1 #include "config.h" 2 3 #include "sensorhandler.hpp" 4 5 #include "entity_map_json.hpp" 6 #include "fruread.hpp" 7 8 #include <mapper.h> 9 #include <systemd/sd-bus.h> 10 11 #include <bitset> 12 #include <cmath> 13 #include <cstring> 14 #include <ipmid/api.hpp> 15 #include <ipmid/types.hpp> 16 #include <ipmid/utils.hpp> 17 #include <phosphor-logging/elog-errors.hpp> 18 #include <phosphor-logging/log.hpp> 19 #include <sdbusplus/message/types.hpp> 20 #include <set> 21 #include <xyz/openbmc_project/Common/error.hpp> 22 #include <xyz/openbmc_project/Sensor/Value/server.hpp> 23 24 static constexpr uint8_t fruInventoryDevice = 0x10; 25 static constexpr uint8_t IPMIFruInventory = 0x02; 26 static constexpr uint8_t BMCSlaveAddress = 0x20; 27 28 extern int updateSensorRecordFromSSRAESC(const void*); 29 extern sd_bus* bus; 30 31 namespace ipmi 32 { 33 namespace sensor 34 { 35 extern const IdInfoMap sensors; 36 } // namespace sensor 37 } // namespace ipmi 38 39 extern const FruMap frus; 40 41 using namespace phosphor::logging; 42 using InternalFailure = 43 sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure; 44 45 void register_netfn_sen_functions() __attribute__((constructor)); 46 47 struct sensorTypemap_t 48 { 49 uint8_t number; 50 uint8_t typecode; 51 char dbusname[32]; 52 }; 53 54 sensorTypemap_t g_SensorTypeMap[] = { 55 56 {0x01, 0x6F, "Temp"}, 57 {0x0C, 0x6F, "DIMM"}, 58 {0x0C, 0x6F, "MEMORY_BUFFER"}, 59 {0x07, 0x6F, "PROC"}, 60 {0x07, 0x6F, "CORE"}, 61 {0x07, 0x6F, "CPU"}, 62 {0x0F, 0x6F, "BootProgress"}, 63 {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor 64 // type code os 0x09 65 {0xC3, 0x6F, "BootCount"}, 66 {0x1F, 0x6F, "OperatingSystemStatus"}, 67 {0x12, 0x6F, "SYSTEM_EVENT"}, 68 {0xC7, 0x03, "SYSTEM"}, 69 {0xC7, 0x03, "MAIN_PLANAR"}, 70 {0xC2, 0x6F, "PowerCap"}, 71 {0x0b, 0xCA, "PowerSupplyRedundancy"}, 72 {0xDA, 0x03, "TurboAllowed"}, 73 {0xD8, 0xC8, "PowerSupplyDerating"}, 74 {0xFF, 0x00, ""}, 75 }; 76 77 struct sensor_data_t 78 { 79 uint8_t sennum; 80 } __attribute__((packed)); 81 82 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>; 83 SDRCacheMap sdrCacheMap __attribute__((init_priority(101))); 84 85 using SensorThresholdMap = 86 std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>; 87 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101))); 88 89 #ifdef FEATURE_SENSORS_CACHE 90 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches 91 __attribute__((init_priority(101))); 92 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches 93 __attribute__((init_priority(101))); 94 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches 95 __attribute__((init_priority(101))); 96 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch 97 __attribute__((init_priority(101))); 98 99 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101))); 100 101 // It is needed to know which objects belong to which service, so that when a 102 // service exits without interfacesRemoved signal, we could invaildate the cache 103 // that is related to the service. It uses below two variables: 104 // - idToServiceMap records which sensors are known to have a related service; 105 // - serviceToIdMap maps a service to the sensors. 106 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>; 107 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101))); 108 109 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>; 110 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101))); 111 112 static void fillSensorIdServiceMap(const std::string&, 113 const std::string& /*intf*/, uint8_t id, 114 const std::string& service) 115 { 116 if (idToServiceMap.find(id) != idToServiceMap.end()) 117 { 118 return; 119 } 120 idToServiceMap[id] = service; 121 serviceToIdMap[service].insert(id); 122 } 123 124 static void fillSensorIdServiceMap(const std::string& obj, 125 const std::string& intf, uint8_t id) 126 { 127 if (idToServiceMap.find(id) != idToServiceMap.end()) 128 { 129 return; 130 } 131 try 132 { 133 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 134 auto service = ipmi::getService(bus, intf, obj); 135 idToServiceMap[id] = service; 136 serviceToIdMap[service].insert(id); 137 } 138 catch (...) 139 { 140 // Ignore 141 } 142 } 143 144 void initSensorMatches() 145 { 146 using namespace sdbusplus::bus::match::rules; 147 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 148 for (const auto& s : ipmi::sensor::sensors) 149 { 150 sensorAddedMatches.emplace( 151 s.first, 152 std::make_unique<sdbusplus::bus::match_t>( 153 bus, interfacesAdded() + argNpath(0, s.second.sensorPath), 154 [id = s.first, obj = s.second.sensorPath, 155 intf = s.second.propertyInterfaces.begin()->first]( 156 auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); })); 157 sensorRemovedMatches.emplace( 158 s.first, 159 std::make_unique<sdbusplus::bus::match_t>( 160 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath), 161 [id = s.first](auto& /*msg*/) { 162 // Ideally this should work. 163 // But when a service is terminated or crashed, it does not 164 // emit interfacesRemoved signal. In that case it's handled 165 // by sensorsOwnerMatch 166 sensorCacheMap[id].reset(); 167 })); 168 sensorUpdatedMatches.emplace( 169 s.first, std::make_unique<sdbusplus::bus::match_t>( 170 bus, 171 type::signal() + path(s.second.sensorPath) + 172 member("PropertiesChanged"s) + 173 interface("org.freedesktop.DBus.Properties"s), 174 [&s](auto& msg) { 175 fillSensorIdServiceMap( 176 s.second.sensorPath, 177 s.second.propertyInterfaces.begin()->first, 178 s.first); 179 try 180 { 181 // This is signal callback 182 std::string interfaceName; 183 msg.read(interfaceName); 184 ipmi::PropertyMap props; 185 msg.read(props); 186 s.second.getFunc(s.first, s.second, props); 187 } 188 catch (const std::exception& e) 189 { 190 sensorCacheMap[s.first].reset(); 191 } 192 })); 193 } 194 sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>( 195 bus, nameOwnerChanged(), [](auto& msg) { 