already been read 3905 * or are retrieved from 'stats_fd'. 3906 */ 3907 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3908 Error **errp) 3909 { 3910 StatsDescriptors *descriptors; 3911 const char *ident; 3912 struct kvm_stats_desc *kvm_stats_desc; 3913 struct kvm_stats_header *kvm_stats_header; 3914 size_t size_desc; 3915 ssize_t ret; 3916 3917 ident = StatsTarget_str(target); 3918 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 3919 if (g_str_equal(descriptors->ident, ident)) { 3920 return descriptors; 3921 } 3922 } 3923 3924 descriptors = g_new0(StatsDescriptors, 1); 3925 3926 /* Read stats header */ 3927 kvm_stats_header = &descriptors->kvm_stats_header; 3928 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 3929 if (ret != sizeof(*kvm_stats_header)) { 3930 error_setg(errp, "KVM stats: failed to read stats header: " 3931 "expected %zu actual %zu", 3932 sizeof(*kvm_stats_header), ret); 3933 g_free(descriptors); 3934 return NULL; 3935 } 3936 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3937 3938 /* Read stats descriptors */ 3939 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 3940 ret = pread(stats_fd, kvm_stats_desc, 3941 size_desc * kvm_stats_header->num_desc, 3942 kvm_stats_header->desc_offset); 3943 3944 if (ret != size_desc * kvm_stats_header->num_desc) { 3945 error_setg(errp, "KVM stats: failed to read stats descriptors: " 3946 "expected %zu actual %zu", 3947 size_desc * kvm_stats_header->num_desc, ret); 3948 g_free(descriptors); 3949 g_free(kvm_stats_desc); 3950 return NULL; 3951 } 3952 descriptors->kvm_stats_desc = kvm_stats_desc; 3953 descriptors->ident = ident; 3954 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 3955 return descriptors; 3956 } 3957 3958 static void query_stats(StatsResultList **result, StatsTarget target, 3959 strList *names, int stats_fd, CPUState *cpu, 3960 Error **errp) 3961 { 3962 struct kvm_stats_desc *kvm_stats_desc; 3963 struct kvm_stats_header *kvm_stats_header; 3964 StatsDescriptors *descriptors; 3965 g_autofree uint64_t *stats_data = NULL; 3966 struct kvm_stats_desc *pdesc; 3967 StatsList *stats_list = NULL; 3968 size_t size_desc, size_data = 0; 3969 ssize_t ret; 3970 int i; 3971 3972 descriptors = find_stats_descriptors(target, stats_fd, errp); 3973 if (!descriptors) { 3974 return; 3975 } 3976 3977 kvm_stats_header = &descriptors->kvm_stats_header; 3978 kvm_stats_desc = descriptors->kvm_stats_desc; 3979 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3980 3981 /* Tally the total data size; read schema data */ 3982 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3983 pdesc = (void *)kvm_stats_desc + i * size_desc; 3984 size_data += pdesc->size * sizeof(*stats_data); 3985 } 3986 3987 stats_data = g_malloc0(size_data); 3988 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 3989 3990 if (ret != size_data) { 3991 error_setg(errp, "KVM stats: failed to read data: " 3992 "expected %zu actual %zu", size_data, ret); 3993 return; 3994 } 3995 3996 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3997 uint64_t *stats; 3998 pdesc = (void *)kvm_stats_desc + i * size_desc; 3999 4000 /* Add entry to the list */ 4001 stats = (void *)stats_data + pdesc->offset; 4002 if (!apply_str_list_filter(pdesc->name, names)) { 4003 continue; 4004 } 4005 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4006 } 4007 4008 if (!stats_list) { 4009 return; 4010 } 4011 4012 switch (target) { 4013 case STATS_TARGET_VM: 4014 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4015 break; 4016 case STATS_TARGET_VCPU: 4017 add_stats_entry(result, STATS_PROVIDER_KVM, 4018 cpu->parent_obj.canonical_path, 4019 stats_list); 4020 break; 4021 default: 4022 g_assert_not_reached(); 4023 } 4024 } 4025 4026 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4027 int