1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 struct KVMParkedVcpu { 73 unsigned long vcpu_id; 74 int kvm_fd; 75 QLIST_ENTRY(KVMParkedVcpu) node; 76 }; 77 78 KVMState *kvm_state; 79 bool kvm_kernel_irqchip; 80 bool kvm_split_irqchip; 81 bool kvm_async_interrupts_allowed; 82 bool kvm_halt_in_kernel_allowed; 83 bool kvm_resamplefds_allowed; 84 bool kvm_msi_via_irqfd_allowed; 85 bool kvm_gsi_routing_allowed; 86 bool kvm_gsi_direct_mapping; 87 bool kvm_allowed; 88 bool kvm_readonly_mem_allowed; 89 bool kvm_vm_attributes_allowed; 90 bool kvm_msi_use_devid; 91 static bool kvm_has_guest_debug; 92 static int kvm_sstep_flags; 93 static bool kvm_immediate_exit; 94 static uint64_t kvm_supported_memory_attributes; 95 static bool kvm_guest_memfd_supported; 96 static hwaddr kvm_max_slot_size = ~0; 97 98 static const KVMCapabilityInfo kvm_required_capabilites[] = { 99 KVM_CAP_INFO(USER_MEMORY), 100 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 101 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 102 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 103 KVM_CAP_INFO(IOEVENTFD), 104 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 105 KVM_CAP_LAST_INFO 106 }; 107 108 static NotifierList kvm_irqchip_change_notifiers = 109 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 110 111 struct KVMResampleFd { 112 int gsi; 113 EventNotifier *resample_event; 114 QLIST_ENTRY(KVMResampleFd) node; 115 }; 116 typedef struct KVMResampleFd KVMResampleFd; 117 118 /* 119 * Only used with split irqchip where we need to do the resample fd 120 * kick for the kernel from userspace. 121 */ 122 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 123 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 124 125 static QemuMutex kml_slots_lock; 126 127 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 128 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 129 130 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 131 132 static inline void kvm_resample_fd_remove(int gsi) 133 { 134 KVMResampleFd *rfd; 135 136 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 137 if (rfd->gsi == gsi) { 138 QLIST_REMOVE(rfd, node); 139 g_free(rfd); 140 break; 141 } 142 } 143 } 144 145 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 146 { 147 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 148 149 rfd->gsi = gsi; 150 rfd->resample_event = event; 151 152 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 153 } 154 155 void kvm_resample_fd_notify(int gsi) 156 { 157 KVMResampleFd *rfd; 158 159 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 160 if (rfd->gsi == gsi) { 161 event_notifier_set(rfd->resample_event); 162 trace_kvm_resample_fd_notify(gsi); 163 return; 164 } 165 } 166 } 167 168 unsigned int kvm_get_max_memslots(void) 169 { 170 KVMState *s = KVM_STATE(current_accel()); 171 172 return s->nr_slots; 173 } 174 175 unsigned int kvm_get_free_memslots(void) 176 { 177 unsigned int used_slots = 0; 178 KVMState *s = kvm_state; 179 int i; 180 181 kvm_slots_lock(); 182 for (i = 0; i < s->nr_as; i++) { 183 if (!s->as[i].ml) { 184 continue; 185 } 186 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); 187 } 188 kvm_slots_unlock(); 189 190 return s->nr_slots - used_slots; 191 } 192 193 /* Called with KVMMemoryListener.slots_lock held */ 194 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 195 { 196 KVMState *s = kvm_state; 197 int i; 198 199 for (i = 0; i < s->nr_slots; i++) { 200 if (kml->slots[i].memory_size == 0) { 201 return &kml->slots[i]; 202 } 203 } 204 205 return NULL; 206 } 207 208 /* Called with KVMMemoryListener.slots_lock held */ 209 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 210 { 211 KVMSlot *slot = kvm_get_free_slot(kml); 212 213 if (slot) { 214 return slot; 215 } 216 217 fprintf(stderr, "%s: no free slot available\n", __func__); 218 abort(); 219 } 220 221 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 222 hwaddr start_addr, 223 hwaddr size) 224 { 225 KVMState *s = kvm_state; 226 int i; 227 228 for (i = 0; i < s->nr_slots; i++) { 229 KVMSlot *mem = &kml->slots[i]; 230 231 if (start_addr == mem->start_addr && size == mem->memory_size) { 232 return mem; 233 } 234 } 235 236 return NULL; 237 } 238 239 /* 240 * Calculate and align the start address and the size of the section. 241 * Return the size. If the size is 0, the aligned section is empty. 242 */ 243 static hwaddr kvm_align_section(MemoryRegionSection *section, 244 hwaddr *start) 245 { 246 hwaddr size = int128_get64(section->size); 247 hwaddr delta, aligned; 248 249 /* kvm works in page size chunks, but the function may be called 250 with sub-page size and unaligned start address. Pad the start 251 address to next and truncate size to previous page boundary. */ 252 aligned = ROUND_UP(section->offset_within_address_space, 253 qemu_real_host_page_size()); 254 delta = aligned - section->offset_within_address_space; 255 *start = aligned; 256 if (delta > size) { 257 return 0; 258 } 259 260 return (size - delta) & qemu_real_host_page_mask(); 261 } 262 263 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 264 hwaddr *phys_addr) 265 { 266 KVMMemoryListener *kml = &s->memory_listener; 267 int i, ret = 0; 268 269 kvm_slots_lock(); 270 for (i = 0; i < s->nr_slots; i++) { 271 KVMSlot *mem = &kml->slots[i]; 272 273 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 274 *phys_addr = mem->start_addr + (ram - mem->ram); 275 ret = 1; 276 break; 277 } 278 } 279 kvm_slots_unlock(); 280 281 return ret; 282 } 283 284 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 285 { 286 KVMState *s = kvm_state; 287 struct kvm_userspace_memory_region2 mem; 288 int ret; 289 290 mem.slot = slot->slot | (kml->as_id << 16); 291 mem.guest_phys_addr = slot->start_addr; 292 mem.userspace_addr = (unsigned long)slot->ram; 293 mem.flags = slot->flags; 294 mem.guest_memfd = slot->guest_memfd; 295 mem.guest_memfd_offset = slot->guest_memfd_offset; 296 297 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 298 /* Set the slot size to 0 before setting the slot to the desired 299 * value. This is needed based on KVM commit 75d61fbc. */ 300 mem.memory_size = 0; 301 302 if (kvm_guest_memfd_supported) { 303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 304 } else { 305 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 306 } 307 if (ret < 0) { 308 goto err; 309 } 310 } 311 mem.memory_size = slot->memory_size; 312 if (kvm_guest_memfd_supported) { 313 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 314 } else { 315 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 316 } 317 slot->old_flags = mem.flags; 318 err: 319 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 320 mem.guest_phys_addr, mem.memory_size, 321 mem.userspace_addr, mem.guest_memfd, 322 mem.guest_memfd_offset, ret); 323 if (ret < 0) { 324 if (kvm_guest_memfd_supported) { 325 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 326 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 327 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 328 " guest_memfd_offset=0x%" PRIx64 ": %s", 329 __func__, mem.slot, slot->start_addr, 330 (uint64_t)mem.memory_size, mem.flags, 331 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 332 strerror(errno)); 333 } else { 334 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 335 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 336 __func__, mem.slot, slot->start_addr, 337 (uint64_t)mem.memory_size, strerror(errno)); 338 } 339 } 340 return ret; 341 } 342 343 void kvm_park_vcpu(CPUState *cpu) 344 { 345 struct KVMParkedVcpu *vcpu; 346 347 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 348 349 vcpu = g_malloc0(sizeof(*vcpu)); 350 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 351 vcpu->kvm_fd = cpu->kvm_fd; 352 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 353 } 354 355 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 356 { 357 struct KVMParkedVcpu *cpu; 358 int kvm_fd = -ENOENT; 359 360 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 361 if (cpu->vcpu_id == vcpu_id) { 362 QLIST_REMOVE(cpu, node); 363 kvm_fd = cpu->kvm_fd; 364 g_free(cpu); 365 } 366 } 367 368 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 369 370 return kvm_fd; 371 } 372 373 int kvm_create_vcpu(CPUState *cpu) 374 { 375 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 376 KVMState *s = kvm_state; 377 int kvm_fd; 378 379 /* check if the KVM vCPU already exist but is parked */ 380 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 381 if (kvm_fd < 0) { 382 /* vCPU not parked: create a new KVM vCPU */ 383 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 384 if (kvm_fd < 0) { 385 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 386 return kvm_fd; 387 } 388 } 389 390 cpu->kvm_fd = kvm_fd; 391 cpu->kvm_state = s; 392 cpu->vcpu_dirty = true; 393 cpu->dirty_pages = 0; 394 cpu->throttle_us_per_full = 0; 395 396 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 397 398 return 0; 399 } 400 401 static int do_kvm_destroy_vcpu(CPUState *cpu) 402 { 403 KVMState *s = kvm_state; 404 long mmap_size; 405 int ret = 0; 406 407 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 408 409 ret = kvm_arch_destroy_vcpu(cpu); 410 if (ret < 0) { 411 goto err; 412 } 413 414 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 415 if (mmap_size < 0) { 416 ret = mmap_size; 417 trace_kvm_failed_get_vcpu_mmap_size(); 418 goto err; 419 } 420 421 ret = munmap(cpu->kvm_run, mmap_size); 422 if (ret < 0) { 423 goto err; 424 } 425 426 if (cpu->kvm_dirty_gfns) { 427 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 428 if (ret < 0) { 429 goto err; 430 } 431 } 432 433 kvm_park_vcpu(cpu); 434 err: 435 return ret; 436 } 437 438 void kvm_destroy_vcpu(CPUState *cpu) 439 { 440 if (do_kvm_destroy_vcpu(cpu) < 0) { 441 error_report("kvm_destroy_vcpu failed"); 442 exit(EXIT_FAILURE); 443 } 444 } 445 446 int kvm_init_vcpu(CPUState *cpu, Error **errp) 447 { 448 KVMState *s = kvm_state; 449 long mmap_size; 450 int ret; 451 452 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 453 454 ret = kvm_create_vcpu(cpu); 455 if (ret < 0) { 456 error_setg_errno(errp, -ret, 457 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 458 kvm_arch_vcpu_id(cpu)); 459 goto err; 460 } 461 462 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 463 if (mmap_size < 0) { 464 ret = mmap_size; 465 error_setg_errno(errp, -mmap_size, 466 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 467 goto err; 468 } 469 470 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 471 cpu->kvm_fd, 0); 472 if (cpu->kvm_run == MAP_FAILED) { 473 ret = -errno; 474 error_setg_errno(errp, ret, 475 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 476 kvm_arch_vcpu_id(cpu)); 477 goto err; 478 } 479 480 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 481 s->coalesced_mmio_ring = 482 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 483 } 484 485 if (s->kvm_dirty_ring_size) { 486 /* Use MAP_SHARED to share pages with the kernel */ 487 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 488 PROT_READ | PROT_WRITE, MAP_SHARED, 489 cpu->kvm_fd, 490 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 491 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 492 ret = -errno; 493 goto err; 494 } 495 } 496 497 ret = kvm_arch_init_vcpu(cpu); 498 if (ret < 0) { 499 error_setg_errno(errp, -ret, 500 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 501 kvm_arch_vcpu_id(cpu)); 502 } 503 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 504 505 err: 506 return ret; 507 } 508 509 /* 510 * dirty pages logging control 511 */ 512 513 static int kvm_mem_flags(MemoryRegion *mr) 514 { 515 bool readonly = mr->readonly || memory_region_is_romd(mr); 516 int flags = 0; 517 518 if (memory_region_get_dirty_log_mask(mr) != 0) { 519 flags |= KVM_MEM_LOG_DIRTY_PAGES; 520 } 521 if (readonly && kvm_readonly_mem_allowed) { 522 flags |= KVM_MEM_READONLY; 523 } 524 if (memory_region_has_guest_memfd(mr)) { 525 assert(kvm_guest_memfd_supported); 526 flags |= KVM_MEM_GUEST_MEMFD; 527 } 528 return flags; 529 } 530 531 /* Called with KVMMemoryListener.slots_lock held */ 532 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 533 MemoryRegion *mr) 534 { 535 mem->flags = kvm_mem_flags(mr); 536 537 /* If nothing changed effectively, no need to issue ioctl */ 538 if (mem->flags == mem->old_flags) { 539 return 0; 540 } 541 542 kvm_slot_init_dirty_bitmap(mem); 543 return kvm_set_user_memory_region(kml, mem, false); 544 } 545 546 static int kvm_section_update_flags(KVMMemoryListener *kml, 547 MemoryRegionSection *section) 548 { 549 hwaddr start_addr, size, slot_size; 550 KVMSlot *mem; 551 int ret = 0; 552 553 size = kvm_align_section(section, &start_addr); 554 if (!size) { 555 return 0; 556 } 557 558 kvm_slots_lock(); 559 560 while (size && !ret) { 561 slot_size = MIN(kvm_max_slot_size, size); 562 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 563 if (!mem) { 564 /* We don't have a slot if we want to trap every access. */ 565 goto out; 566 } 567 568 ret = kvm_slot_update_flags(kml, mem, section->mr); 569 start_addr += slot_size; 570 size -= slot_size; 571 } 572 573 out: 574 kvm_slots_unlock(); 575 return ret; 576 } 577 578 static void kvm_log_start(MemoryListener *listener, 579 MemoryRegionSection *section, 580 int old, int new) 581 { 582 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 583 int r; 584 585 if (old != 0) { 586 return; 587 } 588 589 r = kvm_section_update_flags(kml, section); 590 if (r < 0) { 591 abort(); 592 } 593 } 594 595 static void kvm_log_stop(MemoryListener *listener, 596 MemoryRegionSection *section, 597 int old, int new) 598 { 599 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 600 int r; 601 602 if (new != 0) { 603 return; 604 } 605 606 r = kvm_section_update_flags(kml, section); 607 if (r < 0) { 608 abort(); 609 } 610 } 611 612 /* get kvm's dirty pages bitmap and update qemu's */ 613 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 614 { 615 ram_addr_t start = slot->ram_start_offset; 616 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 617 618 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 619 } 620 621 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 622 { 623 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 624 } 625 626 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 627 628 /* Allocate the dirty bitmap for a slot */ 629 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 630 { 631 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 632 return; 633 } 634 635 /* 636 * XXX bad kernel interface alert 637 * For dirty bitmap, kernel allocates array of size aligned to 638 * bits-per-long. But for case when the kernel is 64bits and 639 * the userspace is 32bits, userspace can't align to the same 640 * bits-per-long, since sizeof(long) is different between kernel 641 * and user space. This way, userspace will provide buffer which 642 * may be 4 bytes less than the kernel will use, resulting in 643 * userspace memory corruption (which is not detectable by valgrind 644 * too, in most cases). 