196 std::string name; 197 std::string oldOwner; 198 std::string newOwner; 199 msg.read(name, oldOwner, newOwner); 200 201 if (!name.empty() && newOwner.empty()) 202 { 203 // The service exits 204 const auto it = serviceToIdMap.find(name); 205 if (it == serviceToIdMap.end()) 206 { 207 return; 208 } 209 for (const auto& id : it->second) 210 { 211 // Invalidate cache 212 sensorCacheMap[id].reset(); 213 } 214 } 215 }); 216 } 217 #endif 218 219 int get_bus_for_path(const char* path, char** busname) 220 { 221 return mapper_get_service(bus, path, busname); 222 } 223 224 // Use a lookup table to find the interface name of a specific sensor 225 // This will be used until an alternative is found. this is the first 226 // step for mapping IPMI 227 int find_openbmc_path(uint8_t num, dbus_interface_t* interface) 228 { 229 int rc; 230 231 const auto& sensor_it = ipmi::sensor::sensors.find(num); 232 if (sensor_it == ipmi::sensor::sensors.end()) 233 { 234 // The sensor map does not contain the sensor requested 235 return -EINVAL; 236 } 237 238 const auto& info = sensor_it->second; 239 240 char* busname = nullptr; 241 rc = get_bus_for_path(info.sensorPath.c_str(), &busname); 242 if (rc < 0) 243 { 244 std::fprintf(stderr, "Failed to get %s busname: %s\n", 245 info.sensorPath.c_str(), busname); 246 goto final; 247 } 248 249 interface->sensortype = info.sensorType; 250 strcpy(interface->bus, busname); 251 strcpy(interface->path, info.sensorPath.c_str()); 252 // Take the interface name from the beginning of the DbusInterfaceMap. This 253 // works for the Value interface but may not suffice for more complex 254 // sensors. 255 // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 256 strcpy(interface->interface, 257 info.propertyInterfaces.begin()->first.c_str()); 258 interface->sensornumber = num; 259 260 final: 261 free(busname); 262 return rc; 263 } 264 265 ///////////////////////////////////////////////////////////////////// 266 // 267 // Routines used by ipmi commands wanting to interact on the dbus 268 // 269 ///////////////////////////////////////////////////////////////////// 270 int set_sensor_dbus_state_s(uint8_t number, const char* method, 271 const char* value) 272 { 273 274 dbus_interface_t a; 275 int r; 276 sd_bus_error error = SD_BUS_ERROR_NULL; 277 sd_bus_message* m = NULL; 278 279 r = find_openbmc_path(number, &a); 280 281 if (r < 0) 282 { 283 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 284 return 0; 285 } 286 287 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 288 method); 289 if (r < 0) 290 { 291 std::fprintf(stderr, "Failed to create a method call: %s", 292 strerror(-r)); 293 goto final; 294 } 295 296 r = sd_bus_message_append(m, "v", "s", value); 297 if (r < 0) 298 { 299 std::fprintf(stderr, "Failed to create a input parameter: %s", 300 strerror(-r)); 301 goto final; 302 } 303 304 r = sd_bus_call(bus, m, 0, &error, NULL); 305 if (r < 0) 306 { 307 std::fprintf(stderr, "Failed to call the method: %s", strerror(-r)); 308 } 309 310 final: 311 sd_bus_error_free(&error); 312 m = sd_bus_message_unref(m); 313 314 return 0; 315 } 316 int set_sensor_dbus_state_y(uint8_t number, const char* method, 317 const uint8_t value) 318 { 319 320 dbus_interface_t a; 321 int r; 322 sd_bus_error error = SD_BUS_ERROR_NULL; 323 sd_bus_message* m = NULL; 324 325 r = find_openbmc_path(number, &a); 326 327 if (r < 0) 328 { 329 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 330 return 0; 331 } 332 333 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 334 method); 335 if (r < 0) 336 { 337 std::fprintf(stderr, "Failed to create a method call: %s", 338 strerror(-r)); 339 goto final; 340 } 341 342 r = sd_bus_message_append(m, "v", "i", value); 343 if (r < 0) 344 { 345 std::fprintf(stderr, "Failed to create a input parameter: %s", 346 strerror(-r)); 347 goto final; 348 } 349 350 r = sd_bus_call(bus, m, 0, &error, NULL); 351 if (r < 0) 352 { 353 std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); 354 } 355 356 final: 357 sd_bus_error_free(&error); 358 m = sd_bus_message_unref(m); 359 360 return 0; 361 } 362 363 uint8_t dbus_to_sensor_type(char* p) 364 { 365 366 sensorTypemap_t* s = g_SensorTypeMap; 367 char r = 0; 368 while (s->number != 0xFF) 369 { 370 if (!strcmp(s->dbusname, p)) 371 { 372 r = s->typecode; 373 break; 374 } 375 s++; 376 } 377 378 if (s->number == 0xFF) 379 printf("Failed to find Sensor Type %s\n", p); 380 381 return r; 382 } 383 384 uint8_t get_type_from_interface(dbus_interface_t dbus_if) 385 { 386 387 uint8_t type; 388 389 // This is where sensors that do not exist in dbus but do 390 // exist in the host code stop. This should indicate it 391 // is not a supported sensor 392 if (dbus_if.interface[0] == 0) 393 { 394 return 0; 395 } 396 397 // Fetch type from interface itself. 398 if (dbus_if.sensortype != 0) 399 { 400 type = dbus_if.sensortype; 401 } 402 else 403 { 404 // Non InventoryItems 405 char* p = strrchr(dbus_if.path, '/'); 406 type = dbus_to_sensor_type(p + 1); 407 } 408 409 return type; 410 } 411 412 // Replaces find_sensor 413 uint8_t find_type_for_sensor_number(uint8_t num) 414 { 415 int r; 416 dbus_interface_t dbus_if; 417 r = find_openbmc_path(num, &dbus_if); 418 if (r < 0) 419 { 420 std::fprintf(stderr, "Could not find sensor %d\n", num); 421 return 0; 422 } 423 return get_type_from_interface(dbus_if); 424 } 425 426 /** 427 * @brief implements the get sensor type command. 428 * @param - sensorNumber 429 * 430 * @return IPMI completion code plus response data on success. 431 * - sensorType 432 * - eventType 433 **/ 434 435 ipmi::RspType<uint8_t, // sensorType 436 uint8_t // eventType 437 > 438 ipmiGetSensorType(uint8_t sensorNumber) 439 { 440 uint8_t sensorType = find_type_for_sensor_number(sensorNumber); 441 442 if (sensorType == 0) 443 { 444 return ipmi::responseSensorInvalid(); 445 } 446 447 constexpr uint8_t eventType = 0x6F; 448 return ipmi::responseSuccess(sensorType, eventType); 449 } 450 451 const std::set<std::string> analogSensorInterfaces = { 452 "xyz.openbmc_project.Sensor.Value", 453 "xyz.openbmc_project.Control.FanPwm", 454 }; 455 456 bool isAnalogSensor(const std::string& interface) 457 { 458 return (analogSensorInterfaces.count(interface)); 459 } 460 461 /** 462 @brief This command is used to set sensorReading. 