stats_fd, Error **errp) 4028 { 4029 struct kvm_stats_desc *kvm_stats_desc; 4030 struct kvm_stats_header *kvm_stats_header; 4031 StatsDescriptors *descriptors; 4032 struct kvm_stats_desc *pdesc; 4033 StatsSchemaValueList *stats_list = NULL; 4034 size_t size_desc; 4035 int i; 4036 4037 descriptors = find_stats_descriptors(target, stats_fd, errp); 4038 if (!descriptors) { 4039 return; 4040 } 4041 4042 kvm_stats_header = &descriptors->kvm_stats_header; 4043 kvm_stats_desc = descriptors->kvm_stats_desc; 4044 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4045 4046 /* Tally the total data size; read schema data */ 4047 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4048 pdesc = (void *)kvm_stats_desc + i * size_desc; 4049 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4050 } 4051 4052 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4053 } 4054 4055 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4056 { 4057 int stats_fd = cpu->kvm_vcpu_stats_fd; 4058 Error *local_err = NULL; 4059 4060 if (stats_fd == -1) { 4061 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4062 error_propagate(kvm_stats_args->errp, local_err); 4063 return; 4064 } 4065 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4066 kvm_stats_args->names, stats_fd, cpu, 4067 kvm_stats_args->errp); 4068 } 4069 4070 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4071 { 4072 int stats_fd = cpu->kvm_vcpu_stats_fd; 4073 Error *local_err = NULL; 4074 4075 if (stats_fd == -1) { 4076 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4077 error_propagate(kvm_stats_args->errp, local_err); 4078 return; 4079 } 4080 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4081 kvm_stats_args->errp); 4082 } 4083 4084 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4085 strList *names, strList *targets, Error **errp) 4086 { 4087 KVMState *s = kvm_state; 4088 CPUState *cpu; 4089 int stats_fd; 4090 4091 switch (target) { 4092 case STATS_TARGET_VM: 4093 { 4094 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4095 if (stats_fd == -1) { 4096 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4097 return; 4098 } 4099 query_stats(result, target, names, stats_fd, NULL, errp); 4100 close(stats_fd); 4101 break; 4102 } 4103 case STATS_TARGET_VCPU: 4104 { 4105 StatsArgs stats_args; 4106 stats_args.result.stats = result; 4107 stats_args.names = names; 4108 stats_args.errp = errp; 4109 CPU_FOREACH(cpu) { 4110 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4111 continue; 4112 } 4113 query_stats_vcpu(cpu, &stats_args); 4114 } 4115 break; 4116 } 4117 default: 4118 break; 4119 } 4120 } 4121 4122 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4123 { 4124 StatsArgs stats_args; 4125 KVMState *s = kvm_state; 4126 int stats_fd; 4127 4128 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4129 if (stats_fd == -1) { 4130 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4131 return; 4132 } 4133 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4134 close(stats_fd); 4135 4136 if (first_cpu) { 4137 stats_args.result.schema = result; 4138 stats_args.errp = errp; 4139 query_stats_schema_vcpu(first_cpu, &stats_args); 4140 } 4141 } 4142 4143 void kvm_mark_guest_state_protected(void) 4144 { 4145 kvm_state->guest_state_protected = true; 4146 } 4147 4148 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4149 { 4150 int fd; 4151 struct kvm_create_guest_memfd guest_memfd = { 4152 .size = size, 4153 .flags = flags, 4154 }; 4155 4156 if (!kvm_guest_memfd_supported) { 4157 error_setg(errp, "KVM does not support guest_memfd"); 4158 return -1; 4159 } 4160 4161 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4162 if (fd < 0) { 4163 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4164 return -1; 4165 } 4166 4167 return fd; 4168 } 4169