1 #include "config.h"
2 
3 #include "sensorhandler.hpp"
4 
5 #include "entity_map_json.hpp"
6 #include "fruread.hpp"
7 
8 #include <mapper.h>
9 #include <systemd/sd-bus.h>
10 
11 #include <ipmid/api.hpp>
12 #include <ipmid/types.hpp>
13 #include <ipmid/utils.hpp>
14 #include <phosphor-logging/elog-errors.hpp>
15 #include <phosphor-logging/log.hpp>
16 #include <sdbusplus/message/types.hpp>
17 #include <xyz/openbmc_project/Common/error.hpp>
18 #include <xyz/openbmc_project/Sensor/Value/server.hpp>
19 
20 #include <bitset>
21 #include <cmath>
22 #include <cstring>
23 #include <set>
24 
25 static constexpr uint8_t fruInventoryDevice = 0x10;
26 static constexpr uint8_t IPMIFruInventory = 0x02;
27 static constexpr uint8_t BMCSlaveAddress = 0x20;
28 
29 extern int updateSensorRecordFromSSRAESC(const void*);
30 extern sd_bus* bus;
31 
32 namespace ipmi
33 {
34 namespace sensor
35 {
36 extern const IdInfoMap sensors;
37 } // namespace sensor
38 } // namespace ipmi
39 
40 extern const FruMap frus;
41 
42 using namespace phosphor::logging;
43 using InternalFailure =
44     sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure;
45 
46 void register_netfn_sen_functions() __attribute__((constructor));
47 
48 struct sensorTypemap_t
49 {
50     uint8_t number;
51     uint8_t typecode;
52     char dbusname[32];
53 };
54 
55 sensorTypemap_t g_SensorTypeMap[] = {
56 
57     {0x01, 0x6F, "Temp"},
58     {0x0C, 0x6F, "DIMM"},
59     {0x0C, 0x6F, "MEMORY_BUFFER"},
60     {0x07, 0x6F, "PROC"},
61     {0x07, 0x6F, "CORE"},
62     {0x07, 0x6F, "CPU"},
63     {0x0F, 0x6F, "BootProgress"},
64     {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor
65                                // type code os 0x09
66     {0xC3, 0x6F, "BootCount"},
67     {0x1F, 0x6F, "OperatingSystemStatus"},
68     {0x12, 0x6F, "SYSTEM_EVENT"},
69     {0xC7, 0x03, "SYSTEM"},
70     {0xC7, 0x03, "MAIN_PLANAR"},
71     {0xC2, 0x6F, "PowerCap"},
72     {0x0b, 0xCA, "PowerSupplyRedundancy"},
73     {0xDA, 0x03, "TurboAllowed"},
74     {0xD8, 0xC8, "PowerSupplyDerating"},
75     {0xFF, 0x00, ""},
76 };
77 
78 struct sensor_data_t
79 {
80     uint8_t sennum;
81 } __attribute__((packed));
82 
83 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>;
84 SDRCacheMap sdrCacheMap __attribute__((init_priority(101)));
85 
86 using SensorThresholdMap =
87     std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>;
88 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101)));
89 
90 #ifdef FEATURE_SENSORS_CACHE
91 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches
92     __attribute__((init_priority(101)));
93 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches
94     __attribute__((init_priority(101)));
95 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches
96     __attribute__((init_priority(101)));
97 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch
98     __attribute__((init_priority(101)));
99 
100 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101)));
101 
102 // It is needed to know which objects belong to which service, so that when a
103 // service exits without interfacesRemoved signal, we could invaildate the cache
104 // that is related to the service. It uses below two variables:
105 // - idToServiceMap records which sensors are known to have a related service;
106 // - serviceToIdMap maps a service to the sensors.
107 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>;
108 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101)));
109 
110 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>;
111 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101)));
112 
113 static void fillSensorIdServiceMap(const std::string&,
114                                    const std::string& /*intf*/, uint8_t id,
115                                    const std::string& service)
116 {
117     if (idToServiceMap.find(id) != idToServiceMap.end())
118     {
119         return;
120     }
121     idToServiceMap[id] = service;
122     serviceToIdMap[service].insert(id);
123 }
124 
125 static void fillSensorIdServiceMap(const std::string& obj,
126                                    const std::string& intf, uint8_t id)
127 {
128     if (idToServiceMap.find(id) != idToServiceMap.end())
129     {
130         return;
131     }
132     try
133     {
134         sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
135         auto service = ipmi::getService(bus, intf, obj);
136         idToServiceMap[id] = service;
137         serviceToIdMap[service].insert(id);
138     }
139     catch (...)
140     {
141         // Ignore
142     }
143 }
144 
145 void initSensorMatches()
146 {
147     using namespace sdbusplus::bus::match::rules;
148     sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
149     for (const auto& s : ipmi::sensor::sensors)
150     {
151         sensorAddedMatches.emplace(
152             s.first,
153             std::make_unique<sdbusplus::bus::match_t>(
154                 bus, interfacesAdded() + argNpath(0, s.second.sensorPath),
155                 [id = s.first, obj = s.second.sensorPath,
156                  intf = s.second.propertyInterfaces.begin()->first](
157                     auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); }));
158         sensorRemovedMatches.emplace(
159             s.first,
160             std::make_unique<sdbusplus::bus::match_t>(
161                 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath),
162                 [id = s.first](auto& /*msg*/) {
163             // Ideally this should work.