463 464 @param 465 - sensorNumber 466 - operation 467 - reading 468 - assertOffset0_7 469 - assertOffset8_14 470 - deassertOffset0_7 471 - deassertOffset8_14 472 - eventData1 473 - eventData2 474 - eventData3 475 476 @return completion code on success. 477 **/ 478 479 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation, 480 uint8_t reading, uint8_t assertOffset0_7, 481 uint8_t assertOffset8_14, 482 uint8_t deassertOffset0_7, 483 uint8_t deassertOffset8_14, 484 uint8_t eventData1, uint8_t eventData2, 485 uint8_t eventData3) 486 { 487 log<level::DEBUG>("IPMI SET_SENSOR", 488 entry("SENSOR_NUM=0x%02x", sensorNumber)); 489 490 if (sensorNumber == 0xFF) 491 { 492 return ipmi::responseInvalidFieldRequest(); 493 } 494 ipmi::sensor::SetSensorReadingReq cmdData; 495 496 cmdData.number = sensorNumber; 497 cmdData.operation = operation; 498 cmdData.reading = reading; 499 cmdData.assertOffset0_7 = assertOffset0_7; 500 cmdData.assertOffset8_14 = assertOffset8_14; 501 cmdData.deassertOffset0_7 = deassertOffset0_7; 502 cmdData.deassertOffset8_14 = deassertOffset8_14; 503 cmdData.eventData1 = eventData1; 504 cmdData.eventData2 = eventData2; 505 cmdData.eventData3 = eventData3; 506 507 // Check if the Sensor Number is present 508 const auto iter = ipmi::sensor::sensors.find(sensorNumber); 509 if (iter == ipmi::sensor::sensors.end()) 510 { 511 updateSensorRecordFromSSRAESC(&sensorNumber); 512 return ipmi::responseSuccess(); 513 } 514 515 try 516 { 517 if (ipmi::sensor::Mutability::Write != 518 (iter->second.mutability & ipmi::sensor::Mutability::Write)) 519 { 520 log<level::ERR>("Sensor Set operation is not allowed", 521 entry("SENSOR_NUM=%d", sensorNumber)); 522 return ipmi::responseIllegalCommand(); 523 } 524 auto ipmiRC = iter->second.updateFunc(cmdData, iter->second); 525 return ipmi::response(ipmiRC); 526 } 527 catch (const InternalFailure& e) 528 { 529 log<level::ERR>("Set sensor failed", 530 entry("SENSOR_NUM=%d", sensorNumber)); 531 commit<InternalFailure>(); 532 return ipmi::responseUnspecifiedError(); 533 } 534 catch (const std::runtime_error& e) 535 { 536 log<level::ERR>(e.what()); 537 return ipmi::responseUnspecifiedError(); 538 } 539 } 540 541 /** @brief implements the get sensor reading command 542 * @param sensorNum - sensor number 543 * 544 * @returns IPMI completion code plus response data 545 * - senReading - sensor reading 546 * - reserved 547 * - readState - sensor reading state enabled 548 * - senScanState - sensor scan state disabled 549 * - allEventMessageState - all Event message state disabled 550 * - assertionStatesLsb - threshold levels states 551 * - assertionStatesMsb - discrete reading sensor states 552 */ 553 ipmi::RspType<uint8_t, // sensor reading 554 555 uint5_t, // reserved 556 bool, // reading state 557 bool, // 0 = sensor scanning state disabled 558 bool, // 0 = all event messages disabled 559 560 uint8_t, // threshold levels states 561 uint8_t // discrete reading sensor states 562 > 563 ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx, 564 uint8_t sensorNum) 565 { 566 if (sensorNum == 0xFF) 567 { 568 return ipmi::responseInvalidFieldRequest(); 569 } 570 571 const auto iter = ipmi::sensor::sensors.find(sensorNum); 572 if (iter == ipmi::sensor::sensors.end()) 573 { 574 return ipmi::responseSensorInvalid(); 575 } 576 if (ipmi::sensor::Mutability::Read != 577 (iter->second.mutability & ipmi::sensor::Mutability::Read)) 578 { 579 return ipmi::responseIllegalCommand(); 580 } 581 582 try 583 { 584 #ifdef FEATURE_SENSORS_CACHE 585 auto& sensorData = sensorCacheMap[sensorNum]; 586 if (!sensorData.has_value()) 587 { 588 // No cached value, try read it 589 std::string service; 590 boost::system::error_code ec; 591 const auto& sensorInfo = iter->second; 592 ec = ipmi::getService(ctx, sensorInfo.sensorInterface, 593 sensorInfo.sensorPath, service); 594 if (ec) 595 { 596 return ipmi::responseUnspecifiedError(); 597 } 598 fillSensorIdServiceMap(sensorInfo.sensorPath, 599 sensorInfo.propertyInterfaces.begin()->first, 600 iter->first, service); 601 602 ipmi::PropertyMap props; 603 ec = ipmi::getAllDbusProperties( 604 ctx, service, sensorInfo.sensorPath, 605 sensorInfo.propertyInterfaces.begin()->first, props); 606 if (ec) 607 { 608 fprintf(stderr, "Failed to get sensor %s, %d: %s\n", 609 sensorInfo.sensorPath.c_str(), ec.value(), 610 ec.message().c_str()); 611 // Intitilizing with default values 612 constexpr uint8_t senReading = 0; 613 constexpr uint5_t reserved{0}; 614 constexpr bool readState = true; 615 constexpr bool senScanState = false; 616 constexpr bool allEventMessageState = false; 617 constexpr uint8_t assertionStatesLsb = 0; 618 constexpr uint8_t assertionStatesMsb = 0; 619 620 return ipmi::responseSuccess(senReading, reserved, readState, 621 senScanState, allEventMessageState, 622 assertionStatesLsb, 623 assertionStatesMsb); 624 } 625 sensorInfo.getFunc(sensorNum, sensorInfo, props); 626 } 627 return ipmi::responseSuccess( 628 sensorData->response.reading, uint5_t(0), 629 sensorData->response.readingOrStateUnavailable, 630 sensorData->response.scanningEnabled, 631 sensorData->response.allEventMessagesEnabled, 632 sensorData->response.thresholdLevelsStates, 633 sensorData->response.discreteReadingSensorStates); 634 635 #else 636 ipmi::sensor::GetSensorResponse getResponse = 637 iter->second.getFunc(iter->second); 638 639 return ipmi::responseSuccess(getResponse.reading, uint5_t(0), 640 getResponse.readingOrStateUnavailable, 641 getResponse.scanningEnabled, 642 getResponse.allEventMessagesEnabled, 643 getResponse.thresholdLevelsStates, 644 getResponse.discreteReadingSensorStates); 