645 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 646 * a hope that sizeof(long) won't become >8 any time soon. 647 * 648 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 649 * And mem->memory_size is aligned to it (otherwise this mem can't 650 * be registered to KVM). 651 */ 652 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 653 /*HOST_LONG_BITS*/ 64) / 8; 654 mem->dirty_bmap = g_malloc0(bitmap_size); 655 mem->dirty_bmap_size = bitmap_size; 656 } 657 658 /* 659 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 660 * succeeded, false otherwise 661 */ 662 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 663 { 664 struct kvm_dirty_log d = {}; 665 int ret; 666 667 d.dirty_bitmap = slot->dirty_bmap; 668 d.slot = slot->slot | (slot->as_id << 16); 669 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 670 671 if (ret == -ENOENT) { 672 /* kernel does not have dirty bitmap in this slot */ 673 ret = 0; 674 } 675 if (ret) { 676 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 677 __func__, ret); 678 } 679 return ret == 0; 680 } 681 682 /* Should be with all slots_lock held for the address spaces. */ 683 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 684 uint32_t slot_id, uint64_t offset) 685 { 686 KVMMemoryListener *kml; 687 KVMSlot *mem; 688 689 if (as_id >= s->nr_as) { 690 return; 691 } 692 693 kml = s->as[as_id].ml; 694 mem = &kml->slots[slot_id]; 695 696 if (!mem->memory_size || offset >= 697 (mem->memory_size / qemu_real_host_page_size())) { 698 return; 699 } 700 701 set_bit(offset, mem->dirty_bmap); 702 } 703 704 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 705 { 706 /* 707 * Read the flags before the value. Pairs with barrier in 708 * KVM's kvm_dirty_ring_push() function. 709 */ 710 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 711 } 712 713 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 714 { 715 /* 716 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 717 * sees the full content of the ring: 718 * 719 * CPU0 CPU1 CPU2 720 * ------------------------------------------------------------------------------ 721 * fill gfn0 722 * store-rel flags for gfn0 723 * load-acq flags for gfn0 724 * store-rel RESET for gfn0 725 * ioctl(RESET_RINGS) 726 * load-acq flags for gfn0 727 * check if flags have RESET 728 * 729 * The synchronization goes from CPU2 to CPU0 to CPU1. 730 */ 731 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 732 } 733 734 /* 735 * Should be with all slots_lock held for the address spaces. It returns the 736 * dirty page we've collected on this dirty ring. 737 */ 738 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 739 { 740 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 741 uint32_t ring_size = s->kvm_dirty_ring_size; 742 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 743 744 /* 745 * It's possible that we race with vcpu creation code where the vcpu is 746 * put onto the vcpus list but not yet initialized the dirty ring 747 * structures. If so, skip it. 748 */ 749 if (!cpu->created) { 750 return 0; 751 } 752 753 assert(dirty_gfns && ring_size); 754 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 755 756 while (true) { 757 cur = &dirty_gfns[fetch % ring_size]; 758 if (!dirty_gfn_is_dirtied(cur)) { 759 break; 760 } 761 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 762 cur->offset); 763 dirty_gfn_set_collected(cur); 764 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 765 fetch++; 766 count++; 767 } 768 cpu->kvm_fetch_index = fetch; 769 cpu->dirty_pages += count; 770 771 return count; 772 } 773 774 /* Must be with slots_lock held */ 775 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 776 { 777 int ret; 778 uint64_t total = 0; 779 int64_t stamp; 780 781 stamp = get_clock(); 782 783 if (cpu) { 784 total = kvm_dirty_ring_reap_one(s, cpu); 785 } else { 786 CPU_FOREACH(cpu) { 787 total += kvm_dirty_ring_reap_one(s, cpu); 788 } 789 } 790 791 if (total) { 792 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 793 assert(ret == total); 794 } 795 796 stamp = get_clock() - stamp; 797 798 if (total) { 799 trace_kvm_dirty_ring_reap(total, stamp / 1000); 800 } 801 802 return total; 803 } 804 805 /* 806 * Currently for simplicity, we must hold BQL before calling this. We can 807 * consider to drop the BQL if we're clear with all the race conditions. 808 */ 809 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 810 { 811 uint64_t total; 812 813 /* 814 * We need to lock all kvm slots for all address spaces here, 815 * because: 816 * 817 * (1) We need to mark dirty for dirty bitmaps in multiple slots 818 * and for tons of pages, so it's better to take the lock here 819 * once rather than once per page. And more importantly, 820 * 821 * (2) We must _NOT_ publish dirty bits to the other threads 822 * (e.g., the migration thread) via the kvm memory slot dirty 823 * bitmaps before correctly re-protect those dirtied pages. 824 * Otherwise we can have potential risk of data corruption if 825 * the page data is read in the other thread before we do 826 * reset below. 827 */ 828 kvm_slots_lock(); 829 total = kvm_dirty_ring_reap_locked(s, cpu); 830 kvm_slots_unlock(); 831 832 return total; 833 } 834 835 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 836 { 837 /* No need to do anything */ 838 } 839 840 /* 841 * Kick all vcpus out in a synchronized way. When returned, we 842 * guarantee that every vcpu has been kicked and at least returned to 843 * userspace once. 844 */ 845 static void kvm_cpu_synchronize_kick_all(void) 846 { 847 CPUState *cpu; 848 849 CPU_FOREACH(cpu) { 850 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 851 } 852 } 853 854 /* 855 * Flush all the existing dirty pages to the KVM slot buffers. When 856 * this call returns, we guarantee that all the touched dirty pages 857 * before calling this function have been put into the per-kvmslot 858 * dirty bitmap. 859 * 860 * This function must be called with BQL held. 861 */ 862 static void kvm_dirty_ring_flush(void) 863 { 864 trace_kvm_dirty_ring_flush(0); 865 /* 866 * The function needs to be serialized. Since this function 867 * should always be with BQL held, serialization is guaranteed. 868 * However, let's be sure of it. 869 */ 870 assert(bql_locked()); 871 /* 872 * First make sure to flush the hardware buffers by kicking all 873 * vcpus out in a synchronous way. 874 */ 875 kvm_cpu_synchronize_kick_all(); 876 kvm_dirty_ring_reap(kvm_state, NULL); 877 trace_kvm_dirty_ring_flush(1); 878 } 879 880 /** 881 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 882 * 883 * This function will first try to fetch dirty bitmap from the kernel, 884 * and then updates qemu's dirty bitmap. 885 * 886 * NOTE: caller must be with kml->slots_lock held. 887 * 888 * @kml: the KVM memory listener object 889 * @section: the memory section to sync the dirty bitmap with 890 */ 891 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 892 MemoryRegionSection *section) 893 { 894 KVMState *s = kvm_state; 895 KVMSlot *mem; 896 hwaddr start_addr, size; 897 hwaddr slot_size; 898 899 size = kvm_align_section(section, &start_addr); 900 while (size) { 901 slot_size = MIN(kvm_max_slot_size, size); 902 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 903 if (!mem) { 904 /* We don't have a slot if we want to trap every access. */ 905 return; 906 } 907 if (kvm_slot_get_dirty_log(s, mem)) { 908 kvm_slot_sync_dirty_pages(mem); 909 } 910 start_addr += slot_size; 911 size -= slot_size; 912 } 913 } 914 915 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 916 #define KVM_CLEAR_LOG_SHIFT 6 917 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 918 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 919 920 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 921 uint64_t size) 922 { 923 KVMState *s = kvm_state; 924 uint64_t end, bmap_start, start_delta, bmap_npages; 925 struct kvm_clear_dirty_log d; 926 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 927 int ret; 928 929 /* 930 * We need to extend either the start or the size or both to 931 * satisfy the KVM interface requirement. Firstly, do the start 932 * page alignment on 64 host pages 933 */ 934 bmap_start = start & KVM_CLEAR_LOG_MASK; 935 start_delta = start - bmap_start; 936 bmap_start /= psize; 937 938 /* 939 * The kernel interface has restriction on the size too, that either: 940 * 941 * (1) the size is 64 host pages aligned (just like the start), or 942 * (2) the size fills up until the end of the KVM memslot. 943 */ 944 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 945 << KVM_CLEAR_LOG_SHIFT; 946 end = mem->memory_size / psize; 947 if (bmap_npages > end - bmap_start) { 948 bmap_npages = end - bmap_start; 949 } 950 start_delta /= psize; 951 952 /* 953 * Prepare the bitmap to clear dirty bits. Here we must guarantee 954 * that we won't clear any unknown dirty bits otherwise we might 955 * accidentally clear some set bits which are not yet synced from 956 * the kernel into QEMU's bitmap, then we'll lose track of the 957 * guest modifications upon those pages (which can directly lead 958 * to guest data loss or panic after migration). 959 * 960 * Layout of the KVMSlot.dirty_bmap: 961 * 962 * |<-------- bmap_npages -----------..>| 963 * [1] 964 * start_delta size 965 * |----------------|-------------|------------------|------------| 966 * ^ ^ ^ ^ 967 * | | | | 968 * start bmap_start (start) end 969 * of memslot of memslot 970 * 971 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 972 */ 973 974 assert(bmap_start % BITS_PER_LONG == 0); 975 /* We should never do log_clear before log_sync */ 976 assert(mem->dirty_bmap); 977 if (start_delta || bmap_npages - size / psize) { 978 /* Slow path - we need to manipulate a temp bitmap */ 979 bmap_clear = bitmap_new(bmap_npages); 980 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 981 bmap_start, start_delta + size / psize); 982 /* 983 * We need to fill the holes at start because that was not 984 * specified by the caller and we extended the bitmap only for 985 * 64 pages alignment 986 */ 987 bitmap_clear(bmap_clear, 0, start_delta); 988 d.dirty_bitmap = bmap_clear; 989 } else { 990 /* 991 * Fast path - both start and size align well with BITS_PER_LONG 992 * (or the end of memory slot) 993 */ 994 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 995 } 996 997 d.first_page = bmap_start; 998 /* It should never overflow. If it happens, say something */ 999 assert(bmap_npages <= UINT32_MAX); 1000 d.num_pages = bmap_npages; 1001 d.slot = mem->slot | (as_id << 16); 1002 1003 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1004 if (ret < 0 && ret != -ENOENT) { 1005 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1006 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1007 __func__, d.slot, (uint64_t)d.first_page, 1008 (uint32_t)d.num_pages, ret); 1009 } else { 1010 ret = 0; 1011 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1012 } 1013 1014 /* 1015 * After we have updated the remote dirty bitmap, we update the 1016 * cached bitmap as well for the memslot, then if another user 1017 * clears the same region we know we shouldn't clear it again on 1018 * the remote otherwise it's data loss as well. 1019 */ 1020 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1021 size / psize); 1022 /* This handles the NULL case well */ 1023 g_free(bmap_clear); 1024 return ret; 1025 } 1026 1027 1028 /** 1029 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1030 * 1031 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1032 * protection in the host kernel because in that case this operation 1033 * will be done within log_sync(). 