164             // But when a service is terminated or crashed, it does not
165             // emit interfacesRemoved signal. In that case it's handled
166             // by sensorsOwnerMatch
167             sensorCacheMap[id].reset();
168                 }));
169         sensorUpdatedMatches.emplace(
170             s.first, std::make_unique<sdbusplus::bus::match_t>(
171                          bus,
172                          type::signal() + path(s.second.sensorPath) +
173                              member("PropertiesChanged"s) +
174                              interface("org.freedesktop.DBus.Properties"s),
175                          [&s](auto& msg) {
176             fillSensorIdServiceMap(s.second.sensorPath,
177                                    s.second.propertyInterfaces.begin()->first,
178                                    s.first);
179             try
180             {
181                 // This is signal callback
182                 std::string interfaceName;
183                 msg.read(interfaceName);
184                 ipmi::PropertyMap props;
185                 msg.read(props);
186                 s.second.getFunc(s.first, s.second, props);
187             }
188             catch (const std::exception& e)
189             {
190                 sensorCacheMap[s.first].reset();
191             }
192                          }));
193     }
194     sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>(
195         bus, nameOwnerChanged(), [](auto& msg) {
196             std::string name;
197             std::string oldOwner;
198             std::string newOwner;
199             msg.read(name, oldOwner, newOwner);
200 
201             if (!name.empty() && newOwner.empty())
202             {
203                 // The service exits
204                 const auto it = serviceToIdMap.find(name);
205                 if (it == serviceToIdMap.end())
206                 {
207                     return;
208                 }
209                 for (const auto& id : it->second)
210                 {
211                     // Invalidate cache
212                     sensorCacheMap[id].reset();
213                 }
214             }
215         });
216 }
217 #endif
218 
219 int get_bus_for_path(const char* path, char** busname)
220 {
221     return mapper_get_service(bus, path, busname);
222 }
223 
224 // Use a lookup table to find the interface name of a specific sensor
225 // This will be used until an alternative is found.  this is the first
226 // step for mapping IPMI
227 int find_openbmc_path(uint8_t num, dbus_interface_t* interface)
228 {
229     int rc;
230 
231     const auto& sensor_it = ipmi::sensor::sensors.find(num);
232     if (sensor_it == ipmi::sensor::sensors.end())
233     {
234         // The sensor map does not contain the sensor requested
235         return -EINVAL;
236     }
237 
238     const auto& info = sensor_it->second;
239 
240     char* busname = nullptr;
241     rc = get_bus_for_path(info.sensorPath.c_str(), &busname);
242     if (rc < 0)
243     {
244         std::fprintf(stderr, "Failed to get %s busname: %s\n",
245                      info.sensorPath.c_str(), busname);
246         goto final;
247     }
248 
249     interface->sensortype = info.sensorType;
250     strcpy(interface->bus, busname);
251     strcpy(interface->path, info.sensorPath.c_str());
252     // Take the interface name from the beginning of the DbusInterfaceMap. This
253     // works for the Value interface but may not suffice for more complex
254     // sensors.
255     // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103
256     strcpy(interface->interface,
257            info.propertyInterfaces.begin()->first.c_str());
258     interface->sensornumber = num;
259 
260 final:
261     free(busname);
262     return rc;
263 }
264 
265 /////////////////////////////////////////////////////////////////////
266 //
267 // Routines used by ipmi commands wanting to interact on the dbus
268 //
269 /////////////////////////////////////////////////////////////////////
270 int set_sensor_dbus_state_s(uint8_t number, const char* method,
271                             const char* value)
272 {
273     dbus_interface_t a;
274     int r;
275     sd_bus_error error = SD_BUS_ERROR_NULL;
276     sd_bus_message* m = NULL;
277 
278     r = find_openbmc_path(number, &a);
279 
280     if (r < 0)
281     {
282         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
283         return 0;
284     }
285 
286     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
287                                        method);
288     if (r < 0)
289     {
290         std::fprintf(stderr, "Failed to create a method call: %s",
291                      strerror(-r));
292         goto final;
293     }
294 
295     r = sd_bus_message_append(m, "v", "s", value);
296     if (r < 0)
297     {
298         std::fprintf(stderr, "Failed to create a input parameter: %s",
299                      strerror(-r));
300         goto final;
301     }
302 
303     r = sd_bus_call(bus, m, 0, &error, NULL);
304     if (r < 0)
305     {
306         std::fprintf(stderr, "Failed to call the method: %s", strerror(-r));
307     }
308 
309 final:
310     sd_bus_error_free(&error);
311     m = sd_bus_message_unref(m);
312 
313     return 0;
314 }
315 int set_sensor_dbus_state_y(uint8_t number, const char* method,
316                             const uint8_t value)
317 {
318     dbus_interface_t a;
319     int r;
320     sd_bus_error error = SD_BUS_ERROR_NULL;
321     sd_bus_message* m = NULL;
322 
323     r = find_openbmc_path(number, &a);
324 
325     if (r < 0)
326     {
327         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
328         return 0;
329     }
330 
331     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
332                                        method);
333     if (r < 0)
334     {
335         std::fprintf(stderr, "Failed to create a method call: %s",
336                      strerror(-r));
337         goto final;
338     }
339 
340     r = sd_bus_message_append(m, "v", "i", value);
341     if (r < 0)
342     {
343         std::fprintf(stderr, "Failed to create a input parameter: %s",
344                      strerror(-r));
345         goto final;
346     }
347 
348     r = sd_bus_call(bus, m, 0, &error, NULL);
349     if (r < 0)
350     {
351         std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r));
352     }
353 
354 final:
355     sd_bus_error_free(&error);
356     m = sd_bus_message_unref(m);
357 
358     return 0;
359 }
360 
361 uint8_t dbus_to_sensor_type(char* p)
362 {
363     sensorTypemap_t* s = g_SensorTypeMap;
364     char r = 0;
365     while (s->number != 0xFF)
366     {
367         if (!strcmp(s->dbusname, p))
368         {
369             r = s->typecode;
370             break;
371         }
372         s++;
373     }
374 
375     if (s->number == 0xFF)
376         printf("Failed to find Sensor Type %s\n", p);
377 
378     return r;
379 }
380 
381 uint8_t get_type_from_interface(dbus_interface_t dbus_if)
382 {
383     uint8_t type;
384 
385     // This is where sensors that do not exist in dbus but do
386     // exist in the host code stop.  This should indicate it
387     // is not a supported sensor
388     if (dbus_if.interface[0] == 0)
389     {
390         return 0;
391     }
392 
393     // Fetch type from interface itself.
394     if (dbus_if.sensortype != 0)
395     {
396         type = dbus_if.sensortype;
397     }
398     else
399     {
400         // Non InventoryItems
401         char* p = strrchr(dbus_if.path, '/');
402         type = dbus_to_sensor_type(p + 1);
403     }
404 
405     return type;
406 }
407 
408 // Replaces find_sensor
409 uint8_t find_type_for_sensor_number(uint8_t num)
410 {
411     int r;
412     dbus_interface_t dbus_if;
413     r = find_openbmc_path(num, &dbus_if);
414     if (r < 0)
415     {
416         std::fprintf(stderr, "Could not find sensor %d\n", num);
417         return 0;
418     }
419     return get_type_from_interface(dbus_if);
420 }
421 
422 /**
423  *  @brief implements the get sensor type command.
424  *  @param - sensorNumber
425  *
426  *  @return IPMI completion code plus response data on success.
