1 #include "config.h" 2 3 #include "sensorhandler.hpp" 4 5 #include "entity_map_json.hpp" 6 #include "fruread.hpp" 7 8 #include <mapper.h> 9 #include <systemd/sd-bus.h> 10 11 #include <bitset> 12 #include <cmath> 13 #include <cstring> 14 #include <ipmid/api.hpp> 15 #include <ipmid/types.hpp> 16 #include <ipmid/utils.hpp> 17 #include <phosphor-logging/elog-errors.hpp> 18 #include <phosphor-logging/log.hpp> 19 #include <sdbusplus/message/types.hpp> 20 #include <set> 21 #include <xyz/openbmc_project/Common/error.hpp> 22 #include <xyz/openbmc_project/Sensor/Value/server.hpp> 23 24 static constexpr uint8_t fruInventoryDevice = 0x10; 25 static constexpr uint8_t IPMIFruInventory = 0x02; 26 static constexpr uint8_t BMCSlaveAddress = 0x20; 27 28 extern int updateSensorRecordFromSSRAESC(const void*); 29 extern sd_bus* bus; 30 31 namespace ipmi 32 { 33 namespace sensor 34 { 35 extern const IdInfoMap sensors; 36 } // namespace sensor 37 } // namespace ipmi 38 39 extern const FruMap frus; 40 41 using namespace phosphor::logging; 42 using InternalFailure = 43 sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure; 44 45 void register_netfn_sen_functions() __attribute__((constructor)); 46 47 struct sensorTypemap_t 48 { 49 uint8_t number; 50 uint8_t typecode; 51 char dbusname[32]; 52 }; 53 54 sensorTypemap_t g_SensorTypeMap[] = { 55 56 {0x01, 0x6F, "Temp"}, 57 {0x0C, 0x6F, "DIMM"}, 58 {0x0C, 0x6F, "MEMORY_BUFFER"}, 59 {0x07, 0x6F, "PROC"}, 60 {0x07, 0x6F, "CORE"}, 61 {0x07, 0x6F, "CPU"}, 62 {0x0F, 0x6F, "BootProgress"}, 63 {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor 64 // type code os 0x09 65 {0xC3, 0x6F, "BootCount"}, 66 {0x1F, 0x6F, "OperatingSystemStatus"}, 67 {0x12, 0x6F, "SYSTEM_EVENT"}, 68 {0xC7, 0x03, "SYSTEM"}, 69 {0xC7, 0x03, "MAIN_PLANAR"}, 70 {0xC2, 0x6F, "PowerCap"}, 71 {0x0b, 0xCA, "PowerSupplyRedundancy"}, 72 {0xDA, 0x03, "TurboAllowed"}, 73 {0xD8, 0xC8, "PowerSupplyDerating"}, 74 {0xFF, 0x00, ""}, 75 }; 76 77 struct sensor_data_t 78 { 79 uint8_t sennum; 80 } __attribute__((packed)); 81 82 int get_bus_for_path(const char* path, char** busname) 83 { 84 return mapper_get_service(bus, path, busname); 85 } 86 87 // Use a lookup table to find the interface name of a specific sensor 88 // This will be used until an alternative is found. this is the first 89 // step for mapping IPMI 90 int find_openbmc_path(uint8_t num, dbus_interface_t* interface) 91 { 92 int rc; 93 94 const auto& sensor_it = ipmi::sensor::sensors.find(num); 95 if (sensor_it == ipmi::sensor::sensors.end()) 96 { 97 // The sensor map does not contain the sensor requested 98 return -EINVAL; 99 } 100 101 const auto& info = sensor_it->second; 102 103 char* busname = nullptr; 104 rc = get_bus_for_path(info.sensorPath.c_str(), &busname); 105 if (rc < 0) 106 { 107 std::fprintf(stderr, "Failed to get %s busname: %s\n", 108 info.sensorPath.c_str(), busname); 109 goto final; 110 } 111 112 interface->sensortype = info.sensorType; 113 strcpy(interface->bus, busname); 114 strcpy(interface->path, info.sensorPath.c_str()); 115 // Take the interface name from the beginning of the DbusInterfaceMap. This 116 // works for the Value interface but may not suffice for more complex 117 // sensors. 118 // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 119 strcpy(interface->interface, 120 info.propertyInterfaces.begin()->first.c_str()); 121 interface->sensornumber = num; 122 123 final: 124 free(busname); 125 return rc; 126 } 127 128 ///////////////////////////////////////////////////////////////////// 129 // 130 // Routines used by ipmi commands wanting to interact on the dbus 131 // 132 ///////////////////////////////////////////////////////////////////// 133 int set_sensor_dbus_state_s(uint8_t number, const char* method, 134 const char* value) 135 { 136 137 dbus_interface_t a; 138 int r; 139 sd_bus_error error = SD_BUS_ERROR_NULL; 140 sd_bus_message* m = NULL; 141 142 r = find_openbmc_path(number, &a); 143 144 if (r < 0) 145 { 146 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 147 return 0; 148 } 149 150 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 151 method); 152 if (r < 0) 153 { 154 std::fprintf(stderr, "Failed to create a method call: %s", 155 strerror(-r)); 156 goto final; 157 } 158 159 r = sd_bus_message_append(m, "v", "s", value); 160 if (r < 0) 161 { 162 std::fprintf(stderr, "Failed to create a input parameter: %s", 163 strerror(-r)); 164 goto final; 165 } 166 167 r = sd_bus_call(bus, m, 0, &error, NULL); 168 if (r < 0) 169 { 170 std::fprintf(stderr, "Failed to call the method: %s", strerror(-r)); 171 } 172 173 final: 174 sd_bus_error_free(&error); 175 m = sd_bus_message_unref(m); 176 177 return 0; 178 } 179 int set_sensor_dbus_state_y(uint8_t number, const char* method, 180 const uint8_t value) 181 { 182 183 dbus_interface_t a; 184 int r; 185 sd_bus_error error = SD_BUS_ERROR_NULL; 186 sd_bus_message* m = NULL; 187 188 r = find_openbmc_path(number, &a); 189 190 if (r < 0) 191 { 192 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 193 return 0; 194 } 195 196 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 197 method); 198 if (r < 0) 199 { 200 std::fprintf(stderr, "Failed to create a method call: %s", 201 strerror(-r)); 202 goto final; 203 } 204 205 r = sd_bus_message_append(m, "v", "i", value); 206 if (r < 0) 207 { 208 std::fprintf(stderr, "Failed to create a input parameter: %s", 209 strerror(-r)); 210 goto final; 211 } 212 213 r = sd_bus_call(bus, m, 0, &error, NULL); 214 if (r < 0) 215 { 216 std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); 217 } 218 219 final: 220 sd_bus_error_free(&error); 221 m = sd_bus_message_unref(m); 222 223 return 0; 224 } 225 226 uint8_t dbus_to_sensor_type(char* p) 227 { 228 229 sensorTypemap_t* s = g_SensorTypeMap; 230 char r = 0; 231 while (s->number != 0xFF) 232 { 233 if (!strcmp(s->dbusname, p)) 234 { 235 r = s->typecode; 236 break; 237 } 238 s++; 239 } 240 241 if (s->number == 0xFF) 242 printf("Failed to find Sensor Type %s\n", p); 243 244 return r; 245 } 246 247 uint8_t get_type_from_interface(dbus_interface_t dbus_if) 248 { 249 250 uint8_t type; 251 252 // This is where sensors that do not exist in dbus but do 253 // exist in the host code stop. This should indicate it 254 // is not a supported sensor 255 if (dbus_if.interface[0] == 0) 256 { 257 return 0; 258 } 259 260 // Fetch type from interface itself. 261 if (dbus_if.sensortype != 0) 262 { 263 type = dbus_if.sensortype; 264 } 265 else 266 { 267 // Non InventoryItems 268 char* p = strrchr(dbus_if.path, '/'); 269 type = dbus_to_sensor_type(p + 1); 270 } 271 272 return type; 273 } 274 275 // Replaces find_sensor 276 uint8_t find_type_for_sensor_number(uint8_t num) 277 { 278 int r; 279 dbus_interface_t dbus_if; 280 r = find_openbmc_path(num, &dbus_if); 281 if (r < 0) 282 { 283 std::fprintf(stderr, "Could not find sensor %d\n", num); 284 return 0; 285 } 286 return get_type_from_interface(dbus_if); 287 } 288 289 /** 290 * @brief implements the get sensor type command. 291 * @param - sensorNumber 292 * 293 * @return IPMI completion code plus response data on success. 294 * - sensorType 295 * - eventType 296 **/ 297 298 ipmi::RspType<uint8_t, // sensorType 299 uint8_t // eventType 300 > 301 ipmiGetSensorType(uint8_t sensorNumber) 302 { 303 uint8_t sensorType = find_type_for_sensor_number(sensorNumber); 304 305 if (sensorType == 0) 306 { 307 return ipmi::responseSensorInvalid(); 308 } 309 310 constexpr uint8_t eventType = 0x6F; 311 return ipmi::responseSuccess(sensorType, eventType); 312 } 313 314 const std::set<std::string> analogSensorInterfaces = { 315 "xyz.openbmc_project.Sensor.Value", 316 "xyz.openbmc_project.Control.FanPwm", 317 }; 318 319 bool isAnalogSensor(const std::string& interface) 320 { 321 return (analogSensorInterfaces.count(interface)); 322 } 323 324 /** 325 @brief This command is used to set sensorReading. 326 327 @param 328 - sensorNumber 329 - operation 330 - reading 331 - assertOffset0_7 332 - assertOffset8_14 333 - deassertOffset0_7 334 - deassertOffset8_14 335 - eventData1 336 - eventData2 337 - eventData3 338 339 @return completion code on success. 