1034 * 1035 * @kml: the kvm memory listener 1036 * @section: the memory range to clear dirty bitmap 1037 */ 1038 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1039 MemoryRegionSection *section) 1040 { 1041 KVMState *s = kvm_state; 1042 uint64_t start, size, offset, count; 1043 KVMSlot *mem; 1044 int ret = 0, i; 1045 1046 if (!s->manual_dirty_log_protect) { 1047 /* No need to do explicit clear */ 1048 return ret; 1049 } 1050 1051 start = section->offset_within_address_space; 1052 size = int128_get64(section->size); 1053 1054 if (!size) { 1055 /* Nothing more we can do... */ 1056 return ret; 1057 } 1058 1059 kvm_slots_lock(); 1060 1061 for (i = 0; i < s->nr_slots; i++) { 1062 mem = &kml->slots[i]; 1063 /* Discard slots that are empty or do not overlap the section */ 1064 if (!mem->memory_size || 1065 mem->start_addr > start + size - 1 || 1066 start > mem->start_addr + mem->memory_size - 1) { 1067 continue; 1068 } 1069 1070 if (start >= mem->start_addr) { 1071 /* The slot starts before section or is aligned to it. */ 1072 offset = start - mem->start_addr; 1073 count = MIN(mem->memory_size - offset, size); 1074 } else { 1075 /* The slot starts after section. */ 1076 offset = 0; 1077 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1078 } 1079 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1080 if (ret < 0) { 1081 break; 1082 } 1083 } 1084 1085 kvm_slots_unlock(); 1086 1087 return ret; 1088 } 1089 1090 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1091 MemoryRegionSection *secion, 1092 hwaddr start, hwaddr size) 1093 { 1094 KVMState *s = kvm_state; 1095 1096 if (s->coalesced_mmio) { 1097 struct kvm_coalesced_mmio_zone zone; 1098 1099 zone.addr = start; 1100 zone.size = size; 1101 zone.pad = 0; 1102 1103 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1104 } 1105 } 1106 1107 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1108 MemoryRegionSection *secion, 1109 hwaddr start, hwaddr size) 1110 { 1111 KVMState *s = kvm_state; 1112 1113 if (s->coalesced_mmio) { 1114 struct kvm_coalesced_mmio_zone zone; 1115 1116 zone.addr = start; 1117 zone.size = size; 1118 zone.pad = 0; 1119 1120 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1121 } 1122 } 1123 1124 static void kvm_coalesce_pio_add(MemoryListener *listener, 1125 MemoryRegionSection *section, 1126 hwaddr start, hwaddr size) 1127 { 1128 KVMState *s = kvm_state; 1129 1130 if (s->coalesced_pio) { 1131 struct kvm_coalesced_mmio_zone zone; 1132 1133 zone.addr = start; 1134 zone.size = size; 1135 zone.pio = 1; 1136 1137 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1138 } 1139 } 1140 1141 static void kvm_coalesce_pio_del(MemoryListener *listener, 1142 MemoryRegionSection *section, 1143 hwaddr start, hwaddr size) 1144 { 1145 KVMState *s = kvm_state; 1146 1147 if (s->coalesced_pio) { 1148 struct kvm_coalesced_mmio_zone zone; 1149 1150 zone.addr = start; 1151 zone.size = size; 1152 zone.pio = 1; 1153 1154 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1155 } 1156 } 1157 1158 int kvm_check_extension(KVMState *s, unsigned int extension) 1159 { 1160 int ret; 1161 1162 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1163 if (ret < 0) { 1164 ret = 0; 1165 } 1166 1167 return ret; 1168 } 1169 1170 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1171 { 1172 int ret; 1173 1174 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1175 if (ret < 0) { 1176 /* VM wide version not implemented, use global one instead */ 1177 ret = kvm_check_extension(s, extension); 1178 } 1179 1180 return ret; 1181 } 1182 1183 /* 1184 * We track the poisoned pages to be able to: 1185 * - replace them on VM reset 1186 * - block a migration for a VM with a poisoned page 1187 */ 1188 typedef struct HWPoisonPage { 1189 ram_addr_t ram_addr; 1190 QLIST_ENTRY(HWPoisonPage) list; 1191 } HWPoisonPage; 1192 1193 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1194 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1195 1196 static void kvm_unpoison_all(void *param) 1197 { 1198 HWPoisonPage *page, *next_page; 1199 1200 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1201 QLIST_REMOVE(page, list); 1202 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1203 g_free(page); 1204 } 1205 } 1206 1207 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1208 { 1209 HWPoisonPage *page; 1210 1211 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1212 if (page->ram_addr == ram_addr) { 1213 return; 1214 } 1215 } 1216 page = g_new(HWPoisonPage, 1); 1217 page->ram_addr = ram_addr; 1218 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1219 } 1220 1221 bool kvm_hwpoisoned_mem(void) 1222 { 1223 return !QLIST_EMPTY(&hwpoison_page_list); 1224 } 1225 1226 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1227 { 1228 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1229 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1230 * endianness, but the memory core hands them in target endianness. 1231 * For example, PPC is always treated as big-endian even if running 1232 * on KVM and on PPC64LE. Correct here. 1233 */ 1234 switch (size) { 1235 case 2: 1236 val = bswap16(val); 1237 break; 1238 case 4: 1239 val = bswap32(val); 1240 break; 1241 } 1242 #endif 1243 return val; 1244 } 1245 1246 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1247 bool assign, uint32_t size, bool datamatch) 1248 { 1249 int ret; 1250 struct kvm_ioeventfd iofd = { 1251 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1252 .addr = addr, 1253 .len = size, 1254 .flags = 0, 1255 .fd = fd, 1256 }; 1257 1258 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1259 datamatch); 1260 if (!kvm_enabled()) { 1261 return -ENOSYS; 1262 } 1263 1264 if (datamatch) { 1265 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1266 } 1267 if (!assign) { 1268 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1269 } 1270 1271 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1272 1273 if (ret < 0) { 1274 return -errno; 1275 } 1276 1277 return 0; 1278 } 1279 1280 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1281 bool assign, uint32_t size, bool datamatch) 1282 { 1283 struct kvm_ioeventfd kick = { 1284 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1285 .addr = addr, 1286 .flags = KVM_IOEVENTFD_FLAG_PIO, 1287 .len = size, 1288 .fd = fd, 1289 }; 1290 int r; 1291 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1292 if (!kvm_enabled()) { 1293 return -ENOSYS; 1294 } 1295 if (datamatch) { 1296 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1297 } 1298 if (!assign) { 1299 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1300 } 1301 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1302 if (r < 0) { 1303 return r; 1304 } 1305 return 0; 1306 } 1307 1308 1309 static const KVMCapabilityInfo * 1310 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1311 { 1312 while (list->name) { 1313 if (!kvm_check_extension(s, list->value)) { 1314 return list; 1315 } 1316 list++; 1317 } 1318 return NULL; 1319 } 1320 1321 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1322 { 1323 g_assert( 1324 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1325 ); 1326 kvm_max_slot_size = max_slot_size; 1327 } 1328 1329 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1330 { 1331 struct kvm_memory_attributes attrs; 1332 int r; 1333 1334 assert((attr & kvm_supported_memory_attributes) == attr); 1335 attrs.attributes = attr; 1336 attrs.address = start; 1337 attrs.size = size; 1338 attrs.flags = 0; 1339 1340 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1341 if (r) { 1342 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1343 "with attr 0x%" PRIx64 " error '%s'", 1344 start, size, attr, strerror(errno)); 1345 } 1346 return r; 1347 } 1348 1349 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1350 { 1351 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1352 } 1353 1354 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1355 { 1356 return kvm_set_memory_attributes(start, size, 0); 1357 } 1358 1359 /* Called with KVMMemoryListener.slots_lock held */ 1360 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1361 MemoryRegionSection *section, bool add) 1362 { 1363 KVMSlot *mem; 1364 int err; 1365 MemoryRegion *mr = section->mr; 1366 bool writable = !mr->readonly && !mr->rom_device; 1367 hwaddr start_addr, size, slot_size, mr_offset; 1368 ram_addr_t ram_start_offset; 1369 void *ram; 1370 1371 if (!memory_region_is_ram(mr)) { 1372 if (writable || !kvm_readonly_mem_allowed) { 1373 return; 1374 } else if (!mr->romd_mode) { 1375 /* If the memory device is not in romd_mode, then we actually want 1376 * to remove the kvm memory slot so all accesses will trap. */ 1377 add = false; 1378 } 1379 } 1380 1381 size = kvm_align_section(section, &start_addr); 1382 if (!size) { 1383 return; 1384 } 1385 1386 /* The offset of the kvmslot within the memory region */ 1387 mr_offset = section->offset_within_region + start_addr - 1388 section->offset_within_address_space; 1389 1390 /* use aligned delta to align the ram address and offset */ 1391 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1392 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1393 1394 if (!add) { 1395 do { 1396 slot_size = MIN(kvm_max_slot_size, size); 1397 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1398 if (!mem) { 1399 return; 1400 } 1401 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1402 /* 1403 * NOTE: We should be aware of the fact that here we're only 1404 * doing a best effort to sync dirty bits. No matter whether 1405 * we're using dirty log or dirty ring, we ignored two facts: 1406 * 1407 * (1) dirty bits can reside in hardware buffers (PML) 1408 * 1409 * (2) after we collected dirty bits here, pages can be dirtied 1410 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1411 * remove the slot. 1412 * 1413 * Not easy. Let's cross the fingers until it's fixed. 1414 */ 1415 if (kvm_state->kvm_dirty_ring_size) { 1416 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1417 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1418 kvm_slot_sync_dirty_pages(mem); 1419 kvm_slot_get_dirty_log(kvm_state, mem); 1420 } 1421 } else { 1422 kvm_slot_get_dirty_log(kvm_state, mem); 1423 } 1424 kvm_slot_sync_dirty_pages(mem); 1425 } 1426 1427 /* unregister the slot */ 1428 g_free(mem->dirty_bmap); 1429 mem->dirty_bmap = NULL; 1430 mem->memory_size = 0; 1431 mem->flags = 0; 1432 err = kvm_set_user_memory_region(kml, mem, false); 1433 if (err) { 1434 fprintf(stderr, "%s: error unregistering slot: %s\n", 1435 __func__, strerror(-err)); 1436 abort(); 1437 } 1438 start_addr += slot_size; 1439 size -= slot_size; 1440 kml->nr_used_slots--; 1441 } while (size); 1442 return; 1443 } 1444 1445 /* register the new slot */ 1446 do { 1447 slot_size = MIN(kvm_max_slot_size, size); 1448 mem = kvm_alloc_slot(kml); 1449 mem->as_id = kml->as_id; 1450 mem->memory_size = slot_size; 1451 mem->start_addr = start_addr; 1452 mem->ram_start_offset = ram_start_offset; 1453 mem->ram = ram; 1454 mem->flags = kvm_mem_flags(mr); 1455 mem->guest_memfd = mr->ram_block->guest_memfd; 1456 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1457 1458 kvm_slot_init_dirty_bitmap(mem); 1459 err = kvm_set_user_memory_region(kml, mem, true); 1460 if (err) { 1461 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1462 strerror(-err)); 1463 abort(); 1464 } 1465 1466 if (memory_region_has_guest_memfd(mr)) { 1467 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1468 if (err) { 1469 error_report("%s: failed to set memory attribute private: %s", 1470 __func__, strerror(-err)); 1471 exit(1); 1472 } 1473 } 1474 1475 start_addr += slot_size; 1476 ram_start_offset += slot_size; 1477 ram += slot_size; 1478 size -= slot_size; 1479 kml->nr_used_slots++; 1480 } while (size); 1481 } 1482 1483 static void *kvm_dirty_ring_reaper_thread(void *data) 1484 { 1485 KVMState *s = data; 1486 struct KVMDirtyRingReaper *r = &s->reaper; 1487 1488 rcu_register_thread(); 1489 1490 trace_kvm_dirty_ring_reaper("init"); 1491 1492 while (true) { 1493 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1494 trace_kvm_dirty_ring_reaper("wait"); 1495 /* 1496 * TODO: provide a smarter timeout rather than a constant? 1497 */ 1498 sleep(1); 1499 1500 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1501 if (dirtylimit_in_service()) { 1502 continue; 1503 } 1504 1505 trace_kvm_dirty_ring_reaper("wakeup"); 1506 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1507 1508 bql_lock(); 1509 kvm_dirty_ring_reap(s, NULL); 1510 bql_unlock(); 1511 1512 r->reaper_iteration++; 1513 } 1514 1515 trace_kvm_dirty_ring_reaper("exit"); 1516 1517 rcu_unregister_thread(); 1518 1519 return NULL; 1520 } 1521 1522 static void kvm_dirty_ring_reaper_init(KVMState *s) 1523 { 1524 struct KVMDirtyRingReaper *r = &s->reaper; 1525 1526 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1527 kvm_dirty_ring_reaper_thread, 1528 s, QEMU_THREAD_JOINABLE); 1529 } 1530 1531 static int kvm_dirty_ring_init(KVMState *s) 1532 { 1533 uint32_t ring_size = s->kvm_dirty_ring_size; 1534 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1535 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1536 int ret; 1537 1538 s->kvm_dirty_ring_size = 0; 1539 s->kvm_dirty_ring_bytes = 0; 1540 1541 /* Bail if the dirty ring size isn't specified */ 1542 if (!ring_size) { 1543 return 0; 1544 } 1545 1546 /* 1547 * Read the max supported pages. Fall back to dirty logging mode 1548 * if the dirty ring isn't supported. 1549 */ 1550 ret = kvm_vm_check_extension(s, capability); 1551 if (ret <= 0) { 1552 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1553 ret = kvm_vm_check_extension(s, capability); 1554 } 1555 1556 if (ret <= 0) { 1557 warn_report("KVM dirty ring not available, using bitmap method"); 1558 return 0; 1559 } 1560 1561 if (ring_bytes > ret) { 1562 error_report("KVM dirty ring size %" PRIu32 " too big " 1563 "(maximum is %ld). Please use a smaller value.", 1564 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1565 return -EINVAL; 1566 } 1567 1568 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1569 if (ret) { 1570 error_report("Enabling of KVM dirty ring failed: %s. " 1571 "Suggested minimum value is 1024.", strerror(-ret)); 1572 return -EIO; 1573 } 1574 1575 /* Enable the backup bitmap if it is supported */ 1576 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1577 if (ret > 0) { 1578 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1579 if (ret) { 1580 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1581 "%s. ", strerror(-ret)); 1582 return -EIO; 1583 } 1584 1585 s->kvm_dirty_ring_with_bitmap = true; 1586 } 1587 1588 s->kvm_dirty_ring_size = ring_size; 1589 s->kvm_dirty_ring_bytes = ring_bytes; 1590 1591 return 0; 1592 } 1593 1594 static void kvm_region_add(MemoryListener *listener, 1595 MemoryRegionSection *section) 1596 { 1597 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1598 KVMMemoryUpdate *update; 1599 1600 update = g_new0(KVMMemoryUpdate, 1); 1601 update->section = *section; 1602 1603 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1604 } 1605 1606 static void kvm_region_del(MemoryListener *listener, 1607 MemoryRegionSection *section) 1608 { 1609 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1610 KVMMemoryUpdate *update; 1611 1612 update = g_new0(KVMMemoryUpdate, 1); 1613 update->section = *section; 1614 1615 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1616 } 1617 1618 static void kvm_region_commit(MemoryListener *listener) 1619 { 1620 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1621 listener); 1622 KVMMemoryUpdate *u1, *u2; 1623 bool need_inhibit = false; 1624 1625 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1626 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1627 return; 1628 } 1629 1630 /* 1631 * We have to be careful when regions to add overlap with ranges to remove. 1632 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1633 * is currently active. 