645 #endif 646 } 647 #ifdef UPDATE_FUNCTIONAL_ON_FAIL 648 catch (const SensorFunctionalError& e) 649 { 650 return ipmi::responseResponseError(); 651 } 652 #endif 653 catch (const std::exception& e) 654 { 655 // Intitilizing with default values 656 constexpr uint8_t senReading = 0; 657 constexpr uint5_t reserved{0}; 658 constexpr bool readState = true; 659 constexpr bool senScanState = false; 660 constexpr bool allEventMessageState = false; 661 constexpr uint8_t assertionStatesLsb = 0; 662 constexpr uint8_t assertionStatesMsb = 0; 663 664 return ipmi::responseSuccess(senReading, reserved, readState, 665 senScanState, allEventMessageState, 666 assertionStatesLsb, assertionStatesMsb); 667 } 668 } 669 670 get_sdr::GetSensorThresholdsResponse 671 getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 672 { 673 get_sdr::GetSensorThresholdsResponse resp{}; 674 constexpr auto warningThreshIntf = 675 "xyz.openbmc_project.Sensor.Threshold.Warning"; 676 constexpr auto criticalThreshIntf = 677 "xyz.openbmc_project.Sensor.Threshold.Critical"; 678 679 const auto iter = ipmi::sensor::sensors.find(sensorNum); 680 const auto info = iter->second; 681 682 std::string service; 683 boost::system::error_code ec; 684 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 685 if (ec) 686 { 687 return resp; 688 } 689 690 ipmi::PropertyMap warnThresholds; 691 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 692 warningThreshIntf, warnThresholds); 693 int32_t minClamp; 694 int32_t maxClamp; 695 int32_t rawData; 696 constexpr uint8_t sensorUnitsSignedBits = 2 << 6; 697 constexpr uint8_t signedDataFormat = 0x80; 698 if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat) 699 { 700 minClamp = std::numeric_limits<int8_t>::lowest(); 701 maxClamp = std::numeric_limits<int8_t>::max(); 702 } 703 else 704 { 705 minClamp = std::numeric_limits<uint8_t>::lowest(); 706 maxClamp = std::numeric_limits<uint8_t>::max(); 707 } 708 if (!ec) 709 { 710 double warnLow = ipmi::mappedVariant<double>( 711 warnThresholds, "WarningLow", 712 std::numeric_limits<double>::quiet_NaN()); 713 double warnHigh = ipmi::mappedVariant<double>( 714 warnThresholds, "WarningHigh", 715 std::numeric_limits<double>::quiet_NaN()); 716 717 if (std::isfinite(warnLow)) 718 { 719 warnLow *= std::pow(10, info.scale - info.exponentR); 720 rawData = round((warnLow - info.scaledOffset) / info.coefficientM); 721 resp.lowerNonCritical = 722 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 723 resp.validMask |= static_cast<uint8_t>( 724 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); 725 } 726 727 if (std::isfinite(warnHigh)) 728 { 729 warnHigh *= std::pow(10, info.scale - info.exponentR); 730 rawData = round((warnHigh - info.scaledOffset) / info.coefficientM); 731 resp.upperNonCritical = 732 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 733 resp.validMask |= static_cast<uint8_t>( 734 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); 735 } 736 } 737 738 ipmi::PropertyMap critThresholds; 739 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 740 criticalThreshIntf, critThresholds); 741 if (!ec) 742 { 743 double critLow = ipmi::mappedVariant<double>( 744 critThresholds, "CriticalLow", 745 std::numeric_limits<double>::quiet_NaN()); 746 double critHigh = ipmi::mappedVariant<double>( 747 critThresholds, "CriticalHigh", 748 std::numeric_limits<double>::quiet_NaN()); 749 750 if (std::isfinite(critLow)) 751 { 752 critLow *= std::pow(10, info.scale - info.exponentR); 753 rawData = round((critLow - info.scaledOffset) / info.coefficientM); 754 resp.lowerCritical = 755 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 756 resp.validMask |= static_cast<uint8_t>( 757 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); 758 } 759 760 if (std::isfinite(critHigh)) 761 { 762 critHigh *= std::pow(10, info.scale - info.exponentR); 763 rawData = round((critHigh - info.scaledOffset) / info.coefficientM); 764 resp.upperCritical = 765 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 766 resp.validMask |= static_cast<uint8_t>( 767 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); 768 } 769 } 770 771 return resp; 772 } 773 774 /** @brief implements the get sensor thresholds command 775 * @param ctx - IPMI context pointer 776 * @param sensorNum - sensor number 777 * 778 * @returns IPMI completion code plus response data 779 * - validMask - threshold mask 780 * - lower non-critical threshold - IPMI messaging state 781 * - lower critical threshold - link authentication state 782 * - lower non-recoverable threshold - callback state 783 * - upper non-critical threshold 784 * - upper critical 785 * - upper non-recoverable 786 */ 787 ipmi::RspType<uint8_t, // validMask 788 uint8_t, // lowerNonCritical 789 uint8_t, // lowerCritical 790 uint8_t, // lowerNonRecoverable 791 uint8_t, // upperNonCritical 792 uint8_t, // upperCritical 793 uint8_t // upperNonRecoverable 794 > 795 ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 796 { 797 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 798 799 const auto iter = ipmi::sensor::sensors.find(sensorNum); 800 if (iter == ipmi::sensor::sensors.end()) 801 { 802 return ipmi::responseSensorInvalid(); 803 } 804 805 const auto info = iter->second; 806 807 // Proceed only if the sensor value interface is implemented. 