1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "gdbstub/enums.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61 * need to use the real host PAGE_SIZE, as that's what KVM will use.
62 */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71
72 struct KVMParkedVcpu {
73 unsigned long vcpu_id;
74 int kvm_fd;
75 QLIST_ENTRY(KVMParkedVcpu) node;
76 };
77
78 KVMState *kvm_state;
79 bool kvm_kernel_irqchip;
80 bool kvm_split_irqchip;
81 bool kvm_async_interrupts_allowed;
82 bool kvm_halt_in_kernel_allowed;
83 bool kvm_resamplefds_allowed;
84 bool kvm_msi_via_irqfd_allowed;
85 bool kvm_gsi_routing_allowed;
86 bool kvm_gsi_direct_mapping;
87 bool kvm_allowed;
88 bool kvm_readonly_mem_allowed;
89 bool kvm_vm_attributes_allowed;
90 bool kvm_msi_use_devid;
91 static bool kvm_has_guest_debug;
92 static int kvm_sstep_flags;
93 static bool kvm_immediate_exit;
94 static uint64_t kvm_supported_memory_attributes;
95 static bool kvm_guest_memfd_supported;
96 static hwaddr kvm_max_slot_size = ~0;
97
98 static const KVMCapabilityInfo kvm_required_capabilites[] = {
99 KVM_CAP_INFO(USER_MEMORY),
100 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
101 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
102 KVM_CAP_INFO(INTERNAL_ERROR_DATA),
103 KVM_CAP_INFO(IOEVENTFD),
104 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
105 KVM_CAP_LAST_INFO
106 };
107
108 static NotifierList kvm_irqchip_change_notifiers =
109 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
110
111 struct KVMResampleFd {
112 int gsi;
113 EventNotifier *resample_event;
114 QLIST_ENTRY(KVMResampleFd) node;
115 };
116 typedef struct KVMResampleFd KVMResampleFd;
117
118 /*
119 * Only used with split irqchip where we need to do the resample fd
120 * kick for the kernel from userspace.
121 */
122 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
123 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
124
125 static QemuMutex kml_slots_lock;
126
127 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
128 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
129
130 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
131
kvm_resample_fd_remove(int gsi)132 static inline void kvm_resample_fd_remove(int gsi)
133 {
134 KVMResampleFd *rfd;
135
136 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
137 if (rfd->gsi == gsi) {
138 QLIST_REMOVE(rfd, node);
139 g_free(rfd);
140 break;
141 }
142 }
143 }
144
kvm_resample_fd_insert(int gsi,EventNotifier * event)145 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
146 {
147 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
148
149 rfd->gsi = gsi;
150 rfd->resample_event = event;
151
152 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
153 }
154
kvm_resample_fd_notify(int gsi)155 void kvm_resample_fd_notify(int gsi)
156 {
157 KVMResampleFd *rfd;
158
159 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
160 if (rfd->gsi == gsi) {
161 event_notifier_set(rfd->resample_event);
162 trace_kvm_resample_fd_notify(gsi);
163 return;
164 }
165 }
166 }
167
kvm_get_max_memslots(void)168 unsigned int kvm_get_max_memslots(void)
169 {
170 KVMState *s = KVM_STATE(current_accel());
171
172 return s->nr_slots;
173 }
174
kvm_get_free_memslots(void)175 unsigned int kvm_get_free_memslots(void)
176 {
177 unsigned int used_slots = 0;
178 KVMState *s = kvm_state;
179 int i;
180
181 kvm_slots_lock();
182 for (i = 0; i < s->nr_as; i++) {
183 if (!s->as[i].ml) {
184 continue;
185 }
186 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
187 }
188 kvm_slots_unlock();
189
190 return s->nr_slots - used_slots;
191 }
192
193 /* Called with KVMMemoryListener.slots_lock held */
kvm_get_free_slot(KVMMemoryListener * kml)194 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
195 {
196 KVMState *s = kvm_state;
197 int i;
198
199 for (i = 0; i < s->nr_slots; i++) {
200 if (kml->slots[i].memory_size == 0) {
201 return &kml->slots[i];
202 }
203 }
204
205 return NULL;
206 }
207
208 /* Called with KVMMemoryListener.slots_lock held */
kvm_alloc_slot(KVMMemoryListener * kml)209 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
210 {
211 KVMSlot *slot = kvm_get_free_slot(kml);
212
213 if (slot) {
214 return slot;
215 }
216
217 fprintf(stderr, "%s: no free slot available\n", __func__);
218 abort();
219 }
220
kvm_lookup_matching_slot(KVMMemoryListener * kml,hwaddr start_addr,hwaddr size)221 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
222 hwaddr start_addr,
223 hwaddr size)
224 {
225 KVMState *s = kvm_state;
226 int i;
227
228 for (i = 0; i < s->nr_slots; i++) {
229 KVMSlot *mem = &kml->slots[i];
230
231 if (start_addr == mem->start_addr && size == mem->memory_size) {
232 return mem;
233 }
234 }
235
236 return NULL;
237 }
238
239 /*
240 * Calculate and align the start address and the size of the section.
241 * Return the size. If the size is 0, the aligned section is empty.
242 */
kvm_align_section(MemoryRegionSection * section,hwaddr * start)243 static hwaddr kvm_align_section(MemoryRegionSection *section,
244 hwaddr *start)
245 {
246 hwaddr size = int128_get64(section->size);
247 hwaddr delta, aligned;
248
249 /* kvm works in page size chunks, but the function may be called
250 with sub-page size and unaligned start address. Pad the start
251 address to next and truncate size to previous page boundary. */
252 aligned = ROUND_UP(section->offset_within_address_space,
253 qemu_real_host_page_size());
254 delta = aligned - section->offset_within_address_space;
255 *start = aligned;
256 if (delta > size) {
257 return 0;
258 }
259
260 return (size - delta) & qemu_real_host_page_mask();
261 }
262
kvm_physical_memory_addr_from_host(KVMState * s,void * ram,hwaddr * phys_addr)263 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
264 hwaddr *phys_addr)
265 {
266 KVMMemoryListener *kml = &s->memory_listener;
267 int i, ret = 0;
268
269 kvm_slots_lock();
270 for (i = 0; i < s->nr_slots; i++) {
271 KVMSlot *mem = &kml->slots[i];
272
273 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
274 *phys_addr = mem->start_addr + (ram - mem->ram);
275 ret = 1;
276 break;
277 }
278 }
279 kvm_slots_unlock();
280
281 return ret;
282 }
283
kvm_set_user_memory_region(KVMMemoryListener * kml,KVMSlot * slot,bool new)284 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
285 {
286 KVMState *s = kvm_state;
287 struct kvm_userspace_memory_region2 mem;
288 int ret;
289
290 mem.slot = slot->slot | (kml->as_id << 16);
291 mem.guest_phys_addr = slot->start_addr;
292 mem.userspace_addr = (unsigned long)slot->ram;
293 mem.flags = slot->flags;
294 mem.guest_memfd = slot->guest_memfd;
295 mem.guest_memfd_offset = slot->guest_memfd_offset;
296
297 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
298 /* Set the slot size to 0 before setting the slot to the desired
299 * value. This is needed based on KVM commit 75d61fbc. */
300 mem.memory_size = 0;
301
302 if (kvm_guest_memfd_supported) {
303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
304 } else {
305 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
306 }
307 if (ret < 0) {
308 goto err;
309 }
310 }
311 mem.memory_size = slot->memory_size;
312 if (kvm_guest_memfd_supported) {
313 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
314 } else {
315 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
316 }
317 slot->old_flags = mem.flags;
318 err:
319 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags,
320 mem.guest_phys_addr, mem.memory_size,
321 mem.userspace_addr, mem.guest_memfd,
322 mem.guest_memfd_offset, ret);
323 if (ret < 0) {
324 if (kvm_guest_memfd_supported) {
325 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d,"
326 " start=0x%" PRIx64 ", size=0x%" PRIx64 ","
327 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 ","
328 " guest_memfd_offset=0x%" PRIx64 ": %s",
329 __func__, mem.slot, slot->start_addr,
330 (uint64_t)mem.memory_size, mem.flags,
331 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset,
332 strerror(errno));
333 } else {
334 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
335 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
336 __func__, mem.slot, slot->start_addr,
337 (uint64_t)mem.memory_size, strerror(errno));
338 }
339 }
340 return ret;
341 }
342
kvm_park_vcpu(CPUState * cpu)343 void kvm_park_vcpu(CPUState *cpu)
344 {
345 struct KVMParkedVcpu *vcpu;
346
347 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
348
349 vcpu = g_malloc0(sizeof(*vcpu));
350 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
351 vcpu->kvm_fd = cpu->kvm_fd;
352 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
353 }
354
kvm_unpark_vcpu(KVMState * s,unsigned long vcpu_id)355 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id)
356 {
357 struct KVMParkedVcpu *cpu;
358 int kvm_fd = -ENOENT;
359
360 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
361 if (cpu->vcpu_id == vcpu_id) {
362 QLIST_REMOVE(cpu, node);
363 kvm_fd = cpu->kvm_fd;
364 g_free(cpu);
365 break;
366 }
367 }
368
369 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked");
370
371 return kvm_fd;
372 }
373
kvm_create_vcpu(CPUState * cpu)374 int kvm_create_vcpu(CPUState *cpu)
375 {
376 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu);
377 KVMState *s = kvm_state;
378 int kvm_fd;
379
380 /* check if the KVM vCPU already exist but is parked */
381 kvm_fd = kvm_unpark_vcpu(s, vcpu_id);
382 if (kvm_fd < 0) {
383 /* vCPU not parked: create a new KVM vCPU */
384 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id);
385 if (kvm_fd < 0) {
386 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id);
387 return kvm_fd;
388 }
389 }
390
391 cpu->kvm_fd = kvm_fd;
392 cpu->kvm_state = s;
393 cpu->vcpu_dirty = true;
394 cpu->dirty_pages = 0;
395 cpu->throttle_us_per_full = 0;
396
397 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd);
398
399 return 0;
400 }
401
kvm_create_and_park_vcpu(CPUState * cpu)402 int kvm_create_and_park_vcpu(CPUState *cpu)
403 {
404 int ret = 0;
405
406 ret = kvm_create_vcpu(cpu);
407 if (!ret) {
408 kvm_park_vcpu(cpu);
409 }
410
411 return ret;
412 }
413
do_kvm_destroy_vcpu(CPUState * cpu)414 static int do_kvm_destroy_vcpu(CPUState *cpu)
415 {
416 KVMState *s = kvm_state;
417 long mmap_size;
418 int ret = 0;
419
420 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
421
422 ret = kvm_arch_destroy_vcpu(cpu);
423 if (ret < 0) {
424 goto err;
425 }
426
427 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
428 if (mmap_size < 0) {
429 ret = mmap_size;
430 trace_kvm_failed_get_vcpu_mmap_size();
431 goto err;
432 }
433
434 ret = munmap(cpu->kvm_run, mmap_size);
435 if (ret < 0) {
436 goto err;
437 }
438
439 if (cpu->kvm_dirty_gfns) {
440 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
441 if (ret < 0) {
442 goto err;
443 }
444 }
445
446 kvm_park_vcpu(cpu);
447 err:
448 return ret;
449 }
450
kvm_destroy_vcpu(CPUState * cpu)451 void kvm_destroy_vcpu(CPUState *cpu)
452 {
453 if (do_kvm_destroy_vcpu(cpu) < 0) {
454 error_report("kvm_destroy_vcpu failed");
455 exit(EXIT_FAILURE);
456 }
457 }
458
kvm_init_vcpu(CPUState * cpu,Error ** errp)459 int kvm_init_vcpu(CPUState *cpu, Error **errp)
460 {
461 KVMState *s = kvm_state;
462 long mmap_size;
463 int ret;
464
465 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
466
467 ret = kvm_create_vcpu(cpu);
468 if (ret < 0) {
469 error_setg_errno(errp, -ret,
470 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)",
471 kvm_arch_vcpu_id(cpu));
472 goto err;
473 }
474
475 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
476 if (mmap_size < 0) {
477 ret = mmap_size;
478 error_setg_errno(errp, -mmap_size,
479 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
480 goto err;
481 }
482
483 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
484 cpu->kvm_fd, 0);
485 if (cpu->kvm_run == MAP_FAILED) {
486 ret = -errno;
487 error_setg_errno(errp, ret,
488 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
489 kvm_arch_vcpu_id(cpu));
490 goto err;
491 }
492
493 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
494 s->coalesced_mmio_ring =
495 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
496 }
497
498 if (s->kvm_dirty_ring_size) {
499 /* Use MAP_SHARED to share pages with the kernel */
500 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
501 PROT_READ | PROT_WRITE, MAP_SHARED,
502 cpu->kvm_fd,
503 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
504 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
505 ret = -errno;
506 goto err;
507 }
508 }
509
510 ret = kvm_arch_init_vcpu(cpu);
511 if (ret < 0) {
512 error_setg_errno(errp, -ret,
513 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
514 kvm_arch_vcpu_id(cpu));
515 }
516 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
517
518 err:
519 return ret;
520 }
521
522 /*
523 * dirty pages logging control
524 */
525
kvm_mem_flags(MemoryRegion * mr)526 static int kvm_mem_flags(MemoryRegion *mr)
527 {
528 bool readonly = mr->readonly || memory_region_is_romd(mr);
529 int flags = 0;
530
531 if (memory_region_get_dirty_log_mask(mr) != 0) {
532 flags |= KVM_MEM_LOG_DIRTY_PAGES;
533 }
534 if (readonly && kvm_readonly_mem_allowed) {
535 flags |= KVM_MEM_READONLY;
536 }
537 if (memory_region_has_guest_memfd(mr)) {
538 assert(kvm_guest_memfd_supported);
539 flags |= KVM_MEM_GUEST_MEMFD;
540 }
541 return flags;
542 }
543
544 /* Called with KVMMemoryListener.slots_lock held */
kvm_slot_update_flags(KVMMemoryListener * kml,KVMSlot * mem,MemoryRegion * mr)545 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
546 MemoryRegion *mr)
547 {
548 mem->flags = kvm_mem_flags(mr);
549
550 /* If nothing changed effectively, no need to issue ioctl */
551 if (mem->flags == mem->old_flags) {
552 return 0;
553 }
554
555 kvm_slot_init_dirty_bitmap(mem);
556 return kvm_set_user_memory_region(kml, mem, false);
557 }
558
kvm_section_update_flags(KVMMemoryListener * kml,MemoryRegionSection * section)559 static int kvm_section_update_flags(KVMMemoryListener *kml,
560 MemoryRegionSection *section)
561 {
562 hwaddr start_addr, size, slot_size;
563 KVMSlot *mem;
564 int ret = 0;
565
566 size = kvm_align_section(section, &start_addr);
567 if (!size) {
568 return 0;
569 }
570
571 kvm_slots_lock();
572
573 while (size && !ret) {
574 slot_size = MIN(kvm_max_slot_size, size);
575 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
576 if (!mem) {
577 /* We don't have a slot if we want to trap every access. */
578 goto out;
579 }
580
581 ret = kvm_slot_update_flags(kml, mem, section->mr);
582 start_addr += slot_size;
583 size -= slot_size;
584 }
585
586 out:
587 kvm_slots_unlock();
588 return ret;
589 }
590
kvm_log_start(MemoryListener * listener,MemoryRegionSection * section,int old,int new)591 static void kvm_log_start(MemoryListener *listener,
592 MemoryRegionSection *section,
593 int old, int new)
594 {
595 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
596 int r;
597
598 if (old != 0) {
599 return;
600 }
601
602 r = kvm_section_update_flags(kml, section);
603 if (r < 0) {
604 abort();
605 }
606 }
607
kvm_log_stop(MemoryListener * listener,MemoryRegionSection * section,int old,int new)608 static void kvm_log_stop(MemoryListener *listener,
609 MemoryRegionSection *section,
610 int old, int new)
611 {
612 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
613 int r;
614
615 if (new != 0) {
616 return;
617 }
618
619 r = kvm_section_update_flags(kml, section);
620 if (r < 0) {
621 abort();
622 }
623 }
624
625 /* get kvm's dirty pages bitmap and update qemu's */
kvm_slot_sync_dirty_pages(KVMSlot * slot)626 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
627 {
628 ram_addr_t start = slot->ram_start_offset;
629 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
630
631 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
632 }
633
kvm_slot_reset_dirty_pages(KVMSlot * slot)634 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
635 {
636 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
637 }
638
639 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
640
641 /* Allocate the dirty bitmap for a slot */
kvm_slot_init_dirty_bitmap(KVMSlot * mem)642 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
643 {
644 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
645 return;
646 }
647
648 /*
649 * XXX bad kernel interface alert
650 * For dirty bitmap, kernel allocates array of size aligned to
651 * bits-per-long. But for case when the kernel is 64bits and
652 * the userspace is 32bits, userspace can't align to the same
653 * bits-per-long, since sizeof(long) is different between kernel
654 * and user space. This way, userspace will provide buffer which
655 * may be 4 bytes less than the kernel will use, resulting in
656 * userspace memory corruption (which is not detectable by valgrind
657 * too, in most cases).