340 **/ 341 342 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation, 343 uint8_t reading, uint8_t assertOffset0_7, 344 uint8_t assertOffset8_14, 345 uint8_t deassertOffset0_7, 346 uint8_t deassertOffset8_14, 347 uint8_t eventData1, uint8_t eventData2, 348 uint8_t eventData3) 349 { 350 log<level::DEBUG>("IPMI SET_SENSOR", 351 entry("SENSOR_NUM=0x%02x", sensorNumber)); 352 353 ipmi::sensor::SetSensorReadingReq cmdData; 354 355 cmdData.number = sensorNumber; 356 cmdData.operation = operation; 357 cmdData.reading = reading; 358 cmdData.assertOffset0_7 = assertOffset0_7; 359 cmdData.assertOffset8_14 = assertOffset8_14; 360 cmdData.deassertOffset0_7 = deassertOffset0_7; 361 cmdData.deassertOffset8_14 = deassertOffset8_14; 362 cmdData.eventData1 = eventData1; 363 cmdData.eventData2 = eventData2; 364 cmdData.eventData3 = eventData3; 365 366 // Check if the Sensor Number is present 367 const auto iter = ipmi::sensor::sensors.find(sensorNumber); 368 if (iter == ipmi::sensor::sensors.end()) 369 { 370 updateSensorRecordFromSSRAESC(&sensorNumber); 371 return ipmi::responseSuccess(); 372 } 373 374 try 375 { 376 if (ipmi::sensor::Mutability::Write != 377 (iter->second.mutability & ipmi::sensor::Mutability::Write)) 378 { 379 log<level::ERR>("Sensor Set operation is not allowed", 380 entry("SENSOR_NUM=%d", sensorNumber)); 381 return ipmi::responseIllegalCommand(); 382 } 383 auto ipmiRC = iter->second.updateFunc(cmdData, iter->second); 384 return ipmi::response(ipmiRC); 385 } 386 catch (InternalFailure& e) 387 { 388 log<level::ERR>("Set sensor failed", 389 entry("SENSOR_NUM=%d", sensorNumber)); 390 commit<InternalFailure>(); 391 return ipmi::responseUnspecifiedError(); 392 } 393 catch (const std::runtime_error& e) 394 { 395 log<level::ERR>(e.what()); 396 return ipmi::responseUnspecifiedError(); 397 } 398 } 399 400 /** @brief implements the get sensor reading command 401 * @param sensorNum - sensor number 402 * 403 * @returns IPMI completion code plus response data 404 * - senReading - sensor reading 405 * - reserved 406 * - readState - sensor reading state enabled 407 * - senScanState - sensor scan state disabled 408 * - allEventMessageState - all Event message state disabled 409 * - assertionStatesLsb - threshold levels states 410 * - assertionStatesMsb - discrete reading sensor states 411 */ 412 ipmi::RspType<uint8_t, // sensor reading 413 414 uint5_t, // reserved 415 bool, // reading state 416 bool, // 0 = sensor scanning state disabled 417 bool, // 0 = all event messages disabled 418 419 uint8_t, // threshold levels states 420 uint8_t // discrete reading sensor states 421 > 422 ipmiSensorGetSensorReading(uint8_t sensorNum) 423 { 424 if (sensorNum == 0xFF) 425 { 426 return ipmi::responseInvalidFieldRequest(); 427 } 428 429 const auto iter = ipmi::sensor::sensors.find(sensorNum); 430 if (iter == ipmi::sensor::sensors.end()) 431 { 432 return ipmi::responseSensorInvalid(); 433 } 434 if (ipmi::sensor::Mutability::Read != 435 (iter->second.mutability & ipmi::sensor::Mutability::Read)) 436 { 437 return ipmi::responseIllegalCommand(); 438 } 439 440 try 441 { 442 ipmi::sensor::GetSensorResponse getResponse = 443 iter->second.getFunc(iter->second); 444 445 return ipmi::responseSuccess(getResponse.reading, uint5_t(0), 446 getResponse.readingOrStateUnavailable, 447 getResponse.scanningEnabled, 448 getResponse.allEventMessagesEnabled, 449 getResponse.thresholdLevelsStates, 450 getResponse.discreteReadingSensorStates); 451 } 452 #ifdef UPDATE_FUNCTIONAL_ON_FAIL 453 catch (const SensorFunctionalError& e) 454 { 455 return ipmi::responseResponseError(); 456 } 457 #endif 458 catch (const std::exception& e) 459 { 460 // Intitilizing with default values 461 constexpr uint8_t senReading = 0; 462 constexpr uint5_t reserved{0}; 463 constexpr bool readState = true; 464 constexpr bool senScanState = false; 465 constexpr bool allEventMessageState = false; 466 constexpr uint8_t assertionStatesLsb = 0; 467 constexpr uint8_t assertionStatesMsb = 0; 468 469 return ipmi::responseSuccess(senReading, reserved, readState, 470 senScanState, allEventMessageState, 471 assertionStatesLsb, assertionStatesMsb); 472 } 473 } 474 475 get_sdr::GetSensorThresholdsResponse getSensorThresholds(uint8_t sensorNum) 476 { 477 get_sdr::GetSensorThresholdsResponse resp; 478 constexpr auto warningThreshIntf = 479 "xyz.openbmc_project.Sensor.Threshold.Warning"; 480 constexpr auto criticalThreshIntf = 481 "xyz.openbmc_project.Sensor.Threshold.Critical"; 482 483 sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()}; 484 485 const auto iter = ipmi::sensor::sensors.find(sensorNum); 486 const auto info = iter->second; 487 488 