427  *   - sensorType
428  *   - eventType
429  **/
430 
431 ipmi::RspType<uint8_t, // sensorType
432               uint8_t  // eventType
433               >
434     ipmiGetSensorType(uint8_t sensorNumber)
435 {
436     uint8_t sensorType = find_type_for_sensor_number(sensorNumber);
437 
438     if (sensorType == 0)
439     {
440         return ipmi::responseSensorInvalid();
441     }
442 
443     constexpr uint8_t eventType = 0x6F;
444     return ipmi::responseSuccess(sensorType, eventType);
445 }
446 
447 const std::set<std::string> analogSensorInterfaces = {
448     "xyz.openbmc_project.Sensor.Value",
449     "xyz.openbmc_project.Control.FanPwm",
450 };
451 
452 bool isAnalogSensor(const std::string& interface)
453 {
454     return (analogSensorInterfaces.count(interface));
455 }
456 
457 /**
458 @brief This command is used to set sensorReading.
459 
460 @param
461     -  sensorNumber
462     -  operation
463     -  reading
464     -  assertOffset0_7
465     -  assertOffset8_14
466     -  deassertOffset0_7
467     -  deassertOffset8_14
468     -  eventData1
469     -  eventData2
470     -  eventData3
471 
472 @return completion code on success.
473 **/
474 
475 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation,
476                                      uint8_t reading, uint8_t assertOffset0_7,
477                                      uint8_t assertOffset8_14,
478                                      uint8_t deassertOffset0_7,
479                                      uint8_t deassertOffset8_14,
480                                      uint8_t eventData1, uint8_t eventData2,
481                                      uint8_t eventData3)
482 {
483     log<level::DEBUG>("IPMI SET_SENSOR",
484                       entry("SENSOR_NUM=0x%02x", sensorNumber));
485 
486     if (sensorNumber == 0xFF)
487     {
488         return ipmi::responseInvalidFieldRequest();
489     }
490     ipmi::sensor::SetSensorReadingReq cmdData;
491 
492     cmdData.number = sensorNumber;
493     cmdData.operation = operation;
494     cmdData.reading = reading;
495     cmdData.assertOffset0_7 = assertOffset0_7;
496     cmdData.assertOffset8_14 = assertOffset8_14;
497     cmdData.deassertOffset0_7 = deassertOffset0_7;
498     cmdData.deassertOffset8_14 = deassertOffset8_14;
499     cmdData.eventData1 = eventData1;
500     cmdData.eventData2 = eventData2;
501     cmdData.eventData3 = eventData3;
502 
503     // Check if the Sensor Number is present
504     const auto iter = ipmi::sensor::sensors.find(sensorNumber);
505     if (iter == ipmi::sensor::sensors.end())
506     {
507         updateSensorRecordFromSSRAESC(&sensorNumber);
508         return ipmi::responseSuccess();
509     }
510 
511     try
512     {
513         if (ipmi::sensor::Mutability::Write !=
514             (iter->second.mutability & ipmi::sensor::Mutability::Write))
515         {
516             log<level::ERR>("Sensor Set operation is not allowed",
517                             entry("SENSOR_NUM=%d", sensorNumber));
518             return ipmi::responseIllegalCommand();
519         }
520         auto ipmiRC = iter->second.updateFunc(cmdData, iter->second);
521         return ipmi::response(ipmiRC);
522     }
523     catch (const InternalFailure& e)
524     {
525         log<level::ERR>("Set sensor failed",
526                         entry("SENSOR_NUM=%d", sensorNumber));
527         commit<InternalFailure>();
528         return ipmi::responseUnspecifiedError();
529     }
530     catch (const std::runtime_error& e)
531     {
532         log<level::ERR>(e.what());
533         return ipmi::responseUnspecifiedError();
534     }
535 }
536 
537 /** @brief implements the get sensor reading command
538  *  @param sensorNum - sensor number
539  *
540  *  @returns IPMI completion code plus response data
541  *   - senReading           - sensor reading
542  *   - reserved
543  *   - readState            - sensor reading state enabled
544  *   - senScanState         - sensor scan state disabled
545  *   - allEventMessageState - all Event message state disabled
546  *   - assertionStatesLsb   - threshold levels states
547  *   - assertionStatesMsb   - discrete reading sensor states
548  */
549 ipmi::RspType<uint8_t, // sensor reading
550 
551               uint5_t, // reserved
552               bool,    // reading state
553               bool,    // 0 = sensor scanning state disabled
554               bool,    // 0 = all event messages disabled
555 
556               uint8_t, // threshold levels states
557               uint8_t  // discrete reading sensor states
558               >
559     ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx,
560                                uint8_t sensorNum)
561 {
562     if (sensorNum == 0xFF)
563     {
564         return ipmi::responseInvalidFieldRequest();
565     }
566 
567     const auto iter = ipmi::sensor::sensors.find(sensorNum);
568     if (iter == ipmi::sensor::sensors.end())
569     {
570         return ipmi::responseSensorInvalid();
571     }
572     if (ipmi::sensor::Mutability::Read !=
573         (iter->second.mutability & ipmi::sensor::Mutability::Read))
574     {
575         return ipmi::responseIllegalCommand();
576     }
577 
578     try
579     {
580 #ifdef FEATURE_SENSORS_CACHE
581         auto& sensorData = sensorCacheMap[sensorNum];
582         if (!sensorData.has_value())
583         {
584             // No cached value, try read it
585             std::string service;
586             boost::system::error_code ec;
587             const auto& sensorInfo = iter->second;
588             ec = ipmi::getService(ctx, sensorInfo.sensorInterface,
589                                   sensorInfo.sensorPath, service);
590             if (ec)
591             {
592                 return ipmi::responseUnspecifiedError();
593             }
594             fillSensorIdServiceMap(sensorInfo.sensorPath,
595                                    sensorInfo.propertyInterfaces.begin()->first,
596                                    iter->first, service);
597 
598             ipmi::PropertyMap props;
599             ec = ipmi::getAllDbusProperties(
600                 ctx, service, sensorInfo.sensorPath,
601                 sensorInfo.propertyInterfaces.begin()->first, props);
602             if (ec)
603             {
604                 fprintf(stderr, "Failed to get sensor %s, %d: %s\n",
605                         sensorInfo.sensorPath.c_str(), ec.value(),
606                         ec.message().c_str());
607                 // Intitilizing with default values
608                 constexpr uint8_t senReading = 0;
609                 constexpr uint5_t reserved{0};
610                 constexpr bool readState = true;
611                 constexpr bool senScanState = false;
612                 constexpr bool allEventMessageState = false;
613                 constexpr uint8_t assertionStatesLsb = 0;
614                 constexpr uint8_t assertionStatesMsb = 0;
615 
616                 return ipmi::responseSuccess(senReading, reserved, readState,
617                                              senScanState, allEventMessageState,
618                                              assertionStatesLsb,
619                                              assertionStatesMsb);
620             }
621             sensorInfo.getFunc(sensorNum, sensorInfo, props);
622         }
623         return ipmi::responseSuccess(
