1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu-common.h" 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/hw.h" 28 #include "hw/pci/msi.h" 29 #include "hw/pci/msix.h" 30 #include "hw/s390x/adapter.h" 31 #include "exec/gdbstub.h" 32 #include "sysemu/kvm_int.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 #include "sysemu/sev.h" 42 43 #include "hw/boards.h" 44 45 /* This check must be after config-host.h is included */ 46 #ifdef CONFIG_EVENTFD 47 #include <sys/eventfd.h> 48 #endif 49 50 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 51 * need to use the real host PAGE_SIZE, as that's what KVM will use. 52 */ 53 #define PAGE_SIZE getpagesize() 54 55 //#define DEBUG_KVM 56 57 #ifdef DEBUG_KVM 58 #define DPRINTF(fmt, ...) \ 59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 60 #else 61 #define DPRINTF(fmt, ...) \ 62 do { } while (0) 63 #endif 64 65 #define KVM_MSI_HASHTAB_SIZE 256 66 67 struct KVMParkedVcpu { 68 unsigned long vcpu_id; 69 int kvm_fd; 70 QLIST_ENTRY(KVMParkedVcpu) node; 71 }; 72 73 struct KVMState 74 { 75 AccelState parent_obj; 76 77 int nr_slots; 78 int fd; 79 int vmfd; 80 int coalesced_mmio; 81 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 82 bool coalesced_flush_in_progress; 83 int vcpu_events; 84 int robust_singlestep; 85 int debugregs; 86 #ifdef KVM_CAP_SET_GUEST_DEBUG 87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints; 88 #endif 89 int many_ioeventfds; 90 int intx_set_mask; 91 bool sync_mmu; 92 /* The man page (and posix) say ioctl numbers are signed int, but 93 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 94 * unsigned, and treating them as signed here can break things */ 95 unsigned irq_set_ioctl; 96 unsigned int sigmask_len; 97 GHashTable *gsimap; 98 #ifdef KVM_CAP_IRQ_ROUTING 99 struct kvm_irq_routing *irq_routes; 100 int nr_allocated_irq_routes; 101 unsigned long *used_gsi_bitmap; 102 unsigned int gsi_count; 103 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 104 #endif 105 KVMMemoryListener memory_listener; 106 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 107 108 /* memory encryption */ 109 void *memcrypt_handle; 110 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 111 }; 112 113 KVMState *kvm_state; 114 bool kvm_kernel_irqchip; 115 bool kvm_split_irqchip; 116 bool kvm_async_interrupts_allowed; 117 bool kvm_halt_in_kernel_allowed; 118 bool kvm_eventfds_allowed; 119 bool kvm_irqfds_allowed; 120 bool kvm_resamplefds_allowed; 121 bool kvm_msi_via_irqfd_allowed; 122 bool kvm_gsi_routing_allowed; 123 bool kvm_gsi_direct_mapping; 124 bool kvm_allowed; 125 bool kvm_readonly_mem_allowed; 126 bool kvm_vm_attributes_allowed; 127 bool kvm_direct_msi_allowed; 128 bool kvm_ioeventfd_any_length_allowed; 129 bool kvm_msi_use_devid; 130 static bool kvm_immediate_exit; 131 132 static const KVMCapabilityInfo kvm_required_capabilites[] = { 133 KVM_CAP_INFO(USER_MEMORY), 134 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 135 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 136 KVM_CAP_LAST_INFO 137 }; 138 139 int kvm_get_max_memslots(void) 140 { 141 KVMState *s = KVM_STATE(current_machine->accelerator); 142 143 return s->nr_slots; 144 } 145 146 bool kvm_memcrypt_enabled(void) 147 { 148 if (kvm_state && kvm_state->memcrypt_handle) { 149 return true; 150 } 151 152 return false; 153 } 154 155 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 156 { 157 if (kvm_state->memcrypt_handle && 158 kvm_state->memcrypt_encrypt_data) { 159 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 160 ptr, len); 161 } 162 163 return 1; 164 } 165 166 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 167 { 168 KVMState *s = kvm_state; 169 int i; 170 171 for (i = 0; i < s->nr_slots; i++) { 172 if (kml->slots[i].memory_size == 0) { 173 return &kml->slots[i]; 174 } 175 } 176 177 return NULL; 178 } 179 180 bool kvm_has_free_slot(MachineState *ms) 181 { 182 KVMState *s = KVM_STATE(ms->accelerator); 183 184 return kvm_get_free_slot(&s->memory_listener); 185 } 186 187 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 188 { 189 KVMSlot *slot = kvm_get_free_slot(kml); 190 191 if (slot) { 192 return slot; 193 } 194 195 fprintf(stderr, "%s: no free slot available\n", __func__); 196 abort(); 197 } 198 199 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 200 hwaddr start_addr, 201 hwaddr size) 202 { 203 KVMState *s = kvm_state; 204 int i; 205 206 for (i = 0; i < s->nr_slots; i++) { 207 KVMSlot *mem = &kml->slots[i]; 208 209 if (start_addr == mem->start_addr && size == mem->memory_size) { 210 return mem; 211 } 212 } 213 214 return NULL; 215 } 216 217 /* 218 * Calculate and align the start address and the size of the section. 219 * Return the size. If the size is 0, the aligned section is empty. 220 */ 221 static hwaddr kvm_align_section(MemoryRegionSection *section, 222 hwaddr *start) 223 { 224 hwaddr size = int128_get64(section->size); 225 hwaddr delta, aligned; 226 227 /* kvm works in page size chunks, but the function may be called 228 with sub-page size and unaligned start address. Pad the start 229 address to next and truncate size to previous page boundary. */ 230 aligned = ROUND_UP(section->offset_within_address_space, 231 qemu_real_host_page_size); 232 delta = aligned - section->offset_within_address_space; 233 *start = aligned; 234 if (delta > size) { 235 return 0; 236 } 237 238 return (size - delta) & qemu_real_host_page_mask; 239 } 240 241 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 242 hwaddr *phys_addr) 243 { 244 KVMMemoryListener *kml = &s->memory_listener; 245 int i; 246 247 for (i = 0; i < s->nr_slots; i++) { 248 KVMSlot *mem = &kml->slots[i]; 249 250 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 251 *phys_addr = mem->start_addr + (ram - mem->ram); 252 return 1; 253 } 254 } 255 256 return 0; 257 } 258 259 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot) 260 { 261 KVMState *s = kvm_state; 262 struct kvm_userspace_memory_region mem; 263 int ret; 264 265 mem.slot = slot->slot | (kml->as_id << 16); 266 mem.guest_phys_addr = slot->start_addr; 267 mem.userspace_addr = (unsigned long)slot->ram; 268 mem.flags = slot->flags; 269 270 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { 271 /* Set the slot size to 0 before setting the slot to the desired 272 * value. This is needed based on KVM commit 75d61fbc. */ 273 mem.memory_size = 0; 274 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 275 } 276 mem.memory_size = slot->memory_size; 277 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 278 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 279 mem.memory_size, mem.userspace_addr, ret); 280 return ret; 281 } 282 283 int kvm_destroy_vcpu(CPUState *cpu) 284 { 285 KVMState *s = kvm_state; 286 long mmap_size; 287 struct KVMParkedVcpu *vcpu = NULL; 288 int ret = 0; 289 290 DPRINTF("kvm_destroy_vcpu\n"); 291 292 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 293 if (mmap_size < 0) { 294 ret = mmap_size; 295 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 296 goto err; 297 } 298 299 ret = munmap(cpu->kvm_run, mmap_size); 300 if (ret < 0) { 301 goto err; 302 } 303 304 vcpu = g_malloc0(sizeof(*vcpu)); 305 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 306 vcpu->kvm_fd = cpu->kvm_fd; 307 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 308 err: 309 return ret; 310 } 311 312 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 313 { 314 struct KVMParkedVcpu *cpu; 315 316 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 317 if (cpu->vcpu_id == vcpu_id) { 318 int kvm_fd; 319 320 QLIST_REMOVE(cpu, node); 321 kvm_fd = cpu->kvm_fd; 322 g_free(cpu); 323 return kvm_fd; 324 } 325 } 326 327 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 328 } 329 330 int kvm_init_vcpu(CPUState *cpu) 331 { 332 KVMState *s = kvm_state; 333 long mmap_size; 334 int ret; 335 336 DPRINTF("kvm_init_vcpu\n"); 337 338 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 339 if (ret < 0) { 340 