1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "qemu/event_notifier.h" 38 #include "qemu/main-loop.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 #include "qapi/visitor.h" 42 #include "qapi/qapi-types-common.h" 43 #include "qapi/qapi-visit-common.h" 44 #include "sysemu/reset.h" 45 #include "qemu/guest-random.h" 46 #include "sysemu/hw_accel.h" 47 #include "kvm-cpus.h" 48 49 #include "hw/boards.h" 50 51 /* This check must be after config-host.h is included */ 52 #ifdef CONFIG_EVENTFD 53 #include <sys/eventfd.h> 54 #endif 55 56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 57 * need to use the real host PAGE_SIZE, as that's what KVM will use. 58 */ 59 #ifdef PAGE_SIZE 60 #undef PAGE_SIZE 61 #endif 62 #define PAGE_SIZE qemu_real_host_page_size 63 64 //#define DEBUG_KVM 65 66 #ifdef DEBUG_KVM 67 #define DPRINTF(fmt, ...) \ 68 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 69 #else 70 #define DPRINTF(fmt, ...) \ 71 do { } while (0) 72 #endif 73 74 #define KVM_MSI_HASHTAB_SIZE 256 75 76 struct KVMParkedVcpu { 77 unsigned long vcpu_id; 78 int kvm_fd; 79 QLIST_ENTRY(KVMParkedVcpu) node; 80 }; 81 82 enum KVMDirtyRingReaperState { 83 KVM_DIRTY_RING_REAPER_NONE = 0, 84 /* The reaper is sleeping */ 85 KVM_DIRTY_RING_REAPER_WAIT, 86 /* The reaper is reaping for dirty pages */ 87 KVM_DIRTY_RING_REAPER_REAPING, 88 }; 89 90 /* 91 * KVM reaper instance, responsible for collecting the KVM dirty bits 92 * via the dirty ring. 93 */ 94 struct KVMDirtyRingReaper { 95 /* The reaper thread */ 96 QemuThread reaper_thr; 97 volatile uint64_t reaper_iteration; /* iteration number of reaper thr */ 98 volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */ 99 }; 100 101 struct KVMState 102 { 103 AccelState parent_obj; 104 105 int nr_slots; 106 int fd; 107 int vmfd; 108 int coalesced_mmio; 109 int coalesced_pio; 110 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 111 bool coalesced_flush_in_progress; 112 int vcpu_events; 113 int robust_singlestep; 114 int debugregs; 115 #ifdef KVM_CAP_SET_GUEST_DEBUG 116 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 117 #endif 118 int max_nested_state_len; 119 int many_ioeventfds; 120 int intx_set_mask; 121 int kvm_shadow_mem; 122 bool kernel_irqchip_allowed; 123 bool kernel_irqchip_required; 124 OnOffAuto kernel_irqchip_split; 125 bool sync_mmu; 126 uint64_t manual_dirty_log_protect; 127 /* The man page (and posix) say ioctl numbers are signed int, but 128 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 129 * unsigned, and treating them as signed here can break things */ 130 unsigned irq_set_ioctl; 131 unsigned int sigmask_len; 132 GHashTable *gsimap; 133 #ifdef KVM_CAP_IRQ_ROUTING 134 struct kvm_irq_routing *irq_routes; 135 int nr_allocated_irq_routes; 136 unsigned long *used_gsi_bitmap; 137 unsigned int gsi_count; 138 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 139 #endif 140 KVMMemoryListener memory_listener; 141 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 142 143 /* For "info mtree -f" to tell if an MR is registered in KVM */ 144 int nr_as; 145 struct KVMAs { 146 KVMMemoryListener *ml; 147 AddressSpace *as; 148 } *as; 149 uint64_t kvm_dirty_ring_bytes; /* Size of the per-vcpu dirty ring */ 150 uint32_t kvm_dirty_ring_size; /* Number of dirty GFNs per ring */ 151 struct KVMDirtyRingReaper reaper; 152 }; 153 154 KVMState *kvm_state; 155 bool kvm_kernel_irqchip; 156 bool kvm_split_irqchip; 157 bool kvm_async_interrupts_allowed; 158 bool kvm_halt_in_kernel_allowed; 159 bool kvm_eventfds_allowed; 160 bool kvm_irqfds_allowed; 161 bool kvm_resamplefds_allowed; 162 bool kvm_msi_via_irqfd_allowed; 163 bool kvm_gsi_routing_allowed; 164 bool kvm_gsi_direct_mapping; 165 bool kvm_allowed; 166 bool kvm_readonly_mem_allowed; 167 bool kvm_vm_attributes_allowed; 168 bool kvm_direct_msi_allowed; 169 bool kvm_ioeventfd_any_length_allowed; 170 bool kvm_msi_use_devid; 171 static bool kvm_immediate_exit; 172 static hwaddr kvm_max_slot_size = ~0; 173 174 static const KVMCapabilityInfo kvm_required_capabilites[] = { 175 KVM_CAP_INFO(USER_MEMORY), 176 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 177 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 178 KVM_CAP_LAST_INFO 179 }; 180 181 static NotifierList kvm_irqchip_change_notifiers = 182 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 183 184 struct KVMResampleFd { 185 int gsi; 186 EventNotifier *resample_event; 187 QLIST_ENTRY(KVMResampleFd) node; 188 }; 189 typedef struct KVMResampleFd KVMResampleFd; 190 191 /* 192 * Only used with split irqchip where we need to do the resample fd 193 * kick for the kernel from userspace. 194 */ 195 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 196 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 197 198 static QemuMutex kml_slots_lock; 199 200 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 201 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 202 203 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 204 205 static inline void kvm_resample_fd_remove(int gsi) 206 { 207 KVMResampleFd *rfd; 208 209 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 210 if (rfd->gsi == gsi) { 211 QLIST_REMOVE(rfd, node); 212 g_free(rfd); 213 break; 214 } 215 } 216 } 217 218 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 219 { 220 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 221 222 rfd->gsi = gsi; 223 rfd->resample_event = event; 224 225 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 226 } 227 228 void kvm_resample_fd_notify(int gsi) 229 { 230 KVMResampleFd *rfd; 231 232 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 233 if (rfd->gsi == gsi) { 234 event_notifier_set(rfd->resample_event); 235 trace_kvm_resample_fd_notify(gsi); 236 return; 237 } 238 } 239 } 240 241 int kvm_get_max_memslots(void) 242 { 243 KVMState *s = KVM_STATE(current_accel()); 244 245 return s->nr_slots; 246 } 247 248 /* Called with KVMMemoryListener.slots_lock held */ 249 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 250 { 251 KVMState *s = kvm_state; 252 int i; 253 254 for (i = 0; i < s->nr_slots; i++) { 255 if (kml->slots[i].memory_size == 0) { 256 return &kml->slots[i]; 257 } 258 } 259 260 return NULL; 261 } 262 263 bool kvm_has_free_slot(MachineState *ms) 264 { 265 KVMState *s = KVM_STATE(ms->accelerator); 266 bool result; 267 KVMMemoryListener *kml = &s->memory_listener; 268 269 kvm_slots_lock(); 270 result = !!kvm_get_free_slot(kml); 271 kvm_slots_unlock(); 272 273 return result; 274 } 275 276 /* Called with KVMMemoryListener.slots_lock held */ 277 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 278 { 279 KVMSlot *slot = kvm_get_free_slot(kml); 280 281 if (slot) { 282 return slot; 283 } 284 285 fprintf(stderr, "%s: no free slot available\n", __func__); 286 abort(); 287 } 288 289 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 290 hwaddr start_addr, 291 hwaddr size) 292 { 293 KVMState *s = kvm_state; 294 int i; 295 296 for (i = 0; i < s->nr_slots; i++) { 297 KVMSlot *mem = &kml->slots[i]; 298 299 if (start_addr == mem->start_addr && size == mem->memory_size) { 300 return mem; 301 } 302 } 303 304 return NULL; 305 } 306 307 /* 308 * Calculate and align the start address and the size of the section. 309 * Return the size. If the size is 0, the aligned section is empty. 310 */ 311 static hwaddr kvm_align_section(MemoryRegionSection *section, 312 hwaddr *start) 313 { 314 hwaddr size = int128_get64(section->size); 315 hwaddr delta, aligned; 316 317 /* kvm works in page size chunks, but the function may be called 318 with sub-page size and unaligned start address. Pad the start 319 address to next and truncate size to previous page boundary. */ 320 aligned = ROUND_UP(section->offset_within_address_space, 321 qemu_real_host_page_size); 322 delta = aligned - section->offset_within_address_space; 323 *start = aligned; 324 if (delta > size) { 325 return 0; 326 } 327 328 return (size - delta) & qemu_real_host_page_mask; 329 } 330 331 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 332 hwaddr *phys_addr) 333 { 334 KVMMemoryListener *kml = &s->memory_listener; 335 int i, ret = 0; 336 337 kvm_slots_lock(); 338 for (i = 0; i < s->nr_slots; i++) { 339 KVMSlot *mem = &kml->slots[i]; 340 341 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 342 *phys_addr = mem->start_addr + (ram - mem->ram); 343 ret = 1; 344 break; 345 } 346 } 347 kvm_slots_unlock(); 348 349 return ret; 350 } 351 352 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 353 { 354 KVMState *s = kvm_state; 355 struct kvm_userspace_memory_region mem; 356 int ret; 357 358 mem.slot = slot->slot | (kml->as_id << 16); 359 mem.guest_phys_addr = slot->start_addr; 360 mem.userspace_addr = (unsigned long)slot->ram; 361 mem.flags = slot->flags; 362 363 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 364 /* Set the slot size to 0 before setting the slot to the desired 365 * value. This is needed based on KVM commit 75d61fbc. */ 366 mem.memory_size = 0; 367 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 368 if (ret < 0) { 369 goto err; 370 } 371 } 372 mem.memory_size = slot->memory_size; 373 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 374 slot->old_flags = mem.flags; 375 err: 376 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 377 mem.memory_size, mem.userspace_addr, ret); 378 if (ret < 0) { 379 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 380 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 381 __func__, mem.slot, slot->start_addr, 382 (uint64_t)mem.memory_size, strerror(errno)); 383 } 384 return ret; 385 } 386 387 static int do_kvm_destroy_vcpu(CPUState *cpu) 388 { 389 KVMState *s = kvm_state; 390 long mmap_size; 391 struct KVMParkedVcpu *vcpu = NULL; 392 int ret = 0; 393 394 DPRINTF("kvm_destroy_vcpu\n"); 395 396 ret = kvm_arch_destroy_vcpu(cpu); 397 if (ret < 0) { 398 goto err; 399 } 400 401 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 402 if (mmap_size < 0) { 403 ret = mmap_size; 404 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 405 goto err; 406 } 407 408 ret = munmap(cpu->kvm_run, mmap_size); 409 if (ret < 0) { 410 goto err; 411 } 412 413 if (cpu->kvm_dirty_gfns) { 414 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 415 if (ret < 0) { 416 goto err; 417 } 418 } 419 420 vcpu = g_malloc0(sizeof(*vcpu)); 421 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 422 vcpu->kvm_fd = cpu->kvm_fd; 423 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 424 err: 425 return ret; 426 } 427 428 void kvm_destroy_vcpu(CPUState *cpu) 429 { 430 if (do_kvm_destroy_vcpu(cpu) < 0) { 431 error_report("kvm_destroy_vcpu failed"); 432 exit(EXIT_FAILURE); 433 } 434 } 435 436 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 437 { 438 struct KVMParkedVcpu *cpu; 439 440 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 441 if (cpu->vcpu_id == vcpu_id) { 442 int kvm_fd; 443 444 QLIST_REMOVE(cpu, node); 445 kvm_fd = cpu->kvm_fd; 446 g_free(cpu); 447 return kvm_fd; 448 } 449 } 450 451 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 452 } 453 454 int kvm_init_vcpu(CPUState *cpu, Error **errp) 455 { 456 KVMState *s = kvm_state; 457 long mmap_size; 458 int ret; 459 460 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 461 462 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 463 if (ret < 0) { 464 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 465 kvm_arch_vcpu_id(cpu)); 466 goto err; 467 } 468 469 cpu->kvm_fd = ret; 470 cpu->kvm_state = s; 471 cpu->vcpu_dirty = true; 472 473 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 474 if (mmap_size < 0) { 475 ret = mmap_size; 476 error_setg_errno(errp, -mmap_size, 477 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 478 goto err; 479 } 480 481 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 482 cpu->kvm_fd, 0); 483 if (cpu->kvm_run == MAP_FAILED) { 484 ret = -errno; 485 error_setg_errno(errp, ret, 486 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 487 kvm_arch_vcpu_id(cpu)); 488 goto err; 489 } 490 491 