808 if (info.propertyInterfaces.find(valueInterface) == 809 info.propertyInterfaces.end()) 810 { 811 // return with valid mask as 0 812 return ipmi::responseSuccess(); 813 } 814 815 auto it = sensorThresholdMap.find(sensorNum); 816 if (it == sensorThresholdMap.end()) 817 { 818 sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum); 819 } 820 821 const auto& resp = sensorThresholdMap[sensorNum]; 822 823 return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical, 824 resp.lowerCritical, resp.lowerNonRecoverable, 825 resp.upperNonCritical, resp.upperCritical, 826 resp.upperNonRecoverable); 827 } 828 829 /** @brief implements the Set Sensor threshold command 830 * @param sensorNumber - sensor number 831 * @param lowerNonCriticalThreshMask 832 * @param lowerCriticalThreshMask 833 * @param lowerNonRecovThreshMask 834 * @param upperNonCriticalThreshMask 835 * @param upperCriticalThreshMask 836 * @param upperNonRecovThreshMask 837 * @param reserved 838 * @param lowerNonCritical - lower non-critical threshold 839 * @param lowerCritical - Lower critical threshold 840 * @param lowerNonRecoverable - Lower non recovarable threshold 841 * @param upperNonCritical - Upper non-critical threshold 842 * @param upperCritical - Upper critical 843 * @param upperNonRecoverable - Upper Non-recoverable 844 * 845 * @returns IPMI completion code 846 */ 847 ipmi::RspType<> ipmiSenSetSensorThresholds( 848 ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask, 849 bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask, 850 bool upperNonCriticalThreshMask, bool upperCriticalThreshMask, 851 bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical, 852 uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical, 853 uint8_t upperCritical, uint8_t) 854 { 855 if (reserved) 856 { 857 return ipmi::responseInvalidFieldRequest(); 858 } 859 860 // lower nc and upper nc not suppported on any sensor 861 if (lowerNonRecovThreshMask || upperNonRecovThreshMask) 862 { 863 return ipmi::responseInvalidFieldRequest(); 864 } 865 866 // if none of the threshold mask are set, nothing to do 867 if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask | 868 lowerNonRecovThreshMask | upperNonCriticalThreshMask | 869 upperCriticalThreshMask | upperNonRecovThreshMask)) 870 { 871 return ipmi::responseSuccess(); 872 } 873 874 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 875 876 const auto iter = ipmi::sensor::sensors.find(sensorNum); 877 if (iter == ipmi::sensor::sensors.end()) 878 { 879 return ipmi::responseSensorInvalid(); 880 } 881 882 const auto& info = iter->second; 883 884 // Proceed only if the sensor value interface is implemented. 885 if (info.propertyInterfaces.find(valueInterface) == 886 info.propertyInterfaces.end()) 887 { 888 // return with valid mask as 0 889 return ipmi::responseSuccess(); 890 } 891 892 constexpr auto warningThreshIntf = 893 "xyz.openbmc_project.Sensor.Threshold.Warning"; 894 constexpr auto criticalThreshIntf = 895 "xyz.openbmc_project.Sensor.Threshold.Critical"; 896 897 std::string service; 898 boost::system::error_code ec; 899 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 900 if (ec) 901 { 902 return ipmi::responseResponseError(); 903 } 904 // store a vector of property name, value to set, and interface 905 std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet; 906 907 // define the indexes of the tuple 908 constexpr uint8_t propertyName = 0; 909 constexpr uint8_t thresholdValue = 1; 910 constexpr uint8_t interface = 2; 911 // verifiy all needed fields are present 912 if (lowerCriticalThreshMask || upperCriticalThreshMask) 913 { 914 915 ipmi::PropertyMap findThreshold; 916 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 917 criticalThreshIntf, findThreshold); 918 919 if (!ec) 920 { 921 if (lowerCriticalThreshMask) 922 { 923 auto findLower = findThreshold.find("CriticalLow"); 924 if (findLower == findThreshold.end()) 925 { 926 return ipmi::responseInvalidFieldRequest(); 927 } 928 thresholdsToSet.emplace_back("CriticalLow", lowerCritical, 929 criticalThreshIntf); 930 } 931 if (upperCriticalThreshMask) 932 { 933 auto findUpper = findThreshold.find("CriticalHigh"); 934 if (findUpper == findThreshold.end()) 935 { 936 return ipmi::responseInvalidFieldRequest(); 937 } 938 thresholdsToSet.emplace_back("CriticalHigh", upperCritical, 939 criticalThreshIntf); 940 } 941 } 942 } 943 if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask) 944 { 945 ipmi::PropertyMap findThreshold; 946 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 947 warningThreshIntf, findThreshold); 948 949 if (!ec) 950 { 951 if (lowerNonCriticalThreshMask) 952 { 953 auto findLower = findThreshold.find("WarningLow"); 954 if (findLower == findThreshold.end()) 955 { 956 return ipmi::responseInvalidFieldRequest(); 957 } 958 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical, 959 warningThreshIntf); 960 } 961 if (upperNonCriticalThreshMask) 962 { 963 auto findUpper = findThreshold.find("WarningHigh"); 964 if (findUpper == findThreshold.end()) 965 { 966 return ipmi::responseInvalidFieldRequest(); 967 } 968 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical, 969 warningThreshIntf); 970 } 971 } 972 } 973 for (const auto& property : thresholdsToSet) 974 { 975 // from section 36.3 in the IPMI Spec, assume all linear 976 double valueToSet = 977 ((info.coefficientM * std::get<thresholdValue>(property)) + 978 (info.scaledOffset * std::pow(10.0, info.scale))) * 979 std::pow(10.0, info.exponentR); 980 ipmi::setDbusProperty( 981 ctx, service, info.sensorPath, std::get<interface>(property), 982 std::get<propertyName>(property), ipmi::Value(valueToSet)); 983 } 984 985 // Invalidate the cache 986 sensorThresholdMap.erase(sensorNum); 987 return ipmi::responseSuccess(); 988 } 989 990 /** @brief implements the get SDR Info command 991 * @param count - Operation 992 * 993 * @returns IPMI completion code plus response data 994 * - sdrCount - sensor/SDR count 995 * - lunsAndDynamicPopulation - static/Dynamic sensor population flag 996 */ 997 ipmi::RspType<uint8_t, // respcount 998 uint8_t // dynamic population flags 999 > 1000 ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count) 1001 { 1002 uint8_t sdrCount; 1003 // multiple LUNs not supported. 1004 constexpr uint8_t lunsAndDynamicPopulation = 1; 1005 constexpr uint8_t getSdrCount = 0x01; 1006 constexpr uint8_t getSensorCount = 0x00; 1007 1008 if (count.value_or(0) == getSdrCount) 1009 { 1010 // Get SDR count. This returns the total number of SDRs in the device. 