DPRINTF("kvm_create_vcpu failed\n"); 341 goto err; 342 } 343 344 cpu->kvm_fd = ret; 345 cpu->kvm_state = s; 346 cpu->vcpu_dirty = true; 347 348 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 349 if (mmap_size < 0) { 350 ret = mmap_size; 351 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 352 goto err; 353 } 354 355 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 356 cpu->kvm_fd, 0); 357 if (cpu->kvm_run == MAP_FAILED) { 358 ret = -errno; 359 DPRINTF("mmap'ing vcpu state failed\n"); 360 goto err; 361 } 362 363 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 364 s->coalesced_mmio_ring = 365 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 366 } 367 368 ret = kvm_arch_init_vcpu(cpu); 369 err: 370 return ret; 371 } 372 373 /* 374 * dirty pages logging control 375 */ 376 377 static int kvm_mem_flags(MemoryRegion *mr) 378 { 379 bool readonly = mr->readonly || memory_region_is_romd(mr); 380 int flags = 0; 381 382 if (memory_region_get_dirty_log_mask(mr) != 0) { 383 flags |= KVM_MEM_LOG_DIRTY_PAGES; 384 } 385 if (readonly && kvm_readonly_mem_allowed) { 386 flags |= KVM_MEM_READONLY; 387 } 388 return flags; 389 } 390 391 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 392 MemoryRegion *mr) 393 { 394 int old_flags; 395 396 old_flags = mem->flags; 397 mem->flags = kvm_mem_flags(mr); 398 399 /* If nothing changed effectively, no need to issue ioctl */ 400 if (mem->flags == old_flags) { 401 return 0; 402 } 403 404 return kvm_set_user_memory_region(kml, mem); 405 } 406 407 static int kvm_section_update_flags(KVMMemoryListener *kml, 408 MemoryRegionSection *section) 409 { 410 hwaddr start_addr, size; 411 KVMSlot *mem; 412 413 size = kvm_align_section(section, &start_addr); 414 if (!size) { 415 return 0; 416 } 417 418 mem = kvm_lookup_matching_slot(kml, start_addr, size); 419 if (!mem) { 420 /* We don't have a slot if we want to trap every access. */ 421 return 0; 422 } 423 424 return kvm_slot_update_flags(kml, mem, section->mr); 425 } 426 427 static void kvm_log_start(MemoryListener *listener, 428 MemoryRegionSection *section, 429 int old, int new) 430 { 431 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 432 int r; 433 434 if (old != 0) { 435 return; 436 } 437 438 r = kvm_section_update_flags(kml, section); 439 if (r < 0) { 440 abort(); 441 } 442 } 443 444 static void kvm_log_stop(MemoryListener *listener, 445 MemoryRegionSection *section, 446 int old, int new) 447 { 448 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 449 int r; 450 451 if (new != 0) { 452 return; 453 } 454 455 r = kvm_section_update_flags(kml, section); 456 if (r < 0) { 457 abort(); 458 } 459 } 460 461 /* get kvm's dirty pages bitmap and update qemu's */ 462 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 463 unsigned long *bitmap) 464 { 465 ram_addr_t start = section->offset_within_region + 466 memory_region_get_ram_addr(section->mr); 467 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 468 469 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 470 return 0; 471 } 472 473 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 474 475 /** 476 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space 477 * This function updates qemu's dirty bitmap using 478 * memory_region_set_dirty(). This means all bits are set 479 * to dirty. 480 * 481 * @start_add: start of logged region. 482 * @end_addr: end of logged region. 483 */ 484 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 485 MemoryRegionSection *section) 486 { 487 KVMState *s = kvm_state; 488 struct kvm_dirty_log d = {}; 489 KVMSlot *mem; 490 hwaddr start_addr, size; 491 492 size = kvm_align_section(section, &start_addr); 493 if (size) { 494 mem = kvm_lookup_matching_slot(kml, start_addr, size); 495 if (!mem) { 496 /* We don't have a slot if we want to trap every access. */ 497 return 0; 498 } 499 500 /* XXX bad kernel interface alert 501 * For dirty bitmap, kernel allocates array of size aligned to 502 * bits-per-long. But for case when the kernel is 64bits and 503 * the userspace is 32bits, userspace can't align to the same 504 * bits-per-long, since sizeof(long) is different between kernel 505 * and user space. This way, userspace will provide buffer which 506 * may be 4 bytes less than the kernel will use, resulting in 507 * userspace memory corruption (which is not detectable by valgrind 508 * too, in most cases). 509 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 510 * a hope that sizeof(long) won't become >8 any time soon. 511 */ 512 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 513 /*HOST_LONG_BITS*/ 64) / 8; 514 d.dirty_bitmap = g_malloc0(size); 515 516 d.slot = mem->slot | (kml->as_id << 16); 517 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 518 DPRINTF("ioctl failed %d\n", errno); 519 g_free(d.dirty_bitmap); 520 return -1; 521 } 522 523 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 524 g_free(d.dirty_bitmap); 525 } 526 527 return 0; 528 } 529 530 static void kvm_coalesce_mmio_region(MemoryListener *listener, 531 MemoryRegionSection *secion, 532 hwaddr start, hwaddr size) 533 { 534 KVMState *s = kvm_state; 535 536 if (s->coalesced_mmio) { 537 struct kvm_coalesced_mmio_zone zone; 538 539 zone.addr = start; 540 zone.size = size; 541 zone.pad = 0; 542 543 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 544 } 545 } 546 547 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 548 MemoryRegionSection *secion, 549 hwaddr start, hwaddr size) 550 { 551 KVMState *s = kvm_state; 552 553 if (s->coalesced_mmio) { 554 struct kvm_coalesced_mmio_zone zone; 555 556 zone.addr = start; 557 zone.size = size; 558 zone.pad = 0; 559 560 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 561 } 562 } 563 564 int kvm_check_extension(KVMState *s, unsigned int extension) 565 { 566 int ret; 567 568 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 569 if (ret < 0) { 570 ret = 0; 571 } 572 573 return ret; 574 } 575 576 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 577 { 578 int ret; 579 580 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 581 if (ret < 0) { 582 /* VM wide version not implemented, use global one instead */ 583 ret = kvm_check_extension(s, extension); 584 } 585 586 return ret; 587 } 588 589 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 590 { 591 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 592 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 593 * endianness, but the memory core hands them in target endianness. 594 * For example, PPC is always treated as big-endian even if running 595 * on KVM and on PPC64LE. Correct here. 596 */ 597 switch (size) { 598 case 2: 599 val = bswap16(val); 600 break; 601 case 4: 602 val = bswap32(val); 603 break; 604 } 605 #endif 606 return val; 607 } 608 609 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 610 bool assign, uint32_t size, bool datamatch) 611 { 612 int ret; 613 struct kvm_ioeventfd iofd = { 614 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 615 .addr = addr, 616 .len = size, 617 .flags = 0, 618 .fd = fd, 619 }; 620 621 if (!kvm_enabled()) { 622 return -ENOSYS; 623 } 624 625 if (datamatch) { 626 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 627 } 628 if (!assign) { 629 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 630 } 631 632 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 633 634 if (ret < 0) { 635 return -errno; 636 } 637 638 return 0; 639 } 640 641 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 642 bool assign, uint32_t size, bool datamatch) 643 { 644 struct kvm_ioeventfd kick = { 645 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 646 .addr = addr, 647 .flags = KVM_IOEVENTFD_FLAG_PIO, 648 .len = size, 649 .fd = fd, 650 }; 651 int r; 652 if (!kvm_enabled()) { 653 return -ENOSYS; 654 } 655 if (datamatch) { 656 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 657 } 658 if (!assign) { 659 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 660 } 661 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 662 if (r < 0) { 663 return r; 664 } 665 return 0; 666 } 667 668 669 static int kvm_check_many_ioeventfds(void) 670 { 671 /* Userspace can use ioeventfd for io notification. This requires a host 672 * that supports eventfd(2) and an I/O thread; since eventfd does not 673 * support SIGIO it cannot interrupt the vcpu. 674 * 675 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 676 * can avoid creating too many ioeventfds. 