auto service = ipmi::getService(bus, info.sensorInterface, info.sensorPath); 489 490 auto warnThresholds = ipmi::getAllDbusProperties( 491 bus, service, info.sensorPath, warningThreshIntf); 492 493 double warnLow = std::visit(ipmi::VariantToDoubleVisitor(), 494 warnThresholds["WarningLow"]); 495 double warnHigh = std::visit(ipmi::VariantToDoubleVisitor(), 496 warnThresholds["WarningHigh"]); 497 498 if (warnLow != 0) 499 { 500 warnLow *= std::pow(10, info.scale - info.exponentR); 501 resp.lowerNonCritical = static_cast<uint8_t>( 502 (warnLow - info.scaledOffset) / info.coefficientM); 503 resp.validMask |= static_cast<uint8_t>( 504 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); 505 } 506 507 if (warnHigh != 0) 508 { 509 warnHigh *= std::pow(10, info.scale - info.exponentR); 510 resp.upperNonCritical = static_cast<uint8_t>( 511 (warnHigh - info.scaledOffset) / info.coefficientM); 512 resp.validMask |= static_cast<uint8_t>( 513 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); 514 } 515 516 auto critThresholds = ipmi::getAllDbusProperties( 517 bus, service, info.sensorPath, criticalThreshIntf); 518 double critLow = std::visit(ipmi::VariantToDoubleVisitor(), 519 critThresholds["CriticalLow"]); 520 double critHigh = std::visit(ipmi::VariantToDoubleVisitor(), 521 critThresholds["CriticalHigh"]); 522 523 if (critLow != 0) 524 { 525 critLow *= std::pow(10, info.scale - info.exponentR); 526 resp.lowerCritical = static_cast<uint8_t>( 527 (critLow - info.scaledOffset) / info.coefficientM); 528 resp.validMask |= static_cast<uint8_t>( 529 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); 530 } 531 532 if (critHigh != 0) 533 { 534 critHigh *= std::pow(10, info.scale - info.exponentR); 535 resp.upperCritical = static_cast<uint8_t>( 536 (critHigh - info.scaledOffset) / info.coefficientM); 537 resp.validMask |= static_cast<uint8_t>( 538 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); 539 } 540 541 return resp; 542 } 543 544 /** @brief implements the get sensor thresholds command 545 * @param sensorNum - sensor number 546 * 547 * @returns IPMI completion code plus response data 548 * - validMask - threshold mask 549 * - lower non-critical threshold - IPMI messaging state 550 * - lower critical threshold - link authentication state 551 * - lower non-recoverable threshold - callback state 552 * - upper non-critical threshold 553 * - upper critical 554 * - upper non-recoverable 555 */ 556 ipmi::RspType<uint8_t, // validMask 557 uint8_t, // lowerNonCritical 558 uint8_t, // lowerCritical 559 uint8_t, // lowerNonRecoverable 560 uint8_t, // upperNonCritical 561 uint8_t, // upperCritical 562 uint8_t // upperNonRecoverable 563 > 564 ipmiSensorGetSensorThresholds(uint8_t sensorNum) 565 { 566 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 567 568 const auto iter = ipmi::sensor::sensors.find(sensorNum); 569 if (iter == ipmi::sensor::sensors.end()) 570 { 571 return ipmi::responseSensorInvalid(); 572 } 573 574 const auto info = iter->second; 575 576 // Proceed only if the sensor value interface is implemented. 577 if (info.propertyInterfaces.find(valueInterface) == 578 info.propertyInterfaces.end()) 579 { 580 // return with valid mask as 0 581 return ipmi::responseSuccess(); 582 } 583 584 get_sdr::GetSensorThresholdsResponse resp{}; 585 try 586 { 587 resp = getSensorThresholds(sensorNum); 588 } 589 catch (std::exception& e) 590 { 591 // Mask if the property is not present 592 } 593 594 return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical, 595 resp.lowerCritical, resp.lowerNonRecoverable, 596 resp.upperNonCritical, resp.upperCritical, 597 resp.upperNonRecoverable); 598 } 599 600 /** @brief implements the get SDR Info command 601 * @param count - Operation 602 * 603 * @returns IPMI completion code plus response data 604 * - sdrCount - sensor/SDR count 605 * - lunsAndDynamicPopulation - static/Dynamic sensor population flag 606 */ 607 ipmi::RspType<uint8_t, // respcount 608 uint8_t // dynamic population flags 609 > 610 ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count) 611 { 612 uint8_t sdrCount; 613 // multiple LUNs not supported. 