1 /** 2 * Copyright © 2018 Intel Corporation 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 #include <ipmid/api.hpp> 17 #include <ipmid/message.hpp> 18 19 #include <gtest/gtest.h> 20 21 // TODO: Add testing of Payload response API 22 23 TEST(PackBasics, Uint8) 24 { 25 ipmi::message::Payload p; 26 uint8_t v = 4; 27 p.pack(v); 28 // check that the number of bytes matches 29 ASSERT_EQ(p.size(), sizeof(v)); 30 // check that the bytes were correctly packed (LSB first) 31 std::vector<uint8_t> k = {0x04}; 32 ASSERT_EQ(p.raw, k); 33 } 34 35 TEST(PackBasics, Uint16) 36 { 37 ipmi::message::Payload p; 38 uint16_t v = 0x8604; 39 p.pack(v); 40 // check that the number of bytes matches 41 ASSERT_EQ(p.size(), sizeof(v)); 42 // check that the bytes were correctly packed (LSB first) 43 std::vector<uint8_t> k = {0x04, 0x86}; 44 ASSERT_EQ(p.raw, k); 45 } 46 47 TEST(PackBasics, Uint32) 48 { 49 ipmi::message::Payload p; 50 uint32_t v = 0x02008604; 51 p.pack(v); 52 // check that the number of bytes matches 53 ASSERT_EQ(p.size(), sizeof(v)); 54 // check that the bytes were correctly packed (LSB first) 55 std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02}; 56 ASSERT_EQ(p.raw, k); 57 } 58 59 TEST(PackBasics, Uint64) 60 { 61 ipmi::message::Payload p; 62 uint64_t v = 0x1122334402008604ull; 63 p.pack(v); 64 // check that the number of bytes matches 65 ASSERT_EQ(p.size(), sizeof(v)); 66 // check that the bytes were correctly packed (LSB first) 67 std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02, 0x44, 0x33, 0x22, 0x11}; 68 ASSERT_EQ(p.raw, k); 69 } 70 71 TEST(PackBasics, Uint24) 72 { 73 ipmi::message::Payload p; 74 uint24_t v = 0x112358; 75 p.pack(v); 76 // check that the number of bytes matches 77 ASSERT_EQ(p.size(), types::nrFixedBits<decltype(v)> / CHAR_BIT); 78 // check that the bytes were correctly packed (LSB first) 79 std::vector<uint8_t> k = {0x58, 0x23, 0x11}; 80 ASSERT_EQ(p.raw, k); 81 } 82 83 TEST(PackBasics, Uint3Uint5) 84 { 85 // individual bytes are packed low-order-bits first 86 // v1 will occupy [2:0], v2 will occupy [7:3] 87 ipmi::message::Payload p; 88 uint3_t v1 = 0x1; 89 uint5_t v2 = 0x19; 90 p.pack(v1, v2); 91 // check that the number of bytes matches 92 ASSERT_EQ(p.size(), (types::nrFixedBits<decltype(v1)> + 93 types::nrFixedBits<decltype(v2)>) / 94 CHAR_BIT); 95 // check that the bytes were correctly packed (LSB first) 96 std::vector<uint8_t> k = {0xc9}; 97 ASSERT_EQ(p.raw, k); 98 } 99 100 TEST(PackBasics, Boolx8) 101 { 102 // individual bytes are packed low-order-bits first 103 // [v8, v7, v6, v5, v4, v3, v2, v1] 104 ipmi::message::Payload p; 105 bool v8 = true, v7 = true, v6 = false, v5 = false; 106 bool v4 = true, v3 = false, v2 = false, v1 = true; 107 p.pack(v1, v2, v3, v4, v5, v6, v7, v8); 108 // check that the number of bytes matches 109 ASSERT_EQ(p.size(), sizeof(uint8_t)); 110 // check that the bytes were correctly packed (LSB first) 111 std::vector<uint8_t> k = {0xc9}; 112 ASSERT_EQ(p.raw, k); 113 } 114 115 TEST(PackBasics, Bitset8) 116 { 117 // individual bytes are packed low-order-bits first 118 // a bitset for 8 bits fills the full byte 119 ipmi::message::Payload p; 120 std::bitset<8> v(0xc9); 121 p.pack(v); 122 // check that the number of bytes matches 123 ASSERT_EQ(p.size(), v.size() / CHAR_BIT); 124 // check that the bytes were correctly packed (LSB first) 125 std::vector<uint8_t> k = {0xc9}; 126 ASSERT_EQ(p.raw, k); 127 } 128 129 TEST(PackBasics, Bitset3Bitset5) 130 { 131 // individual bytes are packed low-order-bits first 132 // v1 will occupy [2:0], v2 will occupy [7:3] 133 ipmi::message::Payload p; 134 std::bitset<3> v1(0x1); 135 std::bitset<5> v2(0x19); 136 p.pack(v1, v2); 137 // check that the number of bytes matches 138 ASSERT_EQ(p.size(), (v1.size() + v2.size()) / CHAR_BIT); 139 // check that the bytes were correctly packed (LSB first) 140 