624             sensorData->response.reading, uint5_t(0),
625             sensorData->response.readingOrStateUnavailable,
626             sensorData->response.scanningEnabled,
627             sensorData->response.allEventMessagesEnabled,
628             sensorData->response.thresholdLevelsStates,
629             sensorData->response.discreteReadingSensorStates);
630 
631 #else
632         ipmi::sensor::GetSensorResponse getResponse =
633             iter->second.getFunc(iter->second);
634 
635         return ipmi::responseSuccess(getResponse.reading, uint5_t(0),
636                                      getResponse.readingOrStateUnavailable,
637                                      getResponse.scanningEnabled,
638                                      getResponse.allEventMessagesEnabled,
639                                      getResponse.thresholdLevelsStates,
640                                      getResponse.discreteReadingSensorStates);
641 #endif
642     }
643 #ifdef UPDATE_FUNCTIONAL_ON_FAIL
644     catch (const SensorFunctionalError& e)
645     {
646         return ipmi::responseResponseError();
647     }
648 #endif
649     catch (const std::exception& e)
650     {
651         // Intitilizing with default values
652         constexpr uint8_t senReading = 0;
653         constexpr uint5_t reserved{0};
654         constexpr bool readState = true;
655         constexpr bool senScanState = false;
656         constexpr bool allEventMessageState = false;
657         constexpr uint8_t assertionStatesLsb = 0;
658         constexpr uint8_t assertionStatesMsb = 0;
659 
660         return ipmi::responseSuccess(senReading, reserved, readState,
661                                      senScanState, allEventMessageState,
662                                      assertionStatesLsb, assertionStatesMsb);
663     }
664 }
665 
666 get_sdr::GetSensorThresholdsResponse
667     getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
668 {
669     get_sdr::GetSensorThresholdsResponse resp{};
670     constexpr auto warningThreshIntf =
671         "xyz.openbmc_project.Sensor.Threshold.Warning";
672     constexpr auto criticalThreshIntf =
673         "xyz.openbmc_project.Sensor.Threshold.Critical";
674 
675     const auto iter = ipmi::sensor::sensors.find(sensorNum);
676     const auto info = iter->second;
677 
678     std::string service;
679     boost::system::error_code ec;
680     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
681     if (ec)
682     {
683         return resp;
684     }
685 
686     ipmi::PropertyMap warnThresholds;
687     ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
688                                     warningThreshIntf, warnThresholds);
689     int32_t minClamp;
690     int32_t maxClamp;
691     int32_t rawData;
692     constexpr uint8_t sensorUnitsSignedBits = 2 << 6;
693     constexpr uint8_t signedDataFormat = 0x80;
694     if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat)
695     {
696         minClamp = std::numeric_limits<int8_t>::lowest();
697         maxClamp = std::numeric_limits<int8_t>::max();
698     }
699     else
700     {
701         minClamp = std::numeric_limits<uint8_t>::lowest();
702         maxClamp = std::numeric_limits<uint8_t>::max();
703     }
704     if (!ec)
705     {
706         double warnLow = ipmi::mappedVariant<double>(
707             warnThresholds, "WarningLow",
708             std::numeric_limits<double>::quiet_NaN());
709         double warnHigh = ipmi::mappedVariant<double>(
710             warnThresholds, "WarningHigh",
711             std::numeric_limits<double>::quiet_NaN());
712 
713         if (std::isfinite(warnLow))
714         {
715             warnLow *= std::pow(10, info.scale - info.exponentR);
716             rawData = round((warnLow - info.scaledOffset) / info.coefficientM);
717             resp.lowerNonCritical =
718                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
719             resp.validMask |= static_cast<uint8_t>(
720                 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK);
721         }
722 
723         if (std::isfinite(warnHigh))
724         {
725             warnHigh *= std::pow(10, info.scale - info.exponentR);
726             rawData = round((warnHigh - info.scaledOffset) / info.coefficientM);
727             resp.upperNonCritical =
728                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
729             resp.validMask |= static_cast<uint8_t>(
730                 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK);
731         }
732     }
733 
734     ipmi::PropertyMap critThresholds;
735     ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
736                                     criticalThreshIntf, critThresholds);
737     if (!ec)
738     {
739         double critLow = ipmi::mappedVariant<double>(
740             critThresholds, "CriticalLow",
741             std::numeric_limits<double>::quiet_NaN());
742         double critHigh = ipmi::mappedVariant<double>(
743             critThresholds, "CriticalHigh",
744             std::numeric_limits<double>::quiet_NaN());
745 
746         if (std::isfinite(critLow))
747         {
748             critLow *= std::pow(10, info.scale - info.exponentR);
749             rawData = round((critLow - info.scaledOffset) / info.coefficientM);
750             resp.lowerCritical =
751                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
752             resp.validMask |= static_cast<uint8_t>(
753                 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK);
754         }
755 
756         if (std::isfinite(critHigh))
757         {
758             critHigh *= std::pow(10, info.scale - info.exponentR);
759             rawData = round((critHigh - info.scaledOffset) / info.coefficientM);
760             resp.upperCritical =
761                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
762             resp.validMask |= static_cast<uint8_t>(
763                 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK);
764         }
765     }
766 
767     return resp;
768 }
769 
770 /** @brief implements the get sensor thresholds command
771  *  @param ctx - IPMI context pointer
772  *  @param sensorNum - sensor number
773  *
774  *  @returns IPMI completion code plus response data
775  *   - validMask - threshold mask
776  *   - lower non-critical threshold - IPMI messaging state
777  *   - lower critical threshold - link authentication state
778  *   - lower non-recoverable threshold - callback state
779  *   - upper non-critical threshold
780  *   - upper critical
781  *   - upper non-recoverable
782  */
783 ipmi::RspType<uint8_t, // validMask
784               uint8_t, // lowerNonCritical
785               uint8_t, // lowerCritical
786               uint8_t, // lowerNonRecoverable
787               uint8_t, // upperNonCritical
788               uint8_t, // upperCritical
789               uint8_t  // upperNonRecoverable
790               >
791     ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
792 {
793     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
794 
795     const auto iter = ipmi::sensor::sensors.find(sensorNum);
796     if (iter == ipmi::sensor::sensors.end())
797     {
798         return ipmi::responseSensorInvalid();
799     }
800 
801     const auto info = iter->second;
802 
803     // Proceed only if the sensor value interface is implemented.
