1 #pragma once
2 
3 #include <stdint.h>
4 
5 #include <exception>
6 #include <ipmid/api.hpp>
7 #include <ipmid/types.hpp>
8 
9 // IPMI commands for net functions.
10 enum ipmi_netfn_sen_cmds
11 {
12     IPMI_CMD_PLATFORM_EVENT = 0x2,
13     IPMI_CMD_GET_DEVICE_SDR_INFO = 0x20,
14     IPMI_CMD_GET_DEVICE_SDR = 0x21,
15     IPMI_CMD_RESERVE_DEVICE_SDR_REPO = 0x22,
16     IPMI_CMD_GET_SENSOR_READING = 0x2D,
17     IPMI_CMD_GET_SENSOR_TYPE = 0x2F,
18     IPMI_CMD_SET_SENSOR = 0x30,
19     IPMI_CMD_GET_SENSOR_THRESHOLDS = 0x27,
20 };
21 
22 /**
23  * @enum device_type
24  * IPMI FRU device types
25  */
26 enum device_type
27 {
28     IPMI_PHYSICAL_FRU = 0x00,
29     IPMI_LOGICAL_FRU = 0x80,
30 };
31 
32 // Discrete sensor types.
33 enum ipmi_sensor_types
34 {
35     IPMI_SENSOR_TEMP = 0x01,
36     IPMI_SENSOR_VOLTAGE = 0x02,
37     IPMI_SENSOR_CURRENT = 0x03,
38     IPMI_SENSOR_FAN = 0x04,
39     IPMI_SENSOR_TPM = 0xCC,
40 };
41 
42 /** @brief Custom exception for reading sensors that are not funcitonal.
43  */
44 struct SensorFunctionalError : public std::exception
45 {
46     const char* what() const noexcept
47     {
48         return "Sensor not functional";
49     }
50 };
51 
52 #define MAX_DBUS_PATH 128
53 struct dbus_interface_t
54 {
55     uint8_t sensornumber;
56     uint8_t sensortype;
57 
58     char bus[MAX_DBUS_PATH];
59     char path[MAX_DBUS_PATH];
60     char interface[MAX_DBUS_PATH];
61 };
62 
63 struct PlatformEventRequest
64 {
65     uint8_t eventMessageRevision;
66     uint8_t sensorType;
67     uint8_t sensorNumber;
68     uint8_t eventDirectionType;
69     uint8_t data[3];
70 };
71 
72 static constexpr char const* ipmiSELPath = "/xyz/openbmc_project/Logging/IPMI";
73 static constexpr char const* ipmiSELAddInterface =
74     "xyz.openbmc_project.Logging.IPMI";
75 static const std::string ipmiSELAddMessage = "SEL Entry";
76 
77 static constexpr int selSystemEventSizeWith3Bytes = 8;
78 static constexpr int selSystemEventSizeWith2Bytes = 7;
79 static constexpr int selSystemEventSizeWith1Bytes = 6;
80 static constexpr int selIPMBEventSize = 7;
81 static constexpr uint8_t directionMask = 0x80;
82 static constexpr uint8_t byte3EnableMask = 0x30;
83 static constexpr uint8_t byte2EnableMask = 0xC0;
84 
85 int set_sensor_dbus_state_s(uint8_t, const char*, const char*);
86 int set_sensor_dbus_state_y(uint8_t, const char*, const uint8_t);
87 int find_openbmc_path(uint8_t, dbus_interface_t*);
88 
89 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
90                             ipmi_request_t request, ipmi_response_t response,
91                             ipmi_data_len_t data_len, ipmi_context_t context);
92 
93 ipmi::RspType<uint16_t> ipmiSensorReserveSdr();
94 
95 static const uint16_t FRU_RECORD_ID_START = 256;
96 static const uint16_t ENTITY_RECORD_ID_START = 512;
97 static const uint8_t SDR_VERSION = 0x51;
98 static const uint16_t END_OF_RECORD = 0xFFFF;
99 static const uint8_t LENGTH_MASK = 0x1F;
100 
101 /**
102  * Get SDR Info
103  */
104 
105 namespace get_sdr_info
106 {
107 namespace request
108 {
109 // Note: for some reason the ipmi_request_t appears to be the
110 // raw value for this call.