std::vector<uint8_t> k = {0xc9}; 141 ASSERT_EQ(p.raw, k); 142 } 143 144 TEST(PackBasics, Bitset32) 145 { 146 // individual bytes are packed low-order-bits first 147 // v1 will occupy 4 bytes, but in LSByte first order 148 // v1[7:0] v1[15:9] v1[23:16] v1[31:24] 149 ipmi::message::Payload p; 150 std::bitset<32> v(0x02008604); 151 p.pack(v); 152 // check that the number of bytes matches 153 ASSERT_EQ(p.size(), v.size() / CHAR_BIT); 154 // check that the bytes were correctly packed (LSB first) 155 std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02}; 156 ASSERT_EQ(p.raw, k); 157 } 158 159 TEST(PackBasics, Tuple) 160 { 161 // tuples are the new struct, pack a tuple 162 ipmi::message::Payload p; 163 auto v = std::make_tuple(static_cast<uint16_t>(0x8604), 'A'); 164 p.pack(v); 165 // check that the number of bytes matches 166 ASSERT_EQ(p.size(), sizeof(uint16_t) + sizeof(char)); 167 // check that the bytes were correctly packed (LSB first) 168 std::vector<uint8_t> k = {0x04, 0x86, 0x41}; 169 ASSERT_EQ(p.raw, k); 170 } 171 172 TEST(PackBasics, Array4xUint8) 173 { 174 // an array of bytes will be output verbatim, low-order element first 175 ipmi::message::Payload p; 176 std::array<uint8_t, 4> v = {{0x02, 0x00, 0x86, 0x04}}; 177 p.pack(v); 178 // check that the number of bytes matches 179 ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); 180 // check that the bytes were correctly packed (in byte order) 181 std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04}; 182 ASSERT_EQ(p.raw, k); 183 } 184 185 TEST(PackBasics, Array4xUint32) 186 { 187 // an array of multi-byte values will be output in order low-order 188 // element first, each multi-byte element in LSByte order 189 // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] 190 // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] 191 // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] 192 // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] 193 ipmi::message::Payload p; 194 std::array<uint32_t, 4> v = { 195 {0x11223344, 0x22446688, 0x33557799, 0x12345678}}; 196 p.pack(v); 197 // check that the number of bytes matches 198 ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); 199 // check that the bytes were correctly packed (in byte order) 200 std::vector<uint8_t> k = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22, 201 0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12}; 202 ASSERT_EQ(p.raw, k); 203 } 204 205 TEST(PackBasics, VectorUint32) 206 { 207 // a vector of multi-byte values will be output in order low-order 208 // element first, each multi-byte element in LSByte order 209 // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] 210 // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] 211 // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] 212 // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] 213 ipmi::message::Payload p; 214 std::vector<uint32_t> v = { 215 {0x11223344, 0x22446688, 0x33557799, 0x12345678}}; 216 p.pack(v); 217 // check that the number of bytes matches 218 ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); 219 // check that the bytes were correctly packed (in byte order) 220 std::vector<uint8_t> k = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22, 221 0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12}; 222 ASSERT_EQ(p.raw, k); 223 } 224 225 TEST(PackBasics, VectorUint8) 226 { 227 // a vector of bytes will be output verbatim, low-order element first 228 ipmi::message::Payload p; 229 std::vector<uint8_t> v = {0x02, 0x00, 0x86, 0x04}; 230 p.pack(v); 231 // check that the number of bytes matches 232 ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); 233 // check that the bytes were correctly packed (in byte order) 234 std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04}; 235 ASSERT_EQ(p.raw, k); 236 } 237 238 TEST(PackBasics, VectorUnaligned) 239 { 240 ipmi::message::Payload p; 241 EXPECT_EQ(p.pack(true, std::vector<uint8_t>{1}), 1); 242 EXPECT_EQ(p.raw, std::vector<uint8_t>{0b1}); 243 } 244 245 TEST(PackBasics, StringView) 246 { 247 ipmi::message::Payload p; 248 EXPECT_EQ(p.pack(std::string_view{"\x24\x30\x11"}), 0); 249 EXPECT_EQ(p.raw, std::vector<uint8_t>({0x24, 0x30, 0x11})); 250 } 251 252 TEST(PackBasics, StringViewUnaligned) 253 { 254 ipmi::message::Payload p; 255 EXPECT_EQ(p.pack(true, std::string_view{"abc"}), 1); 256 EXPECT_EQ(p.raw, std::vector<uint8_t>({0b1})); 257 } 258 259 TEST(PackBasics, OptionalEmpty) 260 { 261 // an optional will only pack if the value is present 262 ipmi::message::Payload p; 263 std::optional<uint32_t> v; 264 p.pack(v); 265 // check that the number of bytes matches 266 ASSERT_EQ(p.size(), 0); 267 // check that the bytes were correctly packed (in byte order) 268 std::vector<uint8_t> k = {}; 269 ASSERT_EQ(p.raw, k); 270 } 271 272 TEST(PackBasics, OptionalContainsValue) 273 { 274 // an optional will only pack if the value is present 275 ipmi::message::Payload p; 276 std::optional<uint32_t> v(0x04860002); 277 p.pack(v); 278 // check that the number of bytes matches 279 ASSERT_EQ(p.size(), sizeof(uint32_t)); 280 // check that the bytes were correctly packed (in byte order) 281 std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04}; 282 ASSERT_EQ(p.raw, k); 283 } 284 285 TEST(PackAdvanced, Uints) 286 { 287 // all elements will be processed in order, with each multi-byte 288 // element being processed LSByte first 289 // v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24] 290 // v4[7:0] v4[15:8] v4[23:16] v4[31:24] 291 // v4[39:25] v4[47:40] v4[55:48] v4[63:56] 292 ipmi::message::Payload p; 293 uint8_t v1 = 0x02; 294 uint16_t v2 = 0x0604; 295 uint32_t v3 = 0x44332211; 296 uint64_t v4 = 0xccbbaa9988776655ull; 297 p.pack(v1, v2, v3, v4); 298 // check that the number of bytes matches 299 ASSERT_EQ(p.size(), sizeof(v1) + sizeof(v2) + sizeof(v3) + sizeof(v4)); 300 // check that the bytes were correctly packed (LSB first) 301 std::vector<uint8_t> k = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55, 302 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc}; 303 ASSERT_EQ(p.raw, k); 304 } 305 306 TEST(PackAdvanced, TupleInts) 307 { 308 // all elements will be processed in order, with each multi-byte 309 // element being processed LSByte first 310 // v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24] 311 // v4[7:0] v4[15:8] v4[23:16] v4[31:24] 312 // v4[39:25] v4[47:40] v4[55:48] v4[63:56] 313 ipmi::message::Payload p; 314 uint8_t v1 = 0x02; 315 uint16_t v2 = 0x0604; 316 uint32_t v3 = 0x44332211; 317 uint64_t v4 = 0xccbbaa9988776655ull; 318 auto v = std::make_tuple(v1, v2, v3, v4); 319 p.pack(v); 320 // check that the number of bytes matches 321 ASSERT_EQ(p.size(), sizeof(v1) + sizeof(v2) + sizeof(v3) + sizeof(v4)); 322 // check that the bytes were correctly packed (LSB first) 323 std::vector<uint8_t> k = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55, 324 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc}; 325 ASSERT_EQ(p.raw, k); 326 } 327 328 TEST(PackAdvanced, VariantArray) 329 { 330 ipmi::message::Payload p; 331 std::variant<std::array<uint8_t, 2>, uint32_t> variant; 332 auto data = std::array<uint8_t, 2>{2, 4}; 333 variant = data; 334 335 p.pack(variant); 336 ASSERT_EQ(p.size(), sizeof(data)); 337 338 // check that the bytes were correctly packed packed (LSB first) 339 std::vector<uint8_t> k = {2, 4}; 340 ASSERT_EQ(p.raw, k); 341 } 342 343 TEST(PackAdvanced, BoolsnBitfieldsnFixedIntsOhMy) 344 { 345 // each element will be added, filling the low-order bits first 346 // with multi-byte values getting added LSByte first 347 // v1 will occupy k[0][1:0] 348 // v2 will occupy k[0][2] 349 // v3[4:0] will occupy k[0][7:3], v3[6:5] will occupy k[1][1:0] 350 // v4 will occupy