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 492 s->coalesced_mmio_ring = 493 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 494 } 495 496 if (s->kvm_dirty_ring_size) { 497 /* Use MAP_SHARED to share pages with the kernel */ 498 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 499 PROT_READ | PROT_WRITE, MAP_SHARED, 500 cpu->kvm_fd, 501 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 502 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 503 ret = -errno; 504 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 505 goto err; 506 } 507 } 508 509 ret = kvm_arch_init_vcpu(cpu); 510 if (ret < 0) { 511 error_setg_errno(errp, -ret, 512 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 513 kvm_arch_vcpu_id(cpu)); 514 } 515 err: 516 return ret; 517 } 518 519 /* 520 * dirty pages logging control 521 */ 522 523 static int kvm_mem_flags(MemoryRegion *mr) 524 { 525 bool readonly = mr->readonly || memory_region_is_romd(mr); 526 int flags = 0; 527 528 if (memory_region_get_dirty_log_mask(mr) != 0) { 529 flags |= KVM_MEM_LOG_DIRTY_PAGES; 530 } 531 if (readonly && kvm_readonly_mem_allowed) { 532 flags |= KVM_MEM_READONLY; 533 } 534 return flags; 535 } 536 537 /* Called with KVMMemoryListener.slots_lock held */ 538 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 539 MemoryRegion *mr) 540 { 541 mem->flags = kvm_mem_flags(mr); 542 543 /* If nothing changed effectively, no need to issue ioctl */ 544 if (mem->flags == mem->old_flags) { 545 return 0; 546 } 547 548 kvm_slot_init_dirty_bitmap(mem); 549 return kvm_set_user_memory_region(kml, mem, false); 550 } 551 552 static int kvm_section_update_flags(KVMMemoryListener *kml, 553 MemoryRegionSection *section) 554 { 555 hwaddr start_addr, size, slot_size; 556 KVMSlot *mem; 557 int ret = 0; 558 559 size = kvm_align_section(section, &start_addr); 560 if (!size) { 561 return 0; 562 } 563 564 kvm_slots_lock(); 565 566 while (size && !ret) { 567 slot_size = MIN(kvm_max_slot_size, size); 568 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 569 if (!mem) { 570 /* We don't have a slot if we want to trap every access. */ 571 goto out; 572 } 573 574 ret = kvm_slot_update_flags(kml, mem, section->mr); 575 start_addr += slot_size; 576 size -= slot_size; 577 } 578 579 out: 580 kvm_slots_unlock(); 581 return ret; 582 } 583 584 static void kvm_log_start(MemoryListener *listener, 585 MemoryRegionSection *section, 586 int old, int new) 587 { 588 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 589 int r; 590 591 if (old != 0) { 592 return; 593 } 594 595 r = kvm_section_update_flags(kml, section); 596 if (r < 0) { 597 abort(); 598 } 599 } 600 601 static void kvm_log_stop(MemoryListener *listener, 602 MemoryRegionSection *section, 603 int old, int new) 604 { 605 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 606 int r; 607 608 if (new != 0) { 609 return; 610 } 611 612 r = kvm_section_update_flags(kml, section); 613 if (r < 0) { 614 abort(); 615 } 616 } 617 618 /* get kvm's dirty pages bitmap and update qemu's */ 619 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 620 { 621 ram_addr_t start = slot->ram_start_offset; 622 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size; 623 624 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 625 } 626 627 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 628 { 629 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 630 } 631 632 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 633 634 /* Allocate the dirty bitmap for a slot */ 635 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 636 { 637 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 638 return; 639 } 640 641 /* 642 * XXX bad kernel interface alert 643 * For dirty bitmap, kernel allocates array of size aligned to 644 * bits-per-long. But for case when the kernel is 64bits and 645 * the userspace is 32bits, userspace can't align to the same 646 * bits-per-long, since sizeof(long) is different between kernel 647 * and user space. This way, userspace will provide buffer which 648 * may be 4 bytes less than the kernel will use, resulting in 649 * userspace memory corruption (which is not detectable by valgrind 650 * too, in most cases). 651 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 652 * a hope that sizeof(long) won't become >8 any time soon. 653 * 654 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 655 * And mem->memory_size is aligned to it (otherwise this mem can't 656 * be registered to KVM). 657 */ 658 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size, 659 /*HOST_LONG_BITS*/ 64) / 8; 660 mem->dirty_bmap = g_malloc0(bitmap_size); 661 mem->dirty_bmap_size = bitmap_size; 662 } 663 664 /* 665 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 666 * succeeded, false otherwise 667 */ 668 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 669 { 670 struct kvm_dirty_log d = {}; 671 int ret; 672 673 d.dirty_bitmap = slot->dirty_bmap; 674 d.slot = slot->slot | (slot->as_id << 16); 675 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 676 677 if (ret == -ENOENT) { 678 /* kernel does not have dirty bitmap in this slot */ 679 ret = 0; 680 } 681 if (ret) { 682 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 683 __func__, ret); 684 } 685 return ret == 0; 686 } 687 688 /* Should be with all slots_lock held for the address spaces. */ 689 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 690 uint32_t slot_id, uint64_t offset) 691 { 692 KVMMemoryListener *kml; 693 KVMSlot *mem; 694 695 if (as_id >= s->nr_as) { 696 return; 697 } 698 699 kml = s->as[as_id].ml; 700 mem = &kml->slots[slot_id]; 701 702 if (!mem->memory_size || offset >= 703 (mem->memory_size / qemu_real_host_page_size)) { 704 return; 705 } 706 707 set_bit(offset, mem->dirty_bmap); 708 } 709 710 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 711 { 712 return gfn->flags == KVM_DIRTY_GFN_F_DIRTY; 713 } 714 715 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 716 { 717 gfn->flags = KVM_DIRTY_GFN_F_RESET; 718 } 719 720 /* 721 * Should be with all slots_lock held for the address spaces. It returns the 722 * dirty page we've collected on this dirty ring. 723 */ 724 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 725 { 726 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 727 uint32_t ring_size = s->kvm_dirty_ring_size; 728 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 729 730 assert(dirty_gfns && ring_size); 731 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 732 733 while (true) { 734 cur = &dirty_gfns[fetch % ring_size]; 735 if (!dirty_gfn_is_dirtied(cur)) { 736 break; 737 } 738 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 739 cur->offset); 740 dirty_gfn_set_collected(cur); 741 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 742 fetch++; 743 count++; 744 } 745 cpu->kvm_fetch_index = fetch; 746 747 return count; 748 } 749 750 /* Must be with slots_lock held */ 751 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s) 752 { 753 int ret; 754 CPUState *cpu; 755 uint64_t total = 0; 756 int64_t stamp; 757 758 stamp = get_clock(); 759 760 CPU_FOREACH(cpu) { 761 total += kvm_dirty_ring_reap_one(s, cpu); 762 } 763 764 if (total) { 765 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 766 assert(ret == total); 767 } 768 769 stamp = get_clock() - stamp; 770 771 if (total) { 772 trace_kvm_dirty_ring_reap(total, stamp / 1000); 773 } 774 775 return total; 776 } 777 778 /* 779 * Currently for simplicity, we must hold BQL before calling this. We can 780 * consider to drop the BQL if we're clear with all the race conditions. 781 */ 782 static uint64_t kvm_dirty_ring_reap(KVMState *s) 783 { 784 uint64_t total; 785 786 /* 787 * We need to lock all kvm slots for all address spaces here, 788 * because: 789 * 790 * (1) We need to mark dirty for dirty bitmaps in multiple slots 791 * and for tons of pages, so it's better to take the lock here 792 * once rather than once per page. And more importantly, 793 * 794 * (2) We must _NOT_ publish dirty bits to the other threads 795 * (e.g., the migration thread) via the kvm memory slot dirty 796 * bitmaps before correctly re-protect those dirtied pages. 797 * Otherwise we can have potential risk of data corruption if 798 * the page data is read in the other thread before we do 799 * reset below. 800 */ 801 kvm_slots_lock(); 802 total = kvm_dirty_ring_reap_locked(s); 803 kvm_slots_unlock(); 804 805 return total; 806 } 807 808 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 809 { 810 /* No need to do anything */ 811 } 812 813 /* 814 * Kick all vcpus out in a synchronized way. When returned, we 815 * guarantee that every vcpu has been kicked and at least returned to 816 * userspace once. 817 */ 818 static void kvm_cpu_synchronize_kick_all(void) 819 { 820 CPUState *cpu; 821 822 CPU_FOREACH(cpu) { 823 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 824 } 825 } 826 827 /* 828 * Flush all the existing dirty pages to the KVM slot buffers. When 829 * this call returns, we guarantee that all the touched dirty pages 830 * before calling this function have been put into the per-kvmslot 831 * dirty bitmap. 832 * 833 * This function must be called with BQL held. 834 */ 835 static void kvm_dirty_ring_flush(void) 836 { 837 trace_kvm_dirty_ring_flush(0); 838 /* 839 * The function needs to be serialized. Since this function 840 * should always be with BQL held, serialization is guaranteed. 841 * However, let's be sure of it. 842 */ 843 assert(qemu_mutex_iothread_locked()); 844 /* 845 * First make sure to flush the hardware buffers by kicking all 846 * vcpus out in a synchronous way. 847 */ 848 kvm_cpu_synchronize_kick_all(); 849 kvm_dirty_ring_reap(kvm_state); 850 trace_kvm_dirty_ring_flush(1); 851 } 852 853 /** 854 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 855 * 856 * This function will first try to fetch dirty bitmap from the kernel, 857 * and then updates qemu's dirty bitmap. 858 * 859 * NOTE: caller must be with kml->slots_lock held. 860 * 861 * @kml: the KVM memory listener object 862 * @section: the memory section to sync the dirty bitmap with 863 */ 864 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 865 MemoryRegionSection *section) 866 { 867 KVMState *s = kvm_state; 868 KVMSlot *mem; 869 hwaddr start_addr, size; 870 hwaddr slot_size; 871 872 size = kvm_align_section(section, &start_addr); 873 while (size) { 874 slot_size = MIN(kvm_max_slot_size, size); 875 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 876 if (!mem) { 877 /* We don't have a slot if we want to trap every access. */ 878 return; 879 } 880 if (kvm_slot_get_dirty_log(s, mem)) { 881 kvm_slot_sync_dirty_pages(mem); 882 } 883 start_addr += slot_size; 884 size -= slot_size; 885 } 886 } 887 888 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 889 #define KVM_CLEAR_LOG_SHIFT 6 890 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 891 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 892 893 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 894 uint64_t size) 895 { 896 KVMState *s = kvm_state; 897 uint64_t end, bmap_start, start_delta, bmap_npages; 898 struct kvm_clear_dirty_log d; 899 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 900 int ret; 901 902 /* 903 * We need to extend either the start or the size or both to 904 * satisfy the KVM interface requirement. Firstly, do the start 905 * page alignment on 64 host pages 906 */ 907 bmap_start = start & KVM_CLEAR_LOG_MASK; 908 start_delta = start - bmap_start; 909 bmap_start /= psize; 910 911 /* 912 * The kernel interface has restriction on the size too, that either: 913 * 914 * (1) the size is 64 host pages aligned (just like the start), or 915 * (2) the size fills up until the end of the KVM memslot. 