xref: /openbmc/qemu/accel/hvf/hvf-accel-ops.c (revision c306cdb0)
1 /*
2  * Copyright 2008 IBM Corporation
3  *           2008 Red Hat, Inc.
4  * Copyright 2011 Intel Corporation
5  * Copyright 2016 Veertu, Inc.
6  * Copyright 2017 The Android Open Source Project
7  *
8  * QEMU Hypervisor.framework support
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of version 2 of the GNU General Public
12  * License as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, see <http://www.gnu.org/licenses/>.
21  *
22  * This file contain code under public domain from the hvdos project:
23  * https://github.com/mist64/hvdos
24  *
25  * Parts Copyright (c) 2011 NetApp, Inc.
26  * All rights reserved.
27  *
28  * Redistribution and use in source and binary forms, with or without
29  * modification, are permitted provided that the following conditions
30  * are met:
31  * 1. Redistributions of source code must retain the above copyright
32  *    notice, this list of conditions and the following disclaimer.
33  * 2. Redistributions in binary form must reproduce the above copyright
34  *    notice, this list of conditions and the following disclaimer in the
35  *    documentation and/or other materials provided with the distribution.
36  *
37  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
38  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
41  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47  * SUCH DAMAGE.
48  */
49 
50 #include "qemu/osdep.h"
51 #include "qemu/error-report.h"
52 #include "qemu/main-loop.h"
53 #include "exec/address-spaces.h"
54 #include "exec/exec-all.h"
55 #include "sysemu/cpus.h"
56 #include "sysemu/hvf.h"
57 #include "sysemu/hvf_int.h"
58 #include "sysemu/runstate.h"
59 #include "qemu/guest-random.h"
60 
61 HVFState *hvf_state;
62 
63 #ifdef __aarch64__
64 #define HV_VM_DEFAULT NULL
65 #endif
66 
67 /* Memory slots */
68 
69 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
70 {
71     hvf_slot *slot;
72     int x;
73     for (x = 0; x < hvf_state->num_slots; ++x) {
74         slot = &hvf_state->slots[x];
75         if (slot->size && start < (slot->start + slot->size) &&
76             (start + size) > slot->start) {
77             return slot;
78         }
79     }
80     return NULL;
81 }
82 
83 struct mac_slot {
84     int present;
85     uint64_t size;
86     uint64_t gpa_start;
87     uint64_t gva;
88 };
89 
90 struct mac_slot mac_slots[32];
91 
92 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
93 {
94     struct mac_slot *macslot;
95     hv_return_t ret;
96 
97     macslot = &mac_slots[slot->slot_id];
98 
99     if (macslot->present) {
100         if (macslot->size != slot->size) {
101             macslot->present = 0;
102             ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
103             assert_hvf_ok(ret);
104         }
105     }
106 
107     if (!slot->size) {
108         return 0;
109     }
110 
111     macslot->present = 1;
112     macslot->gpa_start = slot->start;
113     macslot->size = slot->size;
114     ret = hv_vm_map(slot->mem, slot->start, slot->size, flags);
115     assert_hvf_ok(ret);
116     return 0;
117 }
118 
119 static void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
120 {
121     hvf_slot *mem;
122     MemoryRegion *area = section->mr;
123     bool writeable = !area->readonly && !area->rom_device;
124     hv_memory_flags_t flags;
125 
126     if (!memory_region_is_ram(area)) {
127         if (writeable) {
128             return;
129         } else if (!memory_region_is_romd(area)) {
130             /*
131              * If the memory device is not in romd_mode, then we actually want
132              * to remove the hvf memory slot so all accesses will trap.