614 constexpr uint8_t lunsAndDynamicPopulation = 1; 615 constexpr uint8_t getSdrCount = 0x01; 616 constexpr uint8_t getSensorCount = 0x00; 617 618 if (count.value_or(0) == getSdrCount) 619 { 620 // Get SDR count. This returns the total number of SDRs in the device. 621 const auto& entityRecords = 622 ipmi::sensor::EntityInfoMapContainer::getContainer() 623 ->getIpmiEntityRecords(); 624 sdrCount = 625 ipmi::sensor::sensors.size() + frus.size() + entityRecords.size(); 626 } 627 else if (count.value_or(0) == getSensorCount) 628 { 629 // Get Sensor count. This returns the number of sensors 630 sdrCount = ipmi::sensor::sensors.size(); 631 } 632 else 633 { 634 return ipmi::responseInvalidCommandOnLun(); 635 } 636 637 return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation); 638 } 639 640 /** @brief implements the reserve SDR command 641 * @returns IPMI completion code plus response data 642 * - reservationID - reservation ID 643 */ 644 ipmi::RspType<uint16_t> ipmiSensorReserveSdr() 645 { 646 // A constant reservation ID is okay until we implement add/remove SDR. 647 constexpr uint16_t reservationID = 1; 648 649 return ipmi::responseSuccess(reservationID); 650 } 651 652 void setUnitFieldsForObject(const ipmi::sensor::Info* info, 653 get_sdr::SensorDataFullRecordBody* body) 654 { 655 namespace server = sdbusplus::xyz::openbmc_project::Sensor::server; 656 try 657 { 658 auto unit = server::Value::convertUnitFromString(info->unit); 659 // Unit strings defined in 660 // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml 661 switch (unit) 662 { 663 case server::Value::Unit::DegreesC: 664 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; 665 break; 666 case server::Value::Unit::RPMS: 667 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM; 668 break; 669 case server::Value::Unit::Volts: 670 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; 671 break; 672 case server::Value::Unit::Meters: 673 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; 674 break; 675 case server::Value::Unit::Amperes: 676 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; 677 break; 678 case server::Value::Unit::Joules: 679 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; 680 break; 681 case server::Value::Unit::Watts: 682 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; 683 break; 684 default: 685 // Cannot be hit. 686 std::fprintf(stderr, "Unknown value unit type: = %s\n", 687 info->unit.c_str()); 688 } 689 } 690 catch (const sdbusplus::exception::InvalidEnumString& e) 691 { 692 log<level::WARNING>("Warning: no unit provided for sensor!"); 693 } 694 } 695 696 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, 697 const ipmi::sensor::Info* info, 698 ipmi_data_len_t data_len) 699 { 700 /* Functional sensor case */ 701 if (isAnalogSensor(info->propertyInterfaces.begin()->first)) 702 { 703 704 body->sensor_units_1 = 0; // unsigned, no rate, no modifier, not a % 705 706 /* Unit info */ 707 setUnitFieldsForObject(info, body); 708 709 get_sdr::body::set_b(info->coefficientB, body); 710 get_sdr::body::set_m(info->coefficientM, body); 711 get_sdr::body::set_b_exp(info->exponentB, body); 712 get_sdr::body::set_r_exp(info->exponentR, body); 713 714 get_sdr::body::set_id_type(0b00, body); // 00 = unicode 715 } 716 717 /* ID string */ 718 auto id_string = info->sensorName; 719 720 if (id_string.empty()) 721 { 722 id_string = info->sensorNameFunc(*info); 723 } 724 725 if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) 726 { 727 get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); 728 } 729 else 730 { 731 get_sdr::body::set_id_strlen(id_string.length(), body); 732 } 733 strncpy(body->id_string, id_string.c_str(), 734 get_sdr::body::get_id_strlen(body)); 735 736 return IPMI_CC_OK; 737 }; 738 739 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, 740 ipmi_data_len_t data_len) 741 { 742 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 743 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 744 get_sdr::SensorDataFruRecord record{}; 745 auto dataLength = 0; 746 747 auto fru = frus.begin(); 748 uint8_t fruID{}; 749 auto recordID = get_sdr::request::get_record_id(req); 750 751 fruID = recordID - FRU_RECORD_ID_START; 752 fru = frus.find(fruID); 753 if (fru == frus.end()) 754 { 755 return IPMI_CC_SENSOR_INVALID; 756 } 757 758 /* Header */ 759 get_sdr::header::set_record_id(recordID, &(record.header)); 