1634 * 1635 * The lists are order by addresses, so it's easy to find overlaps. 1636 */ 1637 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1638 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1639 while (u1 && u2) { 1640 Range r1, r2; 1641 1642 range_init_nofail(&r1, u1->section.offset_within_address_space, 1643 int128_get64(u1->section.size)); 1644 range_init_nofail(&r2, u2->section.offset_within_address_space, 1645 int128_get64(u2->section.size)); 1646 1647 if (range_overlaps_range(&r1, &r2)) { 1648 need_inhibit = true; 1649 break; 1650 } 1651 if (range_lob(&r1) < range_lob(&r2)) { 1652 u1 = QSIMPLEQ_NEXT(u1, next); 1653 } else { 1654 u2 = QSIMPLEQ_NEXT(u2, next); 1655 } 1656 } 1657 1658 kvm_slots_lock(); 1659 if (need_inhibit) { 1660 accel_ioctl_inhibit_begin(); 1661 } 1662 1663 /* Remove all memslots before adding the new ones. */ 1664 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1665 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1666 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1667 1668 kvm_set_phys_mem(kml, &u1->section, false); 1669 memory_region_unref(u1->section.mr); 1670 1671 g_free(u1); 1672 } 1673 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1674 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1675 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1676 1677 memory_region_ref(u1->section.mr); 1678 kvm_set_phys_mem(kml, &u1->section, true); 1679 1680 g_free(u1); 1681 } 1682 1683 if (need_inhibit) { 1684 accel_ioctl_inhibit_end(); 1685 } 1686 kvm_slots_unlock(); 1687 } 1688 1689 static void kvm_log_sync(MemoryListener *listener, 1690 MemoryRegionSection *section) 1691 { 1692 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1693 1694 kvm_slots_lock(); 1695 kvm_physical_sync_dirty_bitmap(kml, section); 1696 kvm_slots_unlock(); 1697 } 1698 1699 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1700 { 1701 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1702 KVMState *s = kvm_state; 1703 KVMSlot *mem; 1704 int i; 1705 1706 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1707 kvm_dirty_ring_flush(); 1708 1709 /* 1710 * TODO: make this faster when nr_slots is big while there are 1711 * only a few used slots (small VMs). 1712 */ 1713 kvm_slots_lock(); 1714 for (i = 0; i < s->nr_slots; i++) { 1715 mem = &kml->slots[i]; 1716 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1717 kvm_slot_sync_dirty_pages(mem); 1718 1719 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1720 kvm_slot_get_dirty_log(s, mem)) { 1721 kvm_slot_sync_dirty_pages(mem); 1722 } 1723 1724 /* 1725 * This is not needed by KVM_GET_DIRTY_LOG because the 1726 * ioctl will unconditionally overwrite the whole region. 1727 * However kvm dirty ring has no such side effect. 1728 */ 1729 kvm_slot_reset_dirty_pages(mem); 1730 } 1731 } 1732 kvm_slots_unlock(); 1733 } 1734 1735 static void kvm_log_clear(MemoryListener *listener, 1736 MemoryRegionSection *section) 1737 { 1738 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1739 int r; 1740 1741 r = kvm_physical_log_clear(kml, section); 1742 if (r < 0) { 1743 error_report_once("%s: kvm log clear failed: mr=%s " 1744 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1745 section->mr->name, section->offset_within_region, 1746 int128_get64(section->size)); 1747 abort(); 1748 } 1749 } 1750 1751 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1752 MemoryRegionSection *section, 1753 bool match_data, uint64_t data, 1754 EventNotifier *e) 1755 { 1756 int fd = event_notifier_get_fd(e); 1757 int r; 1758 1759 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1760 data, true, int128_get64(section->size), 1761 match_data); 1762 if (r < 0) { 1763 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1764 __func__, strerror(-r), -r); 1765 abort(); 1766 } 1767 } 1768 1769 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1770 MemoryRegionSection *section, 1771 bool match_data, uint64_t data, 1772 EventNotifier *e) 1773 { 1774 int fd = event_notifier_get_fd(e); 1775 int r; 1776 1777 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1778 data, false, int128_get64(section->size), 1779 match_data); 1780 if (r < 0) { 1781 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1782 __func__, strerror(-r), -r); 1783 abort(); 1784 } 1785 } 1786 1787 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1788 MemoryRegionSection *section, 1789 bool match_data, uint64_t data, 1790 EventNotifier *e) 1791 { 1792 int fd = event_notifier_get_fd(e); 1793 int r; 1794 1795 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1796 data, true, int128_get64(section->size), 1797 match_data); 1798 if (r < 0) { 1799 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1800 __func__, strerror(-r), -r); 1801 abort(); 1802 } 1803 } 1804 1805 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1806 MemoryRegionSection *section, 1807 bool match_data, uint64_t data, 1808 EventNotifier *e) 1809 1810 { 1811 int fd = event_notifier_get_fd(e); 1812 int r; 1813 1814 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1815 data, false, int128_get64(section->size), 1816 match_data); 1817 if (r < 0) { 1818 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1819 __func__, strerror(-r), -r); 1820 abort(); 1821 } 1822 } 1823 1824 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1825 AddressSpace *as, int as_id, const char *name) 1826 { 1827 int i; 1828 1829 kml->slots = g_new0(KVMSlot, s->nr_slots); 1830 kml->as_id = as_id; 1831 1832 for (i = 0; i < s->nr_slots; i++) { 1833 kml->slots[i].slot = i; 1834 } 1835 1836 QSIMPLEQ_INIT(&kml->transaction_add); 1837 QSIMPLEQ_INIT(&kml->transaction_del); 1838 1839 kml->listener.region_add = kvm_region_add; 1840 kml->listener.region_del = kvm_region_del; 1841 kml->listener.commit = kvm_region_commit; 1842 kml->listener.log_start = kvm_log_start; 1843 kml->listener.log_stop = kvm_log_stop; 1844 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1845 kml->listener.name = name; 1846 1847 if (s->kvm_dirty_ring_size) { 1848 kml->listener.log_sync_global = kvm_log_sync_global; 1849 } else { 1850 kml->listener.log_sync = kvm_log_sync; 1851 kml->listener.log_clear = kvm_log_clear; 1852 } 1853 1854 memory_listener_register(&kml->listener, as); 1855 1856 for (i = 0; i < s->nr_as; ++i) { 1857 if (!s->as[i].as) { 1858 s->as[i].as = as; 1859 s->as[i].ml = kml; 1860 break; 1861 } 1862 } 1863 } 1864 1865 static MemoryListener kvm_io_listener = { 1866 .name = "kvm-io", 1867 .coalesced_io_add = kvm_coalesce_pio_add, 1868 .coalesced_io_del = kvm_coalesce_pio_del, 1869 .eventfd_add = kvm_io_ioeventfd_add, 1870 .eventfd_del = kvm_io_ioeventfd_del, 1871 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1872 }; 1873 1874 int kvm_set_irq(KVMState *s, int irq, int level) 1875 { 1876 struct kvm_irq_level event; 1877 int ret; 1878 1879 assert(kvm_async_interrupts_enabled()); 1880 1881 event.level = level; 1882 event.irq = irq; 1883 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1884 if (ret < 0) { 1885 perror("kvm_set_irq"); 1886 abort(); 1887 } 1888 1889 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1890 } 1891 1892 #ifdef KVM_CAP_IRQ_ROUTING 1893 typedef struct KVMMSIRoute { 1894 struct kvm_irq_routing_entry kroute; 1895 QTAILQ_ENTRY(KVMMSIRoute) entry; 1896 } KVMMSIRoute; 1897 1898 static void set_gsi(KVMState *s, unsigned int gsi) 1899 { 1900 set_bit(gsi, s->used_gsi_bitmap); 1901 } 1902 1903 static void clear_gsi(KVMState *s, unsigned int gsi) 1904 { 1905 clear_bit(gsi, s->used_gsi_bitmap); 1906 } 1907 1908 void kvm_init_irq_routing(KVMState *s) 1909 { 1910 int gsi_count; 1911 1912 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1913 if (gsi_count > 0) { 1914 /* Round up so we can search ints using ffs */ 1915 s->used_gsi_bitmap = bitmap_new(gsi_count); 1916 s->gsi_count = gsi_count; 1917 } 1918 1919 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1920 s->nr_allocated_irq_routes = 0; 1921 1922 kvm_arch_init_irq_routing(s); 1923 } 1924 1925 void kvm_irqchip_commit_routes(KVMState *s) 1926 { 1927 int ret; 1928 1929 if (kvm_gsi_direct_mapping()) { 1930 return; 1931 } 1932 1933 if (!kvm_gsi_routing_enabled()) { 1934 return; 1935 } 1936 1937 s->irq_routes->flags = 0; 1938 trace_kvm_irqchip_commit_routes(); 1939 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1940 assert(ret == 0); 1941 } 1942 1943 void kvm_add_routing_entry(KVMState *s, 1944 struct kvm_irq_routing_entry *entry) 1945 { 1946 struct kvm_irq_routing_entry *new; 1947 int n, size; 1948 1949 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1950 n = s->nr_allocated_irq_routes * 2; 1951 if (n < 64) { 1952 n = 64; 1953 } 1954 size = sizeof(struct kvm_irq_routing); 1955 size += n * sizeof(*new); 1956 s->irq_routes = g_realloc(s->irq_routes, size); 1957 s->nr_allocated_irq_routes = n; 1958 } 1959 n = s->irq_routes->nr++; 1960 new = &s->irq_routes->entries[n]; 1961 1962 *new = *entry; 1963 1964 set_gsi(s, entry->gsi); 1965 } 1966 1967 static int kvm_update_routing_entry(KVMState *s, 1968 struct kvm_irq_routing_entry *new_entry) 1969 { 1970 struct kvm_irq_routing_entry *entry; 1971 int n; 1972 1973 for (n = 0; n < s->irq_routes->nr; n++) { 1974 entry = &s->irq_routes->entries[n]; 1975 if (entry->gsi != new_entry->gsi) { 1976 continue; 1977 } 1978 1979 if(!memcmp(entry, new_entry, sizeof *entry)) { 1980 return 0; 1981 } 1982 1983 *entry = *new_entry; 1984 1985 return 0; 1986 } 1987 1988 return -ESRCH; 1989 } 1990 1991 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1992 { 1993 struct kvm_irq_routing_entry e = {}; 1994 1995 assert(pin < s->gsi_count); 1996 1997 e.gsi = irq; 1998 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1999 e.flags = 0; 2000 e.u.irqchip.irqchip = irqchip; 2001 e.u.irqchip.pin = pin; 2002 kvm_add_routing_entry(s, &e); 2003 } 2004 2005 void kvm_irqchip_release_virq(KVMState *s, int virq) 2006 { 2007 struct kvm_irq_routing_entry *e; 2008 int i; 2009 2010 if (kvm_gsi_direct_mapping()) { 2011 return; 2012 } 2013 2014 for (i = 0; i < s->irq_routes->nr; i++) { 2015 e = &s->irq_routes->entries[i]; 2016 if (e->gsi == virq) { 2017 s->irq_routes->nr--; 2018 *e = s->irq_routes->entries[s->irq_routes->nr]; 2019 } 2020 } 2021 clear_gsi(s, virq); 2022 kvm_arch_release_virq_post(virq); 2023 trace_kvm_irqchip_release_virq(virq); 2024 } 2025 2026 void kvm_irqchip_add_change_notifier(Notifier *n) 2027 { 2028 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2029 } 2030 2031 void kvm_irqchip_remove_change_notifier(Notifier *n) 2032 { 2033 notifier_remove(n); 2034 } 2035 2036 void kvm_irqchip_change_notify(void) 2037 { 2038 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2039 } 2040 2041 int kvm_irqchip_get_virq(KVMState *s) 2042 { 2043 int next_virq; 2044 2045 /* Return the lowest unused GSI in the bitmap */ 2046 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2047 if (next_virq >= s->gsi_count) { 2048 return -ENOSPC; 2049 } else { 2050 return next_virq; 2051 } 2052 } 2053 2054 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2055 { 2056 struct kvm_msi msi; 2057 2058 msi.address_lo = (uint32_t)msg.address; 2059 msi.address_hi = msg.address >> 32; 2060 msi.data = le32_to_cpu(msg.data); 2061 msi.flags = 0; 2062 memset(msi.pad, 0, sizeof(msi.pad)); 2063 2064 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2065 } 2066 2067 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2068 { 2069 struct kvm_irq_routing_entry kroute = {}; 2070 int virq; 2071 KVMState *s = c->s; 2072 MSIMessage msg = {0, 0}; 2073 2074 if (pci_available && dev) { 2075 msg = pci_get_msi_message(dev, vector); 2076 } 2077 2078 if (kvm_gsi_direct_mapping()) { 2079 return kvm_arch_msi_data_to_gsi(msg.data); 2080 } 2081 2082 if (!kvm_gsi_routing_enabled()) { 2083 return -ENOSYS; 2084 } 2085 2086 virq = kvm_irqchip_get_virq(s); 2087 if (virq < 0) { 2088 return virq; 2089 } 2090 2091 kroute.gsi = virq; 2092 kroute.type = KVM_IRQ_ROUTING_MSI; 2093 kroute.flags = 0; 2094 kroute.u.msi.address_lo = (uint32_t)msg.address; 2095 kroute.u.msi.address_hi = msg.address >> 32; 2096 kroute.u.msi.data = le32_to_cpu(msg.data); 2097 if (pci_available && kvm_msi_devid_required()) { 2098 kroute.flags = KVM_MSI_VALID_DEVID; 2099 kroute.u.msi.devid = pci_requester_id(dev); 2100 } 2101 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2102 kvm_irqchip_release_virq(s, virq); 2103 return -EINVAL; 2104 } 2105 2106 if (s->irq_routes->nr < s->gsi_count) { 2107 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2108 vector, virq); 2109 2110 kvm_add_routing_entry(s, &kroute); 2111 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2112 c->changes++; 2113 } else { 2114 kvm_irqchip_release_virq(s, virq); 2115 return -ENOSPC; 2116 } 2117 2118 return virq; 2119 } 2120 2121 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2122 PCIDevice *dev) 2123 { 2124 struct kvm_irq_routing_entry kroute = {}; 2125 2126 if (kvm_gsi_direct_mapping()) { 2127 return 0; 2128 } 2129 2130 if (!kvm_irqchip_in_kernel()) { 2131 return -ENOSYS; 2132 } 2133 2134 kroute.gsi = virq; 2135 kroute.type = KVM_IRQ_ROUTING_MSI; 2136 kroute.flags = 0; 2137 kroute.u.msi.address_lo = (uint32_t)msg.address; 2138 kroute.u.msi.address_hi = msg.address >> 32; 2139 kroute.u.msi.data = le32_to_cpu(msg.data); 2140 if (pci_available && kvm_msi_devid_required()) { 2141 kroute.flags = KVM_MSI_VALID_DEVID; 2142 kroute.u.msi.devid = pci_requester_id(dev); 2143 } 2144 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2145 return -EINVAL; 2146 } 2147 2148 trace_kvm_irqchip_update_msi_route(virq); 2149 2150 return kvm_update_routing_entry(s, &kroute); 2151 } 2152 2153 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2154 EventNotifier *resample, int virq, 2155 bool assign) 2156 { 2157 int fd = event_notifier_get_fd(event); 2158 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2159 2160 struct kvm_irqfd irqfd = { 2161 .fd = fd, 2162 .gsi = virq, 2163 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2164 }; 2165 2166 if (rfd != -1) { 2167 assert(assign); 2168 if (kvm_irqchip_is_split()) { 2169 /* 2170 * When the slow irqchip (e.g. IOAPIC) is in the 2171 * userspace, KVM kernel resamplefd will not work because 2172 * the EOI of the interrupt will be delivered to userspace 2173 * instead, so the KVM kernel resamplefd kick will be 2174 * skipped. The userspace here mimics what the kernel 2175 * provides with resamplefd, remember the resamplefd and 2176 * kick it when we receive EOI of this IRQ. 2177 * 2178 * This is hackery because IOAPIC is mostly bypassed 2179 * (except EOI broadcasts) when irqfd is used. However 2180 * this can bring much performance back for split irqchip 2181 * with INTx IRQs (for VFIO, this gives 93% perf of the 2182 * full fast path, which is 46% perf boost comparing to 2183 * the INTx slow path). 