133              */
134              add = false;
135         }
136     }
137 
138     mem = hvf_find_overlap_slot(
139             section->offset_within_address_space,
140             int128_get64(section->size));
141 
142     if (mem && add) {
143         if (mem->size == int128_get64(section->size) &&
144             mem->start == section->offset_within_address_space &&
145             mem->mem == (memory_region_get_ram_ptr(area) +
146             section->offset_within_region)) {
147             return; /* Same region was attempted to register, go away. */
148         }
149     }
150 
151     /* Region needs to be reset. set the size to 0 and remap it. */
152     if (mem) {
153         mem->size = 0;
154         if (do_hvf_set_memory(mem, 0)) {
155             error_report("Failed to reset overlapping slot");
156             abort();
157         }
158     }
159 
160     if (!add) {
161         return;
162     }
163 
164     if (area->readonly ||
165         (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
166         flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
167     } else {
168         flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
169     }
170 
171     /* Now make a new slot. */
172     int x;
173 
174     for (x = 0; x < hvf_state->num_slots; ++x) {
175         mem = &hvf_state->slots[x];
176         if (!mem->size) {
177             break;
178         }
179     }
180 
181     if (x == hvf_state->num_slots) {
182         error_report("No free slots");
183         abort();
184     }
185 
186     mem->size = int128_get64(section->size);
187     mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
188     mem->start = section->offset_within_address_space;
189     mem->region = area;
190 
191     if (do_hvf_set_memory(mem, flags)) {
192         error_report("Error registering new memory slot");
193         abort();
194     }
195 }
196 
197 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
198 {
199     if (!cpu->vcpu_dirty) {
200         hvf_get_registers(cpu);
201         cpu->vcpu_dirty = true;
202     }
203 }
204 
205 static void hvf_cpu_synchronize_state(CPUState *cpu)
206 {
207     if (!cpu->vcpu_dirty) {
208         run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
209     }
210 }
211 
212 static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu,
213                                              run_on_cpu_data arg)
214 {
215     /* QEMU state is the reference, push it to HVF now and on next entry */
216     cpu->vcpu_dirty = true;
217 }
218 
219 static void hvf_cpu_synchronize_post_reset(CPUState *cpu)
220 {
221     run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
222 }
223 
224 static void hvf_cpu_synchronize_post_init(CPUState *cpu)
225 {
226     run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
227 }
228 
229 static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
230 {
231     run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
232 }
233 
234 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
235 {
236     hvf_slot *slot;
237 
238     slot = hvf_find_overlap_slot(
239             section->offset_within_address_space,
240             int128_get64(section->size));
241 
242     /* protect region against writes; begin tracking it */
243     if (on) {
244         slot->flags |= HVF_SLOT_LOG;
245         hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
246                       HV_MEMORY_READ | HV_MEMORY_EXEC);
247     /* stop tracking region*/
248     } else {
249         slot->flags &= ~HVF_SLOT_LOG;
250         hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
251                       HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
252     }
253 }
254 
255 static void hvf_log_start(MemoryListener *listener,
256                           MemoryRegionSection *section, int old, int new)
257 {
258     if (old != 0) {
259         return;
260     }
261 
262     hvf_set_dirty_tracking(section, 1);
263 }
264 
265 static void hvf_log_stop(MemoryListener *listener,
266                          MemoryRegionSection *section, int old, int new)
267 {
268     if (new != 0) {
269         return;
270     }
271 
272     hvf_set_dirty_tracking(section, 0);
273 }
274 
275 static void hvf_log_sync(MemoryListener *listener,
276                          MemoryRegionSection *section)
277 {
278     /*
279      * sync of dirty pages is handled elsewhere; just make sure we keep
280      * tracking the region.
281      */
282     hvf_set_dirty_tracking(section, 1);
283 }
284 
285 static void hvf_region_add(MemoryListener *listener,
286                            MemoryRegionSection *section)
287 {
288     hvf_set_phys_mem(section, true);
289 }
290 
291 static void hvf_region_del(MemoryListener *listener,
292                            MemoryRegionSection *section)
293 {
294     hvf_set_phys_mem(section, false);
295 }
296 
297 static MemoryListener hvf_memory_listener = {
298     .name = "hvf",
299     .priority = 10,
300     .region_add = hvf_region_add,
301     .region_del = hvf_region_del,