111 inline bool get_count(void* req)
112 {
113     return (bool)((uint64_t)(req)&1);
114 }
115 } // namespace request
116 } // namespace get_sdr_info
117 
118 /**
119  * Get SDR
120  */
121 namespace get_sdr
122 {
123 
124 struct GetSdrReq
125 {
126     uint8_t reservation_id_lsb;
127     uint8_t reservation_id_msb;
128     uint8_t record_id_lsb;
129     uint8_t record_id_msb;
130     uint8_t offset;
131     uint8_t bytes_to_read;
132 } __attribute__((packed));
133 
134 namespace request
135 {
136 
137 inline uint16_t get_reservation_id(GetSdrReq* req)
138 {
139     return (req->reservation_id_lsb + (req->reservation_id_msb << 8));
140 };
141 
142 inline uint16_t get_record_id(GetSdrReq* req)
143 {
144     return (req->record_id_lsb + (req->record_id_msb << 8));
145 };
146 
147 } // namespace request
148 
149 // Response
150 struct GetSdrResp
151 {
152     uint8_t next_record_id_lsb;
153     uint8_t next_record_id_msb;
154     uint8_t record_data[64];
155 } __attribute__((packed));
156 
157 namespace response
158 {
159 
160 inline void set_next_record_id(uint16_t next, GetSdrResp* resp)
161 {
162     resp->next_record_id_lsb = next & 0xff;
163     resp->next_record_id_msb = (next >> 8) & 0xff;
164 };
165 
166 } // namespace response
167 
168 // Record header
169 struct SensorDataRecordHeader
170 {
171     uint8_t record_id_lsb;
172     uint8_t record_id_msb;
173     uint8_t sdr_version;
174     uint8_t record_type;
175     uint8_t record_length; // Length not counting the header
176 } __attribute__((packed));
177 
178 namespace header
179 {
180 
181 inline void set_record_id(int id, SensorDataRecordHeader* hdr)
182 {
183     hdr->record_id_lsb = (id & 0xFF);
184     hdr->record_id_msb = (id >> 8) & 0xFF;
185 };
186 
187 } // namespace header
188 
189 enum SensorDataRecordType
190 {
191     SENSOR_DATA_FULL_RECORD = 0x1,
192     SENSOR_DATA_FRU_RECORD = 0x11,
193     SENSOR_DATA_ENTITY_RECORD = 0x8,
194 };
195 
196 // Record key
197 struct SensorDataRecordKey
198 {
199     uint8_t owner_id;
200     uint8_t owner_lun;
201     uint8_t sensor_number;
202 } __attribute__((packed));
203 
204 /** @struct SensorDataFruRecordKey
205  *
206  *  FRU Device Locator Record(key) - SDR Type 11
207  */
208 struct SensorDataFruRecordKey
209 {
210     uint8_t deviceAddress;
211     uint8_t fruID;
212     uint8_t accessLun;
213     uint8_t channelNumber;
214 } __attribute__((packed));
215 
216 /** @struct SensorDataEntityRecordKey
217  *
218  *  Entity Association Record(key) - SDR Type 8
219  */
220 struct SensorDataEntityRecordKey
221 {
222     uint8_t containerEntityId;
223     uint8_t containerEntityInstance;
224     uint8_t flags;
225     uint8_t entityId1;
226     uint8_t entityInstance1;
227 } __attribute__((packed));
228 
229 namespace key
230 {
231 
232 static constexpr uint8_t listOrRangeBit = 7;
233 static constexpr uint8_t linkedBit = 6;
234 
235 inline void set_owner_id_ipmb(SensorDataRecordKey* key)
236 {
237     key->owner_id &= ~0x01;
238 };
239 
240 inline void set_owner_id_system_sw(SensorDataRecordKey* key)
241 {
242     key->owner_id |= 0x01;
243 };
244 
245 inline void set_owner_id_bmc(SensorDataRecordKey* key)
246 {
247     key->owner_id |= 0x20;
248 };
249 
250 inline void set_owner_id_address(uint8_t addr, SensorDataRecordKey* key)
251 {
252     key->owner_id &= 0x01;
253     key->owner_id |= addr << 1;
