1 /* 2 * Copyright 2008 IBM Corporation 3 * 2008 Red Hat, Inc. 4 * Copyright 2011 Intel Corporation 5 * Copyright 2016 Veertu, Inc. 6 * Copyright 2017 The Android Open Source Project 7 * 8 * QEMU Hypervisor.framework support 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of version 2 of the GNU General Public 12 * License as published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, see <http://www.gnu.org/licenses/>. 21 * 22 * This file contain code under public domain from the hvdos project: 23 * https://github.com/mist64/hvdos 24 * 25 * Parts Copyright (c) 2011 NetApp, Inc. 26 * All rights reserved. 27 * 28 * Redistribution and use in source and binary forms, with or without 29 * modification, are permitted provided that the following conditions 30 * are met: 31 * 1. Redistributions of source code must retain the above copyright 32 * notice, this list of conditions and the following disclaimer. 33 * 2. Redistributions in binary form must reproduce the above copyright 34 * notice, this list of conditions and the following disclaimer in the 35 * documentation and/or other materials provided with the distribution. 36 * 37 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 40 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 47 * SUCH DAMAGE. 48 */ 49 50 #include "qemu/osdep.h" 51 #include "qemu/error-report.h" 52 #include "qemu/main-loop.h" 53 #include "exec/address-spaces.h" 54 #include "exec/exec-all.h" 55 #include "sysemu/cpus.h" 56 #include "sysemu/hvf.h" 57 #include "sysemu/hvf_int.h" 58 #include "sysemu/runstate.h" 59 #include "qemu/guest-random.h" 60 61 HVFState *hvf_state; 62 63 #ifdef __aarch64__ 64 #define HV_VM_DEFAULT NULL 65 #endif 66 67 /* Memory slots */ 68 69 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size) 70 { 71 hvf_slot *slot; 72 int x; 73 for (x = 0; x < hvf_state->num_slots; ++x) { 74 slot = &hvf_state->slots[x]; 75 if (slot->size && start < (slot->start + slot->size) && 76 (start + size) > slot->start) { 77 return slot; 78 } 79 } 80 return NULL; 81 } 82 83 struct mac_slot { 84 int present; 85 uint64_t size; 86 uint64_t gpa_start; 87 uint64_t gva; 88 }; 89 90 struct mac_slot mac_slots[32]; 91 92 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags) 93 { 94 struct mac_slot *macslot; 95 hv_return_t ret; 96 97 macslot = &mac_slots[slot->slot_id]; 98 99 if (macslot->present) { 100 if (macslot->size != slot->size) { 101 macslot->present = 0; 102 ret = hv_vm_unmap(macslot->gpa_start, macslot->size); 103 assert_hvf_ok(ret); 104 } 105 } 106 107 if (!slot->size) { 108 return 0; 109 } 110 111 macslot->present = 1; 112 macslot->gpa_start = slot->start; 113 macslot->size = slot->size; 114 ret = hv_vm_map(slot->mem, slot->start, slot->size, flags); 115 assert_hvf_ok(ret); 116 return 0; 117 } 118 119 static void hvf_set_phys_mem(MemoryRegionSection *section, bool add) 120 { 121 hvf_slot *mem; 122 MemoryRegion *area = section->mr; 123 bool writeable = !area->readonly && !area->rom_device; 124 hv_memory_flags_t flags; 125 uint64_t page_size = qemu_real_host_page_size; 126 127 if (!memory_region_is_ram(area)) { 128 if (writeable) { 129 return; 130 } else if (!memory_region_is_romd(area)) { 131 /* 132 * If the memory device is not in romd_mode, then we actually want 133 * to remove the hvf memory slot so all accesses will trap. 134 */ 135 add = false; 136 } 137 } 138 139 if (!QEMU_IS_ALIGNED(int128_get64(section->size), page_size) || 140 !QEMU_IS_ALIGNED(section->offset_within_address_space, page_size)) { 141 /* Not page aligned, so we can not map as RAM */ 142 add = false; 143 } 144 145 mem = hvf_find_overlap_slot( 146 section->offset_within_address_space, 147 int128_get64(section->size)); 148 149 if (mem && add) { 150 if (mem->size == int128_get64(section->size) && 151 mem->start == section->offset_within_address_space && 152 mem->mem == (memory_region_get_ram_ptr(area) + 153 section->offset_within_region)) { 154 return; /* Same region was attempted to register, go away. */ 155 } 156 } 157 158 /* Region needs to be reset. set the size to 0 and remap it. */ 159 if (mem) { 160 mem->size = 