658 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
659 * a hope that sizeof(long) won't become >8 any time soon.
660 *
661 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
662 * And mem->memory_size is aligned to it (otherwise this mem can't
663 * be registered to KVM).
664 */
665 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
666 /*HOST_LONG_BITS*/ 64) / 8;
667 mem->dirty_bmap = g_malloc0(bitmap_size);
668 mem->dirty_bmap_size = bitmap_size;
669 }
670
671 /*
672 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
673 * succeeded, false otherwise
674 */
kvm_slot_get_dirty_log(KVMState * s,KVMSlot * slot)675 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
676 {
677 struct kvm_dirty_log d = {};
678 int ret;
679
680 d.dirty_bitmap = slot->dirty_bmap;
681 d.slot = slot->slot | (slot->as_id << 16);
682 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
683
684 if (ret == -ENOENT) {
685 /* kernel does not have dirty bitmap in this slot */
686 ret = 0;
687 }
688 if (ret) {
689 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
690 __func__, ret);
691 }
692 return ret == 0;
693 }
694
695 /* Should be with all slots_lock held for the address spaces. */
kvm_dirty_ring_mark_page(KVMState * s,uint32_t as_id,uint32_t slot_id,uint64_t offset)696 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
697 uint32_t slot_id, uint64_t offset)
698 {
699 KVMMemoryListener *kml;
700 KVMSlot *mem;
701
702 if (as_id >= s->nr_as) {
703 return;
704 }
705
706 kml = s->as[as_id].ml;
707 mem = &kml->slots[slot_id];
708
709 if (!mem->memory_size || offset >=
710 (mem->memory_size / qemu_real_host_page_size())) {
711 return;
712 }
713
714 set_bit(offset, mem->dirty_bmap);
715 }
716
dirty_gfn_is_dirtied(struct kvm_dirty_gfn * gfn)717 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
718 {
719 /*
720 * Read the flags before the value. Pairs with barrier in
721 * KVM's kvm_dirty_ring_push() function.
722 */
723 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
724 }
725
dirty_gfn_set_collected(struct kvm_dirty_gfn * gfn)726 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
727 {
728 /*
729 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
730 * sees the full content of the ring:
731 *
732 * CPU0 CPU1 CPU2
733 * ------------------------------------------------------------------------------
734 * fill gfn0
735 * store-rel flags for gfn0
736 * load-acq flags for gfn0
737 * store-rel RESET for gfn0
738 * ioctl(RESET_RINGS)
739 * load-acq flags for gfn0
740 * check if flags have RESET
741 *
742 * The synchronization goes from CPU2 to CPU0 to CPU1.
743 */
744 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
745 }
746
747 /*
748 * Should be with all slots_lock held for the address spaces. It returns the
749 * dirty page we've collected on this dirty ring.
750 */
kvm_dirty_ring_reap_one(KVMState * s,CPUState * cpu)751 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
752 {
753 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
754 uint32_t ring_size = s->kvm_dirty_ring_size;
755 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
756
757 /*
758 * It's possible that we race with vcpu creation code where the vcpu is
759 * put onto the vcpus list but not yet initialized the dirty ring
760 * structures. If so, skip it.
761 */
762 if (!cpu->created) {
763 return 0;
764 }
765
766 assert(dirty_gfns && ring_size);
767 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
768
769 while (true) {
770 cur = &dirty_gfns[fetch % ring_size];
771 if (!dirty_gfn_is_dirtied(cur)) {
772 break;
773 }
774 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
775 cur->offset);
776 dirty_gfn_set_collected(cur);
777 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
778 fetch++;
779 count++;
780 }
781 cpu->kvm_fetch_index = fetch;
782 cpu->dirty_pages += count;
783
784 return count;
785 }
786
787 /* Must be with slots_lock held */
kvm_dirty_ring_reap_locked(KVMState * s,CPUState * cpu)788 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
789 {
790 int ret;
791 uint64_t total = 0;
792 int64_t stamp;
793
794 stamp = get_clock();
795
796 if (cpu) {
797 total = kvm_dirty_ring_reap_one(s, cpu);
798 } else {
799 CPU_FOREACH(cpu) {
800 total += kvm_dirty_ring_reap_one(s, cpu);
801 }
802 }
803
804 if (total) {
805 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
806 assert(ret == total);
807 }
808
809 stamp = get_clock() - stamp;
810
811 if (total) {
812 trace_kvm_dirty_ring_reap(total, stamp / 1000);
813 }
814
815 return total;
816 }
817
818 /*
819 * Currently for simplicity, we must hold BQL before calling this. We can
820 * consider to drop the BQL if we're clear with all the race conditions.
821 */
kvm_dirty_ring_reap(KVMState * s,CPUState * cpu)822 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
823 {
824 uint64_t total;
825
826 /*
827 * We need to lock all kvm slots for all address spaces here,
828 * because:
829 *
830 * (1) We need to mark dirty for dirty bitmaps in multiple slots
831 * and for tons of pages, so it's better to take the lock here
832 * once rather than once per page. And more importantly,
833 *
834 * (2) We must _NOT_ publish dirty bits to the other threads
835 * (e.g., the migration thread) via the kvm memory slot dirty
836 * bitmaps before correctly re-protect those dirtied pages.
837 * Otherwise we can have potential risk of data corruption if
838 * the page data is read in the other thread before we do
839 * reset below.
840 */
841 kvm_slots_lock();
842 total = kvm_dirty_ring_reap_locked(s, cpu);
843 kvm_slots_unlock();
844
845 return total;
846 }
847
do_kvm_cpu_synchronize_kick(CPUState * cpu,run_on_cpu_data arg)848 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
849 {
850 /* No need to do anything */
851 }
852
853 /*
854 * Kick all vcpus out in a synchronized way. When returned, we
855 * guarantee that every vcpu has been kicked and at least returned to
856 * userspace once.
857 */
kvm_cpu_synchronize_kick_all(void)858 static void kvm_cpu_synchronize_kick_all(void)
859 {
860 CPUState *cpu;
861
862 CPU_FOREACH(cpu) {
863 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
864 }
865 }
866
867 /*
868 * Flush all the existing dirty pages to the KVM slot buffers. When
869 * this call returns, we guarantee that all the touched dirty pages
870 * before calling this function have been put into the per-kvmslot
871 * dirty bitmap.
872 *
873 * This function must be called with BQL held.
874 */
kvm_dirty_ring_flush(void)875 static void kvm_dirty_ring_flush(void)
876 {
877 trace_kvm_dirty_ring_flush(0);
878 /*
879 * The function needs to be serialized. Since this function
880 * should always be with BQL held, serialization is guaranteed.
881 * However, let's be sure of it.
882 */
883 assert(bql_locked());
884 /*
885 * First make sure to flush the hardware buffers by kicking all
886 * vcpus out in a synchronous way.
887 */
888 kvm_cpu_synchronize_kick_all();
889 kvm_dirty_ring_reap(kvm_state, NULL);
890 trace_kvm_dirty_ring_flush(1);
891 }
892
893 /**
894 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
895 *
896 * This function will first try to fetch dirty bitmap from the kernel,
897 * and then updates qemu's dirty bitmap.
898 *
899 * NOTE: caller must be with kml->slots_lock held.
900 *
901 * @kml: the KVM memory listener object
902 * @section: the memory section to sync the dirty bitmap with
903 */
kvm_physical_sync_dirty_bitmap(KVMMemoryListener * kml,MemoryRegionSection * section)904 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
905 MemoryRegionSection *section)
906 {
907 KVMState *s = kvm_state;
908 KVMSlot *mem;
909 hwaddr start_addr, size;
910 hwaddr slot_size;
911
912 size = kvm_align_section(section, &start_addr);
913 while (size) {
914 slot_size = MIN(kvm_max_slot_size, size);
915 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
916 if (!mem) {
917 /* We don't have a slot if we want to trap every access. */
918 return;
919 }
920 if (kvm_slot_get_dirty_log(s, mem)) {
921 kvm_slot_sync_dirty_pages(mem);
922 }
923 start_addr += slot_size;
924 size -= slot_size;
925 }
926 }
927
928 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
929 #define KVM_CLEAR_LOG_SHIFT 6
930 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
931 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
932
kvm_log_clear_one_slot(KVMSlot * mem,int as_id,uint64_t start,uint64_t size)933 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
934 uint64_t size)
935 {
936 KVMState *s = kvm_state;
937 uint64_t end, bmap_start, start_delta, bmap_npages;
938 struct kvm_clear_dirty_log d;
939 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
940 int ret;
941
942 /*
943 * We need to extend either the start or the size or both to
944 * satisfy the KVM interface requirement. Firstly, do the start
945 * page alignment on 64 host pages
946 */
947 bmap_start = start & KVM_CLEAR_LOG_MASK;
948 start_delta = start - bmap_start;
949 bmap_start /= psize;
950
951 /*
952 * The kernel interface has restriction on the size too, that either:
953 *
954 * (1) the size is 64 host pages aligned (just like the start), or
955 * (2) the size fills up until the end of the KVM memslot.
956 */
957 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
958 << KVM_CLEAR_LOG_SHIFT;
959 end = mem->memory_size / psize;
960 if (bmap_npages > end - bmap_start) {
961 bmap_npages = end - bmap_start;
962 }
963 start_delta /= psize;
964
965 /*
966 * Prepare the bitmap to clear dirty bits. Here we must guarantee
967 * that we won't clear any unknown dirty bits otherwise we might
968 * accidentally clear some set bits which are not yet synced from
969 * the kernel into QEMU's bitmap, then we'll lose track of the
970 * guest modifications upon those pages (which can directly lead
971 * to guest data loss or panic after migration).
972 *
973 * Layout of the KVMSlot.dirty_bmap:
974 *
975 * |<-------- bmap_npages -----------..>|
976 * [1]
977 * start_delta size
978 * |----------------|-------------|------------------|------------|
979 * ^ ^ ^ ^
980 * | | | |
981 * start bmap_start (start) end
982 * of memslot of memslot
983 *
984 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
985 */
986
987 assert(bmap_start % BITS_PER_LONG == 0);
988 /* We should never do log_clear before log_sync */
989 assert(mem->dirty_bmap);
990 if (start_delta || bmap_npages - size / psize) {
991 /* Slow path - we need to manipulate a temp bitmap */
992 bmap_clear = bitmap_new(bmap_npages);
993 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
994 bmap_start, start_delta + size / psize);
995 /*
996 * We need to fill the holes at start because that was not
997 * specified by the caller and we extended the bitmap only for
998 * 64 pages alignment
999 */
1000 bitmap_clear(bmap_clear, 0, start_delta);
1001 d.dirty_bitmap = bmap_clear;
1002 } else {
1003 /*
1004 * Fast path - both start and size align well with BITS_PER_LONG
1005 * (or the end of memory slot)
1006 */
1007 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
1008 }
1009
1010 d.first_page = bmap_start;
1011 /* It should never overflow. If it happens, say something */
1012 assert(bmap_npages <= UINT32_MAX);
1013 d.num_pages = bmap_npages;
1014 d.slot = mem->slot | (as_id << 16);
1015
1016 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
1017 if (ret < 0 && ret != -ENOENT) {
1018 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
1019 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
1020 __func__, d.slot, (uint64_t)d.first_page,
1021 (uint32_t)d.num_pages, ret);
1022 } else {
1023 ret = 0;
1024 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
1025 }
1026
1027 /*
1028 * After we have updated the remote dirty bitmap, we update the
1029 * cached bitmap as well for the memslot, then if another user
1030 * clears the same region we know we shouldn't clear it again on
1031 * the remote otherwise it's data loss as well.
1032 */
1033 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1034 size / psize);
1035 /* This handles the NULL case well */
1036 g_free(bmap_clear);
1037 return ret;
1038 }
1039
1040
1041 /**
1042 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1043 *
1044 * NOTE: this will be a no-op if we haven't enabled manual dirty log
1045 * protection in the host kernel because in that case this operation
1046 * will be done within log_sync().
1047 *
1048 * @kml: the kvm memory listener
1049 * @section: the memory range to clear dirty bitmap
1050 */
kvm_physical_log_clear(KVMMemoryListener * kml,MemoryRegionSection * section)1051 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1052 MemoryRegionSection *section)
1053 {
1054 KVMState *s = kvm_state;
1055 uint64_t start, size, offset, count;
1056 KVMSlot *mem;
1057 int ret = 0, i;
1058
1059 if (!s->manual_dirty_log_protect) {
1060 /* No need to do explicit clear */
1061 return ret;
1062 }
1063
1064 start = section->offset_within_address_space;
1065 size = int128_get64(section->size);
1066
1067 if (!size) {
1068 /* Nothing more we can do... */
1069 return ret;
1070 }
1071
1072 kvm_slots_lock();
1073
1074 for (i = 0; i < s->nr_slots; i++) {
1075 mem = &kml->slots[i];
1076 /* Discard slots that are empty or do not overlap the section */
1077 if (!mem->memory_size ||
1078 mem->start_addr > start + size - 1 ||
1079 start > mem->start_addr + mem->memory_size - 1) {
1080 continue;
1081 }
1082
1083 if (start >= mem->start_addr) {
1084 /* The slot starts before section or is aligned to it. */
1085 offset = start - mem->start_addr;
1086 count = MIN(mem->memory_size - offset, size);
1087 } else {
1088 /* The slot starts after section. */
1089 offset = 0;
1090 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1091 }
1092 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1093 if (ret < 0) {
1094 break;
1095 }
1096 }
1097
1098 kvm_slots_unlock();
1099
1100 return ret;
1101 }
1102
kvm_coalesce_mmio_region(MemoryListener * listener,MemoryRegionSection * secion,hwaddr start,hwaddr size)1103 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1104 MemoryRegionSection *secion,
1105 hwaddr start, hwaddr size)
1106 {
1107 KVMState *s = kvm_state;
1108
1109 if (s->coalesced_mmio) {
1110 struct kvm_coalesced_mmio_zone zone;
1111
1112 zone.addr = start;
1113 zone.size = size;
1114 zone.pad = 0;
1115
1116 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1117 }
1118 }
1119
kvm_uncoalesce_mmio_region(MemoryListener * listener,MemoryRegionSection * secion,hwaddr start,hwaddr size)1120 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1121 MemoryRegionSection *secion,
1122 hwaddr start, hwaddr size)
1123 {
1124 KVMState *s = kvm_state;
1125
1126 if (s->coalesced_mmio) {
1127 struct kvm_coalesced_mmio_zone zone;
1128
1129 zone.addr = start;
1130 zone.size = size;
1131 zone.pad = 0;
1132
1133 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1134 }
1135 }
1136
kvm_coalesce_pio_add(MemoryListener * listener,MemoryRegionSection * section,hwaddr start,hwaddr size)1137 static void kvm_coalesce_pio_add(MemoryListener *listener,
1138 MemoryRegionSection *section,
1139 hwaddr start, hwaddr size)
1140 {
1141 KVMState *s = kvm_state;
1142
1143 if (s->coalesced_pio) {
1144 struct kvm_coalesced_mmio_zone zone;
1145
1146 zone.addr = start;
1147 zone.size = size;
1148 zone.pio = 1;
1149
1150 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1151 }
1152 }
1153
kvm_coalesce_pio_del(MemoryListener * listener,MemoryRegionSection * section,hwaddr start,hwaddr size)1154 static void kvm_coalesce_pio_del(MemoryListener *listener,
1155 MemoryRegionSection *section,
1156 hwaddr start, hwaddr size)
1157 {
1158 KVMState *s = kvm_state;
1159
1160 if (s->coalesced_pio) {
1161 struct kvm_coalesced_mmio_zone zone;
1162
1163 zone.addr = start;
1164 zone.size = size;
1165 zone.pio = 1;
1166
1167 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1168 }
1169 }
1170
kvm_check_extension(KVMState * s,unsigned int extension)1171 int kvm_check_extension(KVMState *s, unsigned int extension)
1172 {
1173 int ret;
1174
1175 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1176 if (ret < 0) {
1177 ret = 0;
1178 }
1179
1180 return ret;
1181 }
1182
kvm_vm_check_extension(KVMState * s,unsigned int extension)1183 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1184 {
1185 int ret;
1186
1187 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1188 if (ret < 0) {
1189 /* VM wide version not implemented, use global one instead */
1190 ret = kvm_check_extension(s, extension);
1191 }
1192
1193 return ret;
1194 }
1195
1196 /*
1197 * We track the poisoned pages to be able to:
1198 * - replace them on VM reset
1199 * - block a migration for a VM with a poisoned page
1200 */
1201 typedef struct HWPoisonPage {
1202 ram_addr_t ram_addr;
1203 QLIST_ENTRY(HWPoisonPage) list;
1204 } HWPoisonPage;
1205
1206 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1207 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1208
kvm_unpoison_all(void * param)1209 static void kvm_unpoison_all(void *param)
1210 {
1211 HWPoisonPage *page, *next_page;
1212
1213 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1214 QLIST_REMOVE(page, list);
1215 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1216 g_free(page);
1217 }
1218 }
1219
kvm_hwpoison_page_add(ram_addr_t ram_addr)1220 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1221 {
1222 HWPoisonPage *page;
1223
1224 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1225 if (page->ram_addr == ram_addr) {
1226 return;
1227 }
1228 }
1229 page = g_new(HWPoisonPage, 1);
1230 page->ram_addr = ram_addr;
1231 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1232 }
1233
kvm_hwpoisoned_mem(void)1234 bool kvm_hwpoisoned_mem(void)
1235 {
1236 return !QLIST_EMPTY(&hwpoison_page_list);
1237 }
1238
adjust_ioeventfd_endianness(uint32_t val,uint32_t size)1239 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1240 {
1241 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1242 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1243 * endianness, but the memory core hands them in target endianness.