254 };
255 
256 inline void set_owner_lun(uint8_t lun, SensorDataRecordKey* key)
257 {
258     key->owner_lun &= ~0x03;
259     key->owner_lun |= (lun & 0x03);
260 };
261 
262 inline void set_owner_lun_channel(uint8_t channel, SensorDataRecordKey* key)
263 {
264     key->owner_lun &= 0x0f;
265     key->owner_lun |= ((channel & 0xf) << 4);
266 };
267 
268 inline void set_flags(bool isList, bool isLinked,
269                       SensorDataEntityRecordKey* key)
270 {
271     key->flags = 0x00;
272     if (!isList)
273         key->flags |= 1 << listOrRangeBit;
274 
275     if (isLinked)
276         key->flags |= 1 << linkedBit;
277 };
278 
279 } // namespace key
280 
281 /** @struct GetSensorThresholdsResponse
282  *
283  *  Response structure for Get Sensor Thresholds command
284  */
285 struct GetSensorThresholdsResponse
286 {
287     uint8_t validMask;           //!< valid mask
288     uint8_t lowerNonCritical;    //!< lower non-critical threshold
289     uint8_t lowerCritical;       //!< lower critical threshold
290     uint8_t lowerNonRecoverable; //!< lower non-recoverable threshold
291     uint8_t upperNonCritical;    //!< upper non-critical threshold
292     uint8_t upperCritical;       //!< upper critical threshold
293     uint8_t upperNonRecoverable; //!< upper non-recoverable threshold
294 } __attribute__((packed));
295 
296 // Body - full record
297 #define FULL_RECORD_ID_STR_MAX_LENGTH 16
298 
299 static const int FRU_RECORD_DEVICE_ID_MAX_LENGTH = 16;
300 
301 struct SensorDataFullRecordBody
302 {
303     uint8_t entity_id;
304     uint8_t entity_instance;
305     uint8_t sensor_initialization;
306     uint8_t sensor_capabilities; // no macro support
307     uint8_t sensor_type;
308     uint8_t event_reading_type;
309     uint8_t supported_assertions[2];          // no macro support
310     uint8_t supported_deassertions[2];        // no macro support
311     uint8_t discrete_reading_setting_mask[2]; // no macro support
312     uint8_t sensor_units_1;
313     uint8_t sensor_units_2_base;
314     uint8_t sensor_units_3_modifier;
315     uint8_t linearization;
316     uint8_t m_lsb;
317     uint8_t m_msb_and_tolerance;
318     uint8_t b_lsb;
319     uint8_t b_msb_and_accuracy_lsb;
320     uint8_t accuracy_and_sensor_direction;
321     uint8_t r_b_exponents;
322     uint8_t analog_characteristic_flags; // no macro support
323     uint8_t nominal_reading;
324     uint8_t normal_max;
325     uint8_t normal_min;
326     uint8_t sensor_max;
327     uint8_t sensor_min;
328     uint8_t upper_nonrecoverable_threshold;
329     uint8_t upper_critical_threshold;
330     uint8_t upper_noncritical_threshold;
331     uint8_t lower_nonrecoverable_threshold;
332     uint8_t lower_critical_threshold;
333     uint8_t lower_noncritical_threshold;
334     uint8_t positive_threshold_hysteresis;
335     uint8_t negative_threshold_hysteresis;
336     uint16_t reserved;
337     uint8_t oem_reserved;
338     uint8_t id_string_info;
339     char id_string[FULL_RECORD_ID_STR_MAX_LENGTH];
340 } __attribute__((packed));
341 
342 /** @struct SensorDataFruRecordBody
343  *
344  *  FRU Device Locator Record(body) - SDR Type 11
345  */
346 struct SensorDataFruRecordBody
347 {
348     uint8_t reserved;
349     uint8_t deviceType;
350     uint8_t deviceTypeModifier;
351     uint8_t entityID;