677 */ 678 #if defined(CONFIG_EVENTFD) 679 int ioeventfds[7]; 680 int i, ret = 0; 681 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 682 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 683 if (ioeventfds[i] < 0) { 684 break; 685 } 686 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 687 if (ret < 0) { 688 close(ioeventfds[i]); 689 break; 690 } 691 } 692 693 /* Decide whether many devices are supported or not */ 694 ret = i == ARRAY_SIZE(ioeventfds); 695 696 while (i-- > 0) { 697 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 698 close(ioeventfds[i]); 699 } 700 return ret; 701 #else 702 return 0; 703 #endif 704 } 705 706 static const KVMCapabilityInfo * 707 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 708 { 709 while (list->name) { 710 if (!kvm_check_extension(s, list->value)) { 711 return list; 712 } 713 list++; 714 } 715 return NULL; 716 } 717 718 static void kvm_set_phys_mem(KVMMemoryListener *kml, 719 MemoryRegionSection *section, bool add) 720 { 721 KVMSlot *mem; 722 int err; 723 MemoryRegion *mr = section->mr; 724 bool writeable = !mr->readonly && !mr->rom_device; 725 hwaddr start_addr, size; 726 void *ram; 727 728 if (!memory_region_is_ram(mr)) { 729 if (writeable || !kvm_readonly_mem_allowed) { 730 return; 731 } else if (!mr->romd_mode) { 732 /* If the memory device is not in romd_mode, then we actually want 733 * to remove the kvm memory slot so all accesses will trap. */ 734 add = false; 735 } 736 } 737 738 size = kvm_align_section(section, &start_addr); 739 if (!size) { 740 return; 741 } 742 743 /* use aligned delta to align the ram address */ 744 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 745 (start_addr - section->offset_within_address_space); 746 747 if (!add) { 748 mem = kvm_lookup_matching_slot(kml, start_addr, size); 749 if (!mem) { 750 return; 751 } 752 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 753 kvm_physical_sync_dirty_bitmap(kml, section); 754 } 755 756 /* unregister the slot */ 757 mem->memory_size = 0; 758 err = kvm_set_user_memory_region(kml, mem); 759 if (err) { 760 fprintf(stderr, "%s: error unregistering slot: %s\n", 761 __func__, strerror(-err)); 762 abort(); 763 } 764 return; 765 } 766 767 /* register the new slot */ 768 mem = kvm_alloc_slot(kml); 769 mem->memory_size = size; 770 mem->start_addr = start_addr; 771 mem->ram = ram; 772 mem->flags = kvm_mem_flags(mr); 773 774 err = kvm_set_user_memory_region(kml, mem); 775 if (err) { 776 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 777 strerror(-err)); 778 abort(); 779 } 780 } 781 782 static void kvm_region_add(MemoryListener *listener, 783 MemoryRegionSection *section) 784 { 785 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 786 787 memory_region_ref(section->mr); 788 kvm_set_phys_mem(kml, section, true); 789 } 790 791 static void kvm_region_del(MemoryListener *listener, 792 MemoryRegionSection *section) 793 { 794 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 795 796 kvm_set_phys_mem(kml, section, false); 797 memory_region_unref(section->mr); 798 } 799 800 static void kvm_log_sync(MemoryListener *listener, 801 MemoryRegionSection *section) 802 { 803 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 804 int r; 805 806 r = kvm_physical_sync_dirty_bitmap(kml, section); 807 if (r < 0) { 808 abort(); 809 } 810 } 811 812 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 813 MemoryRegionSection *section, 814 bool match_data, uint64_t data, 815 EventNotifier *e) 816 { 817 int fd = event_notifier_get_fd(e); 818 int r; 819 820 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 821 data, true, int128_get64(section->size), 822 match_data); 823 if (r < 0) { 824 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 825 __func__, strerror(-r)); 826 abort(); 827 } 828 } 829 830 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 831 MemoryRegionSection *section, 832 bool match_data, uint64_t data, 833 EventNotifier *e) 834 { 835 int fd = event_notifier_get_fd(e); 836 int r; 837 838 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 839 data, false, int128_get64(section->size), 840 match_data); 841 if (r < 0) { 842 abort(); 843 } 844 } 845 846 static void kvm_io_ioeventfd_add(MemoryListener *listener, 847 MemoryRegionSection *section, 848 bool match_data, uint64_t data, 849 EventNotifier *e) 850 { 851 int fd = event_notifier_get_fd(e); 852 int r; 853 854 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 855 data, true, int128_get64(section->size), 856 match_data); 857 if (r < 0) { 858 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 859 __func__, strerror(-r)); 860 abort(); 861 } 862 } 863 864 static void kvm_io_ioeventfd_del(MemoryListener *listener, 865 MemoryRegionSection *section, 866 bool match_data, uint64_t data, 867 EventNotifier *e) 868 869 { 870 int fd = event_notifier_get_fd(e); 871 int r; 872 873 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 874 data, false, int128_get64(section->size), 875 match_data); 876 if (r < 0) { 877 abort(); 878 } 879 } 880 881 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 882 AddressSpace *as, int as_id) 883 { 884 int i; 885 886 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 887 kml->as_id = as_id; 888 889 for (i = 0; i < s->nr_slots; i++) { 890 kml->slots[i].slot = i; 891 } 892 893 kml->listener.region_add = kvm_region_add; 894 kml->listener.region_del = kvm_region_del; 895 kml->listener.log_start = kvm_log_start; 896 kml->listener.log_stop = kvm_log_stop; 897 kml->listener.log_sync = kvm_log_sync; 898 kml->listener.priority = 10; 899 900 memory_listener_register(&kml->listener, as); 901 } 902 903 static MemoryListener kvm_io_listener = { 904 .eventfd_add = kvm_io_ioeventfd_add, 905 .eventfd_del = kvm_io_ioeventfd_del, 906 .priority = 10, 907 }; 908 909 int kvm_set_irq(KVMState *s, int irq, int level) 910 { 911 struct kvm_irq_level event; 912 int ret; 913 914 assert(kvm_async_interrupts_enabled()); 915 916 event.level = level; 917 event.irq = irq; 918 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 919 if (ret < 0) { 920 perror("kvm_set_irq"); 921 abort(); 922 } 923 924 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 925 } 926 927 #ifdef KVM_CAP_IRQ_ROUTING 928 typedef struct KVMMSIRoute { 929 struct kvm_irq_routing_entry kroute; 930 QTAILQ_ENTRY(KVMMSIRoute) entry; 931 } KVMMSIRoute; 932 933 static void set_gsi(KVMState *s, unsigned int gsi) 934 { 935 set_bit(gsi, s->used_gsi_bitmap); 936 } 937 938 static void clear_gsi(KVMState *s, unsigned int gsi) 939 { 940 clear_bit(gsi, s->used_gsi_bitmap); 941 } 942 943 void kvm_init_irq_routing(KVMState *s) 944 { 945 int gsi_count, i; 946 947 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 948 if (gsi_count > 0) { 949 /* Round up so we can search ints using ffs */ 950 s->used_gsi_bitmap = bitmap_new(gsi_count); 951 s->gsi_count = gsi_count; 952 } 953 954 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 955 s->nr_allocated_irq_routes = 0; 956 957 if (!kvm_direct_msi_allowed) { 958 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 959 QTAILQ_INIT(&s->msi_hashtab[i]); 960 } 961 } 962 963 kvm_arch_init_irq_routing(s); 964 } 965 966 void kvm_irqchip_commit_routes(KVMState *s) 967 { 968 int ret; 969 970 if (kvm_gsi_direct_mapping()) { 971 return; 972 } 973 974 if (!kvm_gsi_routing_enabled()) { 975 return; 976 } 977 978 s->irq_routes->flags = 0; 979 trace_kvm_irqchip_commit_routes(); 980 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 981 assert(ret == 0); 982 } 