1244 * For example, PPC is always treated as big-endian even if running
1245 * on KVM and on PPC64LE. Correct here.
1246 */
1247 switch (size) {
1248 case 2:
1249 val = bswap16(val);
1250 break;
1251 case 4:
1252 val = bswap32(val);
1253 break;
1254 }
1255 #endif
1256 return val;
1257 }
1258
kvm_set_ioeventfd_mmio(int fd,hwaddr addr,uint32_t val,bool assign,uint32_t size,bool datamatch)1259 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1260 bool assign, uint32_t size, bool datamatch)
1261 {
1262 int ret;
1263 struct kvm_ioeventfd iofd = {
1264 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1265 .addr = addr,
1266 .len = size,
1267 .flags = 0,
1268 .fd = fd,
1269 };
1270
1271 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1272 datamatch);
1273 if (!kvm_enabled()) {
1274 return -ENOSYS;
1275 }
1276
1277 if (datamatch) {
1278 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1279 }
1280 if (!assign) {
1281 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1282 }
1283
1284 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1285
1286 if (ret < 0) {
1287 return -errno;
1288 }
1289
1290 return 0;
1291 }
1292
kvm_set_ioeventfd_pio(int fd,uint16_t addr,uint16_t val,bool assign,uint32_t size,bool datamatch)1293 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1294 bool assign, uint32_t size, bool datamatch)
1295 {
1296 struct kvm_ioeventfd kick = {
1297 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1298 .addr = addr,
1299 .flags = KVM_IOEVENTFD_FLAG_PIO,
1300 .len = size,
1301 .fd = fd,
1302 };
1303 int r;
1304 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1305 if (!kvm_enabled()) {
1306 return -ENOSYS;
1307 }
1308 if (datamatch) {
1309 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1310 }
1311 if (!assign) {
1312 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1313 }
1314 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1315 if (r < 0) {
1316 return r;
1317 }
1318 return 0;
1319 }
1320
1321
1322 static const KVMCapabilityInfo *
kvm_check_extension_list(KVMState * s,const KVMCapabilityInfo * list)1323 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1324 {
1325 while (list->name) {
1326 if (!kvm_check_extension(s, list->value)) {
1327 return list;
1328 }
1329 list++;
1330 }
1331 return NULL;
1332 }
1333
kvm_set_max_memslot_size(hwaddr max_slot_size)1334 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1335 {
1336 g_assert(
1337 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1338 );
1339 kvm_max_slot_size = max_slot_size;
1340 }
1341
kvm_set_memory_attributes(hwaddr start,uint64_t size,uint64_t attr)1342 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr)
1343 {
1344 struct kvm_memory_attributes attrs;
1345 int r;
1346
1347 assert((attr & kvm_supported_memory_attributes) == attr);
1348 attrs.attributes = attr;
1349 attrs.address = start;
1350 attrs.size = size;
1351 attrs.flags = 0;
1352
1353 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs);
1354 if (r) {
1355 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") "
1356 "with attr 0x%" PRIx64 " error '%s'",
1357 start, size, attr, strerror(errno));
1358 }
1359 return r;
1360 }
1361
kvm_set_memory_attributes_private(hwaddr start,uint64_t size)1362 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size)
1363 {
1364 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
1365 }
1366
kvm_set_memory_attributes_shared(hwaddr start,uint64_t size)1367 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size)
1368 {
1369 return kvm_set_memory_attributes(start, size, 0);
1370 }
1371
1372 /* Called with KVMMemoryListener.slots_lock held */
kvm_set_phys_mem(KVMMemoryListener * kml,MemoryRegionSection * section,bool add)1373 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1374 MemoryRegionSection *section, bool add)
1375 {
1376 KVMSlot *mem;
1377 int err;
1378 MemoryRegion *mr = section->mr;
1379 bool writable = !mr->readonly && !mr->rom_device;
1380 hwaddr start_addr, size, slot_size, mr_offset;
1381 ram_addr_t ram_start_offset;
1382 void *ram;
1383
1384 if (!memory_region_is_ram(mr)) {
1385 if (writable || !kvm_readonly_mem_allowed) {
1386 return;
1387 } else if (!mr->romd_mode) {
1388 /* If the memory device is not in romd_mode, then we actually want
1389 * to remove the kvm memory slot so all accesses will trap. */
1390 add = false;
1391 }
1392 }
1393
1394 size = kvm_align_section(section, &start_addr);
1395 if (!size) {
1396 return;
1397 }
1398
1399 /* The offset of the kvmslot within the memory region */
1400 mr_offset = section->offset_within_region + start_addr -
1401 section->offset_within_address_space;
1402
1403 /* use aligned delta to align the ram address and offset */
1404 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1405 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1406
1407 if (!add) {
1408 do {
1409 slot_size = MIN(kvm_max_slot_size, size);
1410 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1411 if (!mem) {
1412 return;
1413 }
1414 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1415 /*
1416 * NOTE: We should be aware of the fact that here we're only
1417 * doing a best effort to sync dirty bits. No matter whether
1418 * we're using dirty log or dirty ring, we ignored two facts:
1419 *
1420 * (1) dirty bits can reside in hardware buffers (PML)
1421 *
1422 * (2) after we collected dirty bits here, pages can be dirtied
1423 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1424 * remove the slot.
1425 *
1426 * Not easy. Let's cross the fingers until it's fixed.
1427 */
1428 if (kvm_state->kvm_dirty_ring_size) {
1429 kvm_dirty_ring_reap_locked(kvm_state, NULL);
1430 if (kvm_state->kvm_dirty_ring_with_bitmap) {
1431 kvm_slot_sync_dirty_pages(mem);
1432 kvm_slot_get_dirty_log(kvm_state, mem);
1433 }
1434 } else {
1435 kvm_slot_get_dirty_log(kvm_state, mem);
1436 }
1437 kvm_slot_sync_dirty_pages(mem);
1438 }
1439
1440 /* unregister the slot */
1441 g_free(mem->dirty_bmap);
1442 mem->dirty_bmap = NULL;
1443 mem->memory_size = 0;
1444 mem->flags = 0;
1445 err = kvm_set_user_memory_region(kml, mem, false);
1446 if (err) {
1447 fprintf(stderr, "%s: error unregistering slot: %s\n",
1448 __func__, strerror(-err));
1449 abort();
1450 }
1451 start_addr += slot_size;
1452 size -= slot_size;
1453 kml->nr_used_slots--;
1454 } while (size);
1455 return;
1456 }
1457
1458 /* register the new slot */
1459 do {
1460 slot_size = MIN(kvm_max_slot_size, size);
1461 mem = kvm_alloc_slot(kml);
1462 mem->as_id = kml->as_id;
1463 mem->memory_size = slot_size;
1464 mem->start_addr = start_addr;
1465 mem->ram_start_offset = ram_start_offset;
1466 mem->ram = ram;
1467 mem->flags = kvm_mem_flags(mr);
1468 mem->guest_memfd = mr->ram_block->guest_memfd;
1469 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host;
1470
1471 kvm_slot_init_dirty_bitmap(mem);
1472 err = kvm_set_user_memory_region(kml, mem, true);
1473 if (err) {
1474 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1475 strerror(-err));
1476 abort();
1477 }
1478
1479 if (memory_region_has_guest_memfd(mr)) {
1480 err = kvm_set_memory_attributes_private(start_addr, slot_size);
1481 if (err) {
1482 error_report("%s: failed to set memory attribute private: %s",
1483 __func__, strerror(-err));
1484 exit(1);
1485 }
1486 }
1487
1488 start_addr += slot_size;
1489 ram_start_offset += slot_size;
1490 ram += slot_size;
1491 size -= slot_size;
1492 kml->nr_used_slots++;
1493 } while (size);
1494 }
1495
kvm_dirty_ring_reaper_thread(void * data)1496 static void *kvm_dirty_ring_reaper_thread(void *data)
1497 {
1498 KVMState *s = data;
1499 struct KVMDirtyRingReaper *r = &s->reaper;
1500
1501 rcu_register_thread();
1502
1503 trace_kvm_dirty_ring_reaper("init");
1504
1505 while (true) {
1506 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1507 trace_kvm_dirty_ring_reaper("wait");
1508 /*
1509 * TODO: provide a smarter timeout rather than a constant?
1510 */
1511 sleep(1);
1512
1513 /* keep sleeping so that dirtylimit not be interfered by reaper */
1514 if (dirtylimit_in_service()) {
1515 continue;
1516 }
1517
1518 trace_kvm_dirty_ring_reaper("wakeup");
1519 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1520
1521 bql_lock();
1522 kvm_dirty_ring_reap(s, NULL);
1523 bql_unlock();
1524
1525 r->reaper_iteration++;
1526 }
1527
1528 trace_kvm_dirty_ring_reaper("exit");
1529
1530 rcu_unregister_thread();
1531
1532 return NULL;
1533 }
1534
kvm_dirty_ring_reaper_init(KVMState * s)1535 static void kvm_dirty_ring_reaper_init(KVMState *s)
1536 {
1537 struct KVMDirtyRingReaper *r = &s->reaper;
1538
1539 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1540 kvm_dirty_ring_reaper_thread,
1541 s, QEMU_THREAD_JOINABLE);
1542 }
1543
kvm_dirty_ring_init(KVMState * s)1544 static int kvm_dirty_ring_init(KVMState *s)
1545 {
1546 uint32_t ring_size = s->kvm_dirty_ring_size;
1547 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1548 unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1549 int ret;
1550
1551 s->kvm_dirty_ring_size = 0;
1552 s->kvm_dirty_ring_bytes = 0;
1553
1554 /* Bail if the dirty ring size isn't specified */
1555 if (!ring_size) {
1556 return 0;
1557 }
1558
1559 /*
1560 * Read the max supported pages. Fall back to dirty logging mode
1561 * if the dirty ring isn't supported.
1562 */
1563 ret = kvm_vm_check_extension(s, capability);
1564 if (ret <= 0) {
1565 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1566 ret = kvm_vm_check_extension(s, capability);
1567 }
1568
1569 if (ret <= 0) {
1570 warn_report("KVM dirty ring not available, using bitmap method");
1571 return 0;
1572 }
1573
1574 if (ring_bytes > ret) {
1575 error_report("KVM dirty ring size %" PRIu32 " too big "
1576 "(maximum is %ld). Please use a smaller value.",
1577 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1578 return -EINVAL;
1579 }
1580
1581 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1582 if (ret) {
1583 error_report("Enabling of KVM dirty ring failed: %s. "
1584 "Suggested minimum value is 1024.", strerror(-ret));
1585 return -EIO;
1586 }
1587
1588 /* Enable the backup bitmap if it is supported */
1589 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1590 if (ret > 0) {
1591 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1592 if (ret) {
1593 error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1594 "%s. ", strerror(-ret));
1595 return -EIO;
1596 }
1597
1598 s->kvm_dirty_ring_with_bitmap = true;
1599 }
1600
1601 s->kvm_dirty_ring_size = ring_size;
1602 s->kvm_dirty_ring_bytes = ring_bytes;
1603
1604 return 0;
1605 }
1606
kvm_region_add(MemoryListener * listener,MemoryRegionSection * section)1607 static void kvm_region_add(MemoryListener *listener,
1608 MemoryRegionSection *section)
1609 {
1610 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1611 KVMMemoryUpdate *update;
1612
1613 update = g_new0(KVMMemoryUpdate, 1);
1614 update->section = *section;
1615
1616 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1617 }
1618
kvm_region_del(MemoryListener * listener,MemoryRegionSection * section)1619 static void kvm_region_del(MemoryListener *listener,
1620 MemoryRegionSection *section)
1621 {
1622 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1623 KVMMemoryUpdate *update;
1624
1625 update = g_new0(KVMMemoryUpdate, 1);
1626 update->section = *section;
1627
1628 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1629 }
1630
kvm_region_commit(MemoryListener * listener)1631 static void kvm_region_commit(MemoryListener *listener)
1632 {
1633 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1634 listener);
1635 KVMMemoryUpdate *u1, *u2;
1636 bool need_inhibit = false;
1637
1638 if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1639 QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1640 return;
1641 }
1642
1643 /*
1644 * We have to be careful when regions to add overlap with ranges to remove.
1645 * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1646 * is currently active.
1647 *
1648 * The lists are order by addresses, so it's easy to find overlaps.
1649 */
1650 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1651 u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1652 while (u1 && u2) {
1653 Range r1, r2;
1654
1655 range_init_nofail(&r1, u1->section.offset_within_address_space,
1656 int128_get64(u1->section.size));
1657 range_init_nofail(&r2, u2->section.offset_within_address_space,
1658 int128_get64(u2->section.size));
1659
1660 if (range_overlaps_range(&r1, &r2)) {
1661 need_inhibit = true;
1662 break;
1663 }
1664 if (range_lob(&r1) < range_lob(&r2)) {
1665 u1 = QSIMPLEQ_NEXT(u1, next);
1666 } else {
1667 u2 = QSIMPLEQ_NEXT(u2, next);
1668 }
1669 }
1670
1671 kvm_slots_lock();
1672 if (need_inhibit) {
1673 accel_ioctl_inhibit_begin();
1674 }
1675
1676 /* Remove all memslots before adding the new ones. */
1677 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1678 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1679 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1680
1681 kvm_set_phys_mem(kml, &u1->section, false);
1682 memory_region_unref(u1->section.mr);
1683
1684 g_free(u1);
1685 }
1686 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1687 u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1688 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1689
1690 memory_region_ref(u1->section.mr);
1691 kvm_set_phys_mem(kml, &u1->section, true);
1692
1693 g_free(u1);
1694 }
1695
1696 if (need_inhibit) {
1697 accel_ioctl_inhibit_end();
1698 }
1699 kvm_slots_unlock();
1700 }
1701
kvm_log_sync(MemoryListener * listener,MemoryRegionSection * section)1702 static void kvm_log_sync(MemoryListener *listener,
1703 MemoryRegionSection *section)
1704 {
1705 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1706
1707 kvm_slots_lock();
1708 kvm_physical_sync_dirty_bitmap(kml, section);
1709 kvm_slots_unlock();
1710 }
1711
kvm_log_sync_global(MemoryListener * l,bool last_stage)1712 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1713 {
1714 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1715 KVMState *s = kvm_state;
1716 KVMSlot *mem;
1717 int i;
1718
1719 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1720 kvm_dirty_ring_flush();
1721
1722 /*
1723 * TODO: make this faster when nr_slots is big while there are
1724 * only a few used slots (small VMs).