352     uint8_t entityInstance;
353     uint8_t oem;
354     uint8_t deviceIDLen;
355     char deviceID[FRU_RECORD_DEVICE_ID_MAX_LENGTH];
356 } __attribute__((packed));
357 
358 /** @struct SensorDataEntityRecordBody
359  *
360  *  Entity Association Record(body) - SDR Type 8
361  */
362 struct SensorDataEntityRecordBody
363 {
364     uint8_t entityId2;
365     uint8_t entityInstance2;
366     uint8_t entityId3;
367     uint8_t entityInstance3;
368     uint8_t entityId4;
369     uint8_t entityInstance4;
370 } __attribute__((packed));
371 
372 namespace body
373 {
374 
375 inline void set_entity_instance_number(uint8_t n,
376                                        SensorDataFullRecordBody* body)
377 {
378     body->entity_instance &= 1 << 7;
379     body->entity_instance |= (n & ~(1 << 7));
380 };
381 inline void set_entity_physical_entity(SensorDataFullRecordBody* body)
382 {
383     body->entity_instance &= ~(1 << 7);
384 };
385 inline void set_entity_logical_container(SensorDataFullRecordBody* body)
386 {
387     body->entity_instance |= 1 << 7;
388 };
389 
390 inline void sensor_scanning_state(bool enabled, SensorDataFullRecordBody* body)
391 {
392     if (enabled)
393     {
394         body->sensor_initialization |= 1 << 0;
395     }
396     else
397     {
398         body->sensor_initialization &= ~(1 << 0);
399     };
400 };
401 inline void event_generation_state(bool enabled, SensorDataFullRecordBody* body)
402 {
403     if (enabled)
404     {
405         body->sensor_initialization |= 1 << 1;
406     }
407     else
408     {
409         body->sensor_initialization &= ~(1 << 1);
410     }
411 };
412 inline void init_types_state(bool enabled, SensorDataFullRecordBody* body)
413 {
414     if (enabled)
415     {
416         body->sensor_initialization |= 1 << 2;
417     }
418     else
419     {
420         body->sensor_initialization &= ~(1 << 2);
421     }
422 };
423 inline void init_hyst_state(bool enabled, SensorDataFullRecordBody* body)
424 {
425     if (enabled)
426     {
427         body->sensor_initialization |= 1 << 3;
428     }
429     else
430     {
431         body->sensor_initialization &= ~(1 << 3);
432     }
433 };
434 inline void init_thresh_state(bool enabled, SensorDataFullRecordBody* body)
435 {
436     if (enabled)
437     {
438         body->sensor_initialization |= 1 << 4;
439     }
440     else
441     {
442         body->sensor_initialization &= ~(1 << 4);
443     }
444 };
445 inline void init_events_state(bool enabled, SensorDataFullRecordBody* body)
446 {
447     if (enabled)
448     {
449         body->sensor_initialization |= 1 << 5;
450     }
451     else
452     {
453         body->sensor_initialization &= ~(1 << 5);
454     }
455 };
456 inline void init_scanning_state(bool enabled, SensorDataFullRecordBody* body)
457 {
458     if (enabled)
459     {
460         body->sensor_initialization |= 1 << 6;
461     }
462     else
463     {
464         body->sensor_initialization &= ~(1 << 6);
465     }
466 };
467 inline void init_settable_state(bool enabled, SensorDataFullRecordBody* body)
468 {
469     if (enabled)
470     {
471         body->sensor_initialization |= 1 << 7;
472     }
473     else
474     {
475         body->sensor_initialization &= ~(1 << 7);
476     }
477 };
478 
479 inline void set_percentage(SensorDataFullRecordBody* body)
480 {
481     body->sensor_units_1 |= 1 << 0;