k[1][2] 351 // v5 will occupy k[1][7:3] 352 ipmi::message::Payload p; 353 uint2_t v1 = 2; // binary 0b10 354 bool v2 = true; // binary 0b1 355 std::bitset<7> v3(0x73); // binary 0b1110011 356 bool v4 = false; // binary 0b0 357 uint5_t v5 = 27; // binary 0b11011 358 // concat binary: 0b1101101110011110 -> 0xdb9e -> 0x9e 0xdb (LSByte first) 359 p.pack(v1, v2, v3, v4, v5); 360 // check that the number of bytes matches 361 ASSERT_EQ(p.size(), sizeof(uint16_t)); 362 // check that the bytes were correctly packed (LSB first) 363 std::vector<uint8_t> k = {0x9e, 0xdb}; 364 ASSERT_EQ(p.raw, k); 365 } 366 367 TEST(PackAdvanced, UnalignedBitPacking) 368 { 369 // unaligned multi-byte values will be packed the same as 370 // other bits, effectively building up a large value, low-order 371 // bits first, then outputting a stream of LSByte values 372 // v1 will occupy k[0][1:0] 373 // v2[5:0] will occupy k[0][7:2], v2[7:6] will occupy k[1][1:0] 374 // v3 will occupy k[1][2] 375 // v4[4:0] will occupy k[1][7:3] v4[12:5] will occupy k[2][7:0] 376 // v4[15:13] will occupy k[3][2:0] 377 // v5 will occupy k[3][3] 378 // v6[3:0] will occupy k[3][7:0] v6[11:4] will occupy k[4][7:0] 379 // v6[19:12] will occupy k[5][7:0] v6[27:20] will occupy k[6][7:0] 380 // v6[31:28] will occupy k[7][3:0] 381 // v7 will occupy k[7][7:4] 382 ipmi::message::Payload p; 383 uint2_t v1 = 2; // binary 0b10 384 uint8_t v2 = 0xa5; // binary 0b10100101 385 bool v3 = false; // binary 0b0 386 uint16_t v4 = 0xa55a; // binary 0b1010010101011010 387 bool v5 = true; // binary 0b1 388 uint32_t v6 = 0xdbc3bd3c; // binary 0b11011011110000111011110100111100 389 uint4_t v7 = 9; // binary 0b1001 390 // concat binary: 391 // 0b1001110110111100001110111101001111001101001010101101001010010110 392 // -> 0x9dbc3bd3cd2ad296 -> 0x96 0xd2 0x2a 0xcd 0xd3 0x3b 0xbc 0x9d 393 p.pack(v1, v2, v3, v4, v5, v6, v7); 394 // check that the number of bytes matches 395 ASSERT_EQ(p.size(), sizeof(uint64_t)); 396 // check that the bytes were correctly packed (LSB first) 397 std::vector<uint8_t> k = {0x96, 0xd2, 0x2a, 0xcd, 0xd3, 0x3b, 0xbc, 0x9d}; 398 ASSERT_EQ(p.raw, k); 399 } 400 401 TEST(PackAdvanced, ComplexOptionalTuple) 402 { 403 constexpr size_t macSize = 6; 404 // inspired from a real-world case of Get Session Info 405 constexpr uint8_t handle = 0x23; // handle for active session 406 constexpr uint8_t maxSessions = 15; // number of possible active sessions 407 constexpr uint8_t currentSessions = 4; // number of current active sessions 408 std::optional< // only returned for active session 409 std::tuple<uint8_t, // user ID 410 uint8_t, // privilege 411 uint4_t, // channel number 412 uint4_t // protocol (RMCP+) 413 >> 414 activeSession; 415 std::optional< // only returned for channel type LAN 416 std::tuple<uint32_t, // IPv4 address 417 std::array<uint8_t, macSize>, // MAC address 418 uint16_t // port 419 >> 420 lanSession; 421 422 constexpr uint8_t userID = 7; 423 constexpr uint8_t priv = 4; 424 constexpr uint4_t channel = 2; 425 constexpr uint4_t protocol = 1; 426 activeSession.emplace(userID, priv, channel, protocol); 427 constexpr std::array<uint8_t, macSize> macAddr{0}; 428 lanSession.emplace(0x0a010105, macAddr, 55327); 429 430 ipmi::message::Payload p; 431 p.pack(handle, maxSessions, currentSessions, activeSession, lanSession); 432 ASSERT_EQ(p.size(), sizeof(handle) + sizeof(maxSessions) + 433 sizeof(currentSessions) + 3 * sizeof(uint8_t) + 434 sizeof(uint32_t) + sizeof(uint8_t) * macSize + 435 sizeof(uint16_t)); 436 uint8_t protocol_channel = 437 (static_cast<uint8_t>(protocol) << 4) | static_cast<uint8_t>(channel); 438 std::vector<uint8_t> k = {handle, maxSessions, currentSessions, userID, 439 priv, protocol_channel, 440 // ip addr 441 0x05, 0x01, 0x01, 0x0a, 442 // mac addr 443 0, 0, 0, 0, 0, 0, 444 // port 445 0x1f, 0xd8}; 446 ASSERT_EQ(p.raw, k); 447 } 448