0; 161 if (do_hvf_set_memory(mem, 0)) { 162 error_report("Failed to reset overlapping slot"); 163 abort(); 164 } 165 } 166 167 if (!add) { 168 return; 169 } 170 171 if (area->readonly || 172 (!memory_region_is_ram(area) && memory_region_is_romd(area))) { 173 flags = HV_MEMORY_READ | HV_MEMORY_EXEC; 174 } else { 175 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC; 176 } 177 178 /* Now make a new slot. */ 179 int x; 180 181 for (x = 0; x < hvf_state->num_slots; ++x) { 182 mem = &hvf_state->slots[x]; 183 if (!mem->size) { 184 break; 185 } 186 } 187 188 if (x == hvf_state->num_slots) { 189 error_report("No free slots"); 190 abort(); 191 } 192 193 mem->size = int128_get64(section->size); 194 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region; 195 mem->start = section->offset_within_address_space; 196 mem->region = area; 197 198 if (do_hvf_set_memory(mem, flags)) { 199 error_report("Error registering new memory slot"); 200 abort(); 201 } 202 } 203 204 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 205 { 206 if (!cpu->vcpu_dirty) { 207 hvf_get_registers(cpu); 208 cpu->vcpu_dirty = true; 209 } 210 } 211 212 static void hvf_cpu_synchronize_state(CPUState *cpu) 213 { 214 if (!cpu->vcpu_dirty) { 215 run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL); 216 } 217 } 218 219 static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu, 220 run_on_cpu_data arg) 221 { 222 /* QEMU state is the reference, push it to HVF now and on next entry */ 223 cpu->vcpu_dirty = true; 224 } 225 226 static void hvf_cpu_synchronize_post_reset(CPUState *cpu) 227 { 228 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL); 229 } 230 231 static void hvf_cpu_synchronize_post_init(CPUState *cpu) 232 { 233 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL); 234 } 235 236 static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu) 237 { 238 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL); 239 } 240 241 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on) 242 { 243 hvf_slot *slot; 244 245 slot = hvf_find_overlap_slot( 246 section->offset_within_address_space, 247 int128_get64(section->size)); 248 249 /* protect region against writes; begin tracking it */ 250 if (on) { 251 slot->flags |= HVF_SLOT_LOG; 252 hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size, 253 HV_MEMORY_READ | HV_MEMORY_EXEC); 254 /* stop tracking region*/ 255 } else { 256 slot->flags &= ~HVF_SLOT_LOG; 257 hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size, 258 HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC); 259 } 260 } 261 262 static void hvf_log_start(MemoryListener *listener, 263 MemoryRegionSection *section, int old, int new) 264 { 265 if (old != 0) { 266 return; 267 } 268 269 hvf_set_dirty_tracking(section, 1); 270 } 271 272 static void hvf_log_stop(MemoryListener *listener, 273 MemoryRegionSection *section, int old, int new) 274 { 275 if (new != 0) { 276 return; 277 } 278 279 hvf_set_dirty_tracking(section, 0); 280 } 281 282 static void hvf_log_sync(MemoryListener *listener, 283 MemoryRegionSection *section) 284 { 285 /* 286 * sync of dirty pages is handled elsewhere; just make sure we keep 287 * tracking the region. 288 */ 289 hvf_set_dirty_tracking(section, 1); 290 } 291 292 static void hvf_region_add(MemoryListener *listener, 293 MemoryRegionSection *section) 294 { 295 hvf_set_phys_mem(section, true); 296 } 297 298 static void hvf_region_del(MemoryListener *listener, 299 MemoryRegionSection *section) 300 { 301 hvf_set_phys_mem(section, false); 302 } 303 304 static MemoryListener hvf_memory_listener = { 305 .name = "hvf", 306 .priority = 10, 307 .region_add = hvf_region_add, 308 .region_del = hvf_region_del, 309 .log_start = hvf_log_start, 310 .log_stop = hvf_log_stop, 311 .log_sync = hvf_log_sync, 312 }; 313 314 static void dummy_signal(int sig) 315 { 316 } 317 318 bool hvf_allowed; 319 320 static int hvf_accel_init(MachineState *ms) 321 { 322 int x; 323 hv_return_t ret; 324 HVFState *s; 325 326 ret = hv_vm_create(HV_VM_DEFAULT); 327 assert_hvf_ok(ret); 328 329 s = g_new0(HVFState, 1); 330 331 s->num_slots = ARRAY_SIZE(s->slots); 332 for (x = 0; x < s->num_slots; ++x) { 333 s->slots[x].size = 0; 334 s->slots[x].slot_id = x; 335 } 336 337 hvf_state = s; 338 memory_listener_register(&hvf_memory_listener, &address_space_memory); 339 340 return hvf_arch_init(); 341 } 342 343 static void hvf_accel_class_init(ObjectClass *oc, void *data) 344 { 345 AccelClass *ac = ACCEL_CLASS(oc); 346 ac->name = "HVF"; 347 ac->init_machine = hvf_accel_init; 348 ac->allowed = &hvf_allowed; 349 } 350 351 static const TypeInfo hvf_accel_type = { 352 .name = TYPE_HVF_ACCEL, 353 .parent = TYPE_ACCEL, 354 .class_init = hvf_accel_class_init, 355 }; 356 357 static void hvf_type_init(void) 358 { 359 type_register_static(&hvf_accel_type); 360 } 361 362 type_init(hvf_type_init); 363 364 static void hvf_vcpu_destroy(CPUState *cpu) 365 { 366 hv_return_t ret = hv_vcpu_destroy(cpu->hvf->fd); 367 assert_hvf_ok(ret); 368 369 hvf_arch_vcpu_destroy(cpu); 370 g_free(cpu->hvf); 371 cpu->hvf = NULL; 372 } 373 374 static int hvf_init_vcpu(CPUState *cpu) 375 { 376 int r; 377 378 cpu->hvf = g_malloc0(sizeof(*cpu->hvf)); 379 380 /* init cpu signals */ 381 struct sigaction sigact; 382 383 memset(&sigact, 0, sizeof(sigact)); 384 sigact.sa_handler = dummy_signal; 385 sigaction(SIG_IPI, &sigact, NULL); 386 387 pthread_sigmask(SIG_BLOCK, NULL, &cpu->hvf->unblock_ipi_mask); 388 sigdelset(&cpu->hvf->unblock_ipi_mask, SIG_IPI); 389 390 #ifdef __aarch64__ 391 r = hv_vcpu_create(&cpu->hvf->fd, (hv_vcpu_exit_t **)&cpu->hvf->exit, NULL); 392 #else 393 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf->fd, HV_VCPU_DEFAULT); 394 #endif 395 cpu->vcpu_dirty = 1; 396 assert_hvf_ok(r); 397 398 return hvf_arch_init_vcpu(cpu); 399 } 400 401 /* 402 * The HVF-specific vCPU thread function. This one should only run when the host 403 * CPU supports the VMX "unrestricted guest" feature. 404 */ 405 static void *hvf_cpu_thread_fn(void *arg) 406 { 407 CPUState *cpu = arg; 408 409 int r; 410 411 assert(hvf_enabled()); 412 413 rcu_register_thread(); 414 415 qemu_mutex_lock_iothread(); 416 qemu_thread_get_self(cpu->thread); 417 418 cpu->thread_id = qemu_get_thread_id(); 419 cpu->can_do_io = 1; 420 current_cpu = cpu; 421 422 hvf_init_vcpu(cpu); 423 424 /* signal CPU creation */ 425 cpu_thread_signal_created(cpu); 426 qemu_guest_random_seed_thread_part2(cpu->random_seed); 427 428 do { 429 if (cpu_can_run(cpu)) { 430 r = hvf_vcpu_exec(cpu); 431 if (r == EXCP_DEBUG) { 432 cpu_handle_guest_debug(cpu); 433 } 434 } 435 qemu_wait_io_event(cpu); 436 } while (!cpu->unplug || cpu_can_run(cpu)); 437 438 hvf_vcpu_destroy(cpu); 439 cpu_thread_signal_destroyed(cpu); 440 qemu_mutex_unlock_iothread(); 441 rcu_unregister_thread(); 442 return NULL; 443 } 444 445 static void hvf_start_vcpu_thread(CPUState *cpu) 446 { 447 char thread_name[VCPU_THREAD_NAME_SIZE]; 448 449 /* 450 * HVF currently does not support TCG, and only runs in 451 * unrestricted-guest mode. 452 */ 453 assert(hvf_enabled()); 454 455 cpu->thread = g_malloc0(sizeof(QemuThread)); 456 cpu->halt_cond = g_malloc0(sizeof(QemuCond)); 457 qemu_cond_init(cpu->halt_cond); 458 459 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF", 460 cpu->cpu_index); 461 qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn, 462 cpu, QEMU_THREAD_JOINABLE); 463 } 464 465 static void hvf_accel_ops_class_init(ObjectClass *oc, void *data) 466 { 467 AccelOpsClass *ops = ACCEL_OPS_CLASS(oc); 468 469 ops->create_vcpu_thread = hvf_start_vcpu_thread; 470 ops->kick_vcpu_thread = hvf_kick_vcpu_thread; 471 472 ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset; 473 ops->synchronize_post_init = hvf_cpu_synchronize_post_init; 474 ops->synchronize_state = hvf_cpu_synchronize_state; 475 ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm; 476 }; 477 static const TypeInfo hvf_accel_ops_type = { 478 .name = ACCEL_OPS_NAME("hvf"), 479 480 .parent = TYPE_ACCEL_OPS, 481 .class_init = hvf_accel_ops_class_init, 482 .abstract = true, 483 }; 484 static void hvf_accel_ops_register_types(void) 485 { 486 type_register_static(&hvf_accel_ops_type); 487 } 488 type_init(hvf_accel_ops_register_types); 489