1725 */
1726 kvm_slots_lock();
1727 for (i = 0; i < s->nr_slots; i++) {
1728 mem = &kml->slots[i];
1729 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1730 kvm_slot_sync_dirty_pages(mem);
1731
1732 if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1733 kvm_slot_get_dirty_log(s, mem)) {
1734 kvm_slot_sync_dirty_pages(mem);
1735 }
1736
1737 /*
1738 * This is not needed by KVM_GET_DIRTY_LOG because the
1739 * ioctl will unconditionally overwrite the whole region.
1740 * However kvm dirty ring has no such side effect.
1741 */
1742 kvm_slot_reset_dirty_pages(mem);
1743 }
1744 }
1745 kvm_slots_unlock();
1746 }
1747
kvm_log_clear(MemoryListener * listener,MemoryRegionSection * section)1748 static void kvm_log_clear(MemoryListener *listener,
1749 MemoryRegionSection *section)
1750 {
1751 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1752 int r;
1753
1754 r = kvm_physical_log_clear(kml, section);
1755 if (r < 0) {
1756 error_report_once("%s: kvm log clear failed: mr=%s "
1757 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1758 section->mr->name, section->offset_within_region,
1759 int128_get64(section->size));
1760 abort();
1761 }
1762 }
1763
kvm_mem_ioeventfd_add(MemoryListener * listener,MemoryRegionSection * section,bool match_data,uint64_t data,EventNotifier * e)1764 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1765 MemoryRegionSection *section,
1766 bool match_data, uint64_t data,
1767 EventNotifier *e)
1768 {
1769 int fd = event_notifier_get_fd(e);
1770 int r;
1771
1772 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1773 data, true, int128_get64(section->size),
1774 match_data);
1775 if (r < 0) {
1776 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1777 __func__, strerror(-r), -r);
1778 abort();
1779 }
1780 }
1781
kvm_mem_ioeventfd_del(MemoryListener * listener,MemoryRegionSection * section,bool match_data,uint64_t data,EventNotifier * e)1782 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1783 MemoryRegionSection *section,
1784 bool match_data, uint64_t data,
1785 EventNotifier *e)
1786 {
1787 int fd = event_notifier_get_fd(e);
1788 int r;
1789
1790 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1791 data, false, int128_get64(section->size),
1792 match_data);
1793 if (r < 0) {
1794 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1795 __func__, strerror(-r), -r);
1796 abort();
1797 }
1798 }
1799
kvm_io_ioeventfd_add(MemoryListener * listener,MemoryRegionSection * section,bool match_data,uint64_t data,EventNotifier * e)1800 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1801 MemoryRegionSection *section,
1802 bool match_data, uint64_t data,
1803 EventNotifier *e)
1804 {
1805 int fd = event_notifier_get_fd(e);
1806 int r;
1807
1808 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1809 data, true, int128_get64(section->size),
1810 match_data);
1811 if (r < 0) {
1812 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1813 __func__, strerror(-r), -r);
1814 abort();
1815 }
1816 }
1817
kvm_io_ioeventfd_del(MemoryListener * listener,MemoryRegionSection * section,bool match_data,uint64_t data,EventNotifier * e)1818 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1819 MemoryRegionSection *section,
1820 bool match_data, uint64_t data,
1821 EventNotifier *e)
1822
1823 {
1824 int fd = event_notifier_get_fd(e);
1825 int r;
1826
1827 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1828 data, false, int128_get64(section->size),
1829 match_data);
1830 if (r < 0) {
1831 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1832 __func__, strerror(-r), -r);
1833 abort();
1834 }
1835 }
1836
kvm_memory_listener_register(KVMState * s,KVMMemoryListener * kml,AddressSpace * as,int as_id,const char * name)1837 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1838 AddressSpace *as, int as_id, const char *name)
1839 {
1840 int i;
1841
1842 kml->slots = g_new0(KVMSlot, s->nr_slots);
1843 kml->as_id = as_id;
1844
1845 for (i = 0; i < s->nr_slots; i++) {
1846 kml->slots[i].slot = i;
1847 }
1848
1849 QSIMPLEQ_INIT(&kml->transaction_add);
1850 QSIMPLEQ_INIT(&kml->transaction_del);
1851
1852 kml->listener.region_add = kvm_region_add;
1853 kml->listener.region_del = kvm_region_del;
1854 kml->listener.commit = kvm_region_commit;
1855 kml->listener.log_start = kvm_log_start;
1856 kml->listener.log_stop = kvm_log_stop;
1857 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1858 kml->listener.name = name;
1859
1860 if (s->kvm_dirty_ring_size) {
1861 kml->listener.log_sync_global = kvm_log_sync_global;
1862 } else {
1863 kml->listener.log_sync = kvm_log_sync;
1864 kml->listener.log_clear = kvm_log_clear;
1865 }
1866
1867 memory_listener_register(&kml->listener, as);
1868
1869 for (i = 0; i < s->nr_as; ++i) {
1870 if (!s->as[i].as) {
1871 s->as[i].as = as;
1872 s->as[i].ml = kml;
1873 break;
1874 }
1875 }
1876 }
1877
1878 static MemoryListener kvm_io_listener = {
1879 .name = "kvm-io",
1880 .coalesced_io_add = kvm_coalesce_pio_add,
1881 .coalesced_io_del = kvm_coalesce_pio_del,
1882 .eventfd_add = kvm_io_ioeventfd_add,
1883 .eventfd_del = kvm_io_ioeventfd_del,
1884 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1885 };
1886
kvm_set_irq(KVMState * s,int irq,int level)1887 int kvm_set_irq(KVMState *s, int irq, int level)
1888 {
1889 struct kvm_irq_level event;
1890 int ret;
1891
1892 assert(kvm_async_interrupts_enabled());
1893
1894 event.level = level;
1895 event.irq = irq;
1896 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1897 if (ret < 0) {
1898 perror("kvm_set_irq");
1899 abort();
1900 }
1901
1902 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1903 }
1904
1905 #ifdef KVM_CAP_IRQ_ROUTING
1906 typedef struct KVMMSIRoute {
1907 struct kvm_irq_routing_entry kroute;
1908 QTAILQ_ENTRY(KVMMSIRoute) entry;
1909 } KVMMSIRoute;
1910
set_gsi(KVMState * s,unsigned int gsi)1911 static void set_gsi(KVMState *s, unsigned int gsi)
1912 {
1913 set_bit(gsi, s->used_gsi_bitmap);
1914 }
1915
clear_gsi(KVMState * s,unsigned int gsi)1916 static void clear_gsi(KVMState *s, unsigned int gsi)
1917 {
1918 clear_bit(gsi, s->used_gsi_bitmap);
1919 }
1920
kvm_init_irq_routing(KVMState * s)1921 void kvm_init_irq_routing(KVMState *s)
1922 {
1923 int gsi_count;
1924
1925 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1926 if (gsi_count > 0) {
1927 /* Round up so we can search ints using ffs */
1928 s->used_gsi_bitmap = bitmap_new(gsi_count);
1929 s->gsi_count = gsi_count;
1930 }
1931
1932 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1933 s->nr_allocated_irq_routes = 0;
1934
1935 kvm_arch_init_irq_routing(s);
1936 }
1937
kvm_irqchip_commit_routes(KVMState * s)1938 void kvm_irqchip_commit_routes(KVMState *s)
1939 {
1940 int ret;
1941
1942 if (kvm_gsi_direct_mapping()) {
1943 return;
1944 }
1945
1946 if (!kvm_gsi_routing_enabled()) {
1947 return;
1948 }
1949
1950 s->irq_routes->flags = 0;
1951 trace_kvm_irqchip_commit_routes();
1952 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1953 assert(ret == 0);
1954 }
1955
kvm_add_routing_entry(KVMState * s,struct kvm_irq_routing_entry * entry)1956 void kvm_add_routing_entry(KVMState *s,
1957 struct kvm_irq_routing_entry *entry)
1958 {
1959 struct kvm_irq_routing_entry *new;
1960 int n, size;
1961
1962 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1963 n = s->nr_allocated_irq_routes * 2;
1964 if (n < 64) {
1965 n = 64;
1966 }
1967 size = sizeof(struct kvm_irq_routing);
1968 size += n * sizeof(*new);
1969 s->irq_routes = g_realloc(s->irq_routes, size);
1970 s->nr_allocated_irq_routes = n;
1971 }
1972 n = s->irq_routes->nr++;
1973 new = &s->irq_routes->entries[n];
1974
1975 *new = *entry;
1976
1977 set_gsi(s, entry->gsi);
1978 }
1979
kvm_update_routing_entry(KVMState * s,struct kvm_irq_routing_entry * new_entry)1980 static int kvm_update_routing_entry(KVMState *s,
1981 struct kvm_irq_routing_entry *new_entry)
1982 {
1983 struct kvm_irq_routing_entry *entry;
1984 int n;
1985
1986 for (n = 0; n < s->irq_routes->nr; n++) {
1987 entry = &s->irq_routes->entries[n];
1988 if (entry->gsi != new_entry->gsi) {
1989 continue;
1990 }
1991
1992 if(!memcmp(entry, new_entry, sizeof *entry)) {
1993 return 0;
1994 }
1995
1996 *entry = *new_entry;
1997
1998 return 0;
1999 }
2000
2001 return -ESRCH;
2002 }
2003
kvm_irqchip_add_irq_route(KVMState * s,int irq,int irqchip,int pin)2004 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
2005 {
2006 struct kvm_irq_routing_entry e = {};
2007
2008 assert(pin < s->gsi_count);
2009
2010 e.gsi = irq;
2011 e.type = KVM_IRQ_ROUTING_IRQCHIP;
2012 e.flags = 0;
2013 e.u.irqchip.irqchip = irqchip;
2014 e.u.irqchip.pin = pin;
2015 kvm_add_routing_entry(s, &e);
2016 }
2017
kvm_irqchip_release_virq(KVMState * s,int virq)2018 void kvm_irqchip_release_virq(KVMState *s, int virq)
2019 {
2020 struct kvm_irq_routing_entry *e;
2021 int i;
2022
2023 if (kvm_gsi_direct_mapping()) {
2024 return;
2025 }
2026
2027 for (i = 0; i < s->irq_routes->nr; i++) {
2028 e = &s->irq_routes->entries[i];
2029 if (e->gsi == virq) {
2030 s->irq_routes->nr--;
2031 *e = s->irq_routes->entries[s->irq_routes->nr];
2032 }
2033 }
2034 clear_gsi(s, virq);
2035 kvm_arch_release_virq_post(virq);
2036 trace_kvm_irqchip_release_virq(virq);
2037 }
2038
kvm_irqchip_add_change_notifier(Notifier * n)2039 void kvm_irqchip_add_change_notifier(Notifier *n)
2040 {
2041 notifier_list_add(&kvm_irqchip_change_notifiers, n);
2042 }
2043
kvm_irqchip_remove_change_notifier(Notifier * n)2044 void kvm_irqchip_remove_change_notifier(Notifier *n)
2045 {
2046 notifier_remove(n);
2047 }
2048
kvm_irqchip_change_notify(void)2049 void kvm_irqchip_change_notify(void)
2050 {
2051 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
2052 }
2053
kvm_irqchip_get_virq(KVMState * s)2054 int kvm_irqchip_get_virq(KVMState *s)
2055 {
2056 int next_virq;
2057
2058 /* Return the lowest unused GSI in the bitmap */
2059 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
2060 if (next_virq >= s->gsi_count) {
2061 return -ENOSPC;
2062 } else {
2063 return next_virq;
2064 }
2065 }
2066
kvm_irqchip_send_msi(KVMState * s,MSIMessage msg)2067 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2068 {
2069 struct kvm_msi msi;
2070
2071 msi.address_lo = (uint32_t)msg.address;
2072 msi.address_hi = msg.address >> 32;
2073 msi.data = le32_to_cpu(msg.data);
2074 msi.flags = 0;
2075 memset(msi.pad, 0, sizeof(msi.pad));
2076
2077 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2078 }
2079
kvm_irqchip_add_msi_route(KVMRouteChange * c,int vector,PCIDevice * dev)2080 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2081 {
2082 struct kvm_irq_routing_entry kroute = {};
2083 int virq;
2084 KVMState *s = c->s;
2085 MSIMessage msg = {0, 0};
2086
2087 if (pci_available && dev) {
2088 msg = pci_get_msi_message(dev, vector);
2089 }
2090
2091 if (kvm_gsi_direct_mapping()) {
2092 return kvm_arch_msi_data_to_gsi(msg.data);
2093 }
2094
2095 if (!kvm_gsi_routing_enabled()) {
2096 return -ENOSYS;
2097 }
2098
2099 virq = kvm_irqchip_get_virq(s);
2100 if (virq < 0) {
2101 return virq;
2102 }
2103
2104 kroute.gsi = virq;
2105 kroute.type = KVM_IRQ_ROUTING_MSI;
2106 kroute.flags = 0;
2107 kroute.u.msi.address_lo = (uint32_t)msg.address;
2108 kroute.u.msi.address_hi = msg.address >> 32;
2109 kroute.u.msi.data = le32_to_cpu(msg.data);
2110 if (pci_available && kvm_msi_devid_required()) {
2111 kroute.flags = KVM_MSI_VALID_DEVID;
2112 kroute.u.msi.devid = pci_requester_id(dev);
2113 }
2114 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2115 kvm_irqchip_release_virq(s, virq);
2116 return -EINVAL;
2117 }
2118
2119 if (s->irq_routes->nr < s->gsi_count) {
2120 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2121 vector, virq);
2122
2123 kvm_add_routing_entry(s, &kroute);
2124 kvm_arch_add_msi_route_post(&kroute, vector, dev);
2125 c->changes++;
2126 } else {
2127 kvm_irqchip_release_virq(s, virq);
2128 return -ENOSPC;
2129 }
2130
2131 return virq;
2132 }
2133
kvm_irqchip_update_msi_route(KVMState * s,int virq,MSIMessage msg,PCIDevice * dev)2134 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2135 PCIDevice *dev)
2136 {
2137 struct kvm_irq_routing_entry kroute = {};
2138
2139 if (kvm_gsi_direct_mapping()) {
2140 return 0;
2141 }
2142
2143 if (!kvm_irqchip_in_kernel()) {
2144 return -ENOSYS;
2145 }
2146
2147 kroute.gsi = virq;
2148 kroute.type = KVM_IRQ_ROUTING_MSI;
2149 kroute.flags = 0;
2150 kroute.u.msi.address_lo = (uint32_t)msg.address;
2151 kroute.u.msi.address_hi = msg.address >> 32;
2152 kroute.u.msi.data = le32_to_cpu(msg.data);
2153 if (pci_available && kvm_msi_devid_required()) {
2154 kroute.flags = KVM_MSI_VALID_DEVID;
2155 kroute.u.msi.devid = pci_requester_id(dev);
2156 }
2157 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2158 return -EINVAL;
2159 }
2160
2161 trace_kvm_irqchip_update_msi_route(virq);
2162
2163 return kvm_update_routing_entry(s, &kroute);
2164 }
2165
kvm_irqchip_assign_irqfd(KVMState * s,EventNotifier * event,EventNotifier * resample,int virq,bool assign)2166 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2167 EventNotifier *resample, int virq,
2168 bool assign)
2169 {
2170 int fd = event_notifier_get_fd(event);
2171 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2172
2173 struct kvm_irqfd irqfd = {
2174 .fd = fd,
2175 .gsi = virq,
2176 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2177 };
2178
2179 if (rfd != -1) {
2180 assert(assign);
2181 if (kvm_irqchip_is_split()) {
2182 /*
2183 * When the slow irqchip (e.g. IOAPIC) is in the
2184 * userspace, KVM kernel resamplefd will not work because
2185 * the EOI of the interrupt will be delivered to userspace
2186 * instead, so the KVM kernel resamplefd kick will be
2187 * skipped. The userspace here mimics what the kernel
2188 * provides with resamplefd, remember the resamplefd and
2189 * kick it when we receive EOI of this IRQ.
2190 *
2191 * This is hackery because IOAPIC is mostly bypassed
2192 * (except EOI broadcasts) when irqfd is used. However
2193 * this can bring much performance back for split irqchip
2194 * with INTx IRQs (for VFIO, this gives 93% perf of the
2195 * full fast path, which is 46% perf boost comparing to
2196 * the INTx slow path).