916 */ 917 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 918 << KVM_CLEAR_LOG_SHIFT; 919 end = mem->memory_size / psize; 920 if (bmap_npages > end - bmap_start) { 921 bmap_npages = end - bmap_start; 922 } 923 start_delta /= psize; 924 925 /* 926 * Prepare the bitmap to clear dirty bits. Here we must guarantee 927 * that we won't clear any unknown dirty bits otherwise we might 928 * accidentally clear some set bits which are not yet synced from 929 * the kernel into QEMU's bitmap, then we'll lose track of the 930 * guest modifications upon those pages (which can directly lead 931 * to guest data loss or panic after migration). 932 * 933 * Layout of the KVMSlot.dirty_bmap: 934 * 935 * |<-------- bmap_npages -----------..>| 936 * [1] 937 * start_delta size 938 * |----------------|-------------|------------------|------------| 939 * ^ ^ ^ ^ 940 * | | | | 941 * start bmap_start (start) end 942 * of memslot of memslot 943 * 944 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 945 */ 946 947 assert(bmap_start % BITS_PER_LONG == 0); 948 /* We should never do log_clear before log_sync */ 949 assert(mem->dirty_bmap); 950 if (start_delta || bmap_npages - size / psize) { 951 /* Slow path - we need to manipulate a temp bitmap */ 952 bmap_clear = bitmap_new(bmap_npages); 953 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 954 bmap_start, start_delta + size / psize); 955 /* 956 * We need to fill the holes at start because that was not 957 * specified by the caller and we extended the bitmap only for 958 * 64 pages alignment 959 */ 960 bitmap_clear(bmap_clear, 0, start_delta); 961 d.dirty_bitmap = bmap_clear; 962 } else { 963 /* 964 * Fast path - both start and size align well with BITS_PER_LONG 965 * (or the end of memory slot) 966 */ 967 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 968 } 969 970 d.first_page = bmap_start; 971 /* It should never overflow. If it happens, say something */ 972 assert(bmap_npages <= UINT32_MAX); 973 d.num_pages = bmap_npages; 974 d.slot = mem->slot | (as_id << 16); 975 976 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 977 if (ret < 0 && ret != -ENOENT) { 978 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 979 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 980 __func__, d.slot, (uint64_t)d.first_page, 981 (uint32_t)d.num_pages, ret); 982 } else { 983 ret = 0; 984 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 985 } 986 987 /* 988 * After we have updated the remote dirty bitmap, we update the 989 * cached bitmap as well for the memslot, then if another user 990 * clears the same region we know we shouldn't clear it again on 991 * the remote otherwise it's data loss as well. 992 */ 993 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 994 size / psize); 995 /* This handles the NULL case well */ 996 g_free(bmap_clear); 997 return ret; 998 } 999 1000 1001 /** 1002 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1003 * 1004 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1005 * protection in the host kernel because in that case this operation 1006 * will be done within log_sync(). 1007 * 1008 * @kml: the kvm memory listener 1009 * @section: the memory range to clear dirty bitmap 1010 */ 1011 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1012 MemoryRegionSection *section) 1013 { 1014 KVMState *s = kvm_state; 1015 uint64_t start, size, offset, count; 1016 KVMSlot *mem; 1017 int ret = 0, i; 1018 1019 if (!s->manual_dirty_log_protect) { 1020 /* No need to do explicit clear */ 1021 return ret; 1022 } 1023 1024 start = section->offset_within_address_space; 1025 size = int128_get64(section->size); 1026 1027 if (!size) { 1028 /* Nothing more we can do... */ 1029 return ret; 1030 } 1031 1032 kvm_slots_lock(); 1033 1034 for (i = 0; i < s->nr_slots; i++) { 1035 mem = &kml->slots[i]; 1036 /* Discard slots that are empty or do not overlap the section */ 1037 if (!mem->memory_size || 1038 mem->start_addr > start + size - 1 || 1039 start > mem->start_addr + mem->memory_size - 1) { 1040 continue; 1041 } 1042 1043 if (start >= mem->start_addr) { 1044 /* The slot starts before section or is aligned to it. */ 1045 offset = start - mem->start_addr; 1046 count = MIN(mem->memory_size - offset, size); 1047 } else { 1048 /* The slot starts after section. */ 1049 offset = 0; 1050 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1051 } 1052 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1053 if (ret < 0) { 1054 break; 1055 } 1056 } 1057 1058 kvm_slots_unlock(); 1059 1060 return ret; 1061 } 1062 1063 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1064 MemoryRegionSection *secion, 1065 hwaddr start, hwaddr size) 1066 { 1067 KVMState *s = kvm_state; 1068 1069 if (s->coalesced_mmio) { 1070 struct kvm_coalesced_mmio_zone zone; 1071 1072 zone.addr = start; 1073 zone.size = size; 1074 zone.pad = 0; 1075 1076 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1077 } 1078 } 1079 1080 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1081 MemoryRegionSection *secion, 1082 hwaddr start, hwaddr size) 1083 { 1084 KVMState *s = kvm_state; 1085 1086 if (s->coalesced_mmio) { 1087 struct kvm_coalesced_mmio_zone zone; 1088 1089 zone.addr = start; 1090 zone.size = size; 1091 zone.pad = 0; 1092 1093 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1094 } 1095 } 1096 1097 static void kvm_coalesce_pio_add(MemoryListener *listener, 1098 MemoryRegionSection *section, 1099 hwaddr start, hwaddr size) 1100 { 1101 KVMState *s = kvm_state; 1102 1103 if (s->coalesced_pio) { 1104 struct kvm_coalesced_mmio_zone zone; 1105 1106 zone.addr = start; 1107 zone.size = size; 1108 zone.pio = 1; 1109 1110 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1111 } 1112 } 1113 1114 static void kvm_coalesce_pio_del(MemoryListener *listener, 1115 MemoryRegionSection *section, 1116 hwaddr start, hwaddr size) 1117 { 1118 KVMState *s = kvm_state; 1119 1120 if (s->coalesced_pio) { 1121 struct kvm_coalesced_mmio_zone zone; 1122 1123 zone.addr = start; 1124 zone.size = size; 1125 zone.pio = 1; 1126 1127 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1128 } 1129 } 1130 1131 static MemoryListener kvm_coalesced_pio_listener = { 1132 .name = "kvm-coalesced-pio", 1133 .coalesced_io_add = kvm_coalesce_pio_add, 1134 .coalesced_io_del = kvm_coalesce_pio_del, 1135 }; 1136 1137 int kvm_check_extension(KVMState *s, unsigned int extension) 1138 { 1139 int ret; 1140 1141 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1142 if (ret < 0) { 1143 ret = 0; 1144 } 1145 1146 return ret; 1147 } 1148 1149 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1150 { 1151 int ret; 1152 1153 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1154 if (ret < 0) { 1155 /* VM wide version not implemented, use global one instead */ 1156 ret = kvm_check_extension(s, extension); 1157 } 1158 1159 return ret; 1160 } 1161 1162 typedef struct HWPoisonPage { 1163 ram_addr_t ram_addr; 1164 QLIST_ENTRY(HWPoisonPage) list; 1165 } HWPoisonPage; 1166 1167 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1168 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1169 1170 static void kvm_unpoison_all(void *param) 1171 { 1172 HWPoisonPage *page, *next_page; 1173 1174 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1175 QLIST_REMOVE(page, list); 1176 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1177 g_free(page); 1178 } 1179 } 1180 1181 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1182 { 1183 HWPoisonPage *page; 1184 1185 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1186 if (page->ram_addr == ram_addr) { 1187 return; 1188 } 1189 } 1190 page = g_new(HWPoisonPage, 1); 1191 page->ram_addr = ram_addr; 1192 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1193 } 1194 1195 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1196 { 1197 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 1198 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 1199 * endianness, but the memory core hands them in target endianness. 1200 * For example, PPC is always treated as big-endian even if running 1201 * on KVM and on PPC64LE. Correct here. 1202 */ 1203 switch (size) { 1204 case 2: 1205 val = bswap16(val); 1206 break; 1207 case 4: 1208 val = bswap32(val); 1209 break; 1210 } 1211 #endif 1212 return val; 1213 } 1214 1215 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1216 bool assign, uint32_t size, bool datamatch) 1217 { 1218 int ret; 1219 struct kvm_ioeventfd iofd = { 1220 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1221 .addr = addr, 1222 .len = size, 1223 .flags = 0, 1224 .fd = fd, 1225 }; 1226 1227 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1228 datamatch); 1229 if (!kvm_enabled()) { 1230 return -ENOSYS; 1231 } 1232 1233 if (datamatch) { 1234 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1235 } 1236 if (!assign) { 1237 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1238 } 1239 1240 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1241 1242 if (ret < 0) { 1243 return -errno; 1244 } 1245 1246 return 0; 1247 } 1248 1249 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1250 bool assign, uint32_t size, bool datamatch) 1251 { 1252 struct kvm_ioeventfd kick = { 1253 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1254 .addr = addr, 1255 .flags = KVM_IOEVENTFD_FLAG_PIO, 1256 .len = size, 1257 .fd = fd, 1258 }; 1259 int r; 1260 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1261 if (!kvm_enabled()) { 1262 return -ENOSYS; 1263 } 1264 if (datamatch) { 1265 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1266 } 1267 if (!assign) { 1268 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1269 } 1270 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1271 if (r < 0) { 1272 return r; 1273 } 1274 return 0; 1275 } 1276 1277 1278 static int kvm_check_many_ioeventfds(void) 1279 { 1280 /* Userspace can use ioeventfd for io notification. This requires a host 1281 * that supports eventfd(2) and an I/O thread; since eventfd does not 1282 * support SIGIO it cannot interrupt the vcpu. 1283 * 1284 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1285 * can avoid creating too many ioeventfds. 1286 */ 1287 #if defined(CONFIG_EVENTFD) 1288 int ioeventfds[7]; 1289 int i, ret = 0; 1290 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1291 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1292 if (ioeventfds[i] < 0) { 1293 break; 1294 } 1295 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1296 if (ret < 0) { 1297 close(ioeventfds[i]); 1298 break; 1299 } 1300 } 1301 1302 /* Decide whether many devices are supported or not */ 1303 ret = i == ARRAY_SIZE(ioeventfds); 1304 1305 while (i-- > 0) { 1306 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1307 close(ioeventfds[i]); 1308 } 1309 return ret; 1310 #else 1311 return 0; 1312 #endif 1313 } 1314 1315 static const KVMCapabilityInfo * 1316 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1317 { 1318 while (list->name) { 1319 if (!kvm_check_extension(s, list->value)) { 1320 return list; 1321 } 1322 list++; 1323 } 1324 return NULL; 1325 } 1326 1327 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1328 { 1329 g_assert( 1330 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1331 ); 1332 kvm_max_slot_size = max_slot_size; 1333 } 1334 1335 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1336 MemoryRegionSection *section, bool add) 1337 { 1338 KVMSlot *mem; 1339 int err; 1340 MemoryRegion *mr = section->mr; 1341 bool writeable = !mr->readonly && !mr->rom_device; 1342 hwaddr start_addr, size, slot_size, mr_offset; 1343 ram_addr_t ram_start_offset; 1344 void *ram; 1345 1346 if (!memory_region_is_ram(mr)) { 1347 if (writeable || !kvm_readonly_mem_allowed) { 1348 return; 1349 } else if (!mr->romd_mode) { 1350 /* If the memory device is not in romd_mode, then we actually want 1351 * to remove the kvm memory slot so all accesses will trap. */ 1352 add = false; 1353 } 1354 } 1355 1356 size = kvm_align_section(section, &start_addr); 1357 if (!size) { 1358 return; 1359 } 1360 1361 /* The offset of the kvmslot within the memory region */ 1362 mr_offset = section->offset_within_region + start_addr - 1363 section->offset_within_address_space; 1364 1365 /* use aligned delta to align the ram address and offset */ 1366 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1367 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1368 1369 kvm_slots_lock(); 1370 1371 if (!add) { 1372 do { 1373 slot_size = MIN(kvm_max_slot_size, size); 1374 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1375 if (!mem) { 1376 goto out; 1377 } 1378 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1379 /* 1380 * NOTE: We should be aware of the fact that here we're only 1381 * doing a best effort to sync dirty bits. No matter whether 1382 * we're using dirty log or dirty ring, we ignored two facts: 1383 * 1384 * (1) dirty bits can reside in hardware buffers (PML) 1385 * 1386 * (2) after we collected dirty bits here, pages can be dirtied 1387 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1388 * remove the slot. 1389 * 1390 * Not easy. Let's cross the fingers until it's fixed. 