760 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 761 record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; 762 record.header.record_length = sizeof(record.key) + sizeof(record.body); 763 764 /* Key */ 765 record.key.fruID = fruID; 766 record.key.accessLun |= IPMI_LOGICAL_FRU; 767 record.key.deviceAddress = BMCSlaveAddress; 768 769 /* Body */ 770 record.body.entityID = fru->second[0].entityID; 771 record.body.entityInstance = fru->second[0].entityInstance; 772 record.body.deviceType = fruInventoryDevice; 773 record.body.deviceTypeModifier = IPMIFruInventory; 774 775 /* Device ID string */ 776 auto deviceID = 777 fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, 778 fru->second[0].path.length()); 779 780 if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) 781 { 782 get_sdr::body::set_device_id_strlen( 783 get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); 784 } 785 else 786 { 787 get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); 788 } 789 790 strncpy(record.body.deviceID, deviceID.c_str(), 791 get_sdr::body::get_device_id_strlen(&(record.body))); 792 793 if (++fru == frus.end()) 794 { 795 // we have reached till end of fru, so assign the next record id to 796 // 512(Max fru ID = 511) + Entity Record ID(may start with 0). 797 const auto& entityRecords = 798 ipmi::sensor::EntityInfoMapContainer::getContainer() 799 ->getIpmiEntityRecords(); 800 auto next_record_id = 801 (entityRecords.size()) 802 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START 803 : END_OF_RECORD; 804 get_sdr::response::set_next_record_id(next_record_id, resp); 805 } 806 else 807 { 808 get_sdr::response::set_next_record_id( 809 (FRU_RECORD_ID_START + fru->first), resp); 810 } 811 812 // Check for invalid offset size 813 if (req->offset > sizeof(record)) 814 { 815 return IPMI_CC_PARM_OUT_OF_RANGE; 816 } 817 818 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 819 sizeof(record) - req->offset); 820 821 std::memcpy(resp->record_data, 822 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 823 824 *data_len = dataLength; 825 *data_len += 2; // additional 2 bytes for next record ID 826 827 return IPMI_CC_OK; 828 } 829 830 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response, 831 ipmi_data_len_t data_len) 832 { 833 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 834 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 835 get_sdr::SensorDataEntityRecord record{}; 836 auto dataLength = 0; 837 838 const auto& entityRecords = 839 ipmi::sensor::EntityInfoMapContainer::getContainer() 840 ->getIpmiEntityRecords(); 841 auto entity = entityRecords.begin(); 842 uint8_t entityRecordID; 843 auto recordID = get_sdr::request::get_record_id(req); 844 845 entityRecordID = recordID - ENTITY_RECORD_ID_START; 846 entity = entityRecords.find(entityRecordID); 847 if (entity == entityRecords.end()) 848 { 849 return IPMI_CC_SENSOR_INVALID; 850 } 851 852 /* Header */ 853 get_sdr::header::set_record_id(recordID, &(record.header)); 854 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 855 record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD; 856 record.header.record_length = sizeof(record.key) + sizeof(record.body); 857 858 /* Key */ 859 record.key.containerEntityId = entity->second.containerEntityId; 860 record.key.containerEntityInstance = entity->second.containerEntityInstance; 861 get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked, 862 &(record.key)); 863 record.key.entityId1 = entity->second.containedEntities[0].first; 864 record.key.entityInstance1 = entity->second.containedEntities[0].second; 865 866 /* Body */ 867 record.body.entityId2 = entity->second.containedEntities[1].first; 868 record.body.entityInstance2 = entity->second.containedEntities[1].second; 869 record.body.entityId3 = entity->second.containedEntities[2].first; 870 record.body.entityInstance3 = entity->second.containedEntities[2].second; 871 record.body.entityId4 = entity->second.containedEntities[3].first; 872 record.body.entityInstance4 = entity->second.containedEntities[3].second; 873 874 if (++entity == entityRecords.end()) 875 { 876 get_sdr::response::set_next_record_id(END_OF_RECORD, 877 resp); // last record 878 } 879 else 880 { 881 get_sdr::response::set_next_record_id( 