983 984 static void kvm_add_routing_entry(KVMState *s, 985 struct kvm_irq_routing_entry *entry) 986 { 987 struct kvm_irq_routing_entry *new; 988 int n, size; 989 990 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 991 n = s->nr_allocated_irq_routes * 2; 992 if (n < 64) { 993 n = 64; 994 } 995 size = sizeof(struct kvm_irq_routing); 996 size += n * sizeof(*new); 997 s->irq_routes = g_realloc(s->irq_routes, size); 998 s->nr_allocated_irq_routes = n; 999 } 1000 n = s->irq_routes->nr++; 1001 new = &s->irq_routes->entries[n]; 1002 1003 *new = *entry; 1004 1005 set_gsi(s, entry->gsi); 1006 } 1007 1008 static int kvm_update_routing_entry(KVMState *s, 1009 struct kvm_irq_routing_entry *new_entry) 1010 { 1011 struct kvm_irq_routing_entry *entry; 1012 int n; 1013 1014 for (n = 0; n < s->irq_routes->nr; n++) { 1015 entry = &s->irq_routes->entries[n]; 1016 if (entry->gsi != new_entry->gsi) { 1017 continue; 1018 } 1019 1020 if(!memcmp(entry, new_entry, sizeof *entry)) { 1021 return 0; 1022 } 1023 1024 *entry = *new_entry; 1025 1026 return 0; 1027 } 1028 1029 return -ESRCH; 1030 } 1031 1032 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1033 { 1034 struct kvm_irq_routing_entry e = {}; 1035 1036 assert(pin < s->gsi_count); 1037 1038 e.gsi = irq; 1039 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1040 e.flags = 0; 1041 e.u.irqchip.irqchip = irqchip; 1042 e.u.irqchip.pin = pin; 1043 kvm_add_routing_entry(s, &e); 1044 } 1045 1046 void kvm_irqchip_release_virq(KVMState *s, int virq) 1047 { 1048 struct kvm_irq_routing_entry *e; 1049 int i; 1050 1051 if (kvm_gsi_direct_mapping()) { 1052 return; 1053 } 1054 1055 for (i = 0; i < s->irq_routes->nr; i++) { 1056 e = &s->irq_routes->entries[i]; 1057 if (e->gsi == virq) { 1058 s->irq_routes->nr--; 1059 *e = s->irq_routes->entries[s->irq_routes->nr]; 1060 } 1061 } 1062 clear_gsi(s, virq); 1063 kvm_arch_release_virq_post(virq); 1064 trace_kvm_irqchip_release_virq(virq); 1065 } 1066 1067 static unsigned int kvm_hash_msi(uint32_t data) 1068 { 1069 /* This is optimized for IA32 MSI layout. However, no other arch shall 1070 * repeat the mistake of not providing a direct MSI injection API. */ 1071 return data & 0xff; 1072 } 1073 1074 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1075 { 1076 KVMMSIRoute *route, *next; 1077 unsigned int hash; 1078 1079 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1080 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1081 kvm_irqchip_release_virq(s, route->kroute.gsi); 1082 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1083 g_free(route); 1084 } 1085 } 1086 } 1087 1088 static int kvm_irqchip_get_virq(KVMState *s) 1089 { 1090 int next_virq; 1091 1092 /* 1093 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1094 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1095 * number can succeed even though a new route entry cannot be added. 1096 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1097 */ 1098 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1099 kvm_flush_dynamic_msi_routes(s); 1100 } 1101 1102 /* Return the lowest unused GSI in the bitmap */ 1103 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1104 if (next_virq >= s->gsi_count) { 1105 return -ENOSPC; 1106 } else { 1107 return next_virq; 1108 } 1109 } 1110 1111 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1112 { 1113 unsigned int hash = kvm_hash_msi(msg.data); 1114 KVMMSIRoute *route; 1115 1116 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1117 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1118 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1119 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1120 return route; 1121 } 1122 } 1123 return NULL; 1124 } 1125 1126 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1127 { 1128 struct kvm_msi msi; 1129 KVMMSIRoute *route; 1130 1131 if (kvm_direct_msi_allowed) { 1132 msi.address_lo = (uint32_t)msg.address; 1133 msi.address_hi = msg.address >> 32; 1134 msi.data = le32_to_cpu(msg.data); 1135 msi.flags = 0; 1136 memset(msi.pad, 0, sizeof(msi.pad)); 1137 1138 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1139 } 1140 1141 route = kvm_lookup_msi_route(s, msg); 1142 if (!route) { 1143 int virq; 1144 1145 virq = kvm_irqchip_get_virq(s); 1146 if (virq < 0) { 1147 return virq; 1148 } 1149 1150 route = g_malloc0(sizeof(KVMMSIRoute)); 1151 route->kroute.gsi = virq; 1152 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1153 route->kroute.flags = 0; 1154 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1155 route->kroute.u.msi.address_hi = msg.address >> 32; 1156 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1157 1158 kvm_add_routing_entry(s, &route->kroute); 1159 kvm_irqchip_commit_routes(s); 1160 1161 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1162 entry); 1163 } 1164 1165 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1166 1167 return kvm_set_irq(s, route->kroute.gsi, 1); 1168 } 1169 1170 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1171 { 1172 struct kvm_irq_routing_entry kroute = {}; 1173 int virq; 1174 MSIMessage msg = {0, 0}; 1175 1176 if (pci_available && dev) { 1177 msg = pci_get_msi_message(dev, vector); 1178 } 1179 1180 if (kvm_gsi_direct_mapping()) { 1181 return kvm_arch_msi_data_to_gsi(msg.data); 1182 } 1183 1184 if (!kvm_gsi_routing_enabled()) { 1185 return -ENOSYS; 1186 } 1187 1188 virq = kvm_irqchip_get_virq(s); 1189 if (virq < 0) { 1190 return virq; 1191 } 1192 1193 kroute.gsi = virq; 1194 kroute.type = KVM_IRQ_ROUTING_MSI; 1195 kroute.flags = 0; 1196 kroute.u.msi.address_lo = (uint32_t)msg.address; 1197 kroute.u.msi.address_hi = msg.address >> 32; 1198 kroute.u.msi.data = le32_to_cpu(msg.data); 1199 if (pci_available && kvm_msi_devid_required()) { 1200 kroute.flags = KVM_MSI_VALID_DEVID; 1201 kroute.u.msi.devid = pci_requester_id(dev); 1202 } 1203 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1204 kvm_irqchip_release_virq(s, virq); 1205 return -EINVAL; 1206 } 1207 1208 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1209 vector, virq); 1210 1211 kvm_add_routing_entry(s, &kroute); 1212 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1213 kvm_irqchip_commit_routes(s); 1214 1215 return virq; 1216 } 1217 1218 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1219 PCIDevice *dev) 1220 { 1221 struct kvm_irq_routing_entry kroute = {}; 1222 1223 if (kvm_gsi_direct_mapping()) { 1224 return 0; 1225 } 1226 1227 if (!kvm_irqchip_in_kernel()) { 1228 return -ENOSYS; 1229 } 1230 1231 kroute.gsi = virq; 1232 kroute.type = KVM_IRQ_ROUTING_MSI; 1233 kroute.flags = 0; 1234 kroute.u.msi.address_lo = (uint32_t)msg.address; 1235 kroute.u.msi.address_hi = msg.address >> 32; 1236 kroute.u.msi.data = le32_to_cpu(msg.data); 1237 if (pci_available && kvm_msi_devid_required()) { 1238 kroute.flags = KVM_MSI_VALID_DEVID; 1239 kroute.u.msi.devid = pci_requester_id(dev); 1240 } 1241 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1242 return -EINVAL; 1243 } 1244 1245 trace_kvm_irqchip_update_msi_route(virq); 1246 1247 return kvm_update_routing_entry(s, &kroute); 1248 } 1249 1250 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1251 bool assign) 1252 { 1253 struct kvm_irqfd irqfd = { 1254 .fd = fd, 1255 .gsi = virq, 1256 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1257 }; 1258 1259 if (rfd != -1) { 1260 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1261 irqfd.resamplefd = rfd; 1262 } 1263 1264 if (!kvm_irqfds_enabled()) { 1265 return -ENOSYS; 1266 } 1267 1268 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1269 } 1270 1271 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1272 { 1273 struct kvm_irq_routing_entry kroute = {}; 1274 int virq; 1275 1276 if (!kvm_gsi_routing_enabled()) { 1277 return -ENOSYS; 1278 } 1279 1280 virq = kvm_irqchip_get_virq(s); 1281 if (virq < 0) { 1282 return virq; 1283 } 1284 1285 kroute.gsi = virq; 1286 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1287 kroute.flags = 0; 1288 kroute.u.adapter.summary_addr = adapter->summary_addr; 1289 kroute.u.adapter.ind_addr = adapter->ind_addr; 1290 kroute.u.adapter.summary_offset = adapter->summary_offset; 1291 kroute.u.adapter.ind_offset = adapter->ind_offset; 1292 kroute.u.adapter.adapter_id = adapter->adapter_id; 1293 1294 kvm_add_routing_entry(s, &kroute); 1295 1296 return virq; 1297 } 1298 1299 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1300 { 1301 struct kvm_irq_routing_entry kroute = {}; 1302 int virq; 1303 1304 if (!kvm_gsi_routing_enabled()) { 1305 return -ENOSYS; 1306 } 1307 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1308 return -ENOSYS; 1309 } 1310 virq = kvm_irqchip_get_virq(s); 1311 if (virq < 0) { 1312 return virq; 1313 } 1314 1315 kroute.gsi = virq; 1316 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1317 kroute.flags = 0; 1318 kroute.u.hv_sint.vcpu = vcpu; 1319 kroute.u.hv_sint.sint = sint; 1320 1321 kvm_add_routing_entry(s, &kroute); 1322 kvm_irqchip_commit_routes(s); 1323 1324 return virq; 1325 } 1326 1327 #else /* !KVM_CAP_IRQ_ROUTING */ 1328 1329 void kvm_init_irq_routing(KVMState *s) 1330 { 1331 } 1332 1333 void kvm_irqchip_release_virq(KVMState *s, int virq) 1334 { 1335 } 1336 1337 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1338 { 1339 abort(); 1340 } 1341 1342 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1343 { 1344 return -ENOSYS; 1345 } 1346 1347 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1348 { 1349 return -ENOSYS; 1350 } 1351 1352 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1353 { 1354 return -ENOSYS; 1355 } 1356 1357 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1358 { 1359 abort(); 1360 } 1361 1362 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1363 { 1364 return -ENOSYS; 1365 } 1366 #endif /* !KVM_CAP_IRQ_ROUTING */ 1367 1368 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1369 EventNotifier *rn, int virq) 1370 { 1371 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1372 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1373 } 1374 1375 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1376 int virq) 1377 { 1378 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1379 false); 1380 } 1381 1382 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1383 EventNotifier *rn, qemu_irq irq) 1384 { 1385 gpointer key, gsi; 1386 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1387 1388 if (!found) { 1389 return -ENXIO; 1390 } 1391 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1392 } 1393 1394 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1395 qemu_irq irq) 1396 { 1397 gpointer key, gsi; 1398 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1399 1400 if (!found) { 1401 return -ENXIO; 1402 } 1403 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1404 } 1405 1406 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1407 { 1408 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1409 } 1410 1411 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1412 { 1413 int ret; 1414 1415 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1416 ; 1417 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1418 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1419 if (ret < 0) { 1420 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1421 exit(1); 1422 } 1423 } else { 1424 return; 1425 } 1426 1427 /* First probe and see if there's a arch-specific hook to create the 1428 * in-kernel irqchip for us */ 1429 ret = kvm_arch_irqchip_create(machine, s); 1430 if (ret == 0) { 1431 if (machine_kernel_irqchip_split(machine)) { 1432 perror("Split IRQ chip mode not supported."); 1433 exit(1); 1434 } else { 1435 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1436 } 1437 } 1438 if (ret < 0) { 1439 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1440 exit(1); 1441 } 1442 1443 kvm_kernel_irqchip = true; 1444 /* If we have an in-kernel IRQ chip then we must have asynchronous 1445 * interrupt delivery (though the reverse is not necessarily true) 1446 */ 1447 kvm_async_interrupts_allowed = true; 1448 kvm_halt_in_kernel_allowed = true; 1449 1450 kvm_init_irq_routing(s); 1451 1452 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1453 } 1454 1455 /* Find number of supported CPUs using the recommended 1456 * procedure from the kernel API documentation to cope with 1457 * older kernels that may be missing capabilities. 1458 */ 1459 static int kvm_recommended_vcpus(KVMState *s) 1460 { 1461 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1462 return (ret) ? ret : 4; 1463 } 1464 1465 static int kvm_max_vcpus(KVMState *s) 1466 { 1467 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1468 return (ret) ? ret : kvm_recommended_vcpus(s); 1469 } 1470 1471 static int kvm_max_vcpu_id(KVMState *s) 1472 { 1473 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1474 return (ret) ? ret : kvm_max_vcpus(s); 1475 } 1476 1477 bool kvm_vcpu_id_is_valid(int vcpu_id) 1478 { 1479 KVMState *s = KVM_STATE(current_machine->accelerator); 1480 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1481 } 1482 1483 static int kvm_init(MachineState *ms) 1484 { 1485 MachineClass *mc = MACHINE_GET_CLASS(ms); 1486 static const char upgrade_note[] = 1487 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1488 "(see http://sourceforge.net/projects/kvm).\n"; 1489 struct { 1490 const char *name; 1491 int num; 1492 } num_cpus[] = { 1493 { "SMP", smp_cpus }, 1494 { "hotpluggable", max_cpus }, 1495 { NULL, } 1496 }, *nc = num_cpus; 1497 int soft_vcpus_limit, hard_vcpus_limit; 1498 KVMState *s; 1499 const KVMCapabilityInfo *missing_cap; 1500 int ret; 1501 int type = 0; 1502 const char *kvm_type; 1503 1504 s = KVM_STATE(ms->accelerator); 1505 1506 /* 1507 * On systems where the kernel can support different base page 1508 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1509 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1510 * page size for the system though. 1511 */ 1512 assert(TARGET_PAGE_SIZE <= getpagesize()); 1513 1514 s->sigmask_len = 8; 1515 1516 #ifdef KVM_CAP_SET_GUEST_DEBUG 1517 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1518 #endif 1519 QLIST_INIT(&s->kvm_parked_vcpus); 1520 s->vmfd = -1; 1521 s->fd = qemu_open("/dev/kvm", O_RDWR); 1522 if (s->fd == -1) { 1523 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1524 ret = -errno; 1525 goto err; 1526 } 1527 1528 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1529 if (ret < KVM_API_VERSION) { 1530 if (ret >= 0) { 1531 ret = -EINVAL; 1532 } 1533 fprintf(stderr, "kvm version too old\n"); 1534 goto err; 1535 } 1536 1537 if (ret > KVM_API_VERSION) { 1538 ret = -EINVAL; 1539 fprintf(stderr, "kvm version not supported\n"); 1540 goto err; 1541 } 1542 1543 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1544 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1545 1546 /* If unspecified, use the default value */ 1547 if (!s->nr_slots) { 1548 s->nr_slots = 32; 1549 } 1550 1551 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1552 if (mc->kvm_type) { 1553 type = mc->kvm_type(kvm_type); 1554 } else if (kvm_type) { 1555 ret = -EINVAL; 1556 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1557 goto err; 1558 } 1559 1560 do { 1561 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1562 } while (ret == -EINTR); 1563 1564 if (ret < 0) { 1565 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1566 strerror(-ret)); 1567 1568 #ifdef TARGET_S390X 1569 if (ret == -EINVAL) { 1570 fprintf(stderr, 1571 "Host kernel setup problem detected. Please verify:\n"); 1572 fprintf(stderr, "- for kernels supporting the switch_amode or" 1573 " user_mode parameters, whether\n"); 1574 fprintf(stderr, 1575 " user space is running in primary address space\n"); 1576 fprintf(stderr, 1577 "- for kernels supporting the vm.allocate_pgste sysctl, " 1578 "whether it is enabled\n"); 1579 } 1580 #endif 1581 goto err; 1582 } 1583 1584 s->vmfd = ret; 1585 1586 /* check the vcpu limits */ 1587 