2197 */
2198 kvm_resample_fd_insert(virq, resample);
2199 } else {
2200 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2201 irqfd.resamplefd = rfd;
2202 }
2203 } else if (!assign) {
2204 if (kvm_irqchip_is_split()) {
2205 kvm_resample_fd_remove(virq);
2206 }
2207 }
2208
2209 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2210 }
2211
2212 #else /* !KVM_CAP_IRQ_ROUTING */
2213
kvm_init_irq_routing(KVMState * s)2214 void kvm_init_irq_routing(KVMState *s)
2215 {
2216 }
2217
kvm_irqchip_release_virq(KVMState * s,int virq)2218 void kvm_irqchip_release_virq(KVMState *s, int virq)
2219 {
2220 }
2221
kvm_irqchip_send_msi(KVMState * s,MSIMessage msg)2222 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2223 {
2224 abort();
2225 }
2226
kvm_irqchip_add_msi_route(KVMRouteChange * c,int vector,PCIDevice * dev)2227 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2228 {
2229 return -ENOSYS;
2230 }
2231
kvm_irqchip_add_adapter_route(KVMState * s,AdapterInfo * adapter)2232 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2233 {
2234 return -ENOSYS;
2235 }
2236
kvm_irqchip_add_hv_sint_route(KVMState * s,uint32_t vcpu,uint32_t sint)2237 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2238 {
2239 return -ENOSYS;
2240 }
2241
kvm_irqchip_assign_irqfd(KVMState * s,EventNotifier * event,EventNotifier * resample,int virq,bool assign)2242 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2243 EventNotifier *resample, int virq,
2244 bool assign)
2245 {
2246 abort();
2247 }
2248
kvm_irqchip_update_msi_route(KVMState * s,int virq,MSIMessage msg)2249 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2250 {
2251 return -ENOSYS;
2252 }
2253 #endif /* !KVM_CAP_IRQ_ROUTING */
2254
kvm_irqchip_add_irqfd_notifier_gsi(KVMState * s,EventNotifier * n,EventNotifier * rn,int virq)2255 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2256 EventNotifier *rn, int virq)
2257 {
2258 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2259 }
2260
kvm_irqchip_remove_irqfd_notifier_gsi(KVMState * s,EventNotifier * n,int virq)2261 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2262 int virq)
2263 {
2264 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2265 }
2266
kvm_irqchip_add_irqfd_notifier(KVMState * s,EventNotifier * n,EventNotifier * rn,qemu_irq irq)2267 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2268 EventNotifier *rn, qemu_irq irq)
2269 {
2270 gpointer key, gsi;
2271 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2272
2273 if (!found) {
2274 return -ENXIO;
2275 }
2276 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2277 }
2278
kvm_irqchip_remove_irqfd_notifier(KVMState * s,EventNotifier * n,qemu_irq irq)2279 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2280 qemu_irq irq)
2281 {
2282 gpointer key, gsi;
2283 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2284
2285 if (!found) {
2286 return -ENXIO;
2287 }
2288 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2289 }
2290
kvm_irqchip_set_qemuirq_gsi(KVMState * s,qemu_irq irq,int gsi)2291 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2292 {
2293 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2294 }
2295
kvm_irqchip_create(KVMState * s)2296 static void kvm_irqchip_create(KVMState *s)
2297 {
2298 int ret;
2299
2300 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2301 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2302 ;
2303 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2304 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2305 if (ret < 0) {
2306 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2307 exit(1);
2308 }
2309 } else {
2310 return;
2311 }
2312
2313 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2314 fprintf(stderr, "kvm: irqfd not implemented\n");
2315 exit(1);
2316 }
2317
2318 /* First probe and see if there's a arch-specific hook to create the
2319 * in-kernel irqchip for us */
2320 ret = kvm_arch_irqchip_create(s);
2321 if (ret == 0) {
2322 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2323 error_report("Split IRQ chip mode not supported.");
2324 exit(1);
2325 } else {
2326 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2327 }
2328 }
2329 if (ret < 0) {
2330 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2331 exit(1);
2332 }
2333
2334 kvm_kernel_irqchip = true;
2335 /* If we have an in-kernel IRQ chip then we must have asynchronous
2336 * interrupt delivery (though the reverse is not necessarily true)
2337 */
2338 kvm_async_interrupts_allowed = true;
2339 kvm_halt_in_kernel_allowed = true;
2340
2341 kvm_init_irq_routing(s);
2342
2343 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2344 }
2345
2346 /* Find number of supported CPUs using the recommended
2347 * procedure from the kernel API documentation to cope with
2348 * older kernels that may be missing capabilities.
2349 */
kvm_recommended_vcpus(KVMState * s)2350 static int kvm_recommended_vcpus(KVMState *s)
2351 {
2352 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2353 return (ret) ? ret : 4;
2354 }
2355
kvm_max_vcpus(KVMState * s)2356 static int kvm_max_vcpus(KVMState *s)
2357 {
2358 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2359 return (ret) ? ret : kvm_recommended_vcpus(s);
2360 }
2361
kvm_max_vcpu_id(KVMState * s)2362 static int kvm_max_vcpu_id(KVMState *s)
2363 {
2364 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2365 return (ret) ? ret : kvm_max_vcpus(s);
2366 }
2367
kvm_vcpu_id_is_valid(int vcpu_id)2368 bool kvm_vcpu_id_is_valid(int vcpu_id)
2369 {
2370 KVMState *s = KVM_STATE(current_accel());
2371 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2372 }
2373
kvm_dirty_ring_enabled(void)2374 bool kvm_dirty_ring_enabled(void)
2375 {
2376 return kvm_state && kvm_state->kvm_dirty_ring_size;
2377 }
2378
2379 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2380 strList *names, strList *targets, Error **errp);
2381 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2382
kvm_dirty_ring_size(void)2383 uint32_t kvm_dirty_ring_size(void)
2384 {
2385 return kvm_state->kvm_dirty_ring_size;
2386 }
2387
kvm_init(MachineState * ms)2388 static int kvm_init(MachineState *ms)
2389 {
2390 MachineClass *mc = MACHINE_GET_CLASS(ms);
2391 static const char upgrade_note[] =
2392 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2393 "(see http://sourceforge.net/projects/kvm).\n";
2394 const struct {
2395 const char *name;
2396 int num;
2397 } num_cpus[] = {
2398 { "SMP", ms->smp.cpus },
2399 { "hotpluggable", ms->smp.max_cpus },
2400 { /* end of list */ }
2401 }, *nc = num_cpus;
2402 int soft_vcpus_limit, hard_vcpus_limit;
2403 KVMState *s;
2404 const KVMCapabilityInfo *missing_cap;
2405 int ret;
2406 int type;
2407 uint64_t dirty_log_manual_caps;
2408
2409 qemu_mutex_init(&kml_slots_lock);
2410
2411 s = KVM_STATE(ms->accelerator);
2412
2413 /*
2414 * On systems where the kernel can support different base page
2415 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2416 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2417 * page size for the system though.
2418 */
2419 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2420
2421 s->sigmask_len = 8;
2422 accel_blocker_init();
2423
2424 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2425 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2426 #endif
2427 QLIST_INIT(&s->kvm_parked_vcpus);
2428 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
2429 if (s->fd == -1) {
2430 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2431 ret = -errno;
2432 goto err;
2433 }
2434
2435 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2436 if (ret < KVM_API_VERSION) {
2437 if (ret >= 0) {
2438 ret = -EINVAL;
2439 }
2440 fprintf(stderr, "kvm version too old\n");
2441 goto err;
2442 }
2443
2444 if (ret > KVM_API_VERSION) {
2445 ret = -EINVAL;
2446 fprintf(stderr, "kvm version not supported\n");
2447 goto err;
2448 }
2449
2450 kvm_supported_memory_attributes = kvm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES);
2451 kvm_guest_memfd_supported =
2452 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) &&
2453 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) &&
2454 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE);
2455
2456 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2457 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2458
2459 /* If unspecified, use the default value */
2460 if (!s->nr_slots) {
2461 s->nr_slots = 32;
2462 }
2463
2464 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2465 if (s->nr_as <= 1) {
2466 s->nr_as = 1;
2467 }
2468 s->as = g_new0(struct KVMAs, s->nr_as);
2469
2470 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2471 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2472 "kvm-type",
2473 &error_abort);
2474 type = mc->kvm_type(ms, kvm_type);
2475 } else if (mc->kvm_type) {
2476 type = mc->kvm_type(ms, NULL);
2477 } else {
2478 type = kvm_arch_get_default_type(ms);
2479 }
2480
2481 if (type < 0) {
2482 ret = -EINVAL;
2483 goto err;
2484 }
2485
2486 do {
2487 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2488 } while (ret == -EINTR);
2489
2490 if (ret < 0) {
2491 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2492 strerror(-ret));
2493
2494 #ifdef TARGET_S390X
2495 if (ret == -EINVAL) {
2496 fprintf(stderr,
2497 "Host kernel setup problem detected. Please verify:\n");
2498 fprintf(stderr, "- for kernels supporting the switch_amode or"
2499 " user_mode parameters, whether\n");
2500 fprintf(stderr,
2501 " user space is running in primary address space\n");
2502 fprintf(stderr,
2503 "- for kernels supporting the vm.allocate_pgste sysctl, "
2504 "whether it is enabled\n");
2505 }
2506 #elif defined(TARGET_PPC)
2507 if (ret == -EINVAL) {
2508 fprintf(stderr,
2509 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2510 (type == 2) ? "pr" : "hv");
2511 }
2512 #endif
2513 goto err;
2514 }
2515
2516 s->vmfd = ret;
2517
2518 /* check the vcpu limits */
2519 soft_vcpus_limit = kvm_recommended_vcpus(s);
2520 hard_vcpus_limit = kvm_max_vcpus(s);
2521
2522 while (nc->name) {
2523 if (nc->num > soft_vcpus_limit) {
2524 warn_report("Number of %s cpus requested (%d) exceeds "
2525 "the recommended cpus supported by KVM (%d)",
2526 nc->name, nc->num, soft_vcpus_limit);
2527
2528 if (nc->num > hard_vcpus_limit) {
2529 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2530 "the maximum cpus supported by KVM (%d)\n",
2531 nc->name, nc->num, hard_vcpus_limit);
2532 exit(1);
2533 }
2534 }
2535 nc++;
2536 }
2537
2538 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2539 if (!missing_cap) {
2540 missing_cap =
2541 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2542 }
2543 if (missing_cap) {
2544 ret = -EINVAL;
2545 fprintf(stderr, "kvm does not support %s\n%s",
2546 missing_cap->name, upgrade_note);
2547 goto err;
2548 }
2549
2550 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2551 s->coalesced_pio = s->coalesced_mmio &&
2552 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2553
2554 /*
2555 * Enable KVM dirty ring if supported, otherwise fall back to
2556 * dirty logging mode
2557 */
2558 ret = kvm_dirty_ring_init(s);
2559 if (ret < 0) {
2560 goto err;
2561 }
2562
2563 /*
2564 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2565 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2566 * page is wr-protected initially, which is against how kvm dirty ring is
2567 * usage - kvm dirty ring requires all pages are wr-protected at the very
2568 * beginning. Enabling this feature for dirty ring causes data corruption.
2569 *
2570 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2571 * we may expect a higher stall time when starting the migration. In the
2572 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2573 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2574 * guest pages.
2575 */
2576 if (!s->kvm_dirty_ring_size) {
2577 dirty_log_manual_caps =
2578 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2579 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2580 KVM_DIRTY_LOG_INITIALLY_SET);
2581 s->manual_dirty_log_protect = dirty_log_manual_caps;
2582 if (dirty_log_manual_caps) {
2583 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2584 dirty_log_manual_caps);
2585 if (ret) {
2586 warn_report("Trying to enable capability %"PRIu64" of "
2587 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2588 "Falling back to the legacy mode. ",
2589 dirty_log_manual_caps);
2590 s->manual_dirty_log_protect = 0;
2591 }
2592 }
2593 }
2594
2595 #ifdef KVM_CAP_VCPU_EVENTS
2596 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2597 #endif
2598 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2599
2600 s->irq_set_ioctl = KVM_IRQ_LINE;
2601 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2602 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2603 }
2604
2605 kvm_readonly_mem_allowed =
2606 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2607
2608 kvm_resamplefds_allowed =
2609 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2610
2611 kvm_vm_attributes_allowed =
2612 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2613
2614 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2615 kvm_has_guest_debug =
2616 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2617 #endif
2618
2619 kvm_sstep_flags = 0;
2620 if (kvm_has_guest_debug) {
2621 kvm_sstep_flags = SSTEP_ENABLE;
2622
2623 #if defined TARGET_KVM_HAVE_GUEST_DEBUG
2624 int guest_debug_flags =
2625 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2626
2627 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2628 kvm_sstep_flags |= SSTEP_NOIRQ;
2629 }
2630 #endif
2631 }
2632
2633 kvm_state = s;
2634
2635 ret = kvm_arch_init(ms, s);
2636 if (ret < 0) {
2637 goto err;
2638 }
2639
2640 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2641 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2642 }
2643
2644 qemu_register_reset(kvm_unpoison_all, NULL);
2645
2646 if (s->kernel_irqchip_allowed) {
2647 kvm_irqchip_create(s);
2648 }
2649
2650 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2651 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2652 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2653 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2654
2655 kvm_memory_listener_register(s, &s->memory_listener,
2656 &address_space_memory, 0, "kvm-memory");
2657 memory_listener_register(&kvm_io_listener,
2658 &address_space_io);
2659
2660 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2661 if (!s->sync_mmu) {
2662 ret = ram_block_discard_disable(true);
2663 assert(!ret);
2664 }
2665
2666 if (s->kvm_dirty_ring_size) {
2667 kvm_dirty_ring_reaper_init(s);
2668 }
2669
2670 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2671 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2672 query_stats_schemas_cb);
2673 }
2674
2675 return 0;
2676
2677 err:
2678 assert(ret < 0);
2679 if (s->vmfd >= 0) {
2680 close(s->vmfd);
2681 }
2682 if (s->fd != -1) {
2683 close(s->fd);
2684 }
2685 g_free(s->as);
2686 g_free(s->memory_listener.slots);
2687
2688 return ret;
2689 }
2690
kvm_set_sigmask_len(KVMState * s,unsigned int sigmask_len)2691 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2692 {
2693 s->sigmask_len = sigmask_len;
2694 }
2695
kvm_handle_io(uint16_t port,MemTxAttrs attrs,void * data,int direction,int size,uint32_t count)2696 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2697 int size, uint32_t count)
2698 {
2699 int i;
2700 uint8_t *ptr = data;
2701
2702 for (i = 0; i < count; i++) {
2703 address_space_rw(&address_space_io, port, attrs,
2704 ptr, size,
2705 direction == KVM_EXIT_IO_OUT);
2706 ptr += size;
2707 }
2708 }
2709
kvm_handle_internal_error(CPUState * cpu,struct kvm_run * run)2710 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2711 {
2712 int i;
2713
2714 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2715 run->internal.suberror);
2716
2717 for (i = 0; i < run->internal.ndata; ++i) {
2718 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2719 i, (uint64_t)run->internal.data[i]);
2720 }
2721 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2722 fprintf(stderr, "emulation failure\n");
2723 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2724 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2725 return EXCP_INTERRUPT;
2726 }
2727 }
2728 /* FIXME: Should trigger a qmp message to let management know
2729 * something went wrong.