1391 */ 1392 if (kvm_state->kvm_dirty_ring_size) { 1393 kvm_dirty_ring_reap_locked(kvm_state); 1394 } else { 1395 kvm_slot_get_dirty_log(kvm_state, mem); 1396 } 1397 kvm_slot_sync_dirty_pages(mem); 1398 } 1399 1400 /* unregister the slot */ 1401 g_free(mem->dirty_bmap); 1402 mem->dirty_bmap = NULL; 1403 mem->memory_size = 0; 1404 mem->flags = 0; 1405 err = kvm_set_user_memory_region(kml, mem, false); 1406 if (err) { 1407 fprintf(stderr, "%s: error unregistering slot: %s\n", 1408 __func__, strerror(-err)); 1409 abort(); 1410 } 1411 start_addr += slot_size; 1412 size -= slot_size; 1413 } while (size); 1414 goto out; 1415 } 1416 1417 /* register the new slot */ 1418 do { 1419 slot_size = MIN(kvm_max_slot_size, size); 1420 mem = kvm_alloc_slot(kml); 1421 mem->as_id = kml->as_id; 1422 mem->memory_size = slot_size; 1423 mem->start_addr = start_addr; 1424 mem->ram_start_offset = ram_start_offset; 1425 mem->ram = ram; 1426 mem->flags = kvm_mem_flags(mr); 1427 kvm_slot_init_dirty_bitmap(mem); 1428 err = kvm_set_user_memory_region(kml, mem, true); 1429 if (err) { 1430 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1431 strerror(-err)); 1432 abort(); 1433 } 1434 start_addr += slot_size; 1435 ram_start_offset += slot_size; 1436 ram += slot_size; 1437 size -= slot_size; 1438 } while (size); 1439 1440 out: 1441 kvm_slots_unlock(); 1442 } 1443 1444 static void *kvm_dirty_ring_reaper_thread(void *data) 1445 { 1446 KVMState *s = data; 1447 struct KVMDirtyRingReaper *r = &s->reaper; 1448 1449 rcu_register_thread(); 1450 1451 trace_kvm_dirty_ring_reaper("init"); 1452 1453 while (true) { 1454 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1455 trace_kvm_dirty_ring_reaper("wait"); 1456 /* 1457 * TODO: provide a smarter timeout rather than a constant? 1458 */ 1459 sleep(1); 1460 1461 trace_kvm_dirty_ring_reaper("wakeup"); 1462 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1463 1464 qemu_mutex_lock_iothread(); 1465 kvm_dirty_ring_reap(s); 1466 qemu_mutex_unlock_iothread(); 1467 1468 r->reaper_iteration++; 1469 } 1470 1471 trace_kvm_dirty_ring_reaper("exit"); 1472 1473 rcu_unregister_thread(); 1474 1475 return NULL; 1476 } 1477 1478 static int kvm_dirty_ring_reaper_init(KVMState *s) 1479 { 1480 struct KVMDirtyRingReaper *r = &s->reaper; 1481 1482 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1483 kvm_dirty_ring_reaper_thread, 1484 s, QEMU_THREAD_JOINABLE); 1485 1486 return 0; 1487 } 1488 1489 static void kvm_region_add(MemoryListener *listener, 1490 MemoryRegionSection *section) 1491 { 1492 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1493 1494 memory_region_ref(section->mr); 1495 kvm_set_phys_mem(kml, section, true); 1496 } 1497 1498 static void kvm_region_del(MemoryListener *listener, 1499 MemoryRegionSection *section) 1500 { 1501 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1502 1503 kvm_set_phys_mem(kml, section, false); 1504 memory_region_unref(section->mr); 1505 } 1506 1507 static void kvm_log_sync(MemoryListener *listener, 1508 MemoryRegionSection *section) 1509 { 1510 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1511 1512 kvm_slots_lock(); 1513 kvm_physical_sync_dirty_bitmap(kml, section); 1514 kvm_slots_unlock(); 1515 } 1516 1517 static void kvm_log_sync_global(MemoryListener *l) 1518 { 1519 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1520 KVMState *s = kvm_state; 1521 KVMSlot *mem; 1522 int i; 1523 1524 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1525 kvm_dirty_ring_flush(); 1526 1527 /* 1528 * TODO: make this faster when nr_slots is big while there are 1529 * only a few used slots (small VMs). 1530 */ 1531 kvm_slots_lock(); 1532 for (i = 0; i < s->nr_slots; i++) { 1533 mem = &kml->slots[i]; 1534 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1535 kvm_slot_sync_dirty_pages(mem); 1536 /* 1537 * This is not needed by KVM_GET_DIRTY_LOG because the 1538 * ioctl will unconditionally overwrite the whole region. 1539 * However kvm dirty ring has no such side effect. 1540 */ 1541 kvm_slot_reset_dirty_pages(mem); 1542 } 1543 } 1544 kvm_slots_unlock(); 1545 } 1546 1547 static void kvm_log_clear(MemoryListener *listener, 1548 MemoryRegionSection *section) 1549 { 1550 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1551 int r; 1552 1553 r = kvm_physical_log_clear(kml, section); 1554 if (r < 0) { 1555 error_report_once("%s: kvm log clear failed: mr=%s " 1556 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1557 section->mr->name, section->offset_within_region, 1558 int128_get64(section->size)); 1559 abort(); 1560 } 1561 } 1562 1563 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1564 MemoryRegionSection *section, 1565 bool match_data, uint64_t data, 1566 EventNotifier *e) 1567 { 1568 int fd = event_notifier_get_fd(e); 1569 int r; 1570 1571 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1572 data, true, int128_get64(section->size), 1573 match_data); 1574 if (r < 0) { 1575 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1576 __func__, strerror(-r), -r); 1577 abort(); 1578 } 1579 } 1580 1581 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1582 MemoryRegionSection *section, 1583 bool match_data, uint64_t data, 1584 EventNotifier *e) 1585 { 1586 int fd = event_notifier_get_fd(e); 1587 int r; 1588 1589 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1590 data, false, int128_get64(section->size), 1591 match_data); 1592 if (r < 0) { 1593 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1594 __func__, strerror(-r), -r); 1595 abort(); 1596 } 1597 } 1598 1599 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1600 MemoryRegionSection *section, 1601 bool match_data, uint64_t data, 1602 EventNotifier *e) 1603 { 1604 int fd = event_notifier_get_fd(e); 1605 int r; 1606 1607 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1608 data, true, int128_get64(section->size), 1609 match_data); 1610 if (r < 0) { 1611 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1612 __func__, strerror(-r), -r); 1613 abort(); 1614 } 1615 } 1616 1617 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1618 MemoryRegionSection *section, 1619 bool match_data, uint64_t data, 1620 EventNotifier *e) 1621 1622 { 1623 int fd = event_notifier_get_fd(e); 1624 int r; 1625 1626 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1627 data, false, int128_get64(section->size), 1628 match_data); 1629 if (r < 0) { 1630 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1631 __func__, strerror(-r), -r); 1632 abort(); 1633 } 1634 } 1635 1636 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1637 AddressSpace *as, int as_id, const char *name) 1638 { 1639 int i; 1640 1641 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1642 kml->as_id = as_id; 1643 1644 for (i = 0; i < s->nr_slots; i++) { 1645 kml->slots[i].slot = i; 1646 } 1647 1648 kml->listener.region_add = kvm_region_add; 1649 kml->listener.region_del = kvm_region_del; 1650 kml->listener.log_start = kvm_log_start; 1651 kml->listener.log_stop = kvm_log_stop; 1652 kml->listener.priority = 10; 1653 kml->listener.name = name; 1654 1655 if (s->kvm_dirty_ring_size) { 1656 kml->listener.log_sync_global = kvm_log_sync_global; 1657 } else { 1658 kml->listener.log_sync = kvm_log_sync; 1659 kml->listener.log_clear = kvm_log_clear; 1660 } 1661 1662 memory_listener_register(&kml->listener, as); 1663 1664 for (i = 0; i < s->nr_as; ++i) { 1665 if (!s->as[i].as) { 1666 s->as[i].as = as; 1667 s->as[i].ml = kml; 1668 break; 1669 } 1670 } 1671 } 1672 1673 static MemoryListener kvm_io_listener = { 1674 .name = "kvm-io", 1675 .eventfd_add = kvm_io_ioeventfd_add, 1676 .eventfd_del = kvm_io_ioeventfd_del, 1677 .priority = 10, 1678 }; 1679 1680 int kvm_set_irq(KVMState *s, int irq, int level) 1681 { 1682 struct kvm_irq_level event; 1683 int ret; 1684 1685 assert(kvm_async_interrupts_enabled()); 1686 1687 event.level = level; 1688 event.irq = irq; 1689 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1690 if (ret < 0) { 1691 perror("kvm_set_irq"); 1692 abort(); 1693 } 1694 1695 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1696 } 1697 1698 #ifdef KVM_CAP_IRQ_ROUTING 1699 typedef struct KVMMSIRoute { 1700 struct kvm_irq_routing_entry kroute; 1701 QTAILQ_ENTRY(KVMMSIRoute) entry; 1702 } KVMMSIRoute; 1703 1704 static void set_gsi(KVMState *s, unsigned int gsi) 1705 { 1706 set_bit(gsi, s->used_gsi_bitmap); 1707 } 1708 1709 static void clear_gsi(KVMState *s, unsigned int gsi) 1710 { 1711 clear_bit(gsi, s->used_gsi_bitmap); 1712 } 1713 1714 void kvm_init_irq_routing(KVMState *s) 1715 { 1716 int gsi_count, i; 1717 1718 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1719 if (gsi_count > 0) { 1720 /* Round up so we can search ints using ffs */ 1721 s->used_gsi_bitmap = bitmap_new(gsi_count); 1722 s->gsi_count = gsi_count; 1723 } 1724 1725 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1726 s->nr_allocated_irq_routes = 0; 1727 1728 if (!kvm_direct_msi_allowed) { 1729 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1730 QTAILQ_INIT(&s->msi_hashtab[i]); 1731 } 1732 } 1733 1734 kvm_arch_init_irq_routing(s); 1735 } 1736 1737 void kvm_irqchip_commit_routes(KVMState *s) 1738 { 1739 int ret; 1740 1741 if (kvm_gsi_direct_mapping()) { 1742 return; 1743 } 1744 1745 if (!kvm_gsi_routing_enabled()) { 1746 return; 1747 } 1748 1749 s->irq_routes->flags = 0; 1750 trace_kvm_irqchip_commit_routes(); 1751 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1752 assert(ret == 0); 1753 } 1754 1755 static void kvm_add_routing_entry(KVMState *s, 1756 struct kvm_irq_routing_entry *entry) 1757 { 1758 struct kvm_irq_routing_entry *new; 1759 int n, size; 1760 1761 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1762 n = s->nr_allocated_irq_routes * 2; 1763 if (n < 64) { 1764 n = 64; 1765 } 1766 size = sizeof(struct kvm_irq_routing); 1767 size += n * sizeof(*new); 1768 s->irq_routes = g_realloc(s->irq_routes, size); 1769 s->nr_allocated_irq_routes = n; 1770 } 1771 n = s->irq_routes->nr++; 1772 new = &s->irq_routes->entries[n]; 1773 1774 *new = *entry; 1775 1776 set_gsi(s, entry->gsi); 1777 } 1778 1779 static int kvm_update_routing_entry(KVMState *s, 1780 struct kvm_irq_routing_entry *new_entry) 1781 { 1782 struct kvm_irq_routing_entry *entry; 1783 int n; 1784 1785 for (n = 0; n < s->irq_routes->nr; n++) { 1786 entry = &s->irq_routes->entries[n]; 1787 if (entry->gsi != new_entry->gsi) { 1788 continue; 1789 } 1790 1791 if(!memcmp(entry, new_entry, sizeof *entry)) { 1792 return 0; 1793 } 1794 1795 *entry = *new_entry; 1796 1797 return 0; 1798 } 1799 1800 return -ESRCH; 1801 } 1802 1803 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1804 { 1805 struct kvm_irq_routing_entry e = {}; 1806 1807 assert(pin < s->gsi_count); 1808 1809 e.gsi = irq; 1810 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1811 e.flags = 0; 1812 e.u.irqchip.irqchip = irqchip; 1813 e.u.irqchip.pin = pin; 1814 kvm_add_routing_entry(s, &e); 1815 } 1816 1817 void kvm_irqchip_release_virq(KVMState *s, int virq) 1818 { 1819 struct kvm_irq_routing_entry *e; 1820 int i; 1821 1822 if (kvm_gsi_direct_mapping()) { 1823 return; 1824 } 1825 1826 for (i = 0; i < s->irq_routes->nr; i++) { 1827 e = &s->irq_routes->entries[i]; 1828 if (e->gsi == virq) { 1829 s->irq_routes->nr--; 1830 *e = s->irq_routes->entries[s->irq_routes->nr]; 1831 } 1832 } 1833 clear_gsi(s, virq); 1834 kvm_arch_release_virq_post(virq); 1835 trace_kvm_irqchip_release_virq(virq); 1836 } 1837 1838 void kvm_irqchip_add_change_notifier(Notifier *n) 1839 { 1840 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1841 } 1842 1843 void kvm_irqchip_remove_change_notifier(Notifier *n) 1844 { 1845 notifier_remove(n); 1846 } 1847 1848 void kvm_irqchip_change_notify(void) 1849 { 1850 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1851 } 1852 1853 static unsigned int kvm_hash_msi(uint32_t data) 1854 { 1855 /* This is optimized for IA32 MSI layout. However, no other arch shall 1856 * repeat the mistake of not providing a direct MSI injection API. */ 1857 return data & 0xff; 1858 } 1859 1860 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1861 { 1862 KVMMSIRoute *route, *next; 1863 unsigned int hash; 1864 1865 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1866 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1867 kvm_irqchip_release_virq(s, route->kroute.gsi); 1868 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1869 g_free(route); 1870 } 1871 } 1872 } 1873 1874 static int kvm_irqchip_get_virq(KVMState *s) 1875 { 1876 int next_virq; 1877 1878 /* 1879 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1880 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1881 * number can succeed even though a new route entry cannot be added. 