1 /**
2  * Copyright © 2018 Intel Corporation
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *     http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <ipmid/api.hpp>
17 #include <ipmid/message.hpp>
18 
19 #include <gtest/gtest.h>
20 
21 // TODO: Add testing of Payload response API
22 
23 TEST(PackBasics, Uint8)
24 {
25     ipmi::message::Payload p;
26     uint8_t v = 4;
27     p.pack(v);
28     // check that the number of bytes matches
29     ASSERT_EQ(p.size(), sizeof(v));
30     // check that the bytes were correctly packed (LSB first)
31     std::vector<uint8_t> k = {0x04};
32     ASSERT_EQ(p.raw, k);
33 }
34 
35 TEST(PackBasics, Uint16)
36 {
37     ipmi::message::Payload p;
38     uint16_t v = 0x8604;
39     p.pack(v);
40     // check that the number of bytes matches
41     ASSERT_EQ(p.size(), sizeof(v));
42     // check that the bytes were correctly packed (LSB first)
43     std::vector<uint8_t> k = {0x04, 0x86};
44     ASSERT_EQ(p.raw, k);
45 }
46 
47 TEST(PackBasics, Uint32)
48 {
49     ipmi::message::Payload p;
50     uint32_t v = 0x02008604;
51     p.pack(v);
52     // check that the number of bytes matches
53     ASSERT_EQ(p.size(), sizeof(v));
54     // check that the bytes were correctly packed (LSB first)
55     std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02};
56     ASSERT_EQ(p.raw, k);
57 }
58 
59 TEST(PackBasics, Uint64)
60 {
61     ipmi::message::Payload p;
62     uint64_t v = 0x1122334402008604ull;
63     p.pack(v);
64     // check that the number of bytes matches
65     ASSERT_EQ(p.size(), sizeof(v));
66     // check that the bytes were correctly packed (LSB first)
67     std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02, 0x44, 0x33, 0x22, 0x11};
68     ASSERT_EQ(p.raw, k);
69 }
70 
71 TEST(PackBasics, Uint24)
72 {
73     ipmi::message::Payload p;
74     uint24_t v = 0x112358;
75     p.pack(v);
76     // check that the number of bytes matches
77     ASSERT_EQ(p.size(), types::nrFixedBits<decltype(v)> / CHAR_BIT);
78     // check that the bytes were correctly packed (LSB first)
79     std::vector<uint8_t> k = {0x58, 0x23, 0x11};
80     ASSERT_EQ(p.raw, k);
81 }
82 
83 TEST(PackBasics, Uint3Uint5)
84 {
85     // individual bytes are packed low-order-bits first
86     // v1 will occupy [2:0], v2 will occupy [7:3]
87     ipmi::message::Payload p;
88     uint3_t v1 = 0x1;
89     uint5_t v2 = 0x19;
90     p.pack(v1, v2);
91     // check that the number of bytes matches
92     ASSERT_EQ(p.size(), (types::nrFixedBits<decltype(v1)> +
93                          types::nrFixedBits<decltype(v2)>) /
94                             CHAR_BIT);
95     // check that the bytes were correctly packed (LSB first)
96     std::vector<uint8_t> k = {0xc9};
97     ASSERT_EQ(p.raw, k);
98 }
99 
100 TEST(PackBasics, Boolx8)
101 {
102     // individual bytes are packed low-order-bits first
103     // [v8, v7, v6, v5, v4, v3, v2, v1]
104     ipmi::message::Payload p;
105     bool v8 = true, v7 = true, v6 = false, v5 = false;
106     bool v4 = true, v3 = false, v2 = false, v1 = true;
107     p.pack(v1, v2, v3, v4, v5, v6, v7, v8);
108     // check that the number of bytes matches
109     ASSERT_EQ(p.size(), sizeof(uint8_t));
110     // check that the bytes were correctly packed (LSB first)
111     std::vector<uint8_t> k = {0xc9};
112     ASSERT_EQ(p.raw, k);
113 }
114 
115 TEST(PackBasics, Bitset8)
116 {
117     // individual bytes are packed low-order-bits first
118     // a bitset for 8 bits fills the full byte
119     ipmi::message::Payload p;
120     std::bitset<8> v(0xc9);
121     p.pack(v);
122     // check that the number of bytes matches
123     ASSERT_EQ(p.size(), v.size() / CHAR_BIT);
124     // check that the bytes were correctly packed (LSB first)
125     std::vector<uint8_t> k = {0xc9};
126     ASSERT_EQ(p.raw, k);
127 }
128 
129 TEST(PackBasics, Bitset3Bitset5)
130 {
131     // individual bytes are packed low-order-bits first
132     // v1 will occupy [2:0], v2 will occupy [7:3]
133     ipmi::message::Payload p;
134     std::bitset<3> v1(0x1);
135     std::bitset<5> v2(0x19);
136     p.pack(v1, v2);
137     // check that the number of bytes matches
138     ASSERT_EQ(p.size(), (v1.size() + v2.size()) / CHAR_BIT);