2730 */
2731 return -1;
2732 }
2733
kvm_flush_coalesced_mmio_buffer(void)2734 void kvm_flush_coalesced_mmio_buffer(void)
2735 {
2736 KVMState *s = kvm_state;
2737
2738 if (!s || s->coalesced_flush_in_progress) {
2739 return;
2740 }
2741
2742 s->coalesced_flush_in_progress = true;
2743
2744 if (s->coalesced_mmio_ring) {
2745 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2746 while (ring->first != ring->last) {
2747 struct kvm_coalesced_mmio *ent;
2748
2749 ent = &ring->coalesced_mmio[ring->first];
2750
2751 if (ent->pio == 1) {
2752 address_space_write(&address_space_io, ent->phys_addr,
2753 MEMTXATTRS_UNSPECIFIED, ent->data,
2754 ent->len);
2755 } else {
2756 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2757 }
2758 smp_wmb();
2759 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2760 }
2761 }
2762
2763 s->coalesced_flush_in_progress = false;
2764 }
2765
do_kvm_cpu_synchronize_state(CPUState * cpu,run_on_cpu_data arg)2766 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2767 {
2768 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2769 int ret = kvm_arch_get_registers(cpu);
2770 if (ret) {
2771 error_report("Failed to get registers: %s", strerror(-ret));
2772 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2773 vm_stop(RUN_STATE_INTERNAL_ERROR);
2774 }
2775
2776 cpu->vcpu_dirty = true;
2777 }
2778 }
2779
kvm_cpu_synchronize_state(CPUState * cpu)2780 void kvm_cpu_synchronize_state(CPUState *cpu)
2781 {
2782 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2783 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2784 }
2785 }
2786
do_kvm_cpu_synchronize_post_reset(CPUState * cpu,run_on_cpu_data arg)2787 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2788 {
2789 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2790 if (ret) {
2791 error_report("Failed to put registers after reset: %s", strerror(-ret));
2792 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2793 vm_stop(RUN_STATE_INTERNAL_ERROR);
2794 }
2795
2796 cpu->vcpu_dirty = false;
2797 }
2798
kvm_cpu_synchronize_post_reset(CPUState * cpu)2799 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2800 {
2801 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2802 }
2803
do_kvm_cpu_synchronize_post_init(CPUState * cpu,run_on_cpu_data arg)2804 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2805 {
2806 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2807 if (ret) {
2808 error_report("Failed to put registers after init: %s", strerror(-ret));
2809 exit(1);
2810 }
2811
2812 cpu->vcpu_dirty = false;
2813 }
2814
kvm_cpu_synchronize_post_init(CPUState * cpu)2815 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2816 {
2817 if (!kvm_state->guest_state_protected) {
2818 /*
2819 * This runs before the machine_init_done notifiers, and is the last
2820 * opportunity to synchronize the state of confidential guests.
2821 */
2822 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2823 }
2824 }
2825
do_kvm_cpu_synchronize_pre_loadvm(CPUState * cpu,run_on_cpu_data arg)2826 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2827 {
2828 cpu->vcpu_dirty = true;
2829 }
2830
kvm_cpu_synchronize_pre_loadvm(CPUState * cpu)2831 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2832 {
2833 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2834 }
2835
2836 #ifdef KVM_HAVE_MCE_INJECTION
2837 static __thread void *pending_sigbus_addr;
2838 static __thread int pending_sigbus_code;
2839 static __thread bool have_sigbus_pending;
2840 #endif
2841
kvm_cpu_kick(CPUState * cpu)2842 static void kvm_cpu_kick(CPUState *cpu)
2843 {
2844 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2845 }
2846
kvm_cpu_kick_self(void)2847 static void kvm_cpu_kick_self(void)
2848 {
2849 if (kvm_immediate_exit) {
2850 kvm_cpu_kick(current_cpu);
2851 } else {
2852 qemu_cpu_kick_self();
2853 }
2854 }
2855
kvm_eat_signals(CPUState * cpu)2856 static void kvm_eat_signals(CPUState *cpu)
2857 {
2858 struct timespec ts = { 0, 0 };
2859 siginfo_t siginfo;
2860 sigset_t waitset;
2861 sigset_t chkset;
2862 int r;
2863
2864 if (kvm_immediate_exit) {
2865 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2866 /* Write kvm_run->immediate_exit before the cpu->exit_request
2867 * write in kvm_cpu_exec.
2868 */
2869 smp_wmb();
2870 return;
2871 }
2872
2873 sigemptyset(&waitset);
2874 sigaddset(&waitset, SIG_IPI);
2875
2876 do {
2877 r = sigtimedwait(&waitset, &siginfo, &ts);
2878 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2879 perror("sigtimedwait");
2880 exit(1);
2881 }
2882
2883 r = sigpending(&chkset);
2884 if (r == -1) {
2885 perror("sigpending");
2886 exit(1);
2887 }
2888 } while (sigismember(&chkset, SIG_IPI));
2889 }
2890
kvm_convert_memory(hwaddr start,hwaddr size,bool to_private)2891 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private)
2892 {
2893 MemoryRegionSection section;
2894 ram_addr_t offset;
2895 MemoryRegion *mr;
2896 RAMBlock *rb;
2897 void *addr;
2898 int ret = -1;
2899
2900 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared");
2901
2902 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) ||
2903 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) {
2904 return -1;
2905 }
2906
2907 if (!size) {
2908 return -1;
2909 }
2910
2911 section = memory_region_find(get_system_memory(), start, size);
2912 mr = section.mr;
2913 if (!mr) {
2914 /*
2915 * Ignore converting non-assigned region to shared.
2916 *
2917 * TDX requires vMMIO region to be shared to inject #VE to guest.
2918 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region,
2919 * and vIO-APIC 0xFEC00000 4K page.
2920 * OVMF assigns 32bit PCI MMIO region to
2921 * [top of low memory: typically 2GB=0xC000000, 0xFC00000)
2922 */
2923 if (!to_private) {
2924 return 0;
2925 }
2926 return -1;
2927 }
2928
2929 if (!memory_region_has_guest_memfd(mr)) {
2930 /*
2931 * Because vMMIO region must be shared, guest TD may convert vMMIO
2932 * region to shared explicitly. Don't complain such case. See
2933 * memory_region_type() for checking if the region is MMIO region.
2934 */
2935 if (!to_private &&
2936 !memory_region_is_ram(mr) &&
2937 !memory_region_is_ram_device(mr) &&
2938 !memory_region_is_rom(mr) &&
2939 !memory_region_is_romd(mr)) {
2940 ret = 0;
2941 } else {
2942 error_report("Convert non guest_memfd backed memory region "
2943 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s",
2944 start, size, to_private ? "private" : "shared");
2945 }
2946 goto out_unref;
2947 }
2948
2949 if (to_private) {
2950 ret = kvm_set_memory_attributes_private(start, size);
2951 } else {
2952 ret = kvm_set_memory_attributes_shared(start, size);
2953 }
2954 if (ret) {
2955 goto out_unref;
2956 }
2957
2958 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region;
2959 rb = qemu_ram_block_from_host(addr, false, &offset);
2960
2961 if (to_private) {
2962 if (rb->page_size != qemu_real_host_page_size()) {
2963 /*
2964 * shared memory is backed by hugetlb, which is supposed to be
2965 * pre-allocated and doesn't need to be discarded
2966 */
2967 goto out_unref;
2968 }
2969 ret = ram_block_discard_range(rb, offset, size);
2970 } else {
2971 ret = ram_block_discard_guest_memfd_range(rb, offset, size);
2972 }
2973
2974 out_unref:
2975 memory_region_unref(mr);
2976 return ret;
2977 }
2978
kvm_cpu_exec(CPUState * cpu)2979 int kvm_cpu_exec(CPUState *cpu)
2980 {
2981 struct kvm_run *run = cpu->kvm_run;
2982 int ret, run_ret;
2983
2984 trace_kvm_cpu_exec();
2985
2986 if (kvm_arch_process_async_events(cpu)) {
2987 qatomic_set(&cpu->exit_request, 0);
2988 return EXCP_HLT;
2989 }
2990
2991 bql_unlock();
2992 cpu_exec_start(cpu);
2993
2994 do {
2995 MemTxAttrs attrs;
2996
2997 if (cpu->vcpu_dirty) {
2998 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2999 if (ret) {
3000 error_report("Failed to put registers after init: %s",
3001 strerror(-ret));
3002 ret = -1;
3003 break;
3004 }
3005
3006 cpu->vcpu_dirty = false;
3007 }
3008
3009 kvm_arch_pre_run(cpu, run);
3010 if (qatomic_read(&cpu->exit_request)) {
3011 trace_kvm_interrupt_exit_request();
3012 /*
3013 * KVM requires us to reenter the kernel after IO exits to complete
3014 * instruction emulation. This self-signal will ensure that we
3015 * leave ASAP again.
3016 */
3017 kvm_cpu_kick_self();
3018 }
3019
3020 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
3021 * Matching barrier in kvm_eat_signals.
3022 */
3023 smp_rmb();
3024
3025 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
3026
3027 attrs = kvm_arch_post_run(cpu, run);
3028
3029 #ifdef KVM_HAVE_MCE_INJECTION
3030 if (unlikely(have_sigbus_pending)) {
3031 bql_lock();
3032 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
3033 pending_sigbus_addr);
3034 have_sigbus_pending = false;
3035 bql_unlock();
3036 }
3037 #endif
3038
3039 if (run_ret < 0) {
3040 if (run_ret == -EINTR || run_ret == -EAGAIN) {
3041 trace_kvm_io_window_exit();
3042 kvm_eat_signals(cpu);
3043 ret = EXCP_INTERRUPT;
3044 break;
3045 }
3046 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) {
3047 fprintf(stderr, "error: kvm run failed %s\n",
3048 strerror(-run_ret));
3049 #ifdef TARGET_PPC
3050 if (run_ret == -EBUSY) {
3051 fprintf(stderr,
3052 "This is probably because your SMT is enabled.\n"
3053 "VCPU can only run on primary threads with all "
3054 "secondary threads offline.\n");
3055 }
3056 #endif
3057 ret = -1;
3058 break;
3059 }
3060 }
3061
3062 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3063 switch (run->exit_reason) {
3064 case KVM_EXIT_IO:
3065 /* Called outside BQL */
3066 kvm_handle_io(run->io.port, attrs,
3067 (uint8_t *)run + run->io.data_offset,
3068 run->io.direction,
3069 run->io.size,
3070 run->io.count);
3071 ret = 0;
3072 break;
3073 case KVM_EXIT_MMIO:
3074 /* Called outside BQL */
3075 address_space_rw(&address_space_memory,
3076 run->mmio.phys_addr, attrs,
3077 run->mmio.data,
3078 run->mmio.len,
3079 run->mmio.is_write);
3080 ret = 0;
3081 break;
3082 case KVM_EXIT_IRQ_WINDOW_OPEN:
3083 ret = EXCP_INTERRUPT;
3084 break;
3085 case KVM_EXIT_SHUTDOWN:
3086 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3087 ret = EXCP_INTERRUPT;
3088 break;
3089 case KVM_EXIT_UNKNOWN:
3090 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3091 (uint64_t)run->hw.hardware_exit_reason);
3092 ret = -1;
3093 break;
3094 case KVM_EXIT_INTERNAL_ERROR:
3095 ret = kvm_handle_internal_error(cpu, run);
3096 break;
3097 case KVM_EXIT_DIRTY_RING_FULL:
3098 /*
3099 * We shouldn't continue if the dirty ring of this vcpu is
3100 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
3101 */
3102 trace_kvm_dirty_ring_full(cpu->cpu_index);
3103 bql_lock();
3104 /*
3105 * We throttle vCPU by making it sleep once it exit from kernel
3106 * due to dirty ring full. In the dirtylimit scenario, reaping
3107 * all vCPUs after a single vCPU dirty ring get full result in
3108 * the miss of sleep, so just reap the ring-fulled vCPU.
3109 */
3110 if (dirtylimit_in_service()) {
3111 kvm_dirty_ring_reap(kvm_state, cpu);
3112 } else {
3113 kvm_dirty_ring_reap(kvm_state, NULL);
3114 }
3115 bql_unlock();
3116 dirtylimit_vcpu_execute(cpu);
3117 ret = 0;
3118 break;
3119 case KVM_EXIT_SYSTEM_EVENT:
3120 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
3121 switch (run->system_event.type) {
3122 case KVM_SYSTEM_EVENT_SHUTDOWN:
3123 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3124 ret = EXCP_INTERRUPT;
3125 break;
3126 case KVM_SYSTEM_EVENT_RESET:
3127 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3128 ret = EXCP_INTERRUPT;
3129 break;
3130 case KVM_SYSTEM_EVENT_CRASH:
3131 kvm_cpu_synchronize_state(cpu);
3132 bql_lock();
3133 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3134 bql_unlock();
3135 ret = 0;
3136 break;
3137 default:
3138 ret = kvm_arch_handle_exit(cpu, run);
3139 break;
3140 }
3141 break;
3142 case KVM_EXIT_MEMORY_FAULT:
3143 trace_kvm_memory_fault(run->memory_fault.gpa,
3144 run->memory_fault.size,
3145 run->memory_fault.flags);
3146 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) {
3147 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64,
3148 (uint64_t)run->memory_fault.flags);
3149 ret = -1;
3150 break;
3151 }
3152 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size,
3153 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE);
3154 break;
3155 default:
3156 ret = kvm_arch_handle_exit(cpu, run);
3157 break;
3158 }
3159 } while (ret == 0);
3160
3161 cpu_exec_end(cpu);
3162 bql_lock();
3163
3164 if (ret < 0) {
3165 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3166 vm_stop(RUN_STATE_INTERNAL_ERROR);
3167 }
3168
3169 qatomic_set(&cpu->exit_request, 0);
3170 return ret;
3171 }
3172
kvm_ioctl(KVMState * s,int type,...)3173 int kvm_ioctl(KVMState *s, int type, ...)
3174 {
3175 int ret;
3176 void *arg;
3177 va_list ap;
3178
3179 va_start(ap, type);
3180 arg = va_arg(ap, void *);
3181 va_end(ap);
3182
3183 trace_kvm_ioctl(type, arg);
3184 ret = ioctl(s->fd, type, arg);
3185 if (ret == -1) {
3186 ret = -errno;
3187 }
3188 return ret;
3189 }
3190
kvm_vm_ioctl(KVMState * s,int type,...)3191 int kvm_vm_ioctl(KVMState *s, int type, ...)
3192 {
3193 int ret;
3194 void *arg;
3195 va_list ap;
3196
3197 va_start(ap, type);
3198 arg = va_arg(ap, void *);
3199 va_end(ap);
3200
3201 trace_kvm_vm_ioctl(type, arg);
3202 accel_ioctl_begin();
3203 ret = ioctl(s->vmfd, type, arg);
3204 accel_ioctl_end();
3205 if (ret == -1) {
3206 ret = -errno;
3207 }
3208 return ret;
3209 }
3210
kvm_vcpu_ioctl(CPUState * cpu,int type,...)3211 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3212 {
3213 int ret;
3214 void *arg;
3215 va_list ap;
3216
3217 va_start(ap, type);
3218 arg = va_arg(ap, void *);
3219 va_end(ap);
3220
3221 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3222 accel_cpu_ioctl_begin(cpu);
3223 ret = ioctl(cpu->kvm_fd, type, arg);
3224 accel_cpu_ioctl_end(cpu);
3225 if (ret == -1) {
3226 ret = -errno;
3227 }
3228 return ret;
3229 }
3230
kvm_device_ioctl(int fd,int type,...)3231 int kvm_device_ioctl(int fd, int type, ...)