1011 const auto& entityRecords = 1012 ipmi::sensor::EntityInfoMapContainer::getContainer() 1013 ->getIpmiEntityRecords(); 1014 sdrCount = 1015 ipmi::sensor::sensors.size() + frus.size() + entityRecords.size(); 1016 } 1017 else if (count.value_or(0) == getSensorCount) 1018 { 1019 // Get Sensor count. This returns the number of sensors 1020 sdrCount = ipmi::sensor::sensors.size(); 1021 } 1022 else 1023 { 1024 return ipmi::responseInvalidCommandOnLun(); 1025 } 1026 1027 return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation); 1028 } 1029 1030 /** @brief implements the reserve SDR command 1031 * @returns IPMI completion code plus response data 1032 * - reservationID - reservation ID 1033 */ 1034 ipmi::RspType<uint16_t> ipmiSensorReserveSdr() 1035 { 1036 // A constant reservation ID is okay until we implement add/remove SDR. 1037 constexpr uint16_t reservationID = 1; 1038 1039 return ipmi::responseSuccess(reservationID); 1040 } 1041 1042 void setUnitFieldsForObject(const ipmi::sensor::Info* info, 1043 get_sdr::SensorDataFullRecordBody* body) 1044 { 1045 namespace server = sdbusplus::xyz::openbmc_project::Sensor::server; 1046 try 1047 { 1048 auto unit = server::Value::convertUnitFromString(info->unit); 1049 // Unit strings defined in 1050 // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml 1051 switch (unit) 1052 { 1053 case server::Value::Unit::DegreesC: 1054 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; 1055 break; 1056 case server::Value::Unit::RPMS: 1057 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM; 1058 break; 1059 case server::Value::Unit::Volts: 1060 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; 1061 break; 1062 case server::Value::Unit::Meters: 1063 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; 1064 break; 1065 case server::Value::Unit::Amperes: 1066 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; 1067 break; 1068 case server::Value::Unit::Joules: 1069 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; 1070 break; 1071 case server::Value::Unit::Watts: 1072 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; 1073 break; 1074 default: 1075 // Cannot be hit. 1076 std::fprintf(stderr, "Unknown value unit type: = %s\n", 1077 info->unit.c_str()); 1078 } 1079 } 1080 catch (const sdbusplus::exception::InvalidEnumString& e) 1081 { 1082 log<level::WARNING>("Warning: no unit provided for sensor!"); 1083 } 1084 } 1085 1086 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, 1087 const ipmi::sensor::Info* info, 1088 ipmi_data_len_t) 1089 { 1090 /* Functional sensor case */ 1091 if (isAnalogSensor(info->propertyInterfaces.begin()->first)) 1092 { 1093 body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no 1094 // rate, no modifier, not a % 1095 /* Unit info */ 1096 setUnitFieldsForObject(info, body); 1097 1098 get_sdr::body::set_b(info->coefficientB, body); 1099 get_sdr::body::set_m(info->coefficientM, body); 1100 get_sdr::body::set_b_exp(info->exponentB, body); 1101 get_sdr::body::set_r_exp(info->exponentR, body); 1102 1103 get_sdr::body::set_id_type(0b00, body); // 00 = unicode 1104 } 1105 1106 /* ID string */ 1107 auto id_string = info->sensorName; 1108 1109 if (id_string.empty()) 1110 { 1111 id_string = info->sensorNameFunc(*info); 1112 } 1113 1114 if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) 1115 { 1116 get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); 1117 } 1118 else 1119 { 1120 get_sdr::body::set_id_strlen(id_string.length(), body); 1121 } 1122 strncpy(body->id_string, id_string.c_str(), 1123 get_sdr::body::get_id_strlen(body)); 1124 1125 return IPMI_CC_OK; 1126 }; 1127 1128 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, 1129 ipmi_data_len_t data_len) 1130 { 1131 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1132 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1133 get_sdr::SensorDataFruRecord record{}; 1134 auto dataLength = 0; 1135 1136 auto fru = frus.begin(); 1137 uint8_t fruID{}; 1138 auto recordID = get_sdr::request::get_record_id(req); 1139 1140 fruID = recordID - FRU_RECORD_ID_START; 1141 fru = frus.find(fruID); 1142 if (fru == frus.end()) 1143 { 1144 return IPMI_CC_SENSOR_INVALID; 1145 } 1146 1147 /* Header */ 1148 get_sdr::header::set_record_id(recordID, &(record.header)); 1149 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1150 record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; 1151 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1152 1153 /* Key */ 1154 record.key.fruID = fruID; 1155 record.key.accessLun |= IPMI_LOGICAL_FRU; 1156 record.key.deviceAddress = BMCSlaveAddress; 1157 1158 /* Body */ 1159 record.body.entityID = fru->second[0].entityID; 1160 record.body.entityInstance = fru->second[0].entityInstance; 1161 record.body.deviceType = fruInventoryDevice; 1162 record.body.deviceTypeModifier = IPMIFruInventory; 1163 1164 /* Device ID string */ 1165 auto deviceID = 1166 fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, 1167 fru->second[0].path.length()); 1168 1169 if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) 1170 { 1171 get_sdr::body::set_device_id_strlen( 1172 get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); 1173 } 1174 else 1175 { 1176 get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); 1177 } 1178 1179 strncpy(record.body.deviceID, deviceID.c_str(), 1180 get_sdr::body::get_device_id_strlen(&(record.body))); 1181 1182 if (++fru == frus.end()) 1183 { 1184 // we have reached till end of fru, so assign the next record id to 1185 // 512(Max fru ID = 511) + Entity Record ID(may start with 0). 