1882 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1883 */ 1884 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1885 kvm_flush_dynamic_msi_routes(s); 1886 } 1887 1888 /* Return the lowest unused GSI in the bitmap */ 1889 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1890 if (next_virq >= s->gsi_count) { 1891 return -ENOSPC; 1892 } else { 1893 return next_virq; 1894 } 1895 } 1896 1897 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1898 { 1899 unsigned int hash = kvm_hash_msi(msg.data); 1900 KVMMSIRoute *route; 1901 1902 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1903 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1904 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1905 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1906 return route; 1907 } 1908 } 1909 return NULL; 1910 } 1911 1912 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1913 { 1914 struct kvm_msi msi; 1915 KVMMSIRoute *route; 1916 1917 if (kvm_direct_msi_allowed) { 1918 msi.address_lo = (uint32_t)msg.address; 1919 msi.address_hi = msg.address >> 32; 1920 msi.data = le32_to_cpu(msg.data); 1921 msi.flags = 0; 1922 memset(msi.pad, 0, sizeof(msi.pad)); 1923 1924 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1925 } 1926 1927 route = kvm_lookup_msi_route(s, msg); 1928 if (!route) { 1929 int virq; 1930 1931 virq = kvm_irqchip_get_virq(s); 1932 if (virq < 0) { 1933 return virq; 1934 } 1935 1936 route = g_malloc0(sizeof(KVMMSIRoute)); 1937 route->kroute.gsi = virq; 1938 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1939 route->kroute.flags = 0; 1940 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1941 route->kroute.u.msi.address_hi = msg.address >> 32; 1942 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1943 1944 kvm_add_routing_entry(s, &route->kroute); 1945 kvm_irqchip_commit_routes(s); 1946 1947 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1948 entry); 1949 } 1950 1951 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1952 1953 return kvm_set_irq(s, route->kroute.gsi, 1); 1954 } 1955 1956 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1957 { 1958 struct kvm_irq_routing_entry kroute = {}; 1959 int virq; 1960 MSIMessage msg = {0, 0}; 1961 1962 if (pci_available && dev) { 1963 msg = pci_get_msi_message(dev, vector); 1964 } 1965 1966 if (kvm_gsi_direct_mapping()) { 1967 return kvm_arch_msi_data_to_gsi(msg.data); 1968 } 1969 1970 if (!kvm_gsi_routing_enabled()) { 1971 return -ENOSYS; 1972 } 1973 1974 virq = kvm_irqchip_get_virq(s); 1975 if (virq < 0) { 1976 return virq; 1977 } 1978 1979 kroute.gsi = virq; 1980 kroute.type = KVM_IRQ_ROUTING_MSI; 1981 kroute.flags = 0; 1982 kroute.u.msi.address_lo = (uint32_t)msg.address; 1983 kroute.u.msi.address_hi = msg.address >> 32; 1984 kroute.u.msi.data = le32_to_cpu(msg.data); 1985 if (pci_available && kvm_msi_devid_required()) { 1986 kroute.flags = KVM_MSI_VALID_DEVID; 1987 kroute.u.msi.devid = pci_requester_id(dev); 1988 } 1989 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1990 kvm_irqchip_release_virq(s, virq); 1991 return -EINVAL; 1992 } 1993 1994 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1995 vector, virq); 1996 1997 kvm_add_routing_entry(s, &kroute); 1998 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1999 kvm_irqchip_commit_routes(s); 2000 2001 return virq; 2002 } 2003 2004 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2005 PCIDevice *dev) 2006 { 2007 struct kvm_irq_routing_entry kroute = {}; 2008 2009 if (kvm_gsi_direct_mapping()) { 2010 return 0; 2011 } 2012 2013 if (!kvm_irqchip_in_kernel()) { 2014 return -ENOSYS; 2015 } 2016 2017 kroute.gsi = virq; 2018 kroute.type = KVM_IRQ_ROUTING_MSI; 2019 kroute.flags = 0; 2020 kroute.u.msi.address_lo = (uint32_t)msg.address; 2021 kroute.u.msi.address_hi = msg.address >> 32; 2022 kroute.u.msi.data = le32_to_cpu(msg.data); 2023 if (pci_available && kvm_msi_devid_required()) { 2024 kroute.flags = KVM_MSI_VALID_DEVID; 2025 kroute.u.msi.devid = pci_requester_id(dev); 2026 } 2027 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2028 return -EINVAL; 2029 } 2030 2031 trace_kvm_irqchip_update_msi_route(virq); 2032 2033 return kvm_update_routing_entry(s, &kroute); 2034 } 2035 2036 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2037 EventNotifier *resample, int virq, 2038 bool assign) 2039 { 2040 int fd = event_notifier_get_fd(event); 2041 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2042 2043 struct kvm_irqfd irqfd = { 2044 .fd = fd, 2045 .gsi = virq, 2046 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2047 }; 2048 2049 if (rfd != -1) { 2050 assert(assign); 2051 if (kvm_irqchip_is_split()) { 2052 /* 2053 * When the slow irqchip (e.g. IOAPIC) is in the 2054 * userspace, KVM kernel resamplefd will not work because 2055 * the EOI of the interrupt will be delivered to userspace 2056 * instead, so the KVM kernel resamplefd kick will be 2057 * skipped. The userspace here mimics what the kernel 2058 * provides with resamplefd, remember the resamplefd and 2059 * kick it when we receive EOI of this IRQ. 2060 * 2061 * This is hackery because IOAPIC is mostly bypassed 2062 * (except EOI broadcasts) when irqfd is used. However 2063 * this can bring much performance back for split irqchip 2064 * with INTx IRQs (for VFIO, this gives 93% perf of the 2065 * full fast path, which is 46% perf boost comparing to 2066 * the INTx slow path). 2067 */ 2068 kvm_resample_fd_insert(virq, resample); 2069 } else { 2070 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2071 irqfd.resamplefd = rfd; 2072 } 2073 } else if (!assign) { 2074 if (kvm_irqchip_is_split()) { 2075 kvm_resample_fd_remove(virq); 2076 } 2077 } 2078 2079 if (!kvm_irqfds_enabled()) { 2080 return -ENOSYS; 2081 } 2082 2083 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2084 } 2085 2086 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2087 { 2088 struct kvm_irq_routing_entry kroute = {}; 2089 int virq; 2090 2091 if (!kvm_gsi_routing_enabled()) { 2092 return -ENOSYS; 2093 } 2094 2095 virq = kvm_irqchip_get_virq(s); 2096 if (virq < 0) { 2097 return virq; 2098 } 2099 2100 kroute.gsi = virq; 2101 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2102 kroute.flags = 0; 2103 kroute.u.adapter.summary_addr = adapter->summary_addr; 2104 kroute.u.adapter.ind_addr = adapter->ind_addr; 2105 kroute.u.adapter.summary_offset = adapter->summary_offset; 2106 kroute.u.adapter.ind_offset = adapter->ind_offset; 2107 kroute.u.adapter.adapter_id = adapter->adapter_id; 2108 2109 kvm_add_routing_entry(s, &kroute); 2110 2111 return virq; 2112 } 2113 2114 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2115 { 2116 struct kvm_irq_routing_entry kroute = {}; 2117 int virq; 2118 2119 if (!kvm_gsi_routing_enabled()) { 2120 return -ENOSYS; 2121 } 2122 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2123 return -ENOSYS; 2124 } 2125 virq = kvm_irqchip_get_virq(s); 2126 if (virq < 0) { 2127 return virq; 2128 } 2129 2130 kroute.gsi = virq; 2131 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2132 kroute.flags = 0; 2133 kroute.u.hv_sint.vcpu = vcpu; 2134 kroute.u.hv_sint.sint = sint; 2135 2136 kvm_add_routing_entry(s, &kroute); 2137 kvm_irqchip_commit_routes(s); 2138 2139 return virq; 2140 } 2141 2142 #else /* !KVM_CAP_IRQ_ROUTING */ 2143 2144 void kvm_init_irq_routing(KVMState *s) 2145 { 2146 } 2147 2148 void kvm_irqchip_release_virq(KVMState *s, int virq) 2149 { 2150 } 2151 2152 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2153 { 2154 abort(); 2155 } 2156 2157 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 2158 { 2159 return -ENOSYS; 2160 } 2161 2162 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2163 { 2164 return -ENOSYS; 2165 } 2166 2167 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2168 { 2169 return -ENOSYS; 2170 } 2171 2172 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2173 EventNotifier *resample, int virq, 2174 bool assign) 2175 { 2176 abort(); 2177 } 2178 2179 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2180 { 2181 return -ENOSYS; 2182 } 2183 #endif /* !KVM_CAP_IRQ_ROUTING */ 2184 2185 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2186 EventNotifier *rn, int virq) 2187 { 2188 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2189 } 2190 2191 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2192 int virq) 2193 { 2194 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2195 } 2196 2197 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2198 EventNotifier *rn, qemu_irq irq) 2199 { 2200 gpointer key, gsi; 2201 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2202 2203 if (!found) { 2204 return -ENXIO; 2205 } 2206 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2207 } 2208 2209 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2210 qemu_irq irq) 2211 { 2212 gpointer key, gsi; 2213 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2214 2215 if (!found) { 2216 return -ENXIO; 2217 } 2218 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2219 } 2220 2221 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2222 { 2223 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2224 } 2225 2226 static void kvm_irqchip_create(KVMState *s) 2227 { 2228 int ret; 2229 2230 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2231 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2232 ; 2233 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2234 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2235 if (ret < 0) { 2236 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2237 exit(1); 2238 } 2239 } else { 2240 return; 2241 } 2242 2243 /* First probe and see if there's a arch-specific hook to create the 2244 * in-kernel irqchip for us */ 2245 ret = kvm_arch_irqchip_create(s); 2246 if (ret == 0) { 2247 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2248 perror("Split IRQ chip mode not supported."); 2249 exit(1); 2250 } else { 2251 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2252 } 2253 } 2254 if (ret < 0) { 2255 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2256 exit(1); 2257 } 2258 2259 kvm_kernel_irqchip = true; 2260 /* If we have an in-kernel IRQ chip then we must have asynchronous 2261 * interrupt delivery (though the reverse is not necessarily true) 2262 */ 2263 kvm_async_interrupts_allowed = true; 2264 kvm_halt_in_kernel_allowed = true; 2265 2266 kvm_init_irq_routing(s); 2267 2268 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2269 } 2270 2271 /* Find number of supported CPUs using the recommended 2272 * procedure from the kernel API documentation to cope with 2273 * older kernels that may be missing capabilities. 