3232 {
3233 int ret;
3234 void *arg;
3235 va_list ap;
3236
3237 va_start(ap, type);
3238 arg = va_arg(ap, void *);
3239 va_end(ap);
3240
3241 trace_kvm_device_ioctl(fd, type, arg);
3242 accel_ioctl_begin();
3243 ret = ioctl(fd, type, arg);
3244 accel_ioctl_end();
3245 if (ret == -1) {
3246 ret = -errno;
3247 }
3248 return ret;
3249 }
3250
kvm_vm_check_attr(KVMState * s,uint32_t group,uint64_t attr)3251 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3252 {
3253 int ret;
3254 struct kvm_device_attr attribute = {
3255 .group = group,
3256 .attr = attr,
3257 };
3258
3259 if (!kvm_vm_attributes_allowed) {
3260 return 0;
3261 }
3262
3263 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3264 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3265 return ret ? 0 : 1;
3266 }
3267
kvm_device_check_attr(int dev_fd,uint32_t group,uint64_t attr)3268 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3269 {
3270 struct kvm_device_attr attribute = {
3271 .group = group,
3272 .attr = attr,
3273 .flags = 0,
3274 };
3275
3276 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3277 }
3278
kvm_device_access(int fd,int group,uint64_t attr,void * val,bool write,Error ** errp)3279 int kvm_device_access(int fd, int group, uint64_t attr,
3280 void *val, bool write, Error **errp)
3281 {
3282 struct kvm_device_attr kvmattr;
3283 int err;
3284
3285 kvmattr.flags = 0;
3286 kvmattr.group = group;
3287 kvmattr.attr = attr;
3288 kvmattr.addr = (uintptr_t)val;
3289
3290 err = kvm_device_ioctl(fd,
3291 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3292 &kvmattr);
3293 if (err < 0) {
3294 error_setg_errno(errp, -err,
3295 "KVM_%s_DEVICE_ATTR failed: Group %d "
3296 "attr 0x%016" PRIx64,
3297 write ? "SET" : "GET", group, attr);
3298 }
3299 return err;
3300 }
3301
kvm_has_sync_mmu(void)3302 bool kvm_has_sync_mmu(void)
3303 {
3304 return kvm_state->sync_mmu;
3305 }
3306
kvm_has_vcpu_events(void)3307 int kvm_has_vcpu_events(void)
3308 {
3309 return kvm_state->vcpu_events;
3310 }
3311
kvm_max_nested_state_length(void)3312 int kvm_max_nested_state_length(void)
3313 {
3314 return kvm_state->max_nested_state_len;
3315 }
3316
kvm_has_gsi_routing(void)3317 int kvm_has_gsi_routing(void)
3318 {
3319 #ifdef KVM_CAP_IRQ_ROUTING
3320 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3321 #else
3322 return false;
3323 #endif
3324 }
3325
kvm_arm_supports_user_irq(void)3326 bool kvm_arm_supports_user_irq(void)
3327 {
3328 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3329 }
3330
3331 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
kvm_find_sw_breakpoint(CPUState * cpu,vaddr pc)3332 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3333 {
3334 struct kvm_sw_breakpoint *bp;
3335
3336 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3337 if (bp->pc == pc) {
3338 return bp;
3339 }
3340 }
3341 return NULL;
3342 }
3343
kvm_sw_breakpoints_active(CPUState * cpu)3344 int kvm_sw_breakpoints_active(CPUState *cpu)
3345 {
3346 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3347 }
3348
3349 struct kvm_set_guest_debug_data {
3350 struct kvm_guest_debug dbg;
3351 int err;
3352 };
3353
kvm_invoke_set_guest_debug(CPUState * cpu,run_on_cpu_data data)3354 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3355 {
3356 struct kvm_set_guest_debug_data *dbg_data =
3357 (struct kvm_set_guest_debug_data *) data.host_ptr;
3358
3359 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3360 &dbg_data->dbg);
3361 }
3362
kvm_update_guest_debug(CPUState * cpu,unsigned long reinject_trap)3363 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3364 {
3365 struct kvm_set_guest_debug_data data;
3366
3367 data.dbg.control = reinject_trap;
3368
3369 if (cpu->singlestep_enabled) {
3370 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3371
3372 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3373 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3374 }
3375 }
3376 kvm_arch_update_guest_debug(cpu, &data.dbg);
3377
3378 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3379 RUN_ON_CPU_HOST_PTR(&data));
3380 return data.err;
3381 }
3382
kvm_supports_guest_debug(void)3383 bool kvm_supports_guest_debug(void)
3384 {
3385 /* probed during kvm_init() */
3386 return kvm_has_guest_debug;
3387 }
3388
kvm_insert_breakpoint(CPUState * cpu,int type,vaddr addr,vaddr len)3389 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3390 {
3391 struct kvm_sw_breakpoint *bp;
3392 int err;
3393
3394 if (type == GDB_BREAKPOINT_SW) {
3395 bp = kvm_find_sw_breakpoint(cpu, addr);
3396 if (bp) {
3397 bp->use_count++;
3398 return 0;
3399 }
3400
3401 bp = g_new(struct kvm_sw_breakpoint, 1);
3402 bp->pc = addr;
3403 bp->use_count = 1;
3404 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3405 if (err) {
3406 g_free(bp);
3407 return err;
3408 }
3409
3410 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3411 } else {
3412 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3413 if (err) {
3414 return err;
3415 }
3416 }
3417
3418 CPU_FOREACH(cpu) {
3419 err = kvm_update_guest_debug(cpu, 0);
3420 if (err) {
3421 return err;
3422 }
3423 }
3424 return 0;
3425 }
3426
kvm_remove_breakpoint(CPUState * cpu,int type,vaddr addr,vaddr len)3427 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3428 {
3429 struct kvm_sw_breakpoint *bp;
3430 int err;
3431
3432 if (type == GDB_BREAKPOINT_SW) {
3433 bp = kvm_find_sw_breakpoint(cpu, addr);
3434 if (!bp) {
3435 return -ENOENT;
3436 }
3437
3438 if (bp->use_count > 1) {
3439 bp->use_count--;
3440 return 0;
3441 }
3442
3443 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3444 if (err) {
3445 return err;
3446 }
3447
3448 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3449 g_free(bp);
3450 } else {
3451 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3452 if (err) {
3453 return err;
3454 }
3455 }
3456
3457 CPU_FOREACH(cpu) {
3458 err = kvm_update_guest_debug(cpu, 0);
3459 if (err) {
3460 return err;
3461 }
3462 }
3463 return 0;
3464 }
3465
kvm_remove_all_breakpoints(CPUState * cpu)3466 void kvm_remove_all_breakpoints(CPUState *cpu)
3467 {
3468 struct kvm_sw_breakpoint *bp, *next;
3469 KVMState *s = cpu->kvm_state;
3470 CPUState *tmpcpu;
3471
3472 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3473 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3474 /* Try harder to find a CPU that currently sees the breakpoint. */
3475 CPU_FOREACH(tmpcpu) {
3476 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3477 break;
3478 }
3479 }
3480 }
3481 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3482 g_free(bp);
3483 }
3484 kvm_arch_remove_all_hw_breakpoints();
3485
3486 CPU_FOREACH(cpu) {
3487 kvm_update_guest_debug(cpu, 0);
3488 }
3489 }
3490
3491 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */
3492
kvm_set_signal_mask(CPUState * cpu,const sigset_t * sigset)3493 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3494 {
3495 KVMState *s = kvm_state;
3496 struct kvm_signal_mask *sigmask;
3497 int r;
3498
3499 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3500
3501 sigmask->len = s->sigmask_len;
3502 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3503 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3504 g_free(sigmask);
3505
3506 return r;
3507 }
3508
kvm_ipi_signal(int sig)3509 static void kvm_ipi_signal(int sig)
3510 {
3511 if (current_cpu) {
3512 assert(kvm_immediate_exit);
3513 kvm_cpu_kick(current_cpu);
3514 }
3515 }
3516
kvm_init_cpu_signals(CPUState * cpu)3517 void kvm_init_cpu_signals(CPUState *cpu)
3518 {
3519 int r;
3520 sigset_t set;
3521 struct sigaction sigact;
3522
3523 memset(&sigact, 0, sizeof(sigact));
3524 sigact.sa_handler = kvm_ipi_signal;
3525 sigaction(SIG_IPI, &sigact, NULL);
3526
3527 pthread_sigmask(SIG_BLOCK, NULL, &set);
3528 #if defined KVM_HAVE_MCE_INJECTION
3529 sigdelset(&set, SIGBUS);
3530 pthread_sigmask(SIG_SETMASK, &set, NULL);
3531 #endif
3532 sigdelset(&set, SIG_IPI);
3533 if (kvm_immediate_exit) {
3534 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3535 } else {
3536 r = kvm_set_signal_mask(cpu, &set);
3537 }
3538 if (r) {
3539 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3540 exit(1);
3541 }
3542 }
3543
3544 /* Called asynchronously in VCPU thread. */
kvm_on_sigbus_vcpu(CPUState * cpu,int code,void * addr)3545 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3546 {
3547 #ifdef KVM_HAVE_MCE_INJECTION
3548 if (have_sigbus_pending) {
3549 return 1;
3550 }
3551 have_sigbus_pending = true;
3552 pending_sigbus_addr = addr;
3553 pending_sigbus_code = code;
3554 qatomic_set(&cpu->exit_request, 1);
3555 return 0;
3556 #else
3557 return 1;
3558 #endif
3559 }
3560
3561 /* Called synchronously (via signalfd) in main thread. */
kvm_on_sigbus(int code,void * addr)3562 int kvm_on_sigbus(int code, void *addr)
3563 {
3564 #ifdef KVM_HAVE_MCE_INJECTION
3565 /* Action required MCE kills the process if SIGBUS is blocked. Because
3566 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3567 * we can only get action optional here.
3568 */
3569 assert(code != BUS_MCEERR_AR);
3570 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3571 return 0;
3572 #else
3573 return 1;
3574 #endif
3575 }
3576
kvm_create_device(KVMState * s,uint64_t type,bool test)3577 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3578 {
3579 int ret;
3580 struct kvm_create_device create_dev;
3581
3582 create_dev.type = type;
3583 create_dev.fd = -1;
3584 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3585
3586 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3587 return -ENOTSUP;
3588 }
3589
3590 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3591 if (ret) {
3592 return ret;
3593 }
3594
3595 return test ? 0 : create_dev.fd;
3596 }
3597
kvm_device_supported(int vmfd,uint64_t type)3598 bool kvm_device_supported(int vmfd, uint64_t type)
3599 {
3600 struct kvm_create_device create_dev = {
3601 .type = type,
3602 .fd = -1,
3603 .flags = KVM_CREATE_DEVICE_TEST,
3604 };
3605
3606 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3607 return false;
3608 }
3609
3610 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3611 }
3612
kvm_set_one_reg(CPUState * cs,uint64_t id,void * source)3613 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3614 {
3615 struct kvm_one_reg reg;
3616 int r;
3617
3618 reg.id = id;
3619 reg.addr = (uintptr_t) source;
3620 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
3621 if (r) {
3622 trace_kvm_failed_reg_set(id, strerror(-r));
3623 }
3624 return r;
3625 }
3626
kvm_get_one_reg(CPUState * cs,uint64_t id,void * target)3627 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3628 {
3629 struct kvm_one_reg reg;
3630 int r;
3631
3632 reg.id = id;
3633 reg.addr = (uintptr_t) target;
3634 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
3635 if (r) {
3636 trace_kvm_failed_reg_get(id, strerror(-r));
3637 }
3638 return r;
3639 }
3640
kvm_accel_has_memory(MachineState * ms,AddressSpace * as,hwaddr start_addr,hwaddr size)3641 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3642 hwaddr start_addr, hwaddr size)
3643 {
3644 KVMState *kvm = KVM_STATE(ms->accelerator);
3645 int i;
3646
3647 for (i = 0; i < kvm->nr_as; ++i) {
3648 if (kvm->as[i].as == as && kvm->as[i].ml) {
3649 size = MIN(kvm_max_slot_size, size);
3650 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3651 start_addr, size);
3652 }
3653 }
3654
3655 return false;
3656 }
3657
kvm_get_kvm_shadow_mem(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3658 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3659 const char *name, void *opaque,
3660 Error **errp)
3661 {
3662 KVMState *s = KVM_STATE(obj);
3663 int64_t value = s->kvm_shadow_mem;
3664
3665 visit_type_int(v, name, &value, errp);
3666 }
3667
kvm_set_kvm_shadow_mem(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3668 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3669 const char *name, void *opaque,
3670 Error **errp)
3671 {
3672 KVMState *s = KVM_STATE(obj);
3673 int64_t value;
3674
3675 if (s->fd != -1) {
3676 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3677 return;
3678 }
3679
3680 if (!visit_type_int(v, name, &value, errp)) {
3681 return;
3682 }
3683
3684 s->kvm_shadow_mem = value;
3685 }
3686
kvm_set_kernel_irqchip(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3687 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3688 const char *name, void *opaque,
3689 Error **errp)
3690 {
3691 KVMState *s = KVM_STATE(obj);
3692 OnOffSplit mode;
3693
3694 if (s->fd != -1) {
3695 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3696 return;
3697 }
3698
3699 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3700 return;
3701 }
3702 switch (mode) {
3703 case ON_OFF_SPLIT_ON:
3704 s->kernel_irqchip_allowed = true;
3705 s->kernel_irqchip_required = true;
3706 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3707 break;
3708 case ON_OFF_SPLIT_OFF:
3709 s->kernel_irqchip_allowed = false;
3710 s->kernel_irqchip_required = false;
3711 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3712 break;
3713 case ON_OFF_SPLIT_SPLIT:
3714 s->kernel_irqchip_allowed = true;
3715 s->kernel_irqchip_required = true;
3716 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3717 break;
3718 default:
3719 /* The value was checked in visit_type_OnOffSplit() above. If
3720 * we get here, then something is wrong in QEMU.