1186 const auto& entityRecords = 1187 ipmi::sensor::EntityInfoMapContainer::getContainer() 1188 ->getIpmiEntityRecords(); 1189 auto next_record_id = 1190 (entityRecords.size()) 1191 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START 1192 : END_OF_RECORD; 1193 get_sdr::response::set_next_record_id(next_record_id, resp); 1194 } 1195 else 1196 { 1197 get_sdr::response::set_next_record_id( 1198 (FRU_RECORD_ID_START + fru->first), resp); 1199 } 1200 1201 // Check for invalid offset size 1202 if (req->offset > sizeof(record)) 1203 { 1204 return IPMI_CC_PARM_OUT_OF_RANGE; 1205 } 1206 1207 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1208 sizeof(record) - req->offset); 1209 1210 std::memcpy(resp->record_data, 1211 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1212 1213 *data_len = dataLength; 1214 *data_len += 2; // additional 2 bytes for next record ID 1215 1216 return IPMI_CC_OK; 1217 } 1218 1219 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response, 1220 ipmi_data_len_t data_len) 1221 { 1222 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1223 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1224 get_sdr::SensorDataEntityRecord record{}; 1225 auto dataLength = 0; 1226 1227 const auto& entityRecords = 1228 ipmi::sensor::EntityInfoMapContainer::getContainer() 1229 ->getIpmiEntityRecords(); 1230 auto entity = entityRecords.begin(); 1231 uint8_t entityRecordID; 1232 auto recordID = get_sdr::request::get_record_id(req); 1233 1234 entityRecordID = recordID - ENTITY_RECORD_ID_START; 1235 entity = entityRecords.find(entityRecordID); 1236 if (entity == entityRecords.end()) 1237 { 1238 return IPMI_CC_SENSOR_INVALID; 1239 } 1240 1241 /* Header */ 1242 get_sdr::header::set_record_id(recordID, &(record.header)); 1243 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1244 record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD; 1245 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1246 1247 /* Key */ 1248 record.key.containerEntityId = entity->second.containerEntityId; 1249 record.key.containerEntityInstance = entity->second.containerEntityInstance; 1250 get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked, 1251 &(record.key)); 1252 record.key.entityId1 = entity->second.containedEntities[0].first; 1253 record.key.entityInstance1 = entity->second.containedEntities[0].second; 1254 1255 /* Body */ 1256 record.body.entityId2 = entity->second.containedEntities[1].first; 1257 record.body.entityInstance2 = entity->second.containedEntities[1].second; 1258 record.body.entityId3 = entity->second.containedEntities[2].first; 1259 record.body.entityInstance3 = entity->second.containedEntities[2].second; 1260 record.body.entityId4 = entity->second.containedEntities[3].first; 1261 record.body.entityInstance4 = entity->second.containedEntities[3].second; 1262 1263 if (++entity == entityRecords.end()) 1264 { 1265 get_sdr::response::set_next_record_id(END_OF_RECORD, 1266 resp); // last record 1267 } 1268 else 1269 { 1270 get_sdr::response::set_next_record_id( 1271 (ENTITY_RECORD_ID_START + entity->first), resp); 1272 } 1273 1274 // Check for invalid offset size 1275 if (req->offset > sizeof(record)) 1276 { 1277 return IPMI_CC_PARM_OUT_OF_RANGE; 1278 } 1279 1280 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1281 sizeof(record) - req->offset); 1282 1283 std::memcpy(resp->record_data, 1284 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1285 1286 *data_len = dataLength; 1287 *data_len += 2; // additional 2 bytes for next record ID 1288 1289 return IPMI_CC_OK; 1290 } 1291 1292 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, 1293 ipmi_response_t response, ipmi_data_len_t data_len, 1294 ipmi_context_t) 1295 { 1296 ipmi_ret_t ret = IPMI_CC_OK; 1297 get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; 1298 get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; 1299 1300 // Note: we use an iterator so we can provide the next ID at the end of 1301 // the call. 1302 auto sensor = ipmi::sensor::sensors.begin(); 1303 auto recordID = get_sdr::request::get_record_id(req); 1304 1305 // At the beginning of a scan, the host side will send us id=0. 1306 if (recordID != 0) 1307 { 1308 // recordID 0 to 255 means it is a FULL record. 1309 // recordID 256 to 511 means it is a FRU record. 1310 // recordID greater then 511 means it is a Entity Association 1311 // record. Currently we are supporting three record types: FULL 1312 // record, FRU record and Enttiy Association record. 1313 if (recordID >= ENTITY_RECORD_ID_START) 1314 { 1315 return ipmi_entity_get_sdr(request, response, data_len); 1316 } 1317 else if (recordID >= FRU_RECORD_ID_START && 1318 recordID < ENTITY_RECORD_ID_START) 1319 { 1320 return ipmi_fru_get_sdr(request, response, data_len); 1321 } 1322 else 1323 { 1324 sensor = ipmi::sensor::sensors.find(recordID); 1325 if (sensor == ipmi::sensor::sensors.end()) 1326 { 1327 return IPMI_CC_SENSOR_INVALID; 1328 } 1329 } 1330 } 1331 1332 uint8_t sensor_id = sensor->first; 1333 1334 auto it = sdrCacheMap.find(sensor_id); 1335 if (it == sdrCacheMap.end()) 1336 { 1337 /* Header */ 1338 get_sdr::SensorDataFullRecord record = {}; 1339 get_sdr::header::set_record_id(sensor_id, &(record.header)); 1340 record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 1341 record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; 1342 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1343 1344 /* Key */ 1345 get_sdr::key::set_owner_id_bmc(&(record.key)); 1346 record.key.sensor_number = sensor_id; 1347 1348 /* Body */ 1349 record.body.entity_id = sensor->second.entityType; 1350 record.body.sensor_type = sensor->second.sensorType; 1351 record.body.event_reading_type = sensor->second.sensorReadingType; 1352 record.body.entity_instance = sensor->second.instance; 1353 if (ipmi::sensor::Mutability::Write == 1354 (sensor->second.mutability & ipmi::sensor::Mutability::Write)) 1355 { 1356 get_sdr::body::init_settable_state(true, &(record.body)); 1357 } 1358 1359 // Set the type-specific details given the DBus interface 1360 populate_record_from_dbus(&(record.body), &(sensor->second), data_len); 1361 sdrCacheMap[sensor_id] = std::move(record); 1362 } 1363 1364 const auto& record = sdrCacheMap[sensor_id]; 1365 1366 if (++sensor == ipmi::sensor::sensors.end()) 1367 { 1368 // we have reached till end of sensor, so assign the next record id 1369 // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). 