139     // check that the bytes were correctly packed (LSB first)
140     std::vector<uint8_t> k = {0xc9};
141     ASSERT_EQ(p.raw, k);
142 }
143 
144 TEST(PackBasics, Bitset32)
145 {
146     // individual bytes are packed low-order-bits first
147     // v1 will occupy 4 bytes, but in LSByte first order
148     // v1[7:0] v1[15:9] v1[23:16] v1[31:24]
149     ipmi::message::Payload p;
150     std::bitset<32> v(0x02008604);
151     p.pack(v);
152     // check that the number of bytes matches
153     ASSERT_EQ(p.size(), v.size() / CHAR_BIT);
154     // check that the bytes were correctly packed (LSB first)
155     std::vector<uint8_t> k = {0x04, 0x86, 0x00, 0x02};
156     ASSERT_EQ(p.raw, k);
157 }
158 
159 TEST(PackBasics, Array4xUint8)
160 {
161     // an array of bytes will be output verbatim, low-order element first
162     ipmi::message::Payload p;
163     std::array<uint8_t, 4> v = {{0x02, 0x00, 0x86, 0x04}};
164     p.pack(v);
165     // check that the number of bytes matches
166     ASSERT_EQ(p.size(), v.size() * sizeof(v[0]));
167     // check that the bytes were correctly packed (in byte order)
168     std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04};
169     ASSERT_EQ(p.raw, k);
170 }
171 
172 TEST(PackBasics, Array4xUint32)
173 {
174     // an array of multi-byte values will be output in order low-order
175     // element first, each multi-byte element in LSByte order
176     // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24]
177     // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24]
178     // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24]
179     // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24]
180     ipmi::message::Payload p;
181     std::array<uint32_t, 4> v = {
182         {0x11223344, 0x22446688, 0x33557799, 0x12345678}};
183     p.pack(v);
184     // check that the number of bytes matches
185     ASSERT_EQ(p.size(), v.size() * sizeof(v[0]));
186     // check that the bytes were correctly packed (in byte order)
187     std::vector<uint8_t> k = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22,
188                               0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12};
189     ASSERT_EQ(p.raw, k);
190 }
191 
192 TEST(PackBasics, VectorUint32)
193 {
194     // a vector of multi-byte values will be output in order low-order
195     // element first, each multi-byte element in LSByte order
196     // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24]
197     // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24]
198     // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24]
199     // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24]
200     ipmi::message::Payload p;
201     std::vector<uint32_t> v = {
202         {0x11223344, 0x22446688, 0x33557799, 0x12345678}};
203     p.pack(v);
204     // check that the number of bytes matches
205     ASSERT_EQ(p.size(), v.size() * sizeof(v[0]));
206     // check that the bytes were correctly packed (in byte order)
207     std::vector<uint8_t> k = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22,
208                               0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12};
209     ASSERT_EQ(p.raw, k);
210 }
211 
212 TEST(PackBasics, VectorUint8)
213 {
214     // a vector of bytes will be output verbatim, low-order element first
215     ipmi::message::Payload p;
216     std::vector<uint8_t> v = {0x02, 0x00, 0x86, 0x04};
217     p.pack(v);
218     // check that the number of bytes matches
219     ASSERT_EQ(p.size(), v.size() * sizeof(v[0]));
220     // check that the bytes were correctly packed (in byte order)
221     std::vector<uint8_t> k = {0x02, 0x00, 0x86, 0x04};
222     ASSERT_EQ(p.raw, k);
223 }
224 
225 TEST(PackAdvanced, Uints)
226 {
227     // all elements will be processed in order, with each multi-byte
228     // element being processed LSByte first
229     // v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24]
230     // v4[7:0] v4[15:8] v4[23:16] v4[31:24]
231     // v4[39:25] v4[47:40] v4[55:48] v4[63:56]
232     ipmi::message::Payload p;
233     uint8_t v1 = 0x02;
234     uint16_t v2 = 0x0604;
235     uint32_t v3 = 0x44332211;
236     uint64_t v4 = 0xccbbaa9988776655ull;