2184 */ 2185 kvm_resample_fd_insert(virq, resample); 2186 } else { 2187 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2188 irqfd.resamplefd = rfd; 2189 } 2190 } else if (!assign) { 2191 if (kvm_irqchip_is_split()) { 2192 kvm_resample_fd_remove(virq); 2193 } 2194 } 2195 2196 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2197 } 2198 2199 #else /* !KVM_CAP_IRQ_ROUTING */ 2200 2201 void kvm_init_irq_routing(KVMState *s) 2202 { 2203 } 2204 2205 void kvm_irqchip_release_virq(KVMState *s, int virq) 2206 { 2207 } 2208 2209 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2210 { 2211 abort(); 2212 } 2213 2214 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2215 { 2216 return -ENOSYS; 2217 } 2218 2219 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2220 { 2221 return -ENOSYS; 2222 } 2223 2224 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2225 { 2226 return -ENOSYS; 2227 } 2228 2229 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2230 EventNotifier *resample, int virq, 2231 bool assign) 2232 { 2233 abort(); 2234 } 2235 2236 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2237 { 2238 return -ENOSYS; 2239 } 2240 #endif /* !KVM_CAP_IRQ_ROUTING */ 2241 2242 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2243 EventNotifier *rn, int virq) 2244 { 2245 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2246 } 2247 2248 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2249 int virq) 2250 { 2251 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2252 } 2253 2254 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2255 EventNotifier *rn, qemu_irq irq) 2256 { 2257 gpointer key, gsi; 2258 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2259 2260 if (!found) { 2261 return -ENXIO; 2262 } 2263 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2264 } 2265 2266 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2267 qemu_irq irq) 2268 { 2269 gpointer key, gsi; 2270 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2271 2272 if (!found) { 2273 return -ENXIO; 2274 } 2275 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2276 } 2277 2278 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2279 { 2280 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2281 } 2282 2283 static void kvm_irqchip_create(KVMState *s) 2284 { 2285 int ret; 2286 2287 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2288 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2289 ; 2290 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2291 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2292 if (ret < 0) { 2293 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2294 exit(1); 2295 } 2296 } else { 2297 return; 2298 } 2299 2300 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2301 fprintf(stderr, "kvm: irqfd not implemented\n"); 2302 exit(1); 2303 } 2304 2305 /* First probe and see if there's a arch-specific hook to create the 2306 * in-kernel irqchip for us */ 2307 ret = kvm_arch_irqchip_create(s); 2308 if (ret == 0) { 2309 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2310 error_report("Split IRQ chip mode not supported."); 2311 exit(1); 2312 } else { 2313 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2314 } 2315 } 2316 if (ret < 0) { 2317 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2318 exit(1); 2319 } 2320 2321 kvm_kernel_irqchip = true; 2322 /* If we have an in-kernel IRQ chip then we must have asynchronous 2323 * interrupt delivery (though the reverse is not necessarily true) 2324 */ 2325 kvm_async_interrupts_allowed = true; 2326 kvm_halt_in_kernel_allowed = true; 2327 2328 kvm_init_irq_routing(s); 2329 2330 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2331 } 2332 2333 /* Find number of supported CPUs using the recommended 2334 * procedure from the kernel API documentation to cope with 2335 * older kernels that may be missing capabilities. 2336 */ 2337 static int kvm_recommended_vcpus(KVMState *s) 2338 { 2339 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2340 return (ret) ? ret : 4; 2341 } 2342 2343 static int kvm_max_vcpus(KVMState *s) 2344 { 2345 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2346 return (ret) ? ret : kvm_recommended_vcpus(s); 2347 } 2348 2349 static int kvm_max_vcpu_id(KVMState *s) 2350 { 2351 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2352 return (ret) ? ret : kvm_max_vcpus(s); 2353 } 2354 2355 bool kvm_vcpu_id_is_valid(int vcpu_id) 2356 { 2357 KVMState *s = KVM_STATE(current_accel()); 2358 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2359 } 2360 2361 bool kvm_dirty_ring_enabled(void) 2362 { 2363 return kvm_state && kvm_state->kvm_dirty_ring_size; 2364 } 2365 2366 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2367 strList *names, strList *targets, Error **errp); 2368 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2369 2370 uint32_t kvm_dirty_ring_size(void) 2371 { 2372 return kvm_state->kvm_dirty_ring_size; 2373 } 2374 2375 static int kvm_init(MachineState *ms) 2376 { 2377 MachineClass *mc = MACHINE_GET_CLASS(ms); 2378 static const char upgrade_note[] = 2379 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2380 "(see http://sourceforge.net/projects/kvm).\n"; 2381 const struct { 2382 const char *name; 2383 int num; 2384 } num_cpus[] = { 2385 { "SMP", ms->smp.cpus }, 2386 { "hotpluggable", ms->smp.max_cpus }, 2387 { /* end of list */ } 2388 }, *nc = num_cpus; 2389 int soft_vcpus_limit, hard_vcpus_limit; 2390 KVMState *s; 2391 const KVMCapabilityInfo *missing_cap; 2392 int ret; 2393 int type; 2394 uint64_t dirty_log_manual_caps; 2395 2396 qemu_mutex_init(&kml_slots_lock); 2397 2398 s = KVM_STATE(ms->accelerator); 2399 2400 /* 2401 * On systems where the kernel can support different base page 2402 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2403 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2404 * page size for the system though. 2405 */ 2406 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2407 2408 s->sigmask_len = 8; 2409 accel_blocker_init(); 2410 2411 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2412 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2413 #endif 2414 QLIST_INIT(&s->kvm_parked_vcpus); 2415 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2416 if (s->fd == -1) { 2417 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2418 ret = -errno; 2419 goto err; 2420 } 2421 2422 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2423 if (ret < KVM_API_VERSION) { 2424 if (ret >= 0) { 2425 ret = -EINVAL; 2426 } 2427 fprintf(stderr, "kvm version too old\n"); 2428 goto err; 2429 } 2430 2431 if (ret > KVM_API_VERSION) { 2432 ret = -EINVAL; 2433 fprintf(stderr, "kvm version not supported\n"); 2434 goto err; 2435 } 2436 2437 kvm_supported_memory_attributes = kvm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2438 kvm_guest_memfd_supported = 2439 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2440 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2441 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2442 2443 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2444 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2445 2446 /* If unspecified, use the default value */ 2447 if (!s->nr_slots) { 2448 s->nr_slots = 32; 2449 } 2450 2451 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2452 if (s->nr_as <= 1) { 2453 s->nr_as = 1; 2454 } 2455 s->as = g_new0(struct KVMAs, s->nr_as); 2456 2457 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2458 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2459 "kvm-type", 2460 &error_abort); 2461 type = mc->kvm_type(ms, kvm_type); 2462 } else if (mc->kvm_type) { 2463 type = mc->kvm_type(ms, NULL); 2464 } else { 2465 type = kvm_arch_get_default_type(ms); 2466 } 2467 2468 if (type < 0) { 2469 ret = -EINVAL; 2470 goto err; 2471 } 2472 2473 do { 2474 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2475 } while (ret == -EINTR); 2476 2477 if (ret < 0) { 2478 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2479 strerror(-ret)); 2480 2481 #ifdef TARGET_S390X 2482 if (ret == -EINVAL) { 2483 fprintf(stderr, 2484 "Host kernel setup problem detected. Please verify:\n"); 2485 fprintf(stderr, "- for kernels supporting the switch_amode or" 2486 " user_mode parameters, whether\n"); 2487 fprintf(stderr, 2488 " user space is running in primary address space\n"); 2489 fprintf(stderr, 2490 "- for kernels supporting the vm.allocate_pgste sysctl, " 2491 "whether it is enabled\n"); 2492 } 2493 #elif defined(TARGET_PPC) 2494 if (ret == -EINVAL) { 2495 fprintf(stderr, 2496 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2497 (type == 2) ? "pr" : "hv"); 2498 } 2499 #endif 2500 goto err; 2501 } 2502 2503 s->vmfd = ret; 2504 2505 /* check the vcpu limits */ 2506 soft_vcpus_limit = kvm_recommended_vcpus(s); 2507 hard_vcpus_limit = kvm_max_vcpus(s); 2508 2509 while (nc->name) { 2510 if (nc->num > soft_vcpus_limit) { 2511 warn_report("Number of %s cpus requested (%d) exceeds " 2512 "the recommended cpus supported by KVM (%d)", 2513 nc->name, nc->num, soft_vcpus_limit); 2514 2515 if (nc->num > hard_vcpus_limit) { 2516 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2517 "the maximum cpus supported by KVM (%d)\n", 2518 nc->name, nc->num, hard_vcpus_limit); 2519 exit(1); 2520 } 2521 } 2522 nc++; 2523 } 2524 2525 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2526 if (!missing_cap) { 2527 missing_cap = 2528 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2529 } 2530 if (missing_cap) { 2531 ret = -EINVAL; 2532 fprintf(stderr, "kvm does not support %s\n%s", 2533 missing_cap->name, upgrade_note); 2534 goto err; 2535 } 2536 2537 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2538 s->coalesced_pio = s->coalesced_mmio && 2539 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2540 2541 /* 2542 * Enable KVM dirty ring if supported, otherwise fall back to 2543 * dirty logging mode 2544 */ 2545 ret = kvm_dirty_ring_init(s); 2546 if (ret < 0) { 2547 goto err; 2548 } 2549 2550 /* 2551 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2552 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2553 * page is wr-protected initially, which is against how kvm dirty ring is 2554 * usage - kvm dirty ring requires all pages are wr-protected at the very 2555 * beginning. Enabling this feature for dirty ring causes data corruption. 2556 * 2557 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2558 * we may expect a higher stall time when starting the migration. In the 2559 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2560 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2561 * guest pages. 2562 */ 2563 if (!s->kvm_dirty_ring_size) { 2564 dirty_log_manual_caps = 2565 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2566 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2567 KVM_DIRTY_LOG_INITIALLY_SET); 2568 s->manual_dirty_log_protect = dirty_log_manual_caps; 2569 if (dirty_log_manual_caps) { 2570 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2571 dirty_log_manual_caps); 2572 if (ret) { 2573 warn_report("Trying to enable capability %"PRIu64" of " 2574 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2575 "Falling back to the legacy mode. ", 2576 dirty_log_manual_caps); 2577 s->manual_dirty_log_protect = 0; 2578 } 2579 } 2580 } 2581 2582 #ifdef KVM_CAP_VCPU_EVENTS 2583 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2584 #endif 2585 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2586 2587 s->irq_set_ioctl = KVM_IRQ_LINE; 2588 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2589 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2590 } 2591 2592 kvm_readonly_mem_allowed = 2593 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2594 2595 kvm_resamplefds_allowed = 2596 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2597 2598 kvm_vm_attributes_allowed = 2599 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2600 2601 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2602 kvm_has_guest_debug = 2603 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2604 #endif 2605 2606 kvm_sstep_flags = 0; 2607 if (kvm_has_guest_debug) { 2608 kvm_sstep_flags = SSTEP_ENABLE; 2609 2610 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2611 int guest_debug_flags = 2612 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2613 2614 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2615 kvm_sstep_flags |= SSTEP_NOIRQ; 2616 } 2617 #endif 2618 } 2619 2620 kvm_state = s; 2621 2622 ret = kvm_arch_init(ms, s); 2623 if (ret < 0) { 2624 goto err; 2625 } 2626 2627 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2628 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2629 } 2630 2631 qemu_register_reset(kvm_unpoison_all, NULL); 2632 2633 if (s->kernel_irqchip_allowed) { 2634 kvm_irqchip_create(s); 2635 } 2636 2637 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2638 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2639 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2640 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2641 2642 kvm_memory_listener_register(s, &s->memory_listener, 2643 &address_space_memory, 0, "kvm-memory"); 2644 memory_listener_register(&kvm_io_listener, 2645 &address_space_io); 2646 2647 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2648 if (!s->sync_mmu) { 2649 ret = ram_block_discard_disable(true); 2650 assert(!ret); 2651 } 2652 2653 if (s->kvm_dirty_ring_size) { 2654 kvm_dirty_ring_reaper_init(s); 2655 } 2656 2657 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2658 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2659 query_stats_schemas_cb); 2660 } 2661 2662 return 0; 2663 2664 err: 2665 assert(ret < 0); 2666 if (s->vmfd >= 0) { 2667 close(s->vmfd); 2668 } 2669 if (s->fd != -1) { 2670 close(s->fd); 2671 } 2672 g_free(s->as); 2673 g_free(s->memory_listener.slots); 2674 2675 return ret; 2676 } 2677 2678 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2679 { 2680 s->sigmask_len = sigmask_len; 2681 } 2682 2683 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2684 int size, uint32_t count) 2685 { 2686 int i; 2687 uint8_t *ptr = data; 2688 2689 for (i = 0; i < count; i++) { 2690 address_space_rw(&address_space_io, port, attrs, 2691 ptr, size, 2692 direction == KVM_EXIT_IO_OUT); 2693 ptr += size; 2694 } 2695 } 2696 2697 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2698 { 2699 int i; 2700 2701 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2702 run->internal.suberror); 2703 2704 for (i = 0; i < run->internal.ndata; ++i) { 2705 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2706 i, (uint64_t)run->internal.data[i]); 2707 } 2708 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2709 fprintf(stderr, "emulation failure\n"); 2710 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2711 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2712 return EXCP_INTERRUPT; 2713 } 2714 } 2715 /* FIXME: Should trigger a qmp message to let management know 2716 * something went wrong. 