1370 auto next_record_id = (frus.size()) 1371 ? frus.begin()->first + FRU_RECORD_ID_START 1372 : END_OF_RECORD; 1373 1374 get_sdr::response::set_next_record_id(next_record_id, resp); 1375 } 1376 else 1377 { 1378 get_sdr::response::set_next_record_id(sensor->first, resp); 1379 } 1380 1381 if (req->offset > sizeof(record)) 1382 { 1383 return IPMI_CC_PARM_OUT_OF_RANGE; 1384 } 1385 1386 // data_len will ultimately be the size of the record, plus 1387 // the size of the next record ID: 1388 *data_len = std::min(static_cast<size_t>(req->bytes_to_read), 1389 sizeof(record) - req->offset); 1390 1391 std::memcpy(resp->record_data, 1392 reinterpret_cast<const uint8_t*>(&record) + req->offset, 1393 *data_len); 1394 1395 // data_len should include the LSB and MSB: 1396 *data_len += 1397 sizeof(resp->next_record_id_lsb) + sizeof(resp->next_record_id_msb); 1398 1399 return ret; 1400 } 1401 1402 static bool isFromSystemChannel() 1403 { 1404 // TODO we could not figure out where the request is from based on IPMI 1405 // command handler parameters. because of it, we can not differentiate 1406 // request from SMS/SMM or IPMB channel 1407 return true; 1408 } 1409 1410 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t, 1411 ipmi_request_t request, ipmi_response_t, 1412 ipmi_data_len_t dataLen, ipmi_context_t) 1413 { 1414 uint16_t generatorID; 1415 size_t count; 1416 bool assert = true; 1417 std::string sensorPath; 1418 size_t paraLen = *dataLen; 1419 PlatformEventRequest* req; 1420 *dataLen = 0; 1421 1422 if ((paraLen < selSystemEventSizeWith1Bytes) || 1423 (paraLen > selSystemEventSizeWith3Bytes)) 1424 { 1425 return IPMI_CC_REQ_DATA_LEN_INVALID; 1426 } 1427 1428 if (isFromSystemChannel()) 1429 { // first byte for SYSTEM Interface is Generator ID 1430 // +1 to get common struct 1431 req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1); 1432 // Capture the generator ID 1433 generatorID = *reinterpret_cast<uint8_t*>(request); 1434 // Platform Event usually comes from other firmware, like BIOS. 1435 // Unlike BMC sensor, it does not have BMC DBUS sensor path. 1436 sensorPath = "System"; 1437 } 1438 else 1439 { 1440 req = reinterpret_cast<PlatformEventRequest*>(request); 1441 // TODO GenratorID for IPMB is combination of RqSA and RqLUN 1442 generatorID = 0xff; 1443 sensorPath = "IPMB"; 1444 } 1445 // Content of event data field depends on sensor class. 1446 // When data0 bit[5:4] is non-zero, valid data counts is 3. 1447 // When data0 bit[7:6] is non-zero, valid data counts is 2. 1448 if (((req->data[0] & byte3EnableMask) != 0 && 1449 paraLen < selSystemEventSizeWith3Bytes) || 1450 ((req->data[0] & byte2EnableMask) != 0 && 1451 paraLen < selSystemEventSizeWith2Bytes)) 1452 { 1453 return IPMI_CC_REQ_DATA_LEN_INVALID; 1454 } 1455 1456 // Count bytes of Event Data 1457 if ((req->data[0] & byte3EnableMask) != 0) 1458 { 1459 count = 3; 1460 } 1461 else if ((req->data[0] & byte2EnableMask) != 0) 1462 { 1463 count = 2; 1464 } 1465 else 1466 { 1467 count = 1; 1468 } 1469 assert = req->eventDirectionType & directionMask ? false : true; 1470 std::vector<uint8_t> eventData(req->data, req->data + count); 1471 1472 sdbusplus::bus_t dbus(bus); 1473 std::string service = 1474 ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath); 1475 sdbusplus::message_t writeSEL = dbus.new_method_call( 1476 service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd"); 1477 writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert, 1478 generatorID); 1479 try 1480 { 1481 dbus.call(writeSEL); 1482 } 1483 catch (const sdbusplus::exception_t& e) 1484 { 1485 phosphor::logging::log<phosphor::logging::level::ERR>(e.what()); 1486 return IPMI_CC_UNSPECIFIED_ERROR; 1487 } 1488 return IPMI_CC_OK; 1489 } 1490 1491 void register_netfn_sen_functions() 1492 { 1493 // Handlers with dbus-sdr handler implementation. 1494 // Do not register the hander if it dynamic sensors stack is used. 1495 1496 #ifndef FEATURE_DYNAMIC_SENSORS 1497 1498 #ifdef FEATURE_SENSORS_CACHE 1499 // Initialize the sensor matches 1500 initSensorMatches(); 1501 #endif 1502 1503 // <Set Sensor Reading and Event Status> 1504 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1505 ipmi::sensor_event::cmdSetSensorReadingAndEvtSts, 1506 ipmi::Privilege::Operator, ipmiSetSensorReading); 1507 // <Get Sensor Reading> 1508 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1509 ipmi::sensor_event::cmdGetSensorReading, 1510 ipmi::Privilege::User, ipmiSensorGetSensorReading); 1511 1512 // <Reserve Device SDR Repository> 1513 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1514 ipmi::sensor_event::cmdReserveDeviceSdrRepository, 1515 ipmi::Privilege::User, ipmiSensorReserveSdr); 1516 1517 // <Get Device SDR Info> 1518 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1519 ipmi::sensor_event::cmdGetDeviceSdrInfo, 1520 ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo); 1521 1522 // <Get Sensor Thresholds> 1523 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1524 ipmi::sensor_event::cmdGetSensorThreshold, 1525 ipmi::Privilege::User, ipmiSensorGetSensorThresholds); 1526 1527 // <Set Sensor Thresholds> 1528 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1529 ipmi::sensor_event::cmdSetSensorThreshold, 1530 ipmi::Privilege::User, ipmiSenSetSensorThresholds); 1531 1532 // <Get Device SDR> 1533 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, 1534 ipmi_sen_get_sdr, PRIVILEGE_USER); 1535 1536 #endif 1537 1538 // Common Handers used by both implementation. 1539 1540 // <Platform Event Message> 1541 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr, 1542 ipmicmdPlatformEvent, PRIVILEGE_OPERATOR); 1543 1544 // <Get Sensor Type> 1545 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1546 ipmi::sensor_event::cmdGetSensorType, 1547 ipmi::Privilege::User, ipmiGetSensorType); 1548 1549 return; 1550 } 1551