237     p.pack(v1, v2, v3, v4);
238     // check that the number of bytes matches
239     ASSERT_EQ(p.size(), sizeof(v1) + sizeof(v2) + sizeof(v3) + sizeof(v4));
240     // check that the bytes were correctly packed (LSB first)
241     std::vector<uint8_t> k = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55,
242                               0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc};
243     ASSERT_EQ(p.raw, k);
244 }
245 
246 TEST(PackAdvanced, TupleInts)
247 {
248     // all elements will be processed in order, with each multi-byte
249     // element being processed LSByte first
250     // v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24]
251     // v4[7:0] v4[15:8] v4[23:16] v4[31:24]
252     // v4[39:25] v4[47:40] v4[55:48] v4[63:56]
253     ipmi::message::Payload p;
254     uint8_t v1 = 0x02;
255     uint16_t v2 = 0x0604;
256     uint32_t v3 = 0x44332211;
257     uint64_t v4 = 0xccbbaa9988776655ull;
258     auto v = std::make_tuple(v1, v2, v3, v4);
259     p.pack(v);
260     // check that the number of bytes matches
261     ASSERT_EQ(p.size(), sizeof(v1) + sizeof(v2) + sizeof(v3) + sizeof(v4));
262     // check that the bytes were correctly packed (LSB first)
263     std::vector<uint8_t> k = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55,
264                               0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc};
265     ASSERT_EQ(p.raw, k);
266 }
267 
268 TEST(PackAdvanced, BoolsnBitfieldsnFixedIntsOhMy)
269 {
270     // each element will be added, filling the low-order bits first
271     // with multi-byte values getting added LSByte first
272     // v1 will occupy k[0][1:0]
273     // v2 will occupy k[0][2]
274     // v3[4:0] will occupy k[0][7:3], v3[6:5] will occupy k[1][1:0]
275     // v4 will occupy k[1][2]
276     // v5 will occupy k[1][7:3]
277     ipmi::message::Payload p;
278     uint2_t v1 = 2;          // binary 0b10
279     bool v2 = true;          // binary 0b1
280     std::bitset<7> v3(0x73); // binary 0b1110011
281     bool v4 = false;         // binary 0b0
282     uint5_t v5 = 27;         // binary 0b11011
283     // concat binary: 0b1101101110011110 -> 0xdb9e -> 0x9e 0xdb (LSByte first)
284     p.pack(v1, v2, v3, v4, v5);
285     // check that the number of bytes matches
286     ASSERT_EQ(p.size(), sizeof(uint16_t));
287     // check that the bytes were correctly packed (LSB first)
288     std::vector<uint8_t> k = {0x9e, 0xdb};
289     ASSERT_EQ(p.raw, k);
290 }
291 
292 TEST(PackAdvanced, UnalignedBitPacking)
293 {
294     // unaligned multi-byte values will be packed the same as
295     // other bits, effectively building up a large value, low-order
296     // bits first, then outputting a stream of LSByte values
297     // v1 will occupy k[0][1:0]
298     // v2[5:0] will occupy k[0][7:2], v2[7:6] will occupy k[1][1:0]
299     // v3 will occupy k[1][2]
300     // v4[4:0] will occupy k[1][7:3] v4[12:5] will occupy k[2][7:0]
301     // v4[15:13] will occupy k[3][2:0]
302     // v5 will occupy k[3][3]
303     // v6[3:0] will occupy k[3][7:0] v6[11:4] will occupy k[4][7:0]
304     // v6[19:12] will occupy k[5][7:0] v6[27:20] will occupy k[6][7:0]
305     // v6[31:28] will occupy k[7][3:0]
306     // v7 will occupy k[7][7:4]
307     ipmi::message::Payload p;
308     uint2_t v1 = 2;           // binary 0b10
309     uint8_t v2 = 0xa5;        // binary 0b10100101
310     bool v3 = false;          // binary 0b0
311     uint16_t v4 = 0xa55a;     // binary 0b1010010101011010
312     bool v5 = true;           // binary 0b1
313     uint32_t v6 = 0xdbc3bd3c; // binary 0b11011011110000111011110100111100
314     uint4_t v7 = 9;           // binary 0b1001
315     // concat binary:
316     //   0b1001110110111100001110111101001111001101001010101101001010010110
317     //   -> 0x9dbc3bd3cd2ad296 -> 0x96 0xd2 0x2a 0xcd 0xd3 0x3b 0xbc 0x9d
318     p.pack(v1, v2, v3, v4, v5, v6, v7);
319     // check that the number of bytes matches
320     ASSERT_EQ(p.size(), sizeof(uint64_t));
321     // check that the bytes were correctly packed (LSB first)
322     std::vector<uint8_t> k = {0x96, 0xd2, 0x2a, 0xcd, 0xd3, 0x3b, 0xbc, 0x9d};
323     ASSERT_EQ(p.raw, k);
324 }
325