882 (ENTITY_RECORD_ID_START + entity->first), resp); 883 } 884 885 // Check for invalid offset size 886 if (req->offset > sizeof(record)) 887 { 888 return IPMI_CC_PARM_OUT_OF_RANGE; 889 } 890 891 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 892 sizeof(record) - req->offset); 893 894 std::memcpy(resp->record_data, 895 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 896 897 *data_len = dataLength; 898 *data_len += 2; // additional 2 bytes for next record ID 899 900 return IPMI_CC_OK; 901 } 902 903 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t netfn, ipmi_cmd_t cmd, 904 ipmi_request_t request, ipmi_response_t response, 905 ipmi_data_len_t data_len, ipmi_context_t context) 906 { 907 ipmi_ret_t ret = IPMI_CC_OK; 908 get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; 909 get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; 910 get_sdr::SensorDataFullRecord record = {0}; 911 912 // Note: we use an iterator so we can provide the next ID at the end of 913 // the call. 914 auto sensor = ipmi::sensor::sensors.begin(); 915 auto recordID = get_sdr::request::get_record_id(req); 916 917 // At the beginning of a scan, the host side will send us id=0. 918 if (recordID != 0) 919 { 920 // recordID 0 to 255 means it is a FULL record. 921 // recordID 256 to 511 means it is a FRU record. 922 // recordID greater then 511 means it is a Entity Association 923 // record. Currently we are supporting three record types: FULL 924 // record, FRU record and Enttiy Association record. 925 if (recordID >= ENTITY_RECORD_ID_START) 926 { 927 return ipmi_entity_get_sdr(request, response, data_len); 928 } 929 else if (recordID >= FRU_RECORD_ID_START && 930 recordID < ENTITY_RECORD_ID_START) 931 { 932 return ipmi_fru_get_sdr(request, response, data_len); 933 } 934 else 935 { 936 sensor = ipmi::sensor::sensors.find(recordID); 937 if (sensor == ipmi::sensor::sensors.end()) 938 { 939 return IPMI_CC_SENSOR_INVALID; 940 } 941 } 942 } 943 944 uint8_t sensor_id = sensor->first; 945 946 /* Header */ 947 get_sdr::header::set_record_id(sensor_id, &(record.header)); 948 record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 949 record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; 950 record.header.record_length = sizeof(get_sdr::SensorDataFullRecord); 951 952 /* Key */ 953 get_sdr::key::set_owner_id_bmc(&(record.key)); 954 record.key.sensor_number = sensor_id; 955 956 /* Body */ 957 record.body.entity_id = sensor->second.entityType; 958 record.body.sensor_type = sensor->second.sensorType; 959 record.body.event_reading_type = sensor->second.sensorReadingType; 960 record.body.entity_instance = sensor->second.instance; 961 if (ipmi::sensor::Mutability::Write == 962 (sensor->second.mutability & ipmi::sensor::Mutability::Write)) 963 { 964 get_sdr::body::init_settable_state(true, &(record.body)); 965 } 966 967 // Set the type-specific details given the DBus interface 968 ret = 969 populate_record_from_dbus(&(record.body), &(sensor->second), data_len); 970 971 if (++sensor == ipmi::sensor::sensors.end()) 972 { 973 // we have reached till end of sensor, so assign the next record id 974 // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). 975 auto next_record_id = (frus.size()) 976 ? frus.begin()->first + FRU_RECORD_ID_START 977 : END_OF_RECORD; 978 979 get_sdr::response::set_next_record_id(next_record_id, resp); 980 } 981 else 982 { 983 get_sdr::response::set_next_record_id(sensor->first, resp); 984 } 985 986 if (req->offset > sizeof(record)) 987 { 988 return IPMI_CC_PARM_OUT_OF_RANGE; 989 } 990 991 // data_len will ultimately be the size of the record, plus 992 // the size of the next record ID: 993 *data_len = std::min(static_cast<size_t>(req->bytes_to_read), 994 sizeof(record) - req->offset); 995 996 std::memcpy(resp->record_data, 997 reinterpret_cast<uint8_t*>(&record) + req->offset, *data_len); 998 999 // data_len should include the LSB and MSB: 1000 *data_len += 1001 sizeof(resp->next_record_id_lsb) + sizeof(resp->next_record_id_msb); 1002 1003 return ret; 1004 } 1005 1006 static bool isFromSystemChannel() 1007 { 1008 // TODO we could not figure out where the request is from based on IPMI 1009 // command handler parameters. because of it, we can not