804     if (info.propertyInterfaces.find(valueInterface) ==
805         info.propertyInterfaces.end())
806     {
807         // return with valid mask as 0
808         return ipmi::responseSuccess();
809     }
810 
811     auto it = sensorThresholdMap.find(sensorNum);
812     if (it == sensorThresholdMap.end())
813     {
814         sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum);
815     }
816 
817     const auto& resp = sensorThresholdMap[sensorNum];
818 
819     return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical,
820                                  resp.lowerCritical, resp.lowerNonRecoverable,
821                                  resp.upperNonCritical, resp.upperCritical,
822                                  resp.upperNonRecoverable);
823 }
824 
825 /** @brief implements the Set Sensor threshold command
826  *  @param sensorNumber        - sensor number
827  *  @param lowerNonCriticalThreshMask
828  *  @param lowerCriticalThreshMask
829  *  @param lowerNonRecovThreshMask
830  *  @param upperNonCriticalThreshMask
831  *  @param upperCriticalThreshMask
832  *  @param upperNonRecovThreshMask
833  *  @param reserved
834  *  @param lowerNonCritical    - lower non-critical threshold
835  *  @param lowerCritical       - Lower critical threshold
836  *  @param lowerNonRecoverable - Lower non recovarable threshold
837  *  @param upperNonCritical    - Upper non-critical threshold
838  *  @param upperCritical       - Upper critical
839  *  @param upperNonRecoverable - Upper Non-recoverable
840  *
841  *  @returns IPMI completion code
842  */
843 ipmi::RspType<> ipmiSenSetSensorThresholds(
844     ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask,
845     bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask,
846     bool upperNonCriticalThreshMask, bool upperCriticalThreshMask,
847     bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical,
848     uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical,
849     uint8_t upperCritical, uint8_t)
850 {
851     if (reserved)
852     {
853         return ipmi::responseInvalidFieldRequest();
854     }
855 
856     // lower nc and upper nc not suppported on any sensor
857     if (lowerNonRecovThreshMask || upperNonRecovThreshMask)
858     {
859         return ipmi::responseInvalidFieldRequest();
860     }
861 
862     // if none of the threshold mask are set, nothing to do
863     if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask |
864           lowerNonRecovThreshMask | upperNonCriticalThreshMask |
865           upperCriticalThreshMask | upperNonRecovThreshMask))
866     {
867         return ipmi::responseSuccess();
868     }
869 
870     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
871 
872     const auto iter = ipmi::sensor::sensors.find(sensorNum);
873     if (iter == ipmi::sensor::sensors.end())
874     {
875         return ipmi::responseSensorInvalid();
876     }
877 
878     const auto& info = iter->second;
879 
880     // Proceed only if the sensor value interface is implemented.
881     if (info.propertyInterfaces.find(valueInterface) ==
882         info.propertyInterfaces.end())
883     {
884         // return with valid mask as 0
885         return ipmi::responseSuccess();
886     }
887 
888     constexpr auto warningThreshIntf =
889         "xyz.openbmc_project.Sensor.Threshold.Warning";
890     constexpr auto criticalThreshIntf =
891         "xyz.openbmc_project.Sensor.Threshold.Critical";
892 
893     std::string service;
894     boost::system::error_code ec;
895     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
896     if (ec)
897     {
898         return ipmi::responseResponseError();
899     }
900     // store a vector of property name, value to set, and interface
901     std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet;
902 
903     // define the indexes of the tuple
904     constexpr uint8_t propertyName = 0;
905     constexpr uint8_t thresholdValue = 1;
906     constexpr uint8_t interface = 2;
907     // verifiy all needed fields are present
908     if (lowerCriticalThreshMask || upperCriticalThreshMask)
909     {
910         ipmi::PropertyMap findThreshold;
911         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
912                                         criticalThreshIntf, findThreshold);
913 
914         if (!ec)
915         {
916             if (lowerCriticalThreshMask)
917             {
918                 auto findLower = findThreshold.find("CriticalLow");
919                 if (findLower == findThreshold.end())
920                 {
921                     return ipmi::responseInvalidFieldRequest();
922                 }
923                 thresholdsToSet.emplace_back("CriticalLow", lowerCritical,
924                                              criticalThreshIntf);
925             }
926             if (upperCriticalThreshMask)
927             {
928                 auto findUpper = findThreshold.find("CriticalHigh");
929                 if (findUpper == findThreshold.end())
930                 {
931                     return ipmi::responseInvalidFieldRequest();
932                 }
933                 thresholdsToSet.emplace_back("CriticalHigh", upperCritical,
934                                              criticalThreshIntf);
935             }
936         }
937     }
938     if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask)
939     {
940         ipmi::PropertyMap findThreshold;
941         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
942                                         warningThreshIntf, findThreshold);
943 
944         if (!ec)
945         {
946             if (lowerNonCriticalThreshMask)
947             {
948                 auto findLower = findThreshold.find("WarningLow");
949                 if (findLower == findThreshold.end())
950                 {
951                     return ipmi::responseInvalidFieldRequest();
952                 }
953                 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical,
954                                              warningThreshIntf);
955             }
956             if (upperNonCriticalThreshMask)
957             {
958                 auto findUpper = findThreshold.find("WarningHigh");
959                 if (findUpper == findThreshold.end())
960                 {
961                     return ipmi::responseInvalidFieldRequest();
962                 }
963                 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical,
964                                              warningThreshIntf);
965             }
966         }
967     }
968     for (const auto& property : thresholdsToSet)
969     {
970         // from section 36.3 in the IPMI Spec, assume all linear
971         double valueToSet =
972             ((info.coefficientM * std::get<thresholdValue>(property)) +
973              (info.scaledOffset * std::pow(10.0, info.scale))) *
974             std::pow(10.0, info.exponentR);
975         ipmi::setDbusProperty(
976             ctx, service, info.sensorPath, std::get<interface>(property),
977             std::get<propertyName>(property), ipmi::Value(valueToSet));
978     }
979 
980     // Invalidate the cache
981     sensorThresholdMap.erase(sensorNum);
982     return ipmi::responseSuccess();
983 }
984 
985 /** @brief implements the get SDR Info command
986  *  @param count - Operation
987  *
988  *  @returns IPMI completion code plus response data
989  *   - sdrCount - sensor/SDR count
990  *   - lunsAndDynamicPopulation - static/Dynamic sensor population flag
991  */
992 ipmi::RspType<uint8_t, // respcount
993               uint8_t  // dynamic population flags
994               >
995     ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)
996 {
997     uint8_t sdrCount;
998     // multiple LUNs not supported.