soft_vcpus_limit = kvm_recommended_vcpus(s); 1588 hard_vcpus_limit = kvm_max_vcpus(s); 1589 1590 while (nc->name) { 1591 if (nc->num > soft_vcpus_limit) { 1592 warn_report("Number of %s cpus requested (%d) exceeds " 1593 "the recommended cpus supported by KVM (%d)", 1594 nc->name, nc->num, soft_vcpus_limit); 1595 1596 if (nc->num > hard_vcpus_limit) { 1597 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1598 "the maximum cpus supported by KVM (%d)\n", 1599 nc->name, nc->num, hard_vcpus_limit); 1600 exit(1); 1601 } 1602 } 1603 nc++; 1604 } 1605 1606 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1607 if (!missing_cap) { 1608 missing_cap = 1609 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1610 } 1611 if (missing_cap) { 1612 ret = -EINVAL; 1613 fprintf(stderr, "kvm does not support %s\n%s", 1614 missing_cap->name, upgrade_note); 1615 goto err; 1616 } 1617 1618 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1619 1620 #ifdef KVM_CAP_VCPU_EVENTS 1621 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1622 #endif 1623 1624 s->robust_singlestep = 1625 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1626 1627 #ifdef KVM_CAP_DEBUGREGS 1628 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1629 #endif 1630 1631 #ifdef KVM_CAP_IRQ_ROUTING 1632 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1633 #endif 1634 1635 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1636 1637 s->irq_set_ioctl = KVM_IRQ_LINE; 1638 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1639 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1640 } 1641 1642 #ifdef KVM_CAP_READONLY_MEM 1643 kvm_readonly_mem_allowed = 1644 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1645 #endif 1646 1647 kvm_eventfds_allowed = 1648 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1649 1650 kvm_irqfds_allowed = 1651 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1652 1653 kvm_resamplefds_allowed = 1654 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1655 1656 kvm_vm_attributes_allowed = 1657 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1658 1659 kvm_ioeventfd_any_length_allowed = 1660 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1661 1662 kvm_state = s; 1663 1664 /* 1665 * if memory encryption object is specified then initialize the memory 1666 * encryption context. 1667 */ 1668 if (ms->memory_encryption) { 1669 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 1670 if (!kvm_state->memcrypt_handle) { 1671 ret = -1; 1672 goto err; 1673 } 1674 1675 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 1676 } 1677 1678 ret = kvm_arch_init(ms, s); 1679 if (ret < 0) { 1680 goto err; 1681 } 1682 1683 if (machine_kernel_irqchip_allowed(ms)) { 1684 kvm_irqchip_create(ms, s); 1685 } 1686 1687 if (kvm_eventfds_allowed) { 1688 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1689 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1690 } 1691 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; 1692 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; 1693 1694 kvm_memory_listener_register(s, &s->memory_listener, 1695 &address_space_memory, 0); 1696 memory_listener_register(&kvm_io_listener, 1697 &address_space_io); 1698 1699 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1700 1701 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 1702 1703 return 0; 1704 1705 err: 1706 assert(ret < 0); 1707 if (s->vmfd >= 0) { 1708 close(s->vmfd); 1709 } 1710 if (s->fd != -1) { 1711 close(s->fd); 1712 } 1713 g_free(s->memory_listener.slots); 1714 1715 return ret; 1716 } 1717 1718 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1719 { 1720 s->sigmask_len = sigmask_len; 1721 } 1722 1723 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1724 int size, uint32_t count) 1725 { 1726 int i; 1727 uint8_t *ptr = data; 1728 1729 for (i = 0; i < count; i++) { 1730 address_space_rw(&address_space_io, port, attrs, 1731 ptr, size, 1732 direction == KVM_EXIT_IO_OUT); 1733 ptr += size; 1734 } 1735 } 1736 1737 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1738 { 1739 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1740 run->internal.suberror); 1741 1742 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1743 int i; 1744 1745 for (i = 0; i < run->internal.ndata; ++i) { 1746 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1747 i, (uint64_t)run->internal.data[i]); 1748 } 1749 } 1750 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1751 fprintf(stderr, "emulation failure\n"); 1752 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1753 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 1754 return EXCP_INTERRUPT; 1755 } 1756 } 1757 /* FIXME: Should trigger a qmp message to let management know 1758 * something went wrong. 1759 */ 1760 return -1; 1761 } 1762 1763 void kvm_flush_coalesced_mmio_buffer(void) 1764 { 1765 KVMState *s = kvm_state; 1766 1767 if (s->coalesced_flush_in_progress) { 1768 return; 1769 } 1770 1771 s->coalesced_flush_in_progress = true; 1772 1773 if (s->coalesced_mmio_ring) { 1774 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1775 while (ring->first != ring->last) { 1776 struct kvm_coalesced_mmio *ent; 1777 1778 ent = &ring->coalesced_mmio[ring->first]; 1779 1780 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1781 smp_wmb(); 1782 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1783 } 1784 } 1785 1786 s->coalesced_flush_in_progress = false; 1787 } 1788 1789 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1790 { 1791 if (!cpu->vcpu_dirty) { 1792 kvm_arch_get_registers(cpu); 1793 cpu->vcpu_dirty = true; 1794 } 1795 } 1796 1797 void kvm_cpu_synchronize_state(CPUState *cpu) 1798 { 1799 if (!cpu->vcpu_dirty) { 1800 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1801 } 1802 } 1803 1804 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1805 { 1806 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1807 cpu->vcpu_dirty = false; 1808 } 1809 1810 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1811 { 1812 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1813 } 1814 1815 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1816 { 1817 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1818 cpu->vcpu_dirty = false; 1819 } 1820 1821 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1822 { 1823 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1824 } 1825 1826 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1827 { 1828 cpu->vcpu_dirty = true; 1829 } 1830 1831 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1832 { 1833 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1834 } 1835 1836 #ifdef KVM_HAVE_MCE_INJECTION 1837 static __thread void *pending_sigbus_addr; 1838 static __thread int pending_sigbus_code; 1839 static __thread bool have_sigbus_pending; 1840 #endif 1841 1842 static void kvm_cpu_kick(CPUState *cpu) 1843 { 1844 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1845 } 1846 1847 static void kvm_cpu_kick_self(void) 1848 { 1849 if (kvm_immediate_exit) { 1850 kvm_cpu_kick(current_cpu); 1851 } else { 1852 qemu_cpu_kick_self(); 1853 } 1854 } 1855 1856 static void kvm_eat_signals(CPUState *cpu) 1857 { 1858 struct timespec ts = { 0, 0 }; 1859 siginfo_t siginfo; 1860 sigset_t waitset; 1861 sigset_t chkset; 1862 int r; 1863 1864 if (kvm_immediate_exit) { 1865 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1866 /* Write kvm_run->immediate_exit before the cpu->exit_request 1867 * write in kvm_cpu_exec. 1868 */ 1869 smp_wmb(); 1870 return; 1871 } 1872 1873 sigemptyset(&waitset); 1874 sigaddset(&waitset, SIG_IPI); 1875 1876 do { 1877 r = sigtimedwait(&waitset, &siginfo, &ts); 1878 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1879 perror("sigtimedwait"); 1880 exit(1); 1881 } 1882 1883 r = sigpending(&chkset); 1884 if (r == -1) { 1885 perror("sigpending"); 1886 exit(1); 1887 } 1888 } while (sigismember(&chkset, SIG_IPI)); 1889 } 1890 1891 int kvm_cpu_exec(CPUState *cpu) 1892 { 1893 struct kvm_run *run = cpu->kvm_run; 1894 int ret, run_ret; 1895 1896 DPRINTF("kvm_cpu_exec()\n"); 1897 1898 if (kvm_arch_process_async_events(cpu)) { 1899 atomic_set(&cpu->exit_request, 0); 1900 return EXCP_HLT; 1901 } 1902 1903 qemu_mutex_unlock_iothread(); 1904 cpu_exec_start(cpu); 1905 1906 do { 1907 MemTxAttrs attrs; 1908 1909 if (cpu->vcpu_dirty) { 1910 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 1911 cpu->vcpu_dirty = false; 1912 } 1913 1914 kvm_arch_pre_run(cpu, run); 1915 if (atomic_read(&cpu->exit_request)) { 1916 DPRINTF("interrupt exit requested\n"); 1917 /* 1918 * KVM requires us to reenter the kernel after IO exits to complete 1919 * instruction emulation. This self-signal will ensure that we 1920 * leave ASAP again. 