3721 */
3722 abort();
3723 }
3724 }
3725
kvm_kernel_irqchip_allowed(void)3726 bool kvm_kernel_irqchip_allowed(void)
3727 {
3728 return kvm_state->kernel_irqchip_allowed;
3729 }
3730
kvm_kernel_irqchip_required(void)3731 bool kvm_kernel_irqchip_required(void)
3732 {
3733 return kvm_state->kernel_irqchip_required;
3734 }
3735
kvm_kernel_irqchip_split(void)3736 bool kvm_kernel_irqchip_split(void)
3737 {
3738 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3739 }
3740
kvm_get_dirty_ring_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3741 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3742 const char *name, void *opaque,
3743 Error **errp)
3744 {
3745 KVMState *s = KVM_STATE(obj);
3746 uint32_t value = s->kvm_dirty_ring_size;
3747
3748 visit_type_uint32(v, name, &value, errp);
3749 }
3750
kvm_set_dirty_ring_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3751 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3752 const char *name, void *opaque,
3753 Error **errp)
3754 {
3755 KVMState *s = KVM_STATE(obj);
3756 uint32_t value;
3757
3758 if (s->fd != -1) {
3759 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3760 return;
3761 }
3762
3763 if (!visit_type_uint32(v, name, &value, errp)) {
3764 return;
3765 }
3766 if (value & (value - 1)) {
3767 error_setg(errp, "dirty-ring-size must be a power of two.");
3768 return;
3769 }
3770
3771 s->kvm_dirty_ring_size = value;
3772 }
3773
kvm_get_device(Object * obj,Error ** errp G_GNUC_UNUSED)3774 static char *kvm_get_device(Object *obj,
3775 Error **errp G_GNUC_UNUSED)
3776 {
3777 KVMState *s = KVM_STATE(obj);
3778
3779 return g_strdup(s->device);
3780 }
3781
kvm_set_device(Object * obj,const char * value,Error ** errp G_GNUC_UNUSED)3782 static void kvm_set_device(Object *obj,
3783 const char *value,
3784 Error **errp G_GNUC_UNUSED)
3785 {
3786 KVMState *s = KVM_STATE(obj);
3787
3788 g_free(s->device);
3789 s->device = g_strdup(value);
3790 }
3791
kvm_set_kvm_rapl(Object * obj,bool value,Error ** errp)3792 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp)
3793 {
3794 KVMState *s = KVM_STATE(obj);
3795 s->msr_energy.enable = value;
3796 }
3797
kvm_set_kvm_rapl_socket_path(Object * obj,const char * str,Error ** errp)3798 static void kvm_set_kvm_rapl_socket_path(Object *obj,
3799 const char *str,
3800 Error **errp)
3801 {
3802 KVMState *s = KVM_STATE(obj);
3803 g_free(s->msr_energy.socket_path);
3804 s->msr_energy.socket_path = g_strdup(str);
3805 }
3806
kvm_accel_instance_init(Object * obj)3807 static void kvm_accel_instance_init(Object *obj)
3808 {
3809 KVMState *s = KVM_STATE(obj);
3810
3811 s->fd = -1;
3812 s->vmfd = -1;
3813 s->kvm_shadow_mem = -1;
3814 s->kernel_irqchip_allowed = true;
3815 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3816 /* KVM dirty ring is by default off */
3817 s->kvm_dirty_ring_size = 0;
3818 s->kvm_dirty_ring_with_bitmap = false;
3819 s->kvm_eager_split_size = 0;
3820 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3821 s->notify_window = 0;
3822 s->xen_version = 0;
3823 s->xen_gnttab_max_frames = 64;
3824 s->xen_evtchn_max_pirq = 256;
3825 s->device = NULL;
3826 s->msr_energy.enable = false;
3827 }
3828
3829 /**
3830 * kvm_gdbstub_sstep_flags():
3831 *
3832 * Returns: SSTEP_* flags that KVM supports for guest debug. The
3833 * support is probed during kvm_init()
3834 */
kvm_gdbstub_sstep_flags(void)3835 static int kvm_gdbstub_sstep_flags(void)
3836 {
3837 return kvm_sstep_flags;
3838 }
3839
kvm_accel_class_init(ObjectClass * oc,void * data)3840 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3841 {
3842 AccelClass *ac = ACCEL_CLASS(oc);
3843 ac->name = "KVM";
3844 ac->init_machine = kvm_init;
3845 ac->has_memory = kvm_accel_has_memory;
3846 ac->allowed = &kvm_allowed;
3847 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3848
3849 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3850 NULL, kvm_set_kernel_irqchip,
3851 NULL, NULL);
3852 object_class_property_set_description(oc, "kernel-irqchip",
3853 "Configure KVM in-kernel irqchip");
3854
3855 object_class_property_add(oc, "kvm-shadow-mem", "int",
3856 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3857 NULL, NULL);
3858 object_class_property_set_description(oc, "kvm-shadow-mem",
3859 "KVM shadow MMU size");
3860
3861 object_class_property_add(oc, "dirty-ring-size", "uint32",
3862 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3863 NULL, NULL);
3864 object_class_property_set_description(oc, "dirty-ring-size",
3865 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3866
3867 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
3868 object_class_property_set_description(oc, "device",
3869 "Path to the device node to use (default: /dev/kvm)");
3870
3871 object_class_property_add_bool(oc, "rapl",
3872 NULL,
3873 kvm_set_kvm_rapl);
3874 object_class_property_set_description(oc, "rapl",
3875 "Allow energy related MSRs for RAPL interface in Guest");
3876
3877 object_class_property_add_str(oc, "rapl-helper-socket", NULL,
3878 kvm_set_kvm_rapl_socket_path);
3879 object_class_property_set_description(oc, "rapl-helper-socket",
3880 "Socket Path for comminucating with the Virtual MSR helper daemon");
3881
3882 kvm_arch_accel_class_init(oc);
3883 }
3884
3885 static const TypeInfo kvm_accel_type = {
3886 .name = TYPE_KVM_ACCEL,
3887 .parent = TYPE_ACCEL,
3888 .instance_init = kvm_accel_instance_init,
3889 .class_init = kvm_accel_class_init,
3890 .instance_size = sizeof(KVMState),
3891 };
3892
kvm_type_init(void)3893 static void kvm_type_init(void)
3894 {
3895 type_register_static(&kvm_accel_type);
3896 }
3897
3898 type_init(kvm_type_init);
3899
3900 typedef struct StatsArgs {
3901 union StatsResultsType {
3902 StatsResultList **stats;
3903 StatsSchemaList **schema;
3904 } result;
3905 strList *names;
3906 Error **errp;
3907 } StatsArgs;
3908
add_kvmstat_entry(struct kvm_stats_desc * pdesc,uint64_t * stats_data,StatsList * stats_list,Error ** errp)3909 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3910 uint64_t *stats_data,
3911 StatsList *stats_list,
3912 Error **errp)
3913 {
3914
3915 Stats *stats;
3916 uint64List *val_list = NULL;
3917
3918 /* Only add stats that we understand. */
3919 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3920 case KVM_STATS_TYPE_CUMULATIVE:
3921 case KVM_STATS_TYPE_INSTANT:
3922 case KVM_STATS_TYPE_PEAK:
3923 case KVM_STATS_TYPE_LINEAR_HIST:
3924 case KVM_STATS_TYPE_LOG_HIST:
3925 break;
3926 default:
3927 return stats_list;
3928 }
3929
3930 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3931 case KVM_STATS_UNIT_NONE:
3932 case KVM_STATS_UNIT_BYTES:
3933 case KVM_STATS_UNIT_CYCLES:
3934 case KVM_STATS_UNIT_SECONDS:
3935 case KVM_STATS_UNIT_BOOLEAN:
3936 break;
3937 default:
3938 return stats_list;
3939 }
3940
3941 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3942 case KVM_STATS_BASE_POW10:
3943 case KVM_STATS_BASE_POW2:
3944 break;
3945 default:
3946 return stats_list;
3947 }
3948
3949 /* Alloc and populate data list */
3950 stats = g_new0(Stats, 1);
3951 stats->name = g_strdup(pdesc->name);
3952 stats->value = g_new0(StatsValue, 1);
3953
3954 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3955 stats->value->u.boolean = *stats_data;
3956 stats->value->type = QTYPE_QBOOL;
3957 } else if (pdesc->size == 1) {
3958 stats->value->u.scalar = *stats_data;
3959 stats->value->type = QTYPE_QNUM;
3960 } else {
3961 int i;
3962 for (i = 0; i < pdesc->size; i++) {
3963 QAPI_LIST_PREPEND(val_list, stats_data[i]);
3964 }
3965 stats->value->u.list = val_list;
3966 stats->value->type = QTYPE_QLIST;
3967 }
3968
3969 QAPI_LIST_PREPEND(stats_list, stats);
3970 return stats_list;
3971 }
3972
add_kvmschema_entry(struct kvm_stats_desc * pdesc,StatsSchemaValueList * list,Error ** errp)3973 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3974 StatsSchemaValueList *list,
3975 Error **errp)
3976 {
3977 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3978 schema_entry->value = g_new0(StatsSchemaValue, 1);
3979
3980 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3981 case KVM_STATS_TYPE_CUMULATIVE:
3982 schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3983 break;
3984 case KVM_STATS_TYPE_INSTANT:
3985 schema_entry->value->type = STATS_TYPE_INSTANT;
3986 break;
3987 case KVM_STATS_TYPE_PEAK:
3988 schema_entry->value->type = STATS_TYPE_PEAK;
3989 break;
3990 case KVM_STATS_TYPE_LINEAR_HIST:
3991 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3992 schema_entry->value->bucket_size = pdesc->bucket_size;
3993 schema_entry->value->has_bucket_size = true;
3994 break;
3995 case KVM_STATS_TYPE_LOG_HIST:
3996 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3997 break;
3998 default:
3999 goto exit;
4000 }
4001
4002 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
4003 case KVM_STATS_UNIT_NONE:
4004 break;
4005 case KVM_STATS_UNIT_BOOLEAN:
4006 schema_entry->value->has_unit = true;
4007 schema_entry->value->unit = STATS_UNIT_BOOLEAN;
4008 break;
4009 case KVM_STATS_UNIT_BYTES:
4010 schema_entry->value->has_unit = true;
4011 schema_entry->value->unit = STATS_UNIT_BYTES;
4012 break;
4013 case KVM_STATS_UNIT_CYCLES:
4014 schema_entry->value->has_unit = true;
4015 schema_entry->value->unit = STATS_UNIT_CYCLES;
4016 break;
4017 case KVM_STATS_UNIT_SECONDS:
4018 schema_entry->value->has_unit = true;
4019 schema_entry->value->unit = STATS_UNIT_SECONDS;
4020 break;
4021 default:
4022 goto exit;
4023 }
4024
4025 schema_entry->value->exponent = pdesc->exponent;
4026 if (pdesc->exponent) {
4027 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
4028 case KVM_STATS_BASE_POW10:
4029 schema_entry->value->has_base = true;
4030 schema_entry->value->base = 10;
4031 break;
4032 case KVM_STATS_BASE_POW2:
4033 schema_entry->value->has_base = true;
4034 schema_entry->value->base = 2;
4035 break;
4036 default:
4037 goto exit;
4038 }
4039 }
4040
4041 schema_entry->value->name = g_strdup(pdesc->name);
4042 schema_entry->next = list;
4043 return schema_entry;
4044 exit:
4045 g_free(schema_entry->value);
4046 g_free(schema_entry);
4047 return list;
4048 }
4049
4050 /* Cached stats descriptors */
4051 typedef struct StatsDescriptors {
4052 const char *ident; /* cache key, currently the StatsTarget */
4053 struct kvm_stats_desc *kvm_stats_desc;
4054 struct kvm_stats_header kvm_stats_header;
4055 QTAILQ_ENTRY(StatsDescriptors) next;
4056 } StatsDescriptors;
4057
4058 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
4059 QTAILQ_HEAD_INITIALIZER(stats_descriptors);
4060
4061 /*
4062 * Return the descriptors for 'target', that either have already been read
4063 * or are retrieved from 'stats_fd'.
4064 */
find_stats_descriptors(StatsTarget target,int stats_fd,Error ** errp)4065 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
4066 Error **errp)
4067 {
4068 StatsDescriptors *descriptors;
4069 const char *ident;
4070 struct kvm_stats_desc *kvm_stats_desc;
4071 struct kvm_stats_header *kvm_stats_header;
4072 size_t size_desc;
4073 ssize_t ret;
4074
4075 ident = StatsTarget_str(target);
4076 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
4077 if (g_str_equal(descriptors->ident, ident)) {
4078 return descriptors;
4079 }
4080 }
4081
4082 descriptors = g_new0(StatsDescriptors, 1);
4083
4084 /* Read stats header */
4085 kvm_stats_header = &descriptors->kvm_stats_header;
4086 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
4087 if (ret != sizeof(*kvm_stats_header)) {
4088 error_setg(errp, "KVM stats: failed to read stats header: "
4089 "expected %zu actual %zu",
4090 sizeof(*kvm_stats_header), ret);
4091 g_free(descriptors);
4092 return NULL;
4093 }
4094 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4095
4096 /* Read stats descriptors */
4097 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4098 ret = pread(stats_fd, kvm_stats_desc,
4099 size_desc * kvm_stats_header->num_desc,
4100 kvm_stats_header->desc_offset);
4101
4102 if (ret != size_desc * kvm_stats_header->num_desc) {
4103 error_setg(errp, "KVM stats: failed to read stats descriptors: "
4104 "expected %zu actual %zu",
4105 size_desc * kvm_stats_header->num_desc, ret);
4106 g_free(descriptors);
4107 g_free(kvm_stats_desc);
4108 return NULL;
4109 }
4110 descriptors->kvm_stats_desc = kvm_stats_desc;
4111 descriptors->ident = ident;
4112 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4113 return descriptors;
4114 }
4115
query_stats(StatsResultList ** result,StatsTarget target,strList * names,int stats_fd,CPUState * cpu,Error ** errp)4116 static void query_stats(StatsResultList **result, StatsTarget target,
4117 strList *names, int stats_fd, CPUState *cpu,
4118 Error **errp)
4119 {
4120 struct kvm_stats_desc *kvm_stats_desc;
4121 struct kvm_stats_header *kvm_stats_header;
4122 StatsDescriptors *descriptors;
4123 g_autofree uint64_t *stats_data = NULL;
4124 struct kvm_stats_desc *pdesc;
4125 StatsList *stats_list = NULL;
4126 size_t size_desc, size_data = 0;
4127 ssize_t ret;
4128 int i;
4129
4130 descriptors = find_stats_descriptors(target, stats_fd, errp);
4131 if (!descriptors) {
4132 return;
4133 }
4134
4135 kvm_stats_header = &descriptors->kvm_stats_header;
4136 kvm_stats_desc = descriptors->kvm_stats_desc;
4137 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4138
4139 /* Tally the total data size; read schema data */
4140 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4141 pdesc = (void *)kvm_stats_desc + i * size_desc;
4142 size_data += pdesc->size * sizeof(*stats_data);
4143 }
4144
4145 stats_data = g_malloc0(size_data);
4146 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4147
4148 if (ret != size_data) {
4149 error_setg(errp, "KVM stats: failed to read data: "
4150 "expected %zu actual %zu", size_data, ret);
4151 return;
4152 }
4153
4154 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4155 uint64_t *stats;
4156 pdesc = (void *)kvm_stats_desc + i * size_desc;
4157
4158 /* Add entry to the list */
4159 stats = (void *)stats_data + pdesc->offset;
4160 if (!apply_str_list_filter(pdesc->name, names)) {
4161 continue;
4162 }
4163 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4164 }
4165
4166 if (!stats_list) {
4167 return;
4168 }
4169
4170 switch (target) {
4171 case STATS_TARGET_VM:
4172 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4173 break;
4174 case STATS_TARGET_VCPU:
4175 add_stats_entry(result, STATS_PROVIDER_KVM,
4176 cpu->parent_obj.canonical_path,
4177 stats_list);
4178 break;
4179 default:
4180 g_assert_not_reached();
4181 }
4182 }
4183
query_stats_schema(StatsSchemaList ** result,StatsTarget target,int stats_fd,Error ** errp)4184 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4185 int stats_fd, Error **errp)
4186 {
4187 struct kvm_stats_desc *kvm_stats_desc;
4188 struct kvm_stats_header *kvm_stats_header;
4189 StatsDescriptors *descriptors;
4190 struct kvm_stats_desc *pdesc;
4191 StatsSchemaValueList *stats_list = NULL;
4192 size_t size_desc;
4193 int i;
4194
4195 descriptors = find_stats_descriptors(target, stats_fd, errp);
4196 if (!descriptors) {
4197 return;
4198 }
4199
4200 kvm_stats_header = &descriptors->kvm_stats_header;
4201 kvm_stats_desc = descriptors->kvm_stats_desc;
4202 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4203
4204 /* Tally the total data size; read schema data */
4205 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4206 pdesc = (void *)kvm_stats_desc + i * size_desc;
4207 stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4208 }
4209
4210 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4211 }
4212
query_stats_vcpu(CPUState * cpu,StatsArgs * kvm_stats_args)4213 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4214 {
4215 int stats_fd = cpu->kvm_vcpu_stats_fd;
4216 Error *local_err = NULL;
4217
4218 if (stats_fd == -1) {
4219 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4220 error_propagate(kvm_stats_args->errp, local_err);
4221 return;
4222 }
4223 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4224 kvm_stats_args->names, stats_fd, cpu,
4225 kvm_stats_args->errp);
4226 }
4227
query_stats_schema_vcpu(CPUState * cpu,StatsArgs * kvm_stats_args)4228 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4229 {
4230 int stats_fd = cpu->kvm_vcpu_stats_fd;
4231 Error *local_err = NULL;
4232
4233 if (stats_fd == -1) {
4234 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4235 error_propagate(kvm_stats_args->errp, local_err);
4236 return;
4237 }
4238 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4239 kvm_stats_args->errp);
4240 }
4241
query_stats_cb(StatsResultList ** result,StatsTarget target,strList * names,strList * targets,Error ** errp)4242 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4243 strList *names, strList *targets, Error **errp)
4244 {
4245 KVMState *s = kvm_state;
4246 CPUState *cpu;
4247 int stats_fd;
4248
4249 switch (target) {
4250 case STATS_TARGET_VM:
4251 {
4252 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4253 if (stats_fd == -1) {
4254 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4255 return;
4256 }
4257 query_stats(result, target, names, stats_fd, NULL, errp);
4258 close(stats_fd);
4259 break;
4260 }
4261 case STATS_TARGET_VCPU:
4262 {
4263 StatsArgs stats_args;
4264 stats_args.result.stats = result;
4265 stats_args.names = names;
4266 stats_args.errp = errp;
4267 CPU_FOREACH(cpu) {
4268 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4269 continue;
4270 }
4271 query_stats_vcpu(cpu, &stats_args);
4272 }
4273 break;
4274 }
4275 default:
4276 break;
4277 }
4278 }
4279
query_stats_schemas_cb(StatsSchemaList ** result,Error ** errp)4280 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4281 {
4282 StatsArgs stats_args;
4283 KVMState *s = kvm_state;
4284 int stats_fd;
4285
4286 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4287 if (stats_fd == -1) {
4288 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4289 return;
4290 }
4291 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4292 close(stats_fd);
4293
4294 if (first_cpu) {
4295 stats_args.result.schema = result;
4296 stats_args.errp = errp;
4297 query_stats_schema_vcpu(first_cpu, &stats_args);
4298 }
4299 }
4300
kvm_mark_guest_state_protected(void)4301 void kvm_mark_guest_state_protected(void)
4302 {
4303 kvm_state->guest_state_protected = true;
4304 }
4305
kvm_create_guest_memfd(uint64_t size,uint64_t flags,Error ** errp)4306 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp)
4307 {
4308 int fd;
4309 struct kvm_create_guest_memfd guest_memfd = {
4310 .size = size,
4311 .flags = flags,
4312 };
4313
4314 if (!kvm_guest_memfd_supported) {
4315 error_setg(errp, "KVM does not support guest_memfd");
4316 return -1;
4317 }
4318
4319 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
4320 if (fd < 0) {
4321 error_setg_errno(errp, errno, "Error creating KVM guest_memfd");
4322 return -1;
4323 }
4324
4325 return fd;
4326 }
4327