482 };
483 inline void unset_percentage(SensorDataFullRecordBody* body)
484 {
485     body->sensor_units_1 &= ~(1 << 0);
486 };
487 inline void set_modifier_operation(uint8_t op, SensorDataFullRecordBody* body)
488 {
489     body->sensor_units_1 &= ~(3 << 1);
490     body->sensor_units_1 |= (op & 0x3) << 1;
491 };
492 inline void set_rate_unit(uint8_t unit, SensorDataFullRecordBody* body)
493 {
494     body->sensor_units_1 &= ~(7 << 3);
495     body->sensor_units_1 |= (unit & 0x7) << 3;
496 };
497 inline void set_analog_data_format(uint8_t format,
498                                    SensorDataFullRecordBody* body)
499 {
500     body->sensor_units_1 &= ~(3 << 6);
501     body->sensor_units_1 |= (format & 0x3) << 6;
502 };
503 
504 inline void set_m(uint16_t m, SensorDataFullRecordBody* body)
505 {
506     body->m_lsb = m & 0xff;
507     body->m_msb_and_tolerance &= ~(3 << 6);
508     body->m_msb_and_tolerance |= ((m & (3 << 8)) >> 2);
509 };
510 inline void set_tolerance(uint8_t tol, SensorDataFullRecordBody* body)
511 {
512     body->m_msb_and_tolerance &= ~0x3f;
513     body->m_msb_and_tolerance |= tol & 0x3f;
514 };
515 
516 inline void set_b(uint16_t b, SensorDataFullRecordBody* body)
517 {
518     body->b_lsb = b & 0xff;
519     body->b_msb_and_accuracy_lsb &= ~(3 << 6);
520     body->b_msb_and_accuracy_lsb |= ((b & (3 << 8)) >> 2);
521 };
522 inline void set_accuracy(uint16_t acc, SensorDataFullRecordBody* body)
523 {
524     // bottom 6 bits
525     body->b_msb_and_accuracy_lsb &= ~0x3f;
526     body->b_msb_and_accuracy_lsb |= acc & 0x3f;
527     // top 4 bits
528     body->accuracy_and_sensor_direction &= 0x0f;
529     body->accuracy_and_sensor_direction |= ((acc >> 6) & 0xf) << 4;
530 };
531 inline void set_accuracy_exp(uint8_t exp, SensorDataFullRecordBody* body)
532 {
533     body->accuracy_and_sensor_direction &= ~(3 << 2);
534     body->accuracy_and_sensor_direction |= (exp & 3) << 2;
535 };
536 inline void set_sensor_dir(uint8_t dir, SensorDataFullRecordBody* body)
537 {
538     body->accuracy_and_sensor_direction &= ~(3 << 0);
539     body->accuracy_and_sensor_direction |= (dir & 3);
540 };
541 
542 inline void set_b_exp(uint8_t exp, SensorDataFullRecordBody* body)
543 {
544     body->r_b_exponents &= 0xf0;
545     body->r_b_exponents |= exp & 0x0f;
546 };
547 inline void set_r_exp(uint8_t exp, SensorDataFullRecordBody* body)
548 {
549     body->r_b_exponents &= 0x0f;
550     body->r_b_exponents |= (exp & 0x0f) << 4;
551 };
552 
553 inline void set_id_strlen(uint8_t len, SensorDataFullRecordBody* body)
554 {
555     body->id_string_info &= ~(0x1f);
556     body->id_string_info |= len & 0x1f;
557 };
558 inline uint8_t get_id_strlen(SensorDataFullRecordBody* body)
559 {
560     return body->id_string_info & 0x1f;
561 };
562 inline void set_id_type(uint8_t type, SensorDataFullRecordBody* body)
563 {
564     body->id_string_info &= ~(3 << 6);
565     body->id_string_info |= (type & 0x3) << 6;
566 };
567 
568 inline void set_device_id_strlen(uint8_t len, SensorDataFruRecordBody* body)
569 {
570     body->deviceIDLen &= ~(LENGTH_MASK);
571     body->deviceIDLen |= len & LENGTH_MASK;
572 };
573 
574 inline uint8_t get_device_id_strlen(SensorDataFruRecordBody* body)
575 {
576     return body->deviceIDLen & LENGTH_MASK;
577 };
578 
579 inline void set_readable_mask(uint8_t mask, SensorDataFullRecordBody* body)