2717 */ 2718 return -1; 2719 } 2720 2721 void kvm_flush_coalesced_mmio_buffer(void) 2722 { 2723 KVMState *s = kvm_state; 2724 2725 if (!s || s->coalesced_flush_in_progress) { 2726 return; 2727 } 2728 2729 s->coalesced_flush_in_progress = true; 2730 2731 if (s->coalesced_mmio_ring) { 2732 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2733 while (ring->first != ring->last) { 2734 struct kvm_coalesced_mmio *ent; 2735 2736 ent = &ring->coalesced_mmio[ring->first]; 2737 2738 if (ent->pio == 1) { 2739 address_space_write(&address_space_io, ent->phys_addr, 2740 MEMTXATTRS_UNSPECIFIED, ent->data, 2741 ent->len); 2742 } else { 2743 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2744 } 2745 smp_wmb(); 2746 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2747 } 2748 } 2749 2750 s->coalesced_flush_in_progress = false; 2751 } 2752 2753 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2754 { 2755 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2756 int ret = kvm_arch_get_registers(cpu); 2757 if (ret) { 2758 error_report("Failed to get registers: %s", strerror(-ret)); 2759 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2760 vm_stop(RUN_STATE_INTERNAL_ERROR); 2761 } 2762 2763 cpu->vcpu_dirty = true; 2764 } 2765 } 2766 2767 void kvm_cpu_synchronize_state(CPUState *cpu) 2768 { 2769 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2770 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2771 } 2772 } 2773 2774 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2775 { 2776 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2777 if (ret) { 2778 error_report("Failed to put registers after reset: %s", strerror(-ret)); 2779 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2780 vm_stop(RUN_STATE_INTERNAL_ERROR); 2781 } 2782 2783 cpu->vcpu_dirty = false; 2784 } 2785 2786 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2787 { 2788 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2789 } 2790 2791 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2792 { 2793 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2794 if (ret) { 2795 error_report("Failed to put registers after init: %s", strerror(-ret)); 2796 exit(1); 2797 } 2798 2799 cpu->vcpu_dirty = false; 2800 } 2801 2802 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2803 { 2804 if (!kvm_state->guest_state_protected) { 2805 /* 2806 * This runs before the machine_init_done notifiers, and is the last 2807 * opportunity to synchronize the state of confidential guests. 2808 */ 2809 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2810 } 2811 } 2812 2813 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2814 { 2815 cpu->vcpu_dirty = true; 2816 } 2817 2818 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2819 { 2820 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2821 } 2822 2823 #ifdef KVM_HAVE_MCE_INJECTION 2824 static __thread void *pending_sigbus_addr; 2825 static __thread int pending_sigbus_code; 2826 static __thread bool have_sigbus_pending; 2827 #endif 2828 2829 static void kvm_cpu_kick(CPUState *cpu) 2830 { 2831 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2832 } 2833 2834 static void kvm_cpu_kick_self(void) 2835 { 2836 if (kvm_immediate_exit) { 2837 kvm_cpu_kick(current_cpu); 2838 } else { 2839 qemu_cpu_kick_self(); 2840 } 2841 } 2842 2843 static void kvm_eat_signals(CPUState *cpu) 2844 { 2845 struct timespec ts = { 0, 0 }; 2846 siginfo_t siginfo; 2847 sigset_t waitset; 2848 sigset_t chkset; 2849 int r; 2850 2851 if (kvm_immediate_exit) { 2852 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2853 /* Write kvm_run->immediate_exit before the cpu->exit_request 2854 * write in kvm_cpu_exec. 2855 */ 2856 smp_wmb(); 2857 return; 2858 } 2859 2860 sigemptyset(&waitset); 2861 sigaddset(&waitset, SIG_IPI); 2862 2863 do { 2864 r = sigtimedwait(&waitset, &siginfo, &ts); 2865 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2866 perror("sigtimedwait"); 2867 exit(1); 2868 } 2869 2870 r = sigpending(&chkset); 2871 if (r == -1) { 2872 perror("sigpending"); 2873 exit(1); 2874 } 2875 } while (sigismember(&chkset, SIG_IPI)); 2876 } 2877 2878 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 2879 { 2880 MemoryRegionSection section; 2881 ram_addr_t offset; 2882 MemoryRegion *mr; 2883 RAMBlock *rb; 2884 void *addr; 2885 int ret = -1; 2886 2887 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 2888 2889 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 2890 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 2891 return -1; 2892 } 2893 2894 if (!size) { 2895 return -1; 2896 } 2897 2898 section = memory_region_find(get_system_memory(), start, size); 2899 mr = section.mr; 2900 if (!mr) { 2901 /* 2902 * Ignore converting non-assigned region to shared. 2903 * 2904 * TDX requires vMMIO region to be shared to inject #VE to guest. 2905 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 2906 * and vIO-APIC 0xFEC00000 4K page. 2907 * OVMF assigns 32bit PCI MMIO region to 2908 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 2909 */ 2910 if (!to_private) { 2911 return 0; 2912 } 2913 return -1; 2914 } 2915 2916 if (!memory_region_has_guest_memfd(mr)) { 2917 /* 2918 * Because vMMIO region must be shared, guest TD may convert vMMIO 2919 * region to shared explicitly. Don't complain such case. See 2920 * memory_region_type() for checking if the region is MMIO region. 2921 */ 2922 if (!to_private && 2923 !memory_region_is_ram(mr) && 2924 !memory_region_is_ram_device(mr) && 2925 !memory_region_is_rom(mr) && 2926 !memory_region_is_romd(mr)) { 2927 ret = 0; 2928 } else { 2929 error_report("Convert non guest_memfd backed memory region " 2930 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 2931 start, size, to_private ? "private" : "shared"); 2932 } 2933 goto out_unref; 2934 } 2935 2936 if (to_private) { 2937 ret = kvm_set_memory_attributes_private(start, size); 2938 } else { 2939 ret = kvm_set_memory_attributes_shared(start, size); 2940 } 2941 if (ret) { 2942 goto out_unref; 2943 } 2944 2945 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 2946 rb = qemu_ram_block_from_host(addr, false, &offset); 2947 2948 if (to_private) { 2949 if (rb->page_size != qemu_real_host_page_size()) { 2950 /* 2951 * shared memory is backed by hugetlb, which is supposed to be 2952 * pre-allocated and doesn't need to be discarded 2953 */ 2954 goto out_unref; 2955 } 2956 ret = ram_block_discard_range(rb, offset, size); 2957 } else { 2958 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 2959 } 2960 2961 out_unref: 2962 memory_region_unref(mr); 2963 return ret; 2964 } 2965 2966 int kvm_cpu_exec(CPUState *cpu) 2967 { 2968 struct kvm_run *run = cpu->kvm_run; 2969 int ret, run_ret; 2970 2971 trace_kvm_cpu_exec(); 2972 2973 if (kvm_arch_process_async_events(cpu)) { 2974 qatomic_set(&cpu->exit_request, 0); 2975 return EXCP_HLT; 2976 } 2977 2978 bql_unlock(); 2979 cpu_exec_start(cpu); 2980 2981 do { 2982 MemTxAttrs attrs; 2983 2984 if (cpu->vcpu_dirty) { 2985 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2986 if (ret) { 2987 error_report("Failed to put registers after init: %s", 2988 strerror(-ret)); 2989 ret = -1; 2990 break; 2991 } 2992 2993 cpu->vcpu_dirty = false; 2994 } 2995 2996 kvm_arch_pre_run(cpu, run); 2997 if (qatomic_read(&cpu->exit_request)) { 2998 trace_kvm_interrupt_exit_request(); 2999 /* 3000 * KVM requires us to reenter the kernel after IO exits to complete 3001 * instruction emulation. This self-signal will ensure that we 3002 * leave ASAP again. 3003 */ 3004 kvm_cpu_kick_self(); 3005 } 3006 3007 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3008 * Matching barrier in kvm_eat_signals. 3009 */ 3010 smp_rmb(); 3011 3012 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3013 3014 attrs = kvm_arch_post_run(cpu, run); 3015 3016 #ifdef KVM_HAVE_MCE_INJECTION 3017 if (unlikely(have_sigbus_pending)) { 3018 bql_lock(); 3019 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3020 pending_sigbus_addr); 3021 have_sigbus_pending = false; 3022 bql_unlock(); 3023 } 3024 #endif 3025 3026 if (run_ret < 0) { 3027 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3028 trace_kvm_io_window_exit(); 3029 kvm_eat_signals(cpu); 3030 ret = EXCP_INTERRUPT; 3031 break; 3032 } 3033 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3034 fprintf(stderr, "error: kvm run failed %s\n", 3035 strerror(-run_ret)); 3036 #ifdef TARGET_PPC 3037 if (run_ret == -EBUSY) { 3038 fprintf(stderr, 3039 "This is probably because your SMT is enabled.\n" 3040 "VCPU can only run on primary threads with all " 3041 "secondary threads offline.\n"); 3042 } 3043 #endif 3044 ret = -1; 3045 break; 3046 } 3047 } 3048 3049 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3050 switch (run->exit_reason) { 3051 case KVM_EXIT_IO: 3052 /* Called outside BQL */ 3053 kvm_handle_io(run->io.port, attrs, 3054 (uint8_t *)run + run->io.data_offset, 3055 run->io.direction, 3056 run->io.size, 3057 run->io.count); 3058 ret = 0; 3059 break; 3060 case KVM_EXIT_MMIO: 3061 /* Called outside BQL */ 3062 address_space_rw(&address_space_memory, 3063 run->mmio.phys_addr, attrs, 3064 run->mmio.data, 3065 run->mmio.len, 3066 run->mmio.is_write); 3067 ret = 0; 3068 break; 3069 case KVM_EXIT_IRQ_WINDOW_OPEN: 3070 ret = EXCP_INTERRUPT; 3071 break; 3072 case KVM_EXIT_SHUTDOWN: 3073 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3074 ret = EXCP_INTERRUPT; 3075 break; 3076 case KVM_EXIT_UNKNOWN: 3077 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3078 (uint64_t)run->hw.hardware_exit_reason); 3079 ret = -1; 3080 break; 3081 case KVM_EXIT_INTERNAL_ERROR: 3082 ret = kvm_handle_internal_error(cpu, run); 3083 break; 3084 case KVM_EXIT_DIRTY_RING_FULL: 3085 /* 3086 * We shouldn't continue if the dirty ring of this vcpu is 3087 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3088 */ 3089 trace_kvm_dirty_ring_full(cpu->cpu_index); 3090 bql_lock(); 3091 /* 3092 * We throttle vCPU by making it sleep once it exit from kernel 3093 * due to dirty ring full. In the dirtylimit scenario, reaping 3094 * all vCPUs after a single vCPU dirty ring get full result in 3095 * the miss of sleep, so just reap the ring-fulled vCPU. 3096 */ 3097 if (dirtylimit_in_service()) { 3098 kvm_dirty_ring_reap(kvm_state, cpu); 3099 } else { 3100 kvm_dirty_ring_reap(kvm_state, NULL); 3101 } 3102 bql_unlock(); 3103 dirtylimit_vcpu_execute(cpu); 3104 ret = 0; 3105 break; 3106 case KVM_EXIT_SYSTEM_EVENT: 3107 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3108 switch (run->system_event.type) { 3109 case KVM_SYSTEM_EVENT_SHUTDOWN: 3110 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3111 ret = EXCP_INTERRUPT; 3112 break; 3113 case KVM_SYSTEM_EVENT_RESET: 3114 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3115 ret = EXCP_INTERRUPT; 3116 break; 3117 case KVM_SYSTEM_EVENT_CRASH: 3118 kvm_cpu_synchronize_state(cpu); 3119 bql_lock(); 3120 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3121 bql_unlock(); 3122 ret = 0; 3123 break; 3124 default: 3125 ret = kvm_arch_handle_exit(cpu, run); 3126 break; 3127 } 3128 break; 3129 case KVM_EXIT_MEMORY_FAULT: 3130 trace_kvm_memory_fault(run->memory_fault.gpa, 3131 run->memory_fault.size, 3132 run->memory_fault.flags); 3133 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3134 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3135 (uint64_t)run->memory_fault.flags); 3136 ret = -1; 3137 break; 3138 } 3139 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3140 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3141 break; 3142 default: 3143 ret = kvm_arch_handle_exit(cpu, run); 3144 break; 3145 } 3146 } while (ret == 0); 3147 3148 cpu_exec_end(cpu); 3149 bql_lock(); 3150 3151 if (ret < 0) { 3152 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3153 vm_stop(RUN_STATE_INTERNAL_ERROR); 3154 } 3155 3156 qatomic_set(&cpu->exit_request, 0); 3157 return ret; 3158 } 3159 3160 int kvm_ioctl(KVMState *s, int type, ...) 3161 { 3162 int ret; 3163 void *arg; 3164 va_list ap; 3165 3166 va_start(ap, type); 3167 arg = va_arg(ap, void *); 3168 va_end(ap); 3169 3170 trace_kvm_ioctl(type, arg); 3171 ret = ioctl(s->fd, type, arg); 3172 if (ret == -1) { 3173 ret = -errno; 3174 } 3175 return ret; 3176 } 3177 3178 int kvm_vm_ioctl(KVMState *s, int type, ...) 3179 { 3180 int ret; 3181 void *arg; 3182 va_list ap; 3183 3184 va_start(ap, type); 3185 arg = va_arg(ap, void *); 3186 va_end(ap); 3187 3188 trace_kvm_vm_ioctl(type, arg); 3189 accel_ioctl_begin(); 3190 ret = ioctl(s->vmfd, type, arg); 3191 accel_ioctl_end(); 3192 if (ret == -1) { 3193 ret = -errno; 3194 } 3195 return ret; 3196 } 3197 3198 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3199 { 3200 int ret; 3201 void *arg; 3202 va_list ap; 3203 3204 va_start(ap, type); 3205 arg = va_arg(ap, void *); 3206 va_end(ap); 3207 3208 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3209 accel_cpu_ioctl_begin(cpu); 3210 ret = ioctl(cpu->kvm_fd, type, arg); 3211 accel_cpu_ioctl_end(cpu); 3212 if (ret == -1) { 3213 ret = -errno; 3214 } 3215 return ret; 3216 } 3217 3218 int kvm_device_ioctl(int fd, int type, ...) 