1921 */ 1922 kvm_cpu_kick_self(); 1923 } 1924 1925 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 1926 * Matching barrier in kvm_eat_signals. 1927 */ 1928 smp_rmb(); 1929 1930 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 1931 1932 attrs = kvm_arch_post_run(cpu, run); 1933 1934 #ifdef KVM_HAVE_MCE_INJECTION 1935 if (unlikely(have_sigbus_pending)) { 1936 qemu_mutex_lock_iothread(); 1937 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 1938 pending_sigbus_addr); 1939 have_sigbus_pending = false; 1940 qemu_mutex_unlock_iothread(); 1941 } 1942 #endif 1943 1944 if (run_ret < 0) { 1945 if (run_ret == -EINTR || run_ret == -EAGAIN) { 1946 DPRINTF("io window exit\n"); 1947 kvm_eat_signals(cpu); 1948 ret = EXCP_INTERRUPT; 1949 break; 1950 } 1951 fprintf(stderr, "error: kvm run failed %s\n", 1952 strerror(-run_ret)); 1953 #ifdef TARGET_PPC 1954 if (run_ret == -EBUSY) { 1955 fprintf(stderr, 1956 "This is probably because your SMT is enabled.\n" 1957 "VCPU can only run on primary threads with all " 1958 "secondary threads offline.\n"); 1959 } 1960 #endif 1961 ret = -1; 1962 break; 1963 } 1964 1965 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 1966 switch (run->exit_reason) { 1967 case KVM_EXIT_IO: 1968 DPRINTF("handle_io\n"); 1969 /* Called outside BQL */ 1970 kvm_handle_io(run->io.port, attrs, 1971 (uint8_t *)run + run->io.data_offset, 1972 run->io.direction, 1973 run->io.size, 1974 run->io.count); 1975 ret = 0; 1976 break; 1977 case KVM_EXIT_MMIO: 1978 DPRINTF("handle_mmio\n"); 1979 /* Called outside BQL */ 1980 address_space_rw(&address_space_memory, 1981 run->mmio.phys_addr, attrs, 1982 run->mmio.data, 1983 run->mmio.len, 1984 run->mmio.is_write); 1985 ret = 0; 1986 break; 1987 case KVM_EXIT_IRQ_WINDOW_OPEN: 1988 DPRINTF("irq_window_open\n"); 1989 ret = EXCP_INTERRUPT; 1990 break; 1991 case KVM_EXIT_SHUTDOWN: 1992 DPRINTF("shutdown\n"); 1993 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1994 ret = EXCP_INTERRUPT; 1995 break; 1996 case KVM_EXIT_UNKNOWN: 1997 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 1998 (uint64_t)run->hw.hardware_exit_reason); 1999 ret = -1; 2000 break; 2001 case KVM_EXIT_INTERNAL_ERROR: 2002 ret = kvm_handle_internal_error(cpu, run); 2003 break; 2004 case KVM_EXIT_SYSTEM_EVENT: 2005 switch (run->system_event.type) { 2006 case KVM_SYSTEM_EVENT_SHUTDOWN: 2007 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2008 ret = EXCP_INTERRUPT; 2009 break; 2010 case KVM_SYSTEM_EVENT_RESET: 2011 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2012 ret = EXCP_INTERRUPT; 2013 break; 2014 case KVM_SYSTEM_EVENT_CRASH: 2015 kvm_cpu_synchronize_state(cpu); 2016 qemu_mutex_lock_iothread(); 2017 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2018 qemu_mutex_unlock_iothread(); 2019 ret = 0; 2020 break; 2021 default: 2022 DPRINTF("kvm_arch_handle_exit\n"); 2023 ret = kvm_arch_handle_exit(cpu, run); 2024 break; 2025 } 2026 break; 2027 default: 2028 DPRINTF("kvm_arch_handle_exit\n"); 2029 ret = kvm_arch_handle_exit(cpu, run); 2030 break; 2031 } 2032 } while (ret == 0); 2033 2034 cpu_exec_end(cpu); 2035 qemu_mutex_lock_iothread(); 2036 2037 if (ret < 0) { 2038 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 2039 vm_stop(RUN_STATE_INTERNAL_ERROR); 2040 } 2041 2042 atomic_set(&cpu->exit_request, 0); 2043 return ret; 2044 } 2045 2046 int kvm_ioctl(KVMState *s, int type, ...) 2047 { 2048 int ret; 2049 void *arg; 2050 va_list ap; 2051 2052 va_start(ap, type); 2053 arg = va_arg(ap, void *); 2054 va_end(ap); 2055 2056 trace_kvm_ioctl(type, arg); 2057 ret = ioctl(s->fd, type, arg); 2058 if (ret == -1) { 2059 ret = -errno; 2060 } 2061 return ret; 2062 } 2063 2064 int kvm_vm_ioctl(KVMState *s, int type, ...) 2065 { 2066 int ret; 2067 void *arg; 2068 va_list ap; 2069 2070 va_start(ap, type); 2071 arg = va_arg(ap, void *); 2072 va_end(ap); 2073 2074 trace_kvm_vm_ioctl(type, arg); 2075 ret = ioctl(s->vmfd, type, arg); 2076 if (ret == -1) { 2077 ret = -errno; 2078 } 2079 return ret; 2080 } 2081 2082 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2083 { 2084 int ret; 2085 void *arg; 2086 va_list ap; 2087 2088 va_start(ap, type); 2089 arg = va_arg(ap, void *); 2090 va_end(ap); 2091 2092 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2093 ret = ioctl(cpu->kvm_fd, type, arg); 2094 if (ret == -1) { 2095 ret = -errno; 2096 } 2097 return ret; 2098 } 2099 2100 int kvm_device_ioctl(int fd, int type, ...) 2101 { 2102 int ret; 2103 void *arg; 2104 va_list ap; 2105 2106 va_start(ap, type); 2107 arg = va_arg(ap, void *); 2108 va_end(ap); 2109 2110 trace_kvm_device_ioctl(fd, type, arg); 2111 ret = ioctl(fd, type, arg); 2112 if (ret == -1) { 2113 ret = -errno; 2114 } 2115 return ret; 2116 } 2117 2118 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2119 { 2120 int ret; 2121 struct kvm_device_attr attribute = { 2122 .group = group, 2123 .attr = attr, 2124 }; 2125 2126 if (!kvm_vm_attributes_allowed) { 2127 return 0; 2128 } 2129 2130 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2131 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2132 return ret ? 0 : 1; 2133 } 2134 2135 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2136 { 2137 struct kvm_device_attr attribute = { 2138 .group = group, 2139 .attr = attr, 2140 .flags = 0, 2141 }; 2142 2143 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2144 } 2145 2146 int kvm_device_access(int fd, int group, uint64_t attr, 2147 void *val, bool write, Error **errp) 2148 { 2149 struct kvm_device_attr kvmattr; 2150 int err; 2151 2152 kvmattr.flags = 0; 2153 kvmattr.group = group; 2154 kvmattr.attr = attr; 2155 kvmattr.addr = (uintptr_t)val; 2156 2157 err = kvm_device_ioctl(fd, 2158 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2159 &kvmattr); 2160 if (err < 0) { 2161 error_setg_errno(errp, -err, 2162 "KVM_%s_DEVICE_ATTR failed: Group %d " 2163 "attr 0x%016" PRIx64, 2164 write ? "SET" : "GET", group, attr); 2165 } 2166 return err; 2167 } 2168 2169 bool kvm_has_sync_mmu(void) 2170 { 2171 return kvm_state->sync_mmu; 2172 } 2173 2174 int kvm_has_vcpu_events(void) 2175 { 2176 return kvm_state->vcpu_events; 2177 } 2178 2179 int kvm_has_robust_singlestep(void) 2180 { 2181 return kvm_state->robust_singlestep; 2182 } 2183 2184 int kvm_has_debugregs(void) 2185 { 2186 return kvm_state->debugregs; 2187 } 2188 2189 int kvm_has_many_ioeventfds(void) 2190 { 2191 if (!kvm_enabled()) { 2192 return 0; 2193 } 2194 return kvm_state->many_ioeventfds; 2195 } 2196 2197 int kvm_has_gsi_routing(void) 2198 { 2199 #ifdef KVM_CAP_IRQ_ROUTING 2200 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2201 #else 2202 return false; 2203 #endif 2204 } 2205 2206 int kvm_has_intx_set_mask(void) 2207 { 2208 return kvm_state->intx_set_mask; 2209 } 2210 2211 bool kvm_arm_supports_user_irq(void) 2212 { 2213 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2214 } 2215 2216 #ifdef KVM_CAP_SET_GUEST_DEBUG 2217 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2218 target_ulong pc) 2219 { 2220 struct kvm_sw_breakpoint *bp; 2221 2222 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2223 if (bp->pc == pc) { 2224 return bp; 2225 } 2226 } 2227 return NULL; 2228 } 2229 2230 int kvm_sw_breakpoints_active(CPUState *cpu) 2231 { 