999     constexpr uint8_t lunsAndDynamicPopulation = 1;
1000     constexpr uint8_t getSdrCount = 0x01;
1001     constexpr uint8_t getSensorCount = 0x00;
1002 
1003     if (count.value_or(0) == getSdrCount)
1004     {
1005         // Get SDR count. This returns the total number of SDRs in the device.
1006         const auto& entityRecords =
1007             ipmi::sensor::EntityInfoMapContainer::getContainer()
1008                 ->getIpmiEntityRecords();
1009         sdrCount = ipmi::sensor::sensors.size() + frus.size() +
1010                    entityRecords.size();
1011     }
1012     else if (count.value_or(0) == getSensorCount)
1013     {
1014         // Get Sensor count. This returns the number of sensors
1015         sdrCount = ipmi::sensor::sensors.size();
1016     }
1017     else
1018     {
1019         return ipmi::responseInvalidCommandOnLun();
1020     }
1021 
1022     return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation);
1023 }
1024 
1025 /** @brief implements the reserve SDR command
1026  *  @returns IPMI completion code plus response data
1027  *   - reservationID - reservation ID
1028  */
1029 ipmi::RspType<uint16_t> ipmiSensorReserveSdr()
1030 {
1031     // A constant reservation ID is okay until we implement add/remove SDR.
1032     constexpr uint16_t reservationID = 1;
1033 
1034     return ipmi::responseSuccess(reservationID);
1035 }
1036 
1037 void setUnitFieldsForObject(const ipmi::sensor::Info* info,
1038                             get_sdr::SensorDataFullRecordBody* body)
1039 {
1040     namespace server = sdbusplus::xyz::openbmc_project::Sensor::server;
1041     try
1042     {
1043         auto unit = server::Value::convertUnitFromString(info->unit);
1044         // Unit strings defined in
1045         // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml
1046         switch (unit)
1047         {
1048             case server::Value::Unit::DegreesC:
1049                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C;
1050                 break;
1051             case server::Value::Unit::RPMS:
1052                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM;
1053                 break;
1054             case server::Value::Unit::Volts:
1055                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS;
1056                 break;
1057             case server::Value::Unit::Meters:
1058                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS;
1059                 break;
1060             case server::Value::Unit::Amperes:
1061                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES;
1062                 break;
1063             case server::Value::Unit::Joules:
1064                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES;
1065                 break;
1066             case server::Value::Unit::Watts:
1067                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS;
1068                 break;
1069             default:
1070                 // Cannot be hit.
1071                 std::fprintf(stderr, "Unknown value unit type: = %s\n",
1072                              info->unit.c_str());
1073         }
1074     }
1075     catch (const sdbusplus::exception::InvalidEnumString& e)
1076     {
1077         log<level::WARNING>("Warning: no unit provided for sensor!");
1078     }
1079 }
1080 
1081 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body,
1082                                      const ipmi::sensor::Info* info,
1083                                      ipmi_data_len_t)
1084 {
1085     /* Functional sensor case */
1086     if (isAnalogSensor(info->propertyInterfaces.begin()->first))
1087     {
1088         body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no
1089                                                    // rate, no modifier, not a %
1090         /* Unit info */
1091         setUnitFieldsForObject(info, body);
1092 
1093         get_sdr::body::set_b(info->coefficientB, body);
1094         get_sdr::body::set_m(info->coefficientM, body);
1095         get_sdr::body::set_b_exp(info->exponentB, body);
1096         get_sdr::body::set_r_exp(info->exponentR, body);
1097     }
1098 
1099     /* ID string */
1100     auto id_string = info->sensorName;
1101 
1102     if (id_string.empty())
1103     {
1104         id_string = info->sensorNameFunc(*info);
1105     }
1106 
1107     if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH)
1108     {
1109         get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body);
1110     }
1111     else
1112     {
1113         get_sdr::body::set_id_strlen(id_string.length(), body);
1114     }
1115     get_sdr::body::set_id_type(3, body); // "8-bit ASCII + Latin 1"
1116     strncpy(body->id_string, id_string.c_str(),
1117             get_sdr::body::get_id_strlen(body));
1118 
1119     return IPMI_CC_OK;
1120 };
1121 
1122 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response,
1123                             ipmi_data_len_t data_len)
1124 {
1125     auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
1126     auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
1127     get_sdr::SensorDataFruRecord record{};
1128     auto dataLength = 0;
1129 
1130     auto fru = frus.begin();
1131     uint8_t fruID{};
1132     auto recordID = get_sdr::request::get_record_id(req);
1133 
1134     fruID = recordID - FRU_RECORD_ID_START;
1135     fru = frus.find(fruID);
1136     if (fru == frus.end())
1137     {
1138         return IPMI_CC_SENSOR_INVALID;
1139     }
1140 
1141     /* Header */
1142     get_sdr::header::set_record_id(recordID, &(record.header));
1143     record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1144     record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD;
1145     record.header.record_length = sizeof(record.key) + sizeof(record.body);
1146 
1147     /* Key */
1148     record.key.fruID = fruID;
1149     record.key.accessLun |= IPMI_LOGICAL_FRU;
1150     record.key.deviceAddress = BMCSlaveAddress;
1151 
1152     /* Body */
1153     record.body.entityID = fru->second[0].entityID;
1154     record.body.entityInstance = fru->second[0].entityInstance;
1155     record.body.deviceType = fruInventoryDevice;
1156     record.body.deviceTypeModifier = IPMIFruInventory;
1157 
1158     /* Device ID string */
1159     auto deviceID =
1160         fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1,
1161                                    fru->second[0].path.length());
1162 
1163     if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH)
1164     {
1165         get_sdr::body::set_device_id_strlen(
1166             get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body));
1167     }
1168     else
1169     {
1170         get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body));
1171     }
1172 
1173     strncpy(record.body.deviceID, deviceID.c_str(),
1174             get_sdr::body::get_device_id_strlen(&(record.body)));
1175 
1176     if (++fru == frus.end())
1177     {
1178         // we have reached till end of fru, so assign the next record id to
1179         // 512(Max fru ID = 511) + Entity Record ID(may start with 0).