3219 { 3220 int ret; 3221 void *arg; 3222 va_list ap; 3223 3224 va_start(ap, type); 3225 arg = va_arg(ap, void *); 3226 va_end(ap); 3227 3228 trace_kvm_device_ioctl(fd, type, arg); 3229 accel_ioctl_begin(); 3230 ret = ioctl(fd, type, arg); 3231 accel_ioctl_end(); 3232 if (ret == -1) { 3233 ret = -errno; 3234 } 3235 return ret; 3236 } 3237 3238 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3239 { 3240 int ret; 3241 struct kvm_device_attr attribute = { 3242 .group = group, 3243 .attr = attr, 3244 }; 3245 3246 if (!kvm_vm_attributes_allowed) { 3247 return 0; 3248 } 3249 3250 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3251 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3252 return ret ? 0 : 1; 3253 } 3254 3255 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3256 { 3257 struct kvm_device_attr attribute = { 3258 .group = group, 3259 .attr = attr, 3260 .flags = 0, 3261 }; 3262 3263 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3264 } 3265 3266 int kvm_device_access(int fd, int group, uint64_t attr, 3267 void *val, bool write, Error **errp) 3268 { 3269 struct kvm_device_attr kvmattr; 3270 int err; 3271 3272 kvmattr.flags = 0; 3273 kvmattr.group = group; 3274 kvmattr.attr = attr; 3275 kvmattr.addr = (uintptr_t)val; 3276 3277 err = kvm_device_ioctl(fd, 3278 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3279 &kvmattr); 3280 if (err < 0) { 3281 error_setg_errno(errp, -err, 3282 "KVM_%s_DEVICE_ATTR failed: Group %d " 3283 "attr 0x%016" PRIx64, 3284 write ? "SET" : "GET", group, attr); 3285 } 3286 return err; 3287 } 3288 3289 bool kvm_has_sync_mmu(void) 3290 { 3291 return kvm_state->sync_mmu; 3292 } 3293 3294 int kvm_has_vcpu_events(void) 3295 { 3296 return kvm_state->vcpu_events; 3297 } 3298 3299 int kvm_max_nested_state_length(void) 3300 { 3301 return kvm_state->max_nested_state_len; 3302 } 3303 3304 int kvm_has_gsi_routing(void) 3305 { 3306 #ifdef KVM_CAP_IRQ_ROUTING 3307 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3308 #else 3309 return false; 3310 #endif 3311 } 3312 3313 bool kvm_arm_supports_user_irq(void) 3314 { 3315 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3316 } 3317 3318 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3319 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3320 { 3321 struct kvm_sw_breakpoint *bp; 3322 3323 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3324 if (bp->pc == pc) { 3325 return bp; 3326 } 3327 } 3328 return NULL; 3329 } 3330 3331 int kvm_sw_breakpoints_active(CPUState *cpu) 3332 { 3333 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3334 } 3335 3336 struct kvm_set_guest_debug_data { 3337 struct kvm_guest_debug dbg; 3338 int err; 3339 }; 3340 3341 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3342 { 3343 struct kvm_set_guest_debug_data *dbg_data = 3344 (struct kvm_set_guest_debug_data *) data.host_ptr; 3345 3346 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3347 &dbg_data->dbg); 3348 } 3349 3350 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3351 { 3352 struct kvm_set_guest_debug_data data; 3353 3354 data.dbg.control = reinject_trap; 3355 3356 if (cpu->singlestep_enabled) { 3357 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3358 3359 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3360 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3361 } 3362 } 3363 kvm_arch_update_guest_debug(cpu, &data.dbg); 3364 3365 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3366 RUN_ON_CPU_HOST_PTR(&data)); 3367 return data.err; 3368 } 3369 3370 bool kvm_supports_guest_debug(void) 3371 { 3372 /* probed during kvm_init() */ 3373 return kvm_has_guest_debug; 3374 } 3375 3376 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3377 { 3378 struct kvm_sw_breakpoint *bp; 3379 int err; 3380 3381 if (type == GDB_BREAKPOINT_SW) { 3382 bp = kvm_find_sw_breakpoint(cpu, addr); 3383 if (bp) { 3384 bp->use_count++; 3385 return 0; 3386 } 3387 3388 bp = g_new(struct kvm_sw_breakpoint, 1); 3389 bp->pc = addr; 3390 bp->use_count = 1; 3391 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3392 if (err) { 3393 g_free(bp); 3394 return err; 3395 } 3396 3397 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3398 } else { 3399 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3400 if (err) { 3401 return err; 3402 } 3403 } 3404 3405 CPU_FOREACH(cpu) { 3406 err = kvm_update_guest_debug(cpu, 0); 3407 if (err) { 3408 return err; 3409 } 3410 } 3411 return 0; 3412 } 3413 3414 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3415 { 3416 struct kvm_sw_breakpoint *bp; 3417 int err; 3418 3419 if (type == GDB_BREAKPOINT_SW) { 3420 bp = kvm_find_sw_breakpoint(cpu, addr); 3421 if (!bp) { 3422 return -ENOENT; 3423 } 3424 3425 if (bp->use_count > 1) { 3426 bp->use_count--; 3427 return 0; 3428 } 3429 3430 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3431 if (err) { 3432 return err; 3433 } 3434 3435 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3436 g_free(bp); 3437 } else { 3438 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3439 if (err) { 3440 return err; 3441 } 3442 } 3443 3444 CPU_FOREACH(cpu) { 3445 err = kvm_update_guest_debug(cpu, 0); 3446 if (err) { 3447 return err; 3448 } 3449 } 3450 return 0; 3451 } 3452 3453 void kvm_remove_all_breakpoints(CPUState *cpu) 3454 { 3455 struct kvm_sw_breakpoint *bp, *next; 3456 KVMState *s = cpu->kvm_state; 3457 CPUState *tmpcpu; 3458 3459 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3460 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3461 /* Try harder to find a CPU that currently sees the breakpoint. */ 3462 CPU_FOREACH(tmpcpu) { 3463 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3464 break; 3465 } 3466 } 3467 } 3468 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3469 g_free(bp); 3470 } 3471 kvm_arch_remove_all_hw_breakpoints(); 3472 3473 CPU_FOREACH(cpu) { 3474 kvm_update_guest_debug(cpu, 0); 3475 } 3476 } 3477 3478 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3479 3480 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3481 { 3482 KVMState *s = kvm_state; 3483 struct kvm_signal_mask *sigmask; 3484 int r; 3485 3486 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3487 3488 sigmask->len = s->sigmask_len; 3489 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3490 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3491 g_free(sigmask); 3492 3493 return r; 3494 } 3495 3496 static void kvm_ipi_signal(int sig) 3497 { 3498 if (current_cpu) { 3499 assert(kvm_immediate_exit); 3500 kvm_cpu_kick(current_cpu); 3501 } 3502 } 3503 3504 void kvm_init_cpu_signals(CPUState *cpu) 3505 { 3506 int r; 3507 sigset_t set; 3508 struct sigaction sigact; 3509 3510 memset(&sigact, 0, sizeof(sigact)); 3511 sigact.sa_handler = kvm_ipi_signal; 3512 sigaction(SIG_IPI, &sigact, NULL); 3513 3514 pthread_sigmask(SIG_BLOCK, NULL, &set); 3515 #if defined KVM_HAVE_MCE_INJECTION 3516 sigdelset(&set, SIGBUS); 3517 pthread_sigmask(SIG_SETMASK, &set, NULL); 3518 #endif 3519 sigdelset(&set, SIG_IPI); 3520 if (kvm_immediate_exit) { 3521 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3522 } else { 3523 r = kvm_set_signal_mask(cpu, &set); 3524 } 3525 if (r) { 3526 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3527 exit(1); 3528 } 3529 } 3530 3531 /* Called asynchronously in VCPU thread. */ 3532 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3533 { 3534 #ifdef KVM_HAVE_MCE_INJECTION 3535 if (have_sigbus_pending) { 3536 return 1; 3537 } 3538 have_sigbus_pending = true; 3539 pending_sigbus_addr = addr; 3540 pending_sigbus_code = code; 3541 qatomic_set(&cpu->exit_request, 1); 3542 return 0; 3543 #else 3544 return 1; 3545 #endif 3546 } 3547 3548 /* Called synchronously (via signalfd) in main thread. */ 3549 int kvm_on_sigbus(int code, void *addr) 3550 { 3551 #ifdef KVM_HAVE_MCE_INJECTION 3552 /* Action required MCE kills the process if SIGBUS is blocked. Because 3553 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3554 * we can only get action optional here. 3555 */ 3556 assert(code != BUS_MCEERR_AR); 3557 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3558 return 0; 3559 #else 3560 return 1; 3561 #endif 3562 } 3563 3564 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3565 { 3566 int ret; 3567 struct kvm_create_device create_dev; 3568 3569 create_dev.type = type; 3570 create_dev.fd = -1; 3571 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3572 3573 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3574 return -ENOTSUP; 3575 } 3576 3577 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3578 if (ret) { 3579 return ret; 3580 } 3581 3582 return test ? 0 : create_dev.fd; 3583 } 3584 3585 bool kvm_device_supported(int vmfd, uint64_t type) 3586 { 3587 struct kvm_create_device create_dev = { 3588 .type = type, 3589 .fd = -1, 3590 .flags = KVM_CREATE_DEVICE_TEST, 3591 }; 3592 3593 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3594 return false; 3595 } 3596 3597 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3598 } 3599 3600 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3601 { 3602 struct kvm_one_reg reg; 3603 int r; 3604 3605 reg.id = id; 3606 reg.addr = (uintptr_t) source; 3607 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3608 if (r) { 3609 trace_kvm_failed_reg_set(id, strerror(-r)); 3610 } 3611 return r; 3612 } 3613 3614 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3615 { 3616 struct kvm_one_reg reg; 3617 int r; 3618 3619 reg.id = id; 3620 reg.addr = (uintptr_t) target; 3621 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3622 if (r) { 3623 trace_kvm_failed_reg_get(id, strerror(-r)); 3624 } 3625 return r; 3626 } 3627 3628 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3629 hwaddr start_addr, hwaddr size) 3630 { 3631 KVMState *kvm = KVM_STATE(ms->accelerator); 3632 int i; 3633 3634 for (i = 0; i < kvm->nr_as; ++i) { 3635 if (kvm->as[i].as == as && kvm->as[i].ml) { 3636 size = MIN(kvm_max_slot_size, size); 3637 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3638 start_addr, size); 3639 } 3640 } 3641 3642 return false; 3643 } 3644 3645 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3646 const char *name, void *opaque, 3647 Error **errp) 3648 { 3649 KVMState *s = KVM_STATE(obj); 3650 int64_t value = s->kvm_shadow_mem; 3651 3652 visit_type_int(v, name, &value, errp); 3653 } 3654 3655 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3656 const char *name, void *opaque, 3657 Error **errp) 3658 { 3659 KVMState *s = KVM_STATE(obj); 3660 int64_t value; 3661 3662 if (s->fd != -1) { 3663 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3664 return; 3665 } 3666 3667 if (!visit_type_int(v, name, &value, errp)) { 3668 return; 3669 } 3670 3671 s->kvm_shadow_mem = value; 3672 } 3673 3674 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3675 const char *name, void *opaque, 3676 Error **errp) 3677 { 3678 KVMState *s = KVM_STATE(obj); 3679 OnOffSplit mode; 3680 3681 if (s->fd != -1) { 3682 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3683 return; 3684 } 3685 3686 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3687 return; 3688 } 3689 switch (mode) { 3690 case ON_OFF_SPLIT_ON: 3691 s->kernel_irqchip_allowed = true; 3692 s->kernel_irqchip_required = true; 3693 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3694 break; 3695 case ON_OFF_SPLIT_OFF: 3696 s->kernel_irqchip_allowed = false; 3697 s->kernel_irqchip_required = false; 3698 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3699 break; 3700 case ON_OFF_SPLIT_SPLIT: 3701 s->kernel_irqchip_allowed = true; 3702 s->kernel_irqchip_required = true; 3703 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3704 break; 3705 default: 3706 /* The value was checked in visit_type_OnOffSplit() above. If 3707 * we get here, then something is wrong in QEMU. 3708 */ 3709 abort(); 3710 } 3711 } 3712 3713 bool kvm_kernel_irqchip_allowed(void) 3714 { 3715 return kvm_state->kernel_irqchip_allowed; 3716 } 3717 3718 bool kvm_kernel_irqchip_required(void) 3719 { 3720 return kvm_state->kernel_irqchip_required; 3721 } 3722 3723 bool kvm_kernel_irqchip_split(void) 3724 { 3725 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3726 } 3727 3728 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3729 const char *name, void *opaque, 3730 Error **errp) 3731 { 3732 KVMState *s = KVM_STATE(obj); 3733 uint32_t value = s->kvm_dirty_ring_size; 3734 3735 visit_type_uint32(v, name, &value, errp); 3736 } 3737 3738 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3739 const char *name, void *opaque, 3740 Error **errp) 3741 { 3742 KVMState *s = KVM_STATE(obj); 3743 uint32_t value; 3744 3745 if (s->fd != -1) { 3746 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3747 return; 3748 } 3749 3750 if (!visit_type_uint32(v, name, &value, errp)) { 3751 return; 3752 } 3753 if (value & (value - 1)) { 3754 error_setg(errp, "dirty-ring-size must be a power of two."); 3755 return; 3756 } 3757 3758 s->kvm_dirty_ring_size = value; 3759 } 3760 3761 static char *kvm_get_device(Object *obj, 3762 Error **errp G_GNUC_UNUSED) 3763 { 3764 KVMState *s = KVM_STATE(obj); 3765 3766 return g_strdup(s->device); 3767 } 3768 3769 static void kvm_set_device(Object *obj, 3770 const char *value, 3771 Error **errp G_GNUC_UNUSED) 3772 { 3773 KVMState *s = KVM_STATE(obj); 3774 3775 g_free(s->device); 3776 s->device = g_strdup(value); 3777 } 3778 3779 static void kvm_accel_instance_init(Object *obj) 3780 { 3781 KVMState *s = KVM_STATE(obj); 3782 3783 s->fd = -1; 3784 s->vmfd = -1; 3785 s->kvm_shadow_mem = -1; 3786 s->kernel_irqchip_allowed = true; 3787 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3788 /* KVM dirty ring is by default off */ 3789 s->kvm_dirty_ring_size = 0; 3790 s->kvm_dirty_ring_with_bitmap = false; 3791 s->kvm_eager_split_size = 0; 3792 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3793 s->notify_window = 0; 3794 s->xen_version = 0; 3795 s->xen_gnttab_max_frames = 64; 3796 s->xen_evtchn_max_pirq = 256; 3797 