2274 */ 2275 static int kvm_recommended_vcpus(KVMState *s) 2276 { 2277 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2278 return (ret) ? ret : 4; 2279 } 2280 2281 static int kvm_max_vcpus(KVMState *s) 2282 { 2283 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2284 return (ret) ? ret : kvm_recommended_vcpus(s); 2285 } 2286 2287 static int kvm_max_vcpu_id(KVMState *s) 2288 { 2289 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2290 return (ret) ? ret : kvm_max_vcpus(s); 2291 } 2292 2293 bool kvm_vcpu_id_is_valid(int vcpu_id) 2294 { 2295 KVMState *s = KVM_STATE(current_accel()); 2296 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2297 } 2298 2299 static int kvm_init(MachineState *ms) 2300 { 2301 MachineClass *mc = MACHINE_GET_CLASS(ms); 2302 static const char upgrade_note[] = 2303 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2304 "(see http://sourceforge.net/projects/kvm).\n"; 2305 struct { 2306 const char *name; 2307 int num; 2308 } num_cpus[] = { 2309 { "SMP", ms->smp.cpus }, 2310 { "hotpluggable", ms->smp.max_cpus }, 2311 { NULL, } 2312 }, *nc = num_cpus; 2313 int soft_vcpus_limit, hard_vcpus_limit; 2314 KVMState *s; 2315 const KVMCapabilityInfo *missing_cap; 2316 int ret; 2317 int type = 0; 2318 uint64_t dirty_log_manual_caps; 2319 2320 qemu_mutex_init(&kml_slots_lock); 2321 2322 s = KVM_STATE(ms->accelerator); 2323 2324 /* 2325 * On systems where the kernel can support different base page 2326 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2327 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2328 * page size for the system though. 2329 */ 2330 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2331 2332 s->sigmask_len = 8; 2333 2334 #ifdef KVM_CAP_SET_GUEST_DEBUG 2335 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2336 #endif 2337 QLIST_INIT(&s->kvm_parked_vcpus); 2338 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2339 if (s->fd == -1) { 2340 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2341 ret = -errno; 2342 goto err; 2343 } 2344 2345 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2346 if (ret < KVM_API_VERSION) { 2347 if (ret >= 0) { 2348 ret = -EINVAL; 2349 } 2350 fprintf(stderr, "kvm version too old\n"); 2351 goto err; 2352 } 2353 2354 if (ret > KVM_API_VERSION) { 2355 ret = -EINVAL; 2356 fprintf(stderr, "kvm version not supported\n"); 2357 goto err; 2358 } 2359 2360 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2361 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2362 2363 /* If unspecified, use the default value */ 2364 if (!s->nr_slots) { 2365 s->nr_slots = 32; 2366 } 2367 2368 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2369 if (s->nr_as <= 1) { 2370 s->nr_as = 1; 2371 } 2372 s->as = g_new0(struct KVMAs, s->nr_as); 2373 2374 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2375 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2376 "kvm-type", 2377 &error_abort); 2378 type = mc->kvm_type(ms, kvm_type); 2379 } else if (mc->kvm_type) { 2380 type = mc->kvm_type(ms, NULL); 2381 } 2382 2383 do { 2384 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2385 } while (ret == -EINTR); 2386 2387 if (ret < 0) { 2388 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2389 strerror(-ret)); 2390 2391 #ifdef TARGET_S390X 2392 if (ret == -EINVAL) { 2393 fprintf(stderr, 2394 "Host kernel setup problem detected. Please verify:\n"); 2395 fprintf(stderr, "- for kernels supporting the switch_amode or" 2396 " user_mode parameters, whether\n"); 2397 fprintf(stderr, 2398 " user space is running in primary address space\n"); 2399 fprintf(stderr, 2400 "- for kernels supporting the vm.allocate_pgste sysctl, " 2401 "whether it is enabled\n"); 2402 } 2403 #elif defined(TARGET_PPC) 2404 if (ret == -EINVAL) { 2405 fprintf(stderr, 2406 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2407 (type == 2) ? "pr" : "hv"); 2408 } 2409 #endif 2410 goto err; 2411 } 2412 2413 s->vmfd = ret; 2414 2415 /* check the vcpu limits */ 2416 soft_vcpus_limit = kvm_recommended_vcpus(s); 2417 hard_vcpus_limit = kvm_max_vcpus(s); 2418 2419 while (nc->name) { 2420 if (nc->num > soft_vcpus_limit) { 2421 warn_report("Number of %s cpus requested (%d) exceeds " 2422 "the recommended cpus supported by KVM (%d)", 2423 nc->name, nc->num, soft_vcpus_limit); 2424 2425 if (nc->num > hard_vcpus_limit) { 2426 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2427 "the maximum cpus supported by KVM (%d)\n", 2428 nc->name, nc->num, hard_vcpus_limit); 2429 exit(1); 2430 } 2431 } 2432 nc++; 2433 } 2434 2435 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2436 if (!missing_cap) { 2437 missing_cap = 2438 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2439 } 2440 if (missing_cap) { 2441 ret = -EINVAL; 2442 fprintf(stderr, "kvm does not support %s\n%s", 2443 missing_cap->name, upgrade_note); 2444 goto err; 2445 } 2446 2447 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2448 s->coalesced_pio = s->coalesced_mmio && 2449 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2450 2451 /* 2452 * Enable KVM dirty ring if supported, otherwise fall back to 2453 * dirty logging mode 2454 */ 2455 if (s->kvm_dirty_ring_size > 0) { 2456 uint64_t ring_bytes; 2457 2458 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn); 2459 2460 /* Read the max supported pages */ 2461 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING); 2462 if (ret > 0) { 2463 if (ring_bytes > ret) { 2464 error_report("KVM dirty ring size %" PRIu32 " too big " 2465 "(maximum is %ld). Please use a smaller value.", 2466 s->kvm_dirty_ring_size, 2467 (long)ret / sizeof(struct kvm_dirty_gfn)); 2468 ret = -EINVAL; 2469 goto err; 2470 } 2471 2472 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes); 2473 if (ret) { 2474 error_report("Enabling of KVM dirty ring failed: %s. " 2475 "Suggested minimum value is 1024.", strerror(-ret)); 2476 goto err; 2477 } 2478 2479 s->kvm_dirty_ring_bytes = ring_bytes; 2480 } else { 2481 warn_report("KVM dirty ring not available, using bitmap method"); 2482 s->kvm_dirty_ring_size = 0; 2483 } 2484 } 2485 2486 /* 2487 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2488 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2489 * page is wr-protected initially, which is against how kvm dirty ring is 2490 * usage - kvm dirty ring requires all pages are wr-protected at the very 2491 * beginning. Enabling this feature for dirty ring causes data corruption. 2492 * 2493 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2494 * we may expect a higher stall time when starting the migration. In the 2495 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2496 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2497 * guest pages. 2498 */ 2499 if (!s->kvm_dirty_ring_size) { 2500 dirty_log_manual_caps = 2501 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2502 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2503 KVM_DIRTY_LOG_INITIALLY_SET); 2504 s->manual_dirty_log_protect = dirty_log_manual_caps; 2505 if (dirty_log_manual_caps) { 2506 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2507 dirty_log_manual_caps); 2508 if (ret) { 2509 warn_report("Trying to enable capability %"PRIu64" of " 2510 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2511 "Falling back to the legacy mode. ", 2512 dirty_log_manual_caps); 2513 s->manual_dirty_log_protect = 0; 2514 } 2515 } 2516 } 2517 2518 #ifdef KVM_CAP_VCPU_EVENTS 2519 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2520 #endif 2521 2522 s->robust_singlestep = 2523 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2524 2525 #ifdef KVM_CAP_DEBUGREGS 2526 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2527 #endif 2528 2529 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2530 2531 #ifdef KVM_CAP_IRQ_ROUTING 2532 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2533 #endif 2534 2535 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2536 2537 s->irq_set_ioctl = KVM_IRQ_LINE; 2538 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2539 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2540 } 2541 2542 kvm_readonly_mem_allowed = 2543 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2544 2545 kvm_eventfds_allowed = 2546 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2547 2548 kvm_irqfds_allowed = 2549 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2550 2551 kvm_resamplefds_allowed = 2552 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2553 2554 kvm_vm_attributes_allowed = 2555 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2556 2557 kvm_ioeventfd_any_length_allowed = 2558 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2559 2560 kvm_state = s; 2561 2562 ret = kvm_arch_init(ms, s); 2563 if (ret < 0) { 2564 goto err; 2565 } 2566 2567 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2568 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2569 } 2570 2571 qemu_register_reset(kvm_unpoison_all, NULL); 2572 2573 if (s->kernel_irqchip_allowed) { 2574 kvm_irqchip_create(s); 2575 } 2576 2577 if (kvm_eventfds_allowed) { 2578 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2579 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2580 } 2581 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2582 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2583 2584 kvm_memory_listener_register(s, &s->memory_listener, 2585 &address_space_memory, 0, "kvm-memory"); 2586 if (kvm_eventfds_allowed) { 2587 memory_listener_register(&kvm_io_listener, 2588 &address_space_io); 2589 } 2590 memory_listener_register(&kvm_coalesced_pio_listener, 2591 &address_space_io); 2592 2593 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2594 2595 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2596 if (!s->sync_mmu) { 2597 ret = ram_block_discard_disable(true); 2598 assert(!ret); 2599 } 2600 2601 if (s->kvm_dirty_ring_size) { 2602 ret = kvm_dirty_ring_reaper_init(s); 2603 if (ret) { 2604 goto err; 2605 } 2606 } 2607 2608 return 0; 2609 2610 err: 2611 assert(ret < 0); 2612 if (s->vmfd >= 0) { 2613 close(s->vmfd); 2614 } 2615 if (s->fd != -1) { 2616 close(s->fd); 2617 } 2618 g_free(s->memory_listener.slots); 2619 2620 return ret; 2621 } 2622 2623 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2624 { 2625 s->sigmask_len = sigmask_len; 2626 } 2627 2628 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2629 int size, uint32_t count) 2630 { 2631 int i; 2632 uint8_t *ptr = data; 2633 2634 for (i = 0; i < count; i++) { 2635 address_space_rw(&address_space_io, port, attrs, 2636 ptr, size, 2637 direction == KVM_EXIT_IO_OUT); 2638 ptr += size; 2639 } 2640 } 2641 2642 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2643 { 2644 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2645 run->internal.suberror); 2646 2647 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2648 int i; 2649 2650 for (i = 0; i < run->internal.ndata; ++i) { 2651 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2652 i, (uint64_t)run->internal.data[i]); 2653 } 2654 } 2655 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2656 fprintf(stderr, "emulation failure\n"); 2657 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2658 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2659 return EXCP_INTERRUPT; 2660 } 2661 } 2662 /* FIXME: Should trigger a qmp message to let management know 2663 * something went wrong. 