580 {
581     body->discrete_reading_setting_mask[1] = mask & 0x3F;
582 }
583 
584 } // namespace body
585 
586 // More types contained in section 43.17 Sensor Unit Type Codes,
587 // IPMI spec v2 rev 1.1
588 enum SensorUnitTypeCodes
589 {
590     SENSOR_UNIT_UNSPECIFIED = 0,
591     SENSOR_UNIT_DEGREES_C = 1,
592     SENSOR_UNIT_VOLTS = 4,
593     SENSOR_UNIT_AMPERES = 5,
594     SENSOR_UNIT_WATTS = 6,
595     SENSOR_UNIT_JOULES = 7,
596     SENSOR_UNIT_RPM = 18,
597     SENSOR_UNIT_METERS = 34,
598     SENSOR_UNIT_REVOLUTIONS = 41,
599 };
600 
601 struct SensorDataFullRecord
602 {
603     SensorDataRecordHeader header;
604     SensorDataRecordKey key;
605     SensorDataFullRecordBody body;
606 } __attribute__((packed));
607 
608 /** @struct SensorDataFruRecord
609  *
610  *  FRU Device Locator Record - SDR Type 11
611  */
612 struct SensorDataFruRecord
613 {
614     SensorDataRecordHeader header;
615     SensorDataFruRecordKey key;
616     SensorDataFruRecordBody body;
617 } __attribute__((packed));
618 
619 /** @struct SensorDataEntityRecord
620  *
621  *  Entity Association Record - SDR Type 8
622  */
623 struct SensorDataEntityRecord
624 {
625     SensorDataRecordHeader header;
626     SensorDataEntityRecordKey key;
627     SensorDataEntityRecordBody body;
628 } __attribute__((packed));
629 
630 } // namespace get_sdr
631 
632 namespace ipmi
633 {
634 
635 namespace sensor
636 {
637 
638 /**
639  * @brief Map offset to the corresponding bit in the assertion byte.
640  *
641  * The discrete sensors support up to 14 states. 0-7 offsets are stored in one
642  * byte and offsets 8-14 in the second byte.
643  *
644  * @param[in] offset - offset number.
645  * @param[in/out] resp - get sensor reading response.
646  */
647 inline void setOffset(uint8_t offset, ipmi::sensor::GetSensorResponse* resp)
648 {
649     if (offset > 7)
650     {
651         resp->discreteReadingSensorStates |= 1 << (offset - 8);
652     }
653     else
654     {
655         resp->thresholdLevelsStates |= 1 << offset;
656     }
657 }
658 
659 /**
660  * @brief Set the reading field in the response.
661  *
662  * @param[in] offset - offset number.
663  * @param[in/out] resp - get sensor reading response.
664  */
665 inline void setReading(uint8_t value, ipmi::sensor::GetSensorResponse* resp)
666 {
667     resp->reading = value;
668 }
669 
670 /**
671  * @brief Map the value to the assertion bytes. The assertion states are stored
672  *        in 2 bytes.
673  *
674  * @param[in] value - value to mapped to the assertion byte.
675  * @param[in/out] resp - get sensor reading response.
676  */
677 inline void setAssertionBytes(uint16_t value,
678                               ipmi::sensor::GetSensorResponse* resp)
679 {
680     resp->thresholdLevelsStates = static_cast<uint8_t>(value & 0x00FF);
681     resp->discreteReadingSensorStates = static_cast<uint8_t>(value >> 8);
682 }
683 
684 /**
685  * @brief Set the scanning enabled bit in the response.
686  *
687  * @param[in/out] resp - get sensor reading response.
688  */
689 inline void enableScanning(ipmi::sensor::GetSensorResponse* resp)
690 {
691     resp->readingOrStateUnavailable = false;
692     resp->scanningEnabled = true;
693     resp->allEventMessagesEnabled = false;
694 }
695 
696 } // namespace sensor
697 
698 } // namespace ipmi
699