s->device = NULL; 3798 } 3799 3800 /** 3801 * kvm_gdbstub_sstep_flags(): 3802 * 3803 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3804 * support is probed during kvm_init() 3805 */ 3806 static int kvm_gdbstub_sstep_flags(void) 3807 { 3808 return kvm_sstep_flags; 3809 } 3810 3811 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3812 { 3813 AccelClass *ac = ACCEL_CLASS(oc); 3814 ac->name = "KVM"; 3815 ac->init_machine = kvm_init; 3816 ac->has_memory = kvm_accel_has_memory; 3817 ac->allowed = &kvm_allowed; 3818 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3819 3820 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3821 NULL, kvm_set_kernel_irqchip, 3822 NULL, NULL); 3823 object_class_property_set_description(oc, "kernel-irqchip", 3824 "Configure KVM in-kernel irqchip"); 3825 3826 object_class_property_add(oc, "kvm-shadow-mem", "int", 3827 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3828 NULL, NULL); 3829 object_class_property_set_description(oc, "kvm-shadow-mem", 3830 "KVM shadow MMU size"); 3831 3832 object_class_property_add(oc, "dirty-ring-size", "uint32", 3833 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3834 NULL, NULL); 3835 object_class_property_set_description(oc, "dirty-ring-size", 3836 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3837 3838 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 3839 object_class_property_set_description(oc, "device", 3840 "Path to the device node to use (default: /dev/kvm)"); 3841 3842 kvm_arch_accel_class_init(oc); 3843 } 3844 3845 static const TypeInfo kvm_accel_type = { 3846 .name = TYPE_KVM_ACCEL, 3847 .parent = TYPE_ACCEL, 3848 .instance_init = kvm_accel_instance_init, 3849 .class_init = kvm_accel_class_init, 3850 .instance_size = sizeof(KVMState), 3851 }; 3852 3853 static void kvm_type_init(void) 3854 { 3855 type_register_static(&kvm_accel_type); 3856 } 3857 3858 type_init(kvm_type_init); 3859 3860 typedef struct StatsArgs { 3861 union StatsResultsType { 3862 StatsResultList **stats; 3863 StatsSchemaList **schema; 3864 } result; 3865 strList *names; 3866 Error **errp; 3867 } StatsArgs; 3868 3869 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3870 uint64_t *stats_data, 3871 StatsList *stats_list, 3872 Error **errp) 3873 { 3874 3875 Stats *stats; 3876 uint64List *val_list = NULL; 3877 3878 /* Only add stats that we understand. */ 3879 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3880 case KVM_STATS_TYPE_CUMULATIVE: 3881 case KVM_STATS_TYPE_INSTANT: 3882 case KVM_STATS_TYPE_PEAK: 3883 case KVM_STATS_TYPE_LINEAR_HIST: 3884 case KVM_STATS_TYPE_LOG_HIST: 3885 break; 3886 default: 3887 return stats_list; 3888 } 3889 3890 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3891 case KVM_STATS_UNIT_NONE: 3892 case KVM_STATS_UNIT_BYTES: 3893 case KVM_STATS_UNIT_CYCLES: 3894 case KVM_STATS_UNIT_SECONDS: 3895 case KVM_STATS_UNIT_BOOLEAN: 3896 break; 3897 default: 3898 return stats_list; 3899 } 3900 3901 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3902 case KVM_STATS_BASE_POW10: 3903 case KVM_STATS_BASE_POW2: 3904 break; 3905 default: 3906 return stats_list; 3907 } 3908 3909 /* Alloc and populate data list */ 3910 stats = g_new0(Stats, 1); 3911 stats->name = g_strdup(pdesc->name); 3912 stats->value = g_new0(StatsValue, 1); 3913 3914 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3915 stats->value->u.boolean = *stats_data; 3916 stats->value->type = QTYPE_QBOOL; 3917 } else if (pdesc->size == 1) { 3918 stats->value->u.scalar = *stats_data; 3919 stats->value->type = QTYPE_QNUM; 3920 } else { 3921 int i; 3922 for (i = 0; i < pdesc->size; i++) { 3923 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3924 } 3925 stats->value->u.list = val_list; 3926 stats->value->type = QTYPE_QLIST; 3927 } 3928 3929 QAPI_LIST_PREPEND(stats_list, stats); 3930 return stats_list; 3931 } 3932 3933 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3934 StatsSchemaValueList *list, 3935 Error **errp) 3936 { 3937 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3938 schema_entry->value = g_new0(StatsSchemaValue, 1); 3939 3940 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3941 case KVM_STATS_TYPE_CUMULATIVE: 3942 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3943 break; 3944 case KVM_STATS_TYPE_INSTANT: 3945 schema_entry->value->type = STATS_TYPE_INSTANT; 3946 break; 3947 case KVM_STATS_TYPE_PEAK: 3948 schema_entry->value->type = STATS_TYPE_PEAK; 3949 break; 3950 case KVM_STATS_TYPE_LINEAR_HIST: 3951 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3952 schema_entry->value->bucket_size = pdesc->bucket_size; 3953 schema_entry->value->has_bucket_size = true; 3954 break; 3955 case KVM_STATS_TYPE_LOG_HIST: 3956 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3957 break; 3958 default: 3959 goto exit; 3960 } 3961 3962 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3963 case KVM_STATS_UNIT_NONE: 3964 break; 3965 case KVM_STATS_UNIT_BOOLEAN: 3966 schema_entry->value->has_unit = true; 3967 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3968 break; 3969 case KVM_STATS_UNIT_BYTES: 3970 schema_entry->value->has_unit = true; 3971 schema_entry->value->unit = STATS_UNIT_BYTES; 3972 break; 3973 case KVM_STATS_UNIT_CYCLES: 3974 schema_entry->value->has_unit = true; 3975 schema_entry->value->unit = STATS_UNIT_CYCLES; 3976 break; 3977 case KVM_STATS_UNIT_SECONDS: 3978 schema_entry->value->has_unit = true; 3979 schema_entry->value->unit = STATS_UNIT_SECONDS; 3980 break; 3981 default: 3982 goto exit; 3983 } 3984 3985 schema_entry->value->exponent = pdesc->exponent; 3986 if (pdesc->exponent) { 3987 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3988 case KVM_STATS_BASE_POW10: 3989 schema_entry->value->has_base = true; 3990 schema_entry->value->base = 10; 3991 break; 3992 case KVM_STATS_BASE_POW2: 3993 schema_entry->value->has_base = true; 3994 schema_entry->value->base = 2; 3995 break; 3996 default: 3997 goto exit; 3998 } 3999 } 4000 4001 schema_entry->value->name = g_strdup(pdesc->name); 4002 schema_entry->next = list; 4003 return schema_entry; 4004 exit: 4005 g_free(schema_entry->value); 4006 g_free(schema_entry); 4007 return list; 4008 } 4009 4010 /* Cached stats descriptors */ 4011 typedef struct StatsDescriptors { 4012 const char *ident; /* cache key, currently the StatsTarget */ 4013 struct kvm_stats_desc *kvm_stats_desc; 4014 struct kvm_stats_header kvm_stats_header; 4015 QTAILQ_ENTRY(StatsDescriptors) next; 4016 } StatsDescriptors; 4017 4018 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4019 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4020 4021 /* 4022 * Return the descriptors for 'target', that either have already been read 4023 * or are retrieved from 'stats_fd'. 4024 */ 4025 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4026 Error **errp) 4027 { 4028 StatsDescriptors *descriptors; 4029 const char *ident; 4030 struct kvm_stats_desc *kvm_stats_desc; 4031 struct kvm_stats_header *kvm_stats_header; 4032 size_t size_desc; 4033 ssize_t ret; 4034 4035 ident = StatsTarget_str(target); 4036 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4037 if (g_str_equal(descriptors->ident, ident)) { 4038 return descriptors; 4039 } 4040 } 4041 4042 descriptors = g_new0(StatsDescriptors, 1); 4043 4044 /* Read stats header */ 4045 kvm_stats_header = &descriptors->kvm_stats_header; 4046 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4047 if (ret != sizeof(*kvm_stats_header)) { 4048 error_setg(errp, "KVM stats: failed to read stats header: " 4049 "expected %zu actual %zu", 4050 sizeof(*kvm_stats_header), ret); 4051 g_free(descriptors); 4052 return NULL; 4053 } 4054 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4055 4056 /* Read stats descriptors */ 4057 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4058 ret = pread(stats_fd, kvm_stats_desc, 4059 size_desc * kvm_stats_header->num_desc, 4060 kvm_stats_header->desc_offset); 4061 4062 if (ret != size_desc * kvm_stats_header->num_desc) { 4063 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4064 "expected %zu actual %zu", 4065 size_desc * kvm_stats_header->num_desc, ret); 4066 g_free(descriptors); 4067 g_free(kvm_stats_desc); 4068 return NULL; 4069 } 4070 descriptors->kvm_stats_desc = kvm_stats_desc; 4071 descriptors->ident = ident; 4072 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4073 return descriptors; 4074 } 4075 4076 static void query_stats(StatsResultList **result, StatsTarget target, 4077 strList *names, int stats_fd, CPUState *cpu, 4078 Error **errp) 4079 { 4080 struct kvm_stats_desc *kvm_stats_desc; 4081 struct kvm_stats_header *kvm_stats_header; 4082 StatsDescriptors *descriptors; 4083 g_autofree uint64_t *stats_data = NULL; 4084 struct kvm_stats_desc *pdesc; 4085 StatsList *stats_list = NULL; 4086 size_t size_desc, size_data = 0; 4087 ssize_t ret; 4088 int i; 4089 4090 descriptors = find_stats_descriptors(target, stats_fd, errp); 4091 if (!descriptors) { 4092 return; 4093 } 4094 4095 kvm_stats_header = &descriptors->kvm_stats_header; 4096 kvm_stats_desc = descriptors->kvm_stats_desc; 4097 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4098 4099 /* Tally the total data size; read schema data */ 4100 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4101 pdesc = (void *)kvm_stats_desc + i * size_desc; 4102 size_data += pdesc->size * sizeof(*stats_data); 4103 } 4104 4105 stats_data = g_malloc0(size_data); 4106 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4107 4108 if (ret != size_data) { 4109 error_setg(errp, "KVM stats: failed to read data: " 4110 "expected %zu actual %zu", size_data, ret); 4111 return; 4112 } 4113 4114 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4115 uint64_t *stats; 4116 pdesc = (void *)kvm_stats_desc + i * size_desc; 4117 4118 /* Add entry to the list */ 4119 stats = (void *)stats_data + pdesc->offset; 4120 if (!apply_str_list_filter(pdesc->name, names)) { 4121 continue; 4122 } 4123 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4124 } 4125 4126 if (!stats_list) { 4127 return; 4128 } 4129 4130 switch (target) { 4131 case STATS_TARGET_VM: 4132 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4133 break; 4134 case STATS_TARGET_VCPU: 4135 add_stats_entry(result, STATS_PROVIDER_KVM, 4136 cpu->parent_obj.canonical_path, 4137 stats_list); 4138 break; 4139 default: 4140 g_assert_not_reached(); 4141 } 4142 } 4143 4144 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4145 int stats_fd, Error **errp) 4146 { 4147 struct kvm_stats_desc *kvm_stats_desc; 4148 struct kvm_stats_header *kvm_stats_header; 4149 StatsDescriptors *descriptors; 4150 struct kvm_stats_desc *pdesc; 4151 StatsSchemaValueList *stats_list = NULL; 4152 size_t size_desc; 4153 int i; 4154 4155 descriptors = find_stats_descriptors(target, stats_fd, errp); 4156 if (!descriptors) { 4157 return; 4158 } 4159 4160 kvm_stats_header = &descriptors->kvm_stats_header; 4161 kvm_stats_desc = descriptors->kvm_stats_desc; 4162 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4163 4164 /* Tally the total data size; read schema data */ 4165 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4166 pdesc = (void *)kvm_stats_desc + i * size_desc; 4167 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4168 } 4169 4170 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4171 } 4172 4173 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4174 { 4175 int stats_fd = cpu->kvm_vcpu_stats_fd; 4176 Error *local_err = NULL; 4177 4178 if (stats_fd == -1) { 4179 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4180 error_propagate(kvm_stats_args->errp, local_err); 4181 return; 4182 } 4183 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4184 kvm_stats_args->names, stats_fd, cpu, 4185 kvm_stats_args->errp); 4186 } 4187 4188 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4189 { 4190 int stats_fd = cpu->kvm_vcpu_stats_fd; 4191 Error *local_err = NULL; 4192 4193 if (stats_fd == -1) { 4194 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4195 error_propagate(kvm_stats_args->errp, local_err); 4196 return; 4197 } 4198 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4199 kvm_stats_args->errp); 4200 } 4201 4202 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4203 strList *names, strList *targets, Error **errp) 4204 { 4205 KVMState *s = kvm_state; 4206 CPUState *cpu; 4207 int stats_fd; 4208 4209 switch (target) { 4210 case STATS_TARGET_VM: 4211 { 4212 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4213 if (stats_fd == -1) { 4214 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4215 return; 4216 } 4217 query_stats(result, target, names, stats_fd, NULL, errp); 4218 close(stats_fd); 4219 break; 4220 } 4221 case STATS_TARGET_VCPU: 4222 { 4223 StatsArgs stats_args; 4224 stats_args.result.stats = result; 4225 stats_args.names = names; 4226 stats_args.errp = errp; 4227 CPU_FOREACH(cpu) { 4228 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4229 continue; 4230 } 4231 query_stats_vcpu(cpu, &stats_args); 4232 } 4233 break; 4234 } 4235 default: 4236 break; 4237 } 4238 } 4239 4240 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4241 { 4242 StatsArgs stats_args; 4243 KVMState *s = kvm_state; 4244 int stats_fd; 4245 4246 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4247 if (stats_fd == -1) { 4248 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4249 return; 4250 } 4251 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4252 close(stats_fd); 4253 4254 if (first_cpu) { 4255 stats_args.result.schema = result; 4256 stats_args.errp = errp; 4257 query_stats_schema_vcpu(first_cpu, &stats_args); 4258 } 4259 } 4260 4261 void kvm_mark_guest_state_protected(void) 4262 { 4263 kvm_state->guest_state_protected = true; 4264 } 4265 4266 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4267 { 4268 int fd; 4269 struct kvm_create_guest_memfd guest_memfd = { 4270 .size = size, 4271 .flags = flags, 4272 }; 4273 4274 if (!kvm_guest_memfd_supported) { 4275 error_setg(errp, "KVM does not support guest_memfd"); 4276 return -1; 4277 } 4278 4279 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4280 if (fd < 0) { 4281 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4282 return -1; 4283 } 4284 4285 return fd; 4286 } 4287