2664 */ 2665 return -1; 2666 } 2667 2668 void kvm_flush_coalesced_mmio_buffer(void) 2669 { 2670 KVMState *s = kvm_state; 2671 2672 if (s->coalesced_flush_in_progress) { 2673 return; 2674 } 2675 2676 s->coalesced_flush_in_progress = true; 2677 2678 if (s->coalesced_mmio_ring) { 2679 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2680 while (ring->first != ring->last) { 2681 struct kvm_coalesced_mmio *ent; 2682 2683 ent = &ring->coalesced_mmio[ring->first]; 2684 2685 if (ent->pio == 1) { 2686 address_space_write(&address_space_io, ent->phys_addr, 2687 MEMTXATTRS_UNSPECIFIED, ent->data, 2688 ent->len); 2689 } else { 2690 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2691 } 2692 smp_wmb(); 2693 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2694 } 2695 } 2696 2697 s->coalesced_flush_in_progress = false; 2698 } 2699 2700 bool kvm_cpu_check_are_resettable(void) 2701 { 2702 return kvm_arch_cpu_check_are_resettable(); 2703 } 2704 2705 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2706 { 2707 if (!cpu->vcpu_dirty) { 2708 kvm_arch_get_registers(cpu); 2709 cpu->vcpu_dirty = true; 2710 } 2711 } 2712 2713 void kvm_cpu_synchronize_state(CPUState *cpu) 2714 { 2715 if (!cpu->vcpu_dirty) { 2716 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2717 } 2718 } 2719 2720 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2721 { 2722 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2723 cpu->vcpu_dirty = false; 2724 } 2725 2726 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2727 { 2728 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2729 } 2730 2731 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2732 { 2733 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2734 cpu->vcpu_dirty = false; 2735 } 2736 2737 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2738 { 2739 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2740 } 2741 2742 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2743 { 2744 cpu->vcpu_dirty = true; 2745 } 2746 2747 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2748 { 2749 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2750 } 2751 2752 #ifdef KVM_HAVE_MCE_INJECTION 2753 static __thread void *pending_sigbus_addr; 2754 static __thread int pending_sigbus_code; 2755 static __thread bool have_sigbus_pending; 2756 #endif 2757 2758 static void kvm_cpu_kick(CPUState *cpu) 2759 { 2760 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2761 } 2762 2763 static void kvm_cpu_kick_self(void) 2764 { 2765 if (kvm_immediate_exit) { 2766 kvm_cpu_kick(current_cpu); 2767 } else { 2768 qemu_cpu_kick_self(); 2769 } 2770 } 2771 2772 static void kvm_eat_signals(CPUState *cpu) 2773 { 2774 struct timespec ts = { 0, 0 }; 2775 siginfo_t siginfo; 2776 sigset_t waitset; 2777 sigset_t chkset; 2778 int r; 2779 2780 if (kvm_immediate_exit) { 2781 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2782 /* Write kvm_run->immediate_exit before the cpu->exit_request 2783 * write in kvm_cpu_exec. 2784 */ 2785 smp_wmb(); 2786 return; 2787 } 2788 2789 sigemptyset(&waitset); 2790 sigaddset(&waitset, SIG_IPI); 2791 2792 do { 2793 r = sigtimedwait(&waitset, &siginfo, &ts); 2794 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2795 perror("sigtimedwait"); 2796 exit(1); 2797 } 2798 2799 r = sigpending(&chkset); 2800 if (r == -1) { 2801 perror("sigpending"); 2802 exit(1); 2803 } 2804 } while (sigismember(&chkset, SIG_IPI)); 2805 } 2806 2807 int kvm_cpu_exec(CPUState *cpu) 2808 { 2809 struct kvm_run *run = cpu->kvm_run; 2810 int ret, run_ret; 2811 2812 DPRINTF("kvm_cpu_exec()\n"); 2813 2814 if (kvm_arch_process_async_events(cpu)) { 2815 qatomic_set(&cpu->exit_request, 0); 2816 return EXCP_HLT; 2817 } 2818 2819 qemu_mutex_unlock_iothread(); 2820 cpu_exec_start(cpu); 2821 2822 do { 2823 MemTxAttrs attrs; 2824 2825 if (cpu->vcpu_dirty) { 2826 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2827 cpu->vcpu_dirty = false; 2828 } 2829 2830 kvm_arch_pre_run(cpu, run); 2831 if (qatomic_read(&cpu->exit_request)) { 2832 DPRINTF("interrupt exit requested\n"); 2833 /* 2834 * KVM requires us to reenter the kernel after IO exits to complete 2835 * instruction emulation. This self-signal will ensure that we 2836 * leave ASAP again. 2837 */ 2838 kvm_cpu_kick_self(); 2839 } 2840 2841 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2842 * Matching barrier in kvm_eat_signals. 2843 */ 2844 smp_rmb(); 2845 2846 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2847 2848 attrs = kvm_arch_post_run(cpu, run); 2849 2850 #ifdef KVM_HAVE_MCE_INJECTION 2851 if (unlikely(have_sigbus_pending)) { 2852 qemu_mutex_lock_iothread(); 2853 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2854 pending_sigbus_addr); 2855 have_sigbus_pending = false; 2856 qemu_mutex_unlock_iothread(); 2857 } 2858 #endif 2859 2860 if (run_ret < 0) { 2861 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2862 DPRINTF("io window exit\n"); 2863 kvm_eat_signals(cpu); 2864 ret = EXCP_INTERRUPT; 2865 break; 2866 } 2867 fprintf(stderr, "error: kvm run failed %s\n", 2868 strerror(-run_ret)); 2869 #ifdef TARGET_PPC 2870 if (run_ret == -EBUSY) { 2871 fprintf(stderr, 2872 "This is probably because your SMT is enabled.\n" 2873 "VCPU can only run on primary threads with all " 2874 "secondary threads offline.\n"); 2875 } 2876 #endif 2877 ret = -1; 2878 break; 2879 } 2880 2881 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2882 switch (run->exit_reason) { 2883 case KVM_EXIT_IO: 2884 DPRINTF("handle_io\n"); 2885 /* Called outside BQL */ 2886 kvm_handle_io(run->io.port, attrs, 2887 (uint8_t *)run + run->io.data_offset, 2888 run->io.direction, 2889 run->io.size, 2890 run->io.count); 2891 ret = 0; 2892 break; 2893 case KVM_EXIT_MMIO: 2894 DPRINTF("handle_mmio\n"); 2895 /* Called outside BQL */ 2896 address_space_rw(&address_space_memory, 2897 run->mmio.phys_addr, attrs, 2898 run->mmio.data, 2899 run->mmio.len, 2900 run->mmio.is_write); 2901 ret = 0; 2902 break; 2903 case KVM_EXIT_IRQ_WINDOW_OPEN: 2904 DPRINTF("irq_window_open\n"); 2905 ret = EXCP_INTERRUPT; 2906 break; 2907 case KVM_EXIT_SHUTDOWN: 2908 DPRINTF("shutdown\n"); 2909 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2910 ret = EXCP_INTERRUPT; 2911 break; 2912 case KVM_EXIT_UNKNOWN: 2913 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2914 (uint64_t)run->hw.hardware_exit_reason); 2915 ret = -1; 2916 break; 2917 case KVM_EXIT_INTERNAL_ERROR: 2918 ret = kvm_handle_internal_error(cpu, run); 2919 break; 2920 case KVM_EXIT_DIRTY_RING_FULL: 2921 /* 2922 * We shouldn't continue if the dirty ring of this vcpu is 2923 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 2924 */ 2925 trace_kvm_dirty_ring_full(cpu->cpu_index); 2926 qemu_mutex_lock_iothread(); 2927 kvm_dirty_ring_reap(kvm_state); 2928 qemu_mutex_unlock_iothread(); 2929 ret = 0; 2930 break; 2931 case KVM_EXIT_SYSTEM_EVENT: 2932 switch (run->system_event.type) { 2933 case KVM_SYSTEM_EVENT_SHUTDOWN: 2934 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2935 ret = EXCP_INTERRUPT; 2936 break; 2937 case KVM_SYSTEM_EVENT_RESET: 2938 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2939 ret = EXCP_INTERRUPT; 2940 break; 2941 case KVM_SYSTEM_EVENT_CRASH: 2942 kvm_cpu_synchronize_state(cpu); 2943 qemu_mutex_lock_iothread(); 2944 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2945 qemu_mutex_unlock_iothread(); 2946 ret = 0; 2947 break; 2948 default: 2949 DPRINTF("kvm_arch_handle_exit\n"); 2950 ret = kvm_arch_handle_exit(cpu, run); 2951 break; 2952 } 2953 break; 2954 default: 2955 DPRINTF("kvm_arch_handle_exit\n"); 2956 ret = kvm_arch_handle_exit(cpu, run); 2957 break; 2958 } 2959 } while (ret == 0); 2960 2961 cpu_exec_end(cpu); 2962 qemu_mutex_lock_iothread(); 2963 2964 if (ret < 0) { 2965 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2966 vm_stop(RUN_STATE_INTERNAL_ERROR); 2967 } 2968 2969 qatomic_set(&cpu->exit_request, 0); 2970 return ret; 2971 } 2972 2973 int kvm_ioctl(KVMState *s, int type, ...) 2974 { 2975 int ret; 2976 void *arg; 2977 va_list ap; 2978 2979 va_start(ap, type); 2980 arg = va_arg(ap, void *); 2981 va_end(ap); 2982 2983 trace_kvm_ioctl(type, arg); 2984 ret = ioctl(s->fd, type, arg); 2985 if (ret == -1) { 2986 ret = -errno; 2987 } 2988 return ret; 2989 } 2990 2991 int kvm_vm_ioctl(KVMState *s, int type, ...) 2992 { 2993 int ret; 2994 void *arg; 2995 va_list ap; 2996 2997 va_start(ap, type); 2998 arg = va_arg(ap, void *); 2999 va_end(ap); 3000 3001 trace_kvm_vm_ioctl(type, arg); 3002 ret = ioctl(s->vmfd, type, arg); 3003 if (ret == -1) { 3004 ret = -errno; 3005 } 3006 return ret; 3007 } 3008 3009 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3010 { 3011 int ret; 3012 void *arg; 3013 va_list ap; 3014 3015 va_start(ap, type); 3016 arg = va_arg(ap, void *); 3017 va_end(ap); 3018 3019 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3020 ret = ioctl(cpu->kvm_fd, type, arg); 3021 if (ret == -1) { 3022 ret = -errno; 3023 } 3024 return ret; 3025 } 3026 3027 int kvm_device_ioctl(int fd, int type, ...) 3028 { 3029 int ret; 3030 void *arg; 3031 va_list ap; 3032 3033 va_start(ap, type); 3034 arg = va_arg(ap, void *); 3035 va_end(ap); 3036 3037 trace_kvm_device_ioctl(fd, type, arg); 3038 ret = ioctl(fd, type, arg); 3039 if (ret == -1) { 3040 ret = -errno; 3041 } 3042 return ret; 3043 } 3044 3045 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3046 { 3047 int ret; 3048 struct kvm_device_attr attribute = { 3049 .group = group, 3050 .attr = attr, 3051 }; 3052 3053 if (!kvm_vm_attributes_allowed) { 3054 return 0; 3055 } 3056 3057 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3058 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3059 return ret ? 0 : 1; 3060 } 3061 3062 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3063 { 3064 struct kvm_device_attr attribute = { 3065 .group = group, 3066 .attr = attr, 3067 .flags = 0, 3068 }; 3069 3070 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3071 } 3072 3073 int kvm_device_access(int fd, int group, uint64_t attr, 3074 void *val, bool write, Error **errp) 3075 { 3076 struct kvm_device_attr kvmattr; 3077 int err; 3078 3079 kvmattr.flags = 0; 3080 kvmattr.group = group; 3081 kvmattr.attr = attr; 3082 kvmattr.addr = (uintptr_t)val; 3083 3084 err = kvm_device_ioctl(fd, 3085 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3086 &kvmattr); 3087 if (err < 0) { 3088 error_setg_errno(errp, -err, 3089 "KVM_%s_DEVICE_ATTR failed: Group %d " 3090 "attr 0x%016" PRIx64, 3091 write ? "SET" : "GET", group, attr); 3092 } 3093 return err; 3094 } 3095 3096 bool kvm_has_sync_mmu(void) 3097 { 3098 return kvm_state->sync_mmu; 3099 } 3100 3101 int kvm_has_vcpu_events(void) 3102 { 3103 return kvm_state->vcpu_events; 3104 } 3105 3106 int kvm_has_robust_singlestep(void) 3107 { 3108 return kvm_state->robust_singlestep; 3109 } 3110 3111 int kvm_has_debugregs(void) 3112 { 3113 return kvm_state->debugregs; 3114 } 3115 3116 int kvm_max_nested_state_length(void) 3117 { 3118 return kvm_state->max_nested_state_len; 3119 } 3120 3121 int kvm_has_many_ioeventfds(void) 3122 { 3123 if (!kvm_enabled()) { 3124 return 0; 3125 } 3126 return kvm_state->many_ioeventfds; 3127 } 3128 3129 int kvm_has_gsi_routing(void) 3130 { 3131 #ifdef KVM_CAP_IRQ_ROUTING 3132 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3133 #else 3134 return false; 3135 #endif 3136 } 3137 3138 int kvm_has_intx_set_mask(void) 3139 { 3140 return kvm_state->intx_set_mask; 3141 } 3142 3143 bool kvm_arm_supports_user_irq(void) 3144 { 3145 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3146 } 3147 3148 #ifdef KVM_CAP_SET_GUEST_DEBUG 3149 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3150 target_ulong pc) 3151 { 3152 struct kvm_sw_breakpoint *bp; 3153 3154 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3155 if (bp->pc == pc) { 3156 return bp; 3157 } 3158 } 3159 return NULL; 3160 } 3161 3162 int kvm_sw_breakpoints_active(CPUState *cpu) 3163 { 3164 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3165 } 3166 3167 struct kvm_set_guest_debug_data { 3168 struct kvm_guest_debug dbg; 3169 int err; 3170 }; 3171 3172 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3173 { 3174 struct kvm_set_guest_debug_data *dbg_data = 3175 (struct kvm_set_guest_debug_data *) data.host_ptr; 3176 3177 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3178 &dbg_data->dbg); 3179 } 3180 3181 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3182 { 3183 struct kvm_set_guest_debug_data