2232 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2233 } 2234 2235 struct kvm_set_guest_debug_data { 2236 struct kvm_guest_debug dbg; 2237 int err; 2238 }; 2239 2240 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2241 { 2242 struct kvm_set_guest_debug_data *dbg_data = 2243 (struct kvm_set_guest_debug_data *) data.host_ptr; 2244 2245 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2246 &dbg_data->dbg); 2247 } 2248 2249 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2250 { 2251 struct kvm_set_guest_debug_data data; 2252 2253 data.dbg.control = reinject_trap; 2254 2255 if (cpu->singlestep_enabled) { 2256 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2257 } 2258 kvm_arch_update_guest_debug(cpu, &data.dbg); 2259 2260 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2261 RUN_ON_CPU_HOST_PTR(&data)); 2262 return data.err; 2263 } 2264 2265 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2266 target_ulong len, int type) 2267 { 2268 struct kvm_sw_breakpoint *bp; 2269 int err; 2270 2271 if (type == GDB_BREAKPOINT_SW) { 2272 bp = kvm_find_sw_breakpoint(cpu, addr); 2273 if (bp) { 2274 bp->use_count++; 2275 return 0; 2276 } 2277 2278 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2279 bp->pc = addr; 2280 bp->use_count = 1; 2281 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2282 if (err) { 2283 g_free(bp); 2284 return err; 2285 } 2286 2287 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2288 } else { 2289 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2290 if (err) { 2291 return err; 2292 } 2293 } 2294 2295 CPU_FOREACH(cpu) { 2296 err = kvm_update_guest_debug(cpu, 0); 2297 if (err) { 2298 return err; 2299 } 2300 } 2301 return 0; 2302 } 2303 2304 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2305 target_ulong len, int type) 2306 { 2307 struct kvm_sw_breakpoint *bp; 2308 int err; 2309 2310 if (type == GDB_BREAKPOINT_SW) { 2311 bp = kvm_find_sw_breakpoint(cpu, addr); 2312 if (!bp) { 2313 return -ENOENT; 2314 } 2315 2316 if (bp->use_count > 1) { 2317 bp->use_count--; 2318 return 0; 2319 } 2320 2321 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2322 if (err) { 2323 return err; 2324 } 2325 2326 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2327 g_free(bp); 2328 } else { 2329 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2330 if (err) { 2331 return err; 2332 } 2333 } 2334 2335 CPU_FOREACH(cpu) { 2336 err = kvm_update_guest_debug(cpu, 0); 2337 if (err) { 2338 return err; 2339 } 2340 } 2341 return 0; 2342 } 2343 2344 void kvm_remove_all_breakpoints(CPUState *cpu) 2345 { 2346 struct kvm_sw_breakpoint *bp, *next; 2347 KVMState *s = cpu->kvm_state; 2348 CPUState *tmpcpu; 2349 2350 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2351 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2352 /* Try harder to find a CPU that currently sees the breakpoint. */ 2353 CPU_FOREACH(tmpcpu) { 2354 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2355 break; 2356 } 2357 } 2358 } 2359 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2360 g_free(bp); 2361 } 2362 kvm_arch_remove_all_hw_breakpoints(); 2363 2364 CPU_FOREACH(cpu) { 2365 kvm_update_guest_debug(cpu, 0); 2366 } 2367 } 2368 2369 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2370 2371 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2372 { 2373 return -EINVAL; 2374 } 2375 2376 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2377 target_ulong len, int type) 2378 { 2379 return -EINVAL; 2380 } 2381 2382 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2383 target_ulong len, int type) 2384 { 2385 return -EINVAL; 2386 } 2387 2388 void kvm_remove_all_breakpoints(CPUState *cpu) 2389 { 2390 } 2391 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2392 2393 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2394 { 2395 KVMState *s = kvm_state; 2396 struct kvm_signal_mask *sigmask; 2397 int r; 2398 2399 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2400 2401 sigmask->len = s->sigmask_len; 2402 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2403 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2404 g_free(sigmask); 2405 2406 return r; 2407 } 2408 2409 static void kvm_ipi_signal(int sig) 2410 { 2411 if (current_cpu) { 2412 assert(kvm_immediate_exit); 2413 kvm_cpu_kick(current_cpu); 2414 } 2415 } 2416 2417 void kvm_init_cpu_signals(CPUState *cpu) 2418 { 2419 int r; 2420 sigset_t set; 2421 struct sigaction sigact; 2422 2423 memset(&sigact, 0, sizeof(sigact)); 2424 sigact.sa_handler = kvm_ipi_signal; 2425 sigaction(SIG_IPI, &sigact, NULL); 2426 2427 pthread_sigmask(SIG_BLOCK, NULL, &set); 2428 #if defined KVM_HAVE_MCE_INJECTION 2429 sigdelset(&set, SIGBUS); 2430 pthread_sigmask(SIG_SETMASK, &set, NULL); 2431 #endif 2432 sigdelset(&set, SIG_IPI); 2433 if (kvm_immediate_exit) { 2434 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2435 } else { 2436 r = kvm_set_signal_mask(cpu, &set); 2437 } 2438 if (r) { 2439 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2440 exit(1); 2441 } 2442 } 2443 2444 /* Called asynchronously in VCPU thread. */ 2445 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2446 { 2447 #ifdef KVM_HAVE_MCE_INJECTION 2448 if (have_sigbus_pending) { 2449 return 1; 2450 } 2451 have_sigbus_pending = true; 2452 pending_sigbus_addr = addr; 2453 pending_sigbus_code = code; 2454 atomic_set(&cpu->exit_request, 1); 2455 return 0; 2456 #else 2457 return 1; 2458 #endif 2459 } 2460 2461 /* Called synchronously (via signalfd) in main thread. */ 2462 int kvm_on_sigbus(int code, void *addr) 2463 { 2464 #ifdef KVM_HAVE_MCE_INJECTION 2465 /* Action required MCE kills the process if SIGBUS is blocked. Because 2466 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2467 * we can only get action optional here. 2468 */ 2469 assert(code != BUS_MCEERR_AR); 2470 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2471 return 0; 2472 #else 2473 return 1; 2474 #endif 2475 } 2476 2477 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2478 { 2479 int ret; 2480 struct kvm_create_device create_dev; 2481 2482 create_dev.type = type; 2483 create_dev.fd = -1; 2484 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2485 2486 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2487 return -ENOTSUP; 2488 } 2489 2490 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2491 if (ret) { 2492 return ret; 2493 } 2494 2495 return test ? 0 : create_dev.fd; 2496 } 2497 2498 bool kvm_device_supported(int vmfd, uint64_t type) 2499 { 2500 struct kvm_create_device create_dev = { 2501 .type = type, 2502 .fd = -1, 2503 .flags = KVM_CREATE_DEVICE_TEST, 2504 }; 2505 2506 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2507 return false; 2508 } 2509 2510 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2511 } 2512 2513 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2514 { 2515 struct kvm_one_reg reg; 2516 int r; 2517 2518 reg.id = id; 2519 reg.addr = (uintptr_t) source; 2520 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2521 if (r) { 2522 trace_kvm_failed_reg_set(id, strerror(-r)); 2523 } 2524 return r; 2525 } 2526 2527 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2528 { 2529 struct kvm_one_reg reg; 2530 int r; 2531 2532 reg.id = id; 2533 reg.addr = (uintptr_t) target; 2534 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2535 if (r) { 2536 trace_kvm_failed_reg_get(id, strerror(-r)); 2537 } 2538 return r; 2539 } 2540 2541 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2542 { 2543 AccelClass *ac = ACCEL_CLASS(oc); 2544 ac->name = "KVM"; 2545 ac->init_machine = kvm_init; 2546 ac->allowed = &kvm_allowed; 2547 } 2548 2549 static const TypeInfo kvm_accel_type = { 2550 .name = TYPE_KVM_ACCEL, 2551 .parent = TYPE_ACCEL, 2552 .class_init = kvm_accel_class_init, 2553 .instance_size = sizeof(KVMState), 2554 }; 2555 2556 static void kvm_type_init(void) 2557 { 2558 type_register_static(&kvm_accel_type); 2559 } 2560 2561 type_init(kvm_type_init); 2562