1180         const auto& entityRecords =
1181             ipmi::sensor::EntityInfoMapContainer::getContainer()
1182                 ->getIpmiEntityRecords();
1183         auto next_record_id = (entityRecords.size())
1184                                   ? entityRecords.begin()->first +
1185                                         ENTITY_RECORD_ID_START
1186                                   : END_OF_RECORD;
1187         get_sdr::response::set_next_record_id(next_record_id, resp);
1188     }
1189     else
1190     {
1191         get_sdr::response::set_next_record_id(
1192             (FRU_RECORD_ID_START + fru->first), resp);
1193     }
1194 
1195     // Check for invalid offset size
1196     if (req->offset > sizeof(record))
1197     {
1198         return IPMI_CC_PARM_OUT_OF_RANGE;
1199     }
1200 
1201     dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
1202                           sizeof(record) - req->offset);
1203 
1204     std::memcpy(resp->record_data,
1205                 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
1206 
1207     *data_len = dataLength;
1208     *data_len += 2; // additional 2 bytes for next record ID
1209 
1210     return IPMI_CC_OK;
1211 }
1212 
1213 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response,
1214                                ipmi_data_len_t data_len)
1215 {
1216     auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
1217     auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
1218     get_sdr::SensorDataEntityRecord record{};
1219     auto dataLength = 0;
1220 
1221     const auto& entityRecords =
1222         ipmi::sensor::EntityInfoMapContainer::getContainer()
1223             ->getIpmiEntityRecords();
1224     auto entity = entityRecords.begin();
1225     uint8_t entityRecordID;
1226     auto recordID = get_sdr::request::get_record_id(req);
1227 
1228     entityRecordID = recordID - ENTITY_RECORD_ID_START;
1229     entity = entityRecords.find(entityRecordID);
1230     if (entity == entityRecords.end())
1231     {
1232         return IPMI_CC_SENSOR_INVALID;
1233     }
1234 
1235     /* Header */
1236     get_sdr::header::set_record_id(recordID, &(record.header));
1237     record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1238     record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD;
1239     record.header.record_length = sizeof(record.key) + sizeof(record.body);
1240 
1241     /* Key */
1242     record.key.containerEntityId = entity->second.containerEntityId;
1243     record.key.containerEntityInstance = entity->second.containerEntityInstance;
1244     get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked,
1245                             &(record.key));
1246     record.key.entityId1 = entity->second.containedEntities[0].first;
1247     record.key.entityInstance1 = entity->second.containedEntities[0].second;
1248 
1249     /* Body */
1250     record.body.entityId2 = entity->second.containedEntities[1].first;
1251     record.body.entityInstance2 = entity->second.containedEntities[1].second;
1252     record.body.entityId3 = entity->second.containedEntities[2].first;
1253     record.body.entityInstance3 = entity->second.containedEntities[2].second;
1254     record.body.entityId4 = entity->second.containedEntities[3].first;
1255     record.body.entityInstance4 = entity->second.containedEntities[3].second;
1256 
1257     if (++entity == entityRecords.end())
1258     {
1259         get_sdr::response::set_next_record_id(END_OF_RECORD,
1260                                               resp); // last record
1261     }
1262     else
1263     {
1264         get_sdr::response::set_next_record_id(
1265             (ENTITY_RECORD_ID_START + entity->first), resp);
1266     }
1267 
1268     // Check for invalid offset size
1269     if (req->offset > sizeof(record))
1270     {
1271         return IPMI_CC_PARM_OUT_OF_RANGE;
1272     }
1273 
1274     dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
1275                           sizeof(record) - req->offset);
1276 
1277     std::memcpy(resp->record_data,
1278                 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
1279 
1280     *data_len = dataLength;
1281     *data_len += 2; // additional 2 bytes for next record ID
1282 
1283     return IPMI_CC_OK;
1284 }
1285 
1286 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request,
1287                             ipmi_response_t response, ipmi_data_len_t data_len,
1288                             ipmi_context_t)
1289 {
1290     ipmi_ret_t ret = IPMI_CC_OK;
1291     get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request;
1292     get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response;
1293 
1294     // Note: we use an iterator so we can provide the next ID at the end of
1295     // the call.
1296     auto sensor = ipmi::sensor::sensors.begin();
1297     auto recordID = get_sdr::request::get_record_id(req);
1298 
1299     // At the beginning of a scan, the host side will send us id=0.
1300     if (recordID != 0)
1301     {
1302         // recordID 0 to 255 means it is a FULL record.
1303         // recordID 256 to 511 means it is a FRU record.
1304         // recordID greater then 511 means it is a Entity Association
1305         // record. Currently we are supporting three record types: FULL
1306         // record, FRU record and Enttiy Association record.
1307         if (recordID >= ENTITY_RECORD_ID_START)
1308         {
1309             return ipmi_entity_get_sdr(request, response, data_len);
1310         }
1311         else if (recordID >= FRU_RECORD_ID_START &&
1312                  recordID < ENTITY_RECORD_ID_START)
1313         {
1314             return ipmi_fru_get_sdr(request, response, data_len);
1315         }
1316         else
1317         {
1318             sensor = ipmi::sensor::sensors.find(recordID);
1319             if (sensor == ipmi::sensor::sensors.end())
1320             {
1321                 return IPMI_CC_SENSOR_INVALID;
1322             }
1323         }
1324     }
1325 
1326     uint8_t sensor_id = sensor->first;
1327 
1328     auto it = sdrCacheMap.find(sensor_id);
1329     if (it == sdrCacheMap.end())
1330     {
1331         /* Header */
1332         get_sdr::SensorDataFullRecord record = {};
1333         get_sdr::header::set_record_id(sensor_id, &(record.header));
1334         record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1
1335         record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD;
1336         record.header.record_length = sizeof(record.key) + sizeof(record.body);
1337 
1338         /* Key */
1339         get_sdr::key::set_owner_id_bmc(&(record.key));
1340         record.key.sensor_number = sensor_id;
1341 
1342         /* Body */
1343         record.body.entity_id = sensor->second.entityType;
1344         record.body.sensor_type = sensor->second.sensorType;
1345         record.body.event_reading_type = sensor->second.sensorReadingType;
1346         record.body.entity_instance = sensor->second.instance;
1347         if (ipmi::sensor::Mutability::Write ==
1348             (sensor->second.mutability & ipmi::sensor::Mutability::Write))
1349         {
1350             get_sdr::body::init_settable_state(true, &(record.body));
1351         }
1352 
1353         // Set the type-specific details given the DBus interface
1354         populate_record_from_dbus(&(record.body), &(sensor->second), data_len);
1355         sdrCacheMap[sensor_id] = std::move(record);
1356     }
1357 
1358     const auto& record = sdrCacheMap[sensor_id];
1359 
1360     if (++sensor == ipmi::sensor::sensors.end())
1361     {
1362         // we have reached till end of sensor, so assign the next record id
1363         // to 256(Max Sensor ID = 255) + FRU ID(may start with 0).