data; 3184 3185 data.dbg.control = reinject_trap; 3186 3187 if (cpu->singlestep_enabled) { 3188 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3189 } 3190 kvm_arch_update_guest_debug(cpu, &data.dbg); 3191 3192 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3193 RUN_ON_CPU_HOST_PTR(&data)); 3194 return data.err; 3195 } 3196 3197 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 3198 target_ulong len, int type) 3199 { 3200 struct kvm_sw_breakpoint *bp; 3201 int err; 3202 3203 if (type == GDB_BREAKPOINT_SW) { 3204 bp = kvm_find_sw_breakpoint(cpu, addr); 3205 if (bp) { 3206 bp->use_count++; 3207 return 0; 3208 } 3209 3210 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 3211 bp->pc = addr; 3212 bp->use_count = 1; 3213 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3214 if (err) { 3215 g_free(bp); 3216 return err; 3217 } 3218 3219 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3220 } else { 3221 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3222 if (err) { 3223 return err; 3224 } 3225 } 3226 3227 CPU_FOREACH(cpu) { 3228 err = kvm_update_guest_debug(cpu, 0); 3229 if (err) { 3230 return err; 3231 } 3232 } 3233 return 0; 3234 } 3235 3236 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 3237 target_ulong len, int type) 3238 { 3239 struct kvm_sw_breakpoint *bp; 3240 int err; 3241 3242 if (type == GDB_BREAKPOINT_SW) { 3243 bp = kvm_find_sw_breakpoint(cpu, addr); 3244 if (!bp) { 3245 return -ENOENT; 3246 } 3247 3248 if (bp->use_count > 1) { 3249 bp->use_count--; 3250 return 0; 3251 } 3252 3253 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3254 if (err) { 3255 return err; 3256 } 3257 3258 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3259 g_free(bp); 3260 } else { 3261 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3262 if (err) { 3263 return err; 3264 } 3265 } 3266 3267 CPU_FOREACH(cpu) { 3268 err = kvm_update_guest_debug(cpu, 0); 3269 if (err) { 3270 return err; 3271 } 3272 } 3273 return 0; 3274 } 3275 3276 void kvm_remove_all_breakpoints(CPUState *cpu) 3277 { 3278 struct kvm_sw_breakpoint *bp, *next; 3279 KVMState *s = cpu->kvm_state; 3280 CPUState *tmpcpu; 3281 3282 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3283 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3284 /* Try harder to find a CPU that currently sees the breakpoint. */ 3285 CPU_FOREACH(tmpcpu) { 3286 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3287 break; 3288 } 3289 } 3290 } 3291 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3292 g_free(bp); 3293 } 3294 kvm_arch_remove_all_hw_breakpoints(); 3295 3296 CPU_FOREACH(cpu) { 3297 kvm_update_guest_debug(cpu, 0); 3298 } 3299 } 3300 3301 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 3302 3303 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3304 { 3305 return -EINVAL; 3306 } 3307 3308 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 3309 target_ulong len, int type) 3310 { 3311 return -EINVAL; 3312 } 3313 3314 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 3315 target_ulong len, int type) 3316 { 3317 return -EINVAL; 3318 } 3319 3320 void kvm_remove_all_breakpoints(CPUState *cpu) 3321 { 3322 } 3323 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3324 3325 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3326 { 3327 KVMState *s = kvm_state; 3328 struct kvm_signal_mask *sigmask; 3329 int r; 3330 3331 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3332 3333 sigmask->len = s->sigmask_len; 3334 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3335 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3336 g_free(sigmask); 3337 3338 return r; 3339 } 3340 3341 static void kvm_ipi_signal(int sig) 3342 { 3343 if (current_cpu) { 3344 assert(kvm_immediate_exit); 3345 kvm_cpu_kick(current_cpu); 3346 } 3347 } 3348 3349 void kvm_init_cpu_signals(CPUState *cpu) 3350 { 3351 int r; 3352 sigset_t set; 3353 struct sigaction sigact; 3354 3355 memset(&sigact, 0, sizeof(sigact)); 3356 sigact.sa_handler = kvm_ipi_signal; 3357 sigaction(SIG_IPI, &sigact, NULL); 3358 3359 pthread_sigmask(SIG_BLOCK, NULL, &set); 3360 #if defined KVM_HAVE_MCE_INJECTION 3361 sigdelset(&set, SIGBUS); 3362 pthread_sigmask(SIG_SETMASK, &set, NULL); 3363 #endif 3364 sigdelset(&set, SIG_IPI); 3365 if (kvm_immediate_exit) { 3366 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3367 } else { 3368 r = kvm_set_signal_mask(cpu, &set); 3369 } 3370 if (r) { 3371 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3372 exit(1); 3373 } 3374 } 3375 3376 /* Called asynchronously in VCPU thread. */ 3377 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3378 { 3379 #ifdef KVM_HAVE_MCE_INJECTION 3380 if (have_sigbus_pending) { 3381 return 1; 3382 } 3383 have_sigbus_pending = true; 3384 pending_sigbus_addr = addr; 3385 pending_sigbus_code = code; 3386 qatomic_set(&cpu->exit_request, 1); 3387 return 0; 3388 #else 3389 return 1; 3390 #endif 3391 } 3392 3393 /* Called synchronously (via signalfd) in main thread. */ 3394 int kvm_on_sigbus(int code, void *addr) 3395 { 3396 #ifdef KVM_HAVE_MCE_INJECTION 3397 /* Action required MCE kills the process if SIGBUS is blocked. Because 3398 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3399 * we can only get action optional here. 3400 */ 3401 assert(code != BUS_MCEERR_AR); 3402 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3403 return 0; 3404 #else 3405 return 1; 3406 #endif 3407 } 3408 3409 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3410 { 3411 int ret; 3412 struct kvm_create_device create_dev; 3413 3414 create_dev.type = type; 3415 create_dev.fd = -1; 3416 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3417 3418 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3419 return -ENOTSUP; 3420 } 3421 3422 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3423 if (ret) { 3424 return ret; 3425 } 3426 3427 return test ? 0 : create_dev.fd; 3428 } 3429 3430 bool kvm_device_supported(int vmfd, uint64_t type) 3431 { 3432 struct kvm_create_device create_dev = { 3433 .type = type, 3434 .fd = -1, 3435 .flags = KVM_CREATE_DEVICE_TEST, 3436 }; 3437 3438 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3439 return false; 3440 } 3441 3442 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3443 } 3444 3445 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3446 { 3447 struct kvm_one_reg reg; 3448 int r; 3449 3450 reg.id = id; 3451 reg.addr = (uintptr_t) source; 3452 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3453 if (r) { 3454 trace_kvm_failed_reg_set(id, strerror(-r)); 3455 } 3456 return r; 3457 } 3458 3459 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3460 { 3461 struct kvm_one_reg reg; 3462 int r; 3463 3464 reg.id = id; 3465 reg.addr = (uintptr_t) target; 3466 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3467 if (r) { 3468 trace_kvm_failed_reg_get(id, strerror(-r)); 3469 } 3470 return r; 3471 } 3472 3473 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3474 hwaddr start_addr, hwaddr size) 3475 { 3476 KVMState *kvm = KVM_STATE(ms->accelerator); 3477 int i; 3478 3479 for (i = 0; i < kvm->nr_as; ++i) { 3480 if (kvm->as[i].as == as && kvm->as[i].ml) { 3481 size = MIN(kvm_max_slot_size, size); 3482 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3483 start_addr, size); 3484 } 3485 } 3486 3487 return false; 3488 } 3489 3490 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3491 const char *name, void *opaque, 3492 Error **errp) 3493 { 3494 KVMState *s = KVM_STATE(obj); 3495 int64_t value = s->kvm_shadow_mem; 3496 3497 visit_type_int(v, name, &value, errp); 3498 } 3499 3500 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3501 const char *name, void *opaque, 3502 Error **errp) 3503 { 3504 KVMState *s = KVM_STATE(obj); 3505 int64_t value; 3506 3507 if (s->fd != -1) { 3508 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3509 return; 3510 } 3511 3512 if (!visit_type_int(v, name, &value, errp)) { 3513 return; 3514 } 3515 3516 s->kvm_shadow_mem = value; 3517 } 3518 3519 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3520 const char *name, void *opaque, 3521 Error **errp) 3522 { 3523 KVMState *s = KVM_STATE(obj); 3524 OnOffSplit mode; 3525 3526 if (s->fd != -1) { 3527 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3528 return; 3529 } 3530 3531 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3532 return; 3533 } 3534 switch (mode) { 3535 case ON_OFF_SPLIT_ON: 3536 s->kernel_irqchip_allowed = true; 3537 s->kernel_irqchip_required = true; 3538 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3539 break; 3540 case ON_OFF_SPLIT_OFF: 3541 s->kernel_irqchip_allowed = false; 3542 s->kernel_irqchip_required = false; 3543 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3544 break; 3545 case ON_OFF_SPLIT_SPLIT: 3546 s->kernel_irqchip_allowed = true; 3547 s->kernel_irqchip_required = true; 3548 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3549 break; 3550 default: 3551 /* The value was checked in visit_type_OnOffSplit() above. If 3552 * we get here, then something is wrong in QEMU. 3553 */ 3554 abort(); 3555 } 3556 } 3557 3558 bool kvm_kernel_irqchip_allowed(void) 3559 { 3560 return kvm_state->kernel_irqchip_allowed; 3561 } 3562 3563 bool kvm_kernel_irqchip_required(void) 3564 { 3565 return kvm_state->kernel_irqchip_required; 3566 } 3567 3568 bool kvm_kernel_irqchip_split(void) 3569 { 3570 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3571 } 3572 3573 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3574 const char *name, void *opaque, 3575 Error **errp) 3576 { 3577 KVMState *s = KVM_STATE(obj); 3578 uint32_t value = s->kvm_dirty_ring_size; 3579 3580 visit_type_uint32(v, name, &value, errp); 3581 } 3582 3583 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3584 const char *name, void *opaque, 3585 Error **errp) 3586 { 3587 KVMState *s = KVM_STATE(obj); 3588 Error *error = NULL; 3589 uint32_t value; 3590 3591 if (s->fd != -1) { 3592 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3593 return; 3594 } 3595 3596 visit_type_uint32(v, name, &value, &error); 3597 if (error) { 3598 error_propagate(errp, error); 3599 return; 3600 } 3601 if (value & (value - 1)) { 3602 error_setg(errp, "dirty-ring-size must be a power of two."); 3603 return; 3604 } 3605 3606 s->kvm_dirty_ring_size = value; 3607 } 3608 3609 static void kvm_accel_instance_init(Object *obj) 3610 { 3611 KVMState *s = KVM_STATE(obj); 3612 3613 s->fd = -1; 3614 s->vmfd = -1; 3615 s->kvm_shadow_mem = -1; 3616 s->kernel_irqchip_allowed = true; 3617 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3618 /* KVM dirty ring is by default off */ 3619 s->kvm_dirty_ring_size = 0; 3620 } 3621 3622 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3623 { 3624 AccelClass *ac = ACCEL_CLASS(oc); 3625 ac->name = "KVM"; 3626 ac->init_machine = kvm_init; 3627 ac->has_memory = kvm_accel_has_memory; 3628 ac->allowed = &kvm_allowed; 3629 3630 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3631 NULL, kvm_set_kernel_irqchip, 3632 NULL, NULL); 3633 object_class_property_set_description(oc, "kernel-irqchip", 3634 "Configure KVM in-kernel irqchip"); 3635 3636 object_class_property_add(oc, "kvm-shadow-mem", "int", 3637 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3638 NULL, NULL); 3639 object_class_property_set_description(oc, "kvm-shadow-mem", 3640 "KVM shadow MMU size"); 3641 3642 object_class_property_add(oc, "dirty-ring-size", "uint32", 3643 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3644 NULL, NULL); 3645 object_class_property_set_description(oc, "dirty-ring-size", 3646 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3647 } 3648 3649 static const TypeInfo kvm_accel_type = { 3650 .name = TYPE_KVM_ACCEL, 3651 .parent = TYPE_ACCEL, 3652 .instance_init = kvm_accel_instance_init, 3653 .class_init = kvm_accel_class_init, 3654 .instance_size = sizeof(KVMState), 3655 }; 3656 3657 static void kvm_type_init(void) 3658 { 3659 type_register_static(&kvm_accel_type); 3660 } 3661 3662 type_init(kvm_type_init); 3663