differentiate 1010 // request from SMS/SMM or IPMB channel 1011 return true; 1012 } 1013 1014 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t netfn, ipmi_cmd_t cmd, 1015 ipmi_request_t request, 1016 ipmi_response_t response, 1017 ipmi_data_len_t dataLen, ipmi_context_t context) 1018 { 1019 uint16_t generatorID; 1020 size_t count; 1021 bool assert = true; 1022 std::string sensorPath; 1023 size_t paraLen = *dataLen; 1024 PlatformEventRequest* req; 1025 *dataLen = 0; 1026 1027 if ((paraLen < selSystemEventSizeWith1Bytes) || 1028 (paraLen > selSystemEventSizeWith3Bytes)) 1029 { 1030 return IPMI_CC_REQ_DATA_LEN_INVALID; 1031 } 1032 1033 if (isFromSystemChannel()) 1034 { // first byte for SYSTEM Interface is Generator ID 1035 // +1 to get common struct 1036 req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1); 1037 // Capture the generator ID 1038 generatorID = *reinterpret_cast<uint8_t*>(request); 1039 // Platform Event usually comes from other firmware, like BIOS. 1040 // Unlike BMC sensor, it does not have BMC DBUS sensor path. 1041 sensorPath = "System"; 1042 } 1043 else 1044 { 1045 req = reinterpret_cast<PlatformEventRequest*>(request); 1046 // TODO GenratorID for IPMB is combination of RqSA and RqLUN 1047 generatorID = 0xff; 1048 sensorPath = "IPMB"; 1049 } 1050 // Content of event data field depends on sensor class. 1051 // When data0 bit[5:4] is non-zero, valid data counts is 3. 1052 // When data0 bit[7:6] is non-zero, valid data counts is 2. 1053 if (((req->data[0] & byte3EnableMask) != 0 && 1054 paraLen < selSystemEventSizeWith3Bytes) || 1055 ((req->data[0] & byte2EnableMask) != 0 && 1056 paraLen < selSystemEventSizeWith2Bytes)) 1057 { 1058 return IPMI_CC_REQ_DATA_LEN_INVALID; 1059 } 1060 1061 // Count bytes of Event Data 1062 if ((req->data[0] & byte3EnableMask) != 0) 1063 { 1064 count = 3; 1065 } 1066 else if ((req->data[0] & byte2EnableMask) != 0) 1067 { 1068 count = 2; 1069 } 1070 else 1071 { 1072 count = 1; 1073 } 1074 assert = req->eventDirectionType & directionMask ? false : true; 1075 std::vector<uint8_t> eventData(req->data, req->data + count); 1076 1077 sdbusplus::bus::bus dbus(bus); 1078 std::string service = 1079 ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath); 1080 sdbusplus::message::message writeSEL = dbus.new_method_call( 1081 service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd"); 1082 writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert, 1083 generatorID); 1084 try 1085 { 1086 dbus.call(writeSEL); 1087 } 1088 catch (sdbusplus::exception_t& e) 1089 { 1090 phosphor::logging::log<phosphor::logging::level::ERR>(e.what()); 1091 return IPMI_CC_UNSPECIFIED_ERROR; 1092 } 1093 return IPMI_CC_OK; 1094 } 1095 1096 void register_netfn_sen_functions() 1097 { 1098 // <Platform Event Message> 1099 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr, 1100 ipmicmdPlatformEvent, PRIVILEGE_OPERATOR); 1101 1102 // <Get Sensor Type> 1103 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1104 ipmi::sensor_event::cmdGetSensorType, 1105 ipmi::Privilege::User, ipmiGetSensorType); 1106 1107 // <Set Sensor Reading and Event Status> 1108 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1109 ipmi::sensor_event::cmdSetSensorReadingAndEvtSts, 1110 ipmi::Privilege::Operator, ipmiSetSensorReading); 1111 // <Get Sensor Reading> 1112 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1113 ipmi::sensor_event::cmdGetSensorReading, 1114 ipmi::Privilege::User, ipmiSensorGetSensorReading); 1115 1116 // <Reserve Device SDR Repository> 1117 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1118 ipmi::sensor_event::cmdReserveDeviceSdrRepository, 1119 ipmi::Privilege::User, ipmiSensorReserveSdr); 1120 1121 // <Get Device SDR Info> 1122 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1123 ipmi::sensor_event::cmdGetDeviceSdrInfo, 1124 ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo); 1125 1126 // <Get Device SDR> 1127 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, 1128 ipmi_sen_get_sdr, PRIVILEGE_USER); 1129 1130 // <Get Sensor Thresholds> 1131 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1132 ipmi::sensor_event::cmdGetSensorThreshold, 1133 ipmi::Privilege::User, ipmiSensorGetSensorThresholds); 1134 1135 return; 1136 } 1137