1364         auto next_record_id = (frus.size())
1365                                   ? frus.begin()->first + FRU_RECORD_ID_START
1366                                   : END_OF_RECORD;
1367 
1368         get_sdr::response::set_next_record_id(next_record_id, resp);
1369     }
1370     else
1371     {
1372         get_sdr::response::set_next_record_id(sensor->first, resp);
1373     }
1374 
1375     if (req->offset > sizeof(record))
1376     {
1377         return IPMI_CC_PARM_OUT_OF_RANGE;
1378     }
1379 
1380     // data_len will ultimately be the size of the record, plus
1381     // the size of the next record ID:
1382     *data_len = std::min(static_cast<size_t>(req->bytes_to_read),
1383                          sizeof(record) - req->offset);
1384 
1385     std::memcpy(resp->record_data,
1386                 reinterpret_cast<const uint8_t*>(&record) + req->offset,
1387                 *data_len);
1388 
1389     // data_len should include the LSB and MSB:
1390     *data_len += sizeof(resp->next_record_id_lsb) +
1391                  sizeof(resp->next_record_id_msb);
1392 
1393     return ret;
1394 }
1395 
1396 static bool isFromSystemChannel()
1397 {
1398     // TODO we could not figure out where the request is from based on IPMI
1399     // command handler parameters. because of it, we can not differentiate
1400     // request from SMS/SMM or IPMB channel
1401     return true;
1402 }
1403 
1404 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t,
1405                                 ipmi_request_t request, ipmi_response_t,
1406                                 ipmi_data_len_t dataLen, ipmi_context_t)
1407 {
1408     uint16_t generatorID;
1409     size_t count;
1410     bool assert = true;
1411     std::string sensorPath;
1412     size_t paraLen = *dataLen;
1413     PlatformEventRequest* req;
1414     *dataLen = 0;
1415 
1416     if ((paraLen < selSystemEventSizeWith1Bytes) ||
1417         (paraLen > selSystemEventSizeWith3Bytes))
1418     {
1419         return IPMI_CC_REQ_DATA_LEN_INVALID;
1420     }
1421 
1422     if (isFromSystemChannel())
1423     { // first byte for SYSTEM Interface is Generator ID
1424         // +1 to get common struct
1425         req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1);
1426         // Capture the generator ID
1427         generatorID = *reinterpret_cast<uint8_t*>(request);
1428         // Platform Event usually comes from other firmware, like BIOS.
1429         // Unlike BMC sensor, it does not have BMC DBUS sensor path.
1430         sensorPath = "System";
1431     }
1432     else
1433     {
1434         req = reinterpret_cast<PlatformEventRequest*>(request);
1435         // TODO GenratorID for IPMB is combination of RqSA and RqLUN
1436         generatorID = 0xff;
1437         sensorPath = "IPMB";
1438     }
1439     // Content of event data field depends on sensor class.
1440     // When data0 bit[5:4] is non-zero, valid data counts is 3.
1441     // When data0 bit[7:6] is non-zero, valid data counts is 2.
1442     if (((req->data[0] & byte3EnableMask) != 0 &&
1443          paraLen < selSystemEventSizeWith3Bytes) ||
1444         ((req->data[0] & byte2EnableMask) != 0 &&
1445          paraLen < selSystemEventSizeWith2Bytes))
1446     {
1447         return IPMI_CC_REQ_DATA_LEN_INVALID;
1448     }
1449 
1450     // Count bytes of Event Data
1451     if ((req->data[0] & byte3EnableMask) != 0)
1452     {
1453         count = 3;
1454     }
1455     else if ((req->data[0] & byte2EnableMask) != 0)
1456     {
1457         count = 2;
1458     }
1459     else
1460     {
1461         count = 1;
1462     }
1463     assert = req->eventDirectionType & directionMask ? false : true;
1464     std::vector<uint8_t> eventData(req->data, req->data + count);
1465 
1466     sdbusplus::bus_t dbus(bus);
1467     std::string service = ipmi::getService(dbus, ipmiSELAddInterface,
1468                                            ipmiSELPath);
1469     sdbusplus::message_t writeSEL = dbus.new_method_call(
1470         service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd");
1471     writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert,
1472                     generatorID);
1473     try
1474     {
1475         dbus.call(writeSEL);
1476     }
1477     catch (const sdbusplus::exception_t& e)
1478     {
1479         phosphor::logging::log<phosphor::logging::level::ERR>(e.what());
1480         return IPMI_CC_UNSPECIFIED_ERROR;
1481     }
1482     return IPMI_CC_OK;
1483 }
1484 
1485 void register_netfn_sen_functions()
1486 {
1487     // Handlers with dbus-sdr handler implementation.
1488     // Do not register the hander if it dynamic sensors stack is used.
1489 
1490 #ifndef FEATURE_DYNAMIC_SENSORS
1491 
1492 #ifdef FEATURE_SENSORS_CACHE
1493     // Initialize the sensor matches
1494     initSensorMatches();
1495 #endif
1496 
1497     // <Set Sensor Reading and Event Status>
1498     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1499                           ipmi::sensor_event::cmdSetSensorReadingAndEvtSts,
1500                           ipmi::Privilege::Operator, ipmiSetSensorReading);
1501     // <Get Sensor Reading>
1502     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1503                           ipmi::sensor_event::cmdGetSensorReading,
1504                           ipmi::Privilege::User, ipmiSensorGetSensorReading);
1505 
1506     // <Reserve Device SDR Repository>
1507     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1508                           ipmi::sensor_event::cmdReserveDeviceSdrRepository,
1509                           ipmi::Privilege::User, ipmiSensorReserveSdr);
1510 
1511     // <Get Device SDR Info>
1512     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1513                           ipmi::sensor_event::cmdGetDeviceSdrInfo,
1514                           ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo);
1515 
1516     // <Get Sensor Thresholds>
1517     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1518                           ipmi::sensor_event::cmdGetSensorThreshold,
1519                           ipmi::Privilege::User, ipmiSensorGetSensorThresholds);
1520 
1521     // <Set Sensor Thresholds>
1522     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1523                           ipmi::sensor_event::cmdSetSensorThreshold,
1524                           ipmi::Privilege::User, ipmiSenSetSensorThresholds);
1525 
1526     // <Get Device SDR>
1527     ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr,
1528                            ipmi_sen_get_sdr, PRIVILEGE_USER);
1529 
1530 #endif
1531 
1532     // Common Handers used by both implementation.
1533 
1534     // <Platform Event Message>
1535     ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr,
1536                            ipmicmdPlatformEvent, PRIVILEGE_OPERATOR);
1537 
1538     // <Get Sensor Type>
1539     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1540                           ipmi::sensor_event::cmdGetSensorType,
1541                           ipmi::Privilege::User, ipmiGetSensorType);
1542 
1543     return;
1544 }
1545