302     .log_start = hvf_log_start,
303     .log_stop = hvf_log_stop,
304     .log_sync = hvf_log_sync,
305 };
306 
307 static void dummy_signal(int sig)
308 {
309 }
310 
311 bool hvf_allowed;
312 
313 static int hvf_accel_init(MachineState *ms)
314 {
315     int x;
316     hv_return_t ret;
317     HVFState *s;
318 
319     ret = hv_vm_create(HV_VM_DEFAULT);
320     assert_hvf_ok(ret);
321 
322     s = g_new0(HVFState, 1);
323 
324     s->num_slots = ARRAY_SIZE(s->slots);
325     for (x = 0; x < s->num_slots; ++x) {
326         s->slots[x].size = 0;
327         s->slots[x].slot_id = x;
328     }
329 
330     hvf_state = s;
331     memory_listener_register(&hvf_memory_listener, &address_space_memory);
332 
333     return hvf_arch_init();
334 }
335 
336 static void hvf_accel_class_init(ObjectClass *oc, void *data)
337 {
338     AccelClass *ac = ACCEL_CLASS(oc);
339     ac->name = "HVF";
340     ac->init_machine = hvf_accel_init;
341     ac->allowed = &hvf_allowed;
342 }
343 
344 static const TypeInfo hvf_accel_type = {
345     .name = TYPE_HVF_ACCEL,
346     .parent = TYPE_ACCEL,
347     .class_init = hvf_accel_class_init,
348 };
349 
350 static void hvf_type_init(void)
351 {
352     type_register_static(&hvf_accel_type);
353 }
354 
355 type_init(hvf_type_init);
356 
357 static void hvf_vcpu_destroy(CPUState *cpu)
358 {
359     hv_return_t ret = hv_vcpu_destroy(cpu->hvf->fd);
360     assert_hvf_ok(ret);
361 
362     hvf_arch_vcpu_destroy(cpu);
363     g_free(cpu->hvf);
364     cpu->hvf = NULL;
365 }
366 
367 static int hvf_init_vcpu(CPUState *cpu)
368 {
369     int r;
370 
371     cpu->hvf = g_malloc0(sizeof(*cpu->hvf));
372 
373     /* init cpu signals */
374     struct sigaction sigact;
375 
376     memset(&sigact, 0, sizeof(sigact));
377     sigact.sa_handler = dummy_signal;
378     sigaction(SIG_IPI, &sigact, NULL);
379 
380     pthread_sigmask(SIG_BLOCK, NULL, &cpu->hvf->unblock_ipi_mask);
381     sigdelset(&cpu->hvf->unblock_ipi_mask, SIG_IPI);
382 
383 #ifdef __aarch64__
384     r = hv_vcpu_create(&cpu->hvf->fd, (hv_vcpu_exit_t **)&cpu->hvf->exit, NULL);
385 #else
386     r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf->fd, HV_VCPU_DEFAULT);
387 #endif
388     cpu->vcpu_dirty = 1;
389     assert_hvf_ok(r);
390 
391     return hvf_arch_init_vcpu(cpu);
392 }
393 
394 /*
395  * The HVF-specific vCPU thread function. This one should only run when the host
396  * CPU supports the VMX "unrestricted guest" feature.
397  */
398 static void *hvf_cpu_thread_fn(void *arg)
399 {
400     CPUState *cpu = arg;
401 
402     int r;
403 
404     assert(hvf_enabled());
405 
406     rcu_register_thread();
407 
408     qemu_mutex_lock_iothread();
409     qemu_thread_get_self(cpu->thread);
410 
411     cpu->thread_id = qemu_get_thread_id();
412     cpu->can_do_io = 1;
413     current_cpu = cpu;
414 
415     hvf_init_vcpu(cpu);
416 
417     /* signal CPU creation */
418     cpu_thread_signal_created(cpu);
419     qemu_guest_random_seed_thread_part2(cpu->random_seed);
420 
421     do {
422         if (cpu_can_run(cpu)) {
423             r = hvf_vcpu_exec(cpu);
424             if (r == EXCP_DEBUG) {
425                 cpu_handle_guest_debug(cpu);
426             }
427         }
428         qemu_wait_io_event(cpu);
429     } while (!cpu->unplug || cpu_can_run(cpu));
430 
431     hvf_vcpu_destroy(cpu);
432     cpu_thread_signal_destroyed(cpu);
433     qemu_mutex_unlock_iothread();
434     rcu_unregister_thread();
435     return NULL;
436 }
437 
438 static void hvf_start_vcpu_thread(CPUState *cpu)
439 {
440     char thread_name[VCPU_THREAD_NAME_SIZE];
441 
442     /*
443      * HVF currently does not support TCG, and only runs in
444      * unrestricted-guest mode.
445      */
446     assert(hvf_enabled());
447 
448     cpu->thread = g_malloc0(sizeof(QemuThread));
449     cpu->halt_cond = g_malloc0(sizeof(QemuCond));
450     qemu_cond_init(cpu->halt_cond);
451 
452     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
453              cpu->cpu_index);
454     qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn,
455                        cpu, QEMU_THREAD_JOINABLE);
456 }
457 
458 static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
459 {
460     AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
461 
462     ops->create_vcpu_thread = hvf_start_vcpu_thread;
463     ops->kick_vcpu_thread = hvf_kick_vcpu_thread;
464 
465     ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
466     ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
467     ops->synchronize_state = hvf_cpu_synchronize_state;
468     ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm;
469 };
470 static const TypeInfo hvf_accel_ops_type = {
471     .name = ACCEL_OPS_NAME("hvf"),
472 
473     .parent = TYPE_ACCEL_OPS,
474     .class_init = hvf_accel_ops_class_init,
475     .abstract = true,
476 };
477 static void hvf_accel_ops_register_types(void)
478 {
479     type_register_static(&hvf_accel_ops_type);
480 }
481 type_init(hvf_accel_ops_register_types);
482