1 #include "config.h" 2 3 #include "sensorhandler.hpp" 4 5 #include "entity_map_json.hpp" 6 #include "fruread.hpp" 7 8 #include <mapper.h> 9 #include <systemd/sd-bus.h> 10 11 #include <bitset> 12 #include <cmath> 13 #include <cstring> 14 #include <ipmid/api.hpp> 15 #include <ipmid/types.hpp> 16 #include <ipmid/utils.hpp> 17 #include <phosphor-logging/elog-errors.hpp> 18 #include <phosphor-logging/log.hpp> 19 #include <sdbusplus/message/types.hpp> 20 #include <set> 21 #include <xyz/openbmc_project/Common/error.hpp> 22 #include <xyz/openbmc_project/Sensor/Value/server.hpp> 23 24 static constexpr uint8_t fruInventoryDevice = 0x10; 25 static constexpr uint8_t IPMIFruInventory = 0x02; 26 static constexpr uint8_t BMCSlaveAddress = 0x20; 27 28 extern int updateSensorRecordFromSSRAESC(const void*); 29 extern sd_bus* bus; 30 31 namespace ipmi 32 { 33 namespace sensor 34 { 35 extern const IdInfoMap sensors; 36 } // namespace sensor 37 } // namespace ipmi 38 39 extern const FruMap frus; 40 41 using namespace phosphor::logging; 42 using InternalFailure = 43 sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure; 44 45 void register_netfn_sen_functions() __attribute__((constructor)); 46 47 struct sensorTypemap_t 48 { 49 uint8_t number; 50 uint8_t typecode; 51 char dbusname[32]; 52 }; 53 54 sensorTypemap_t g_SensorTypeMap[] = { 55 56 {0x01, 0x6F, "Temp"}, 57 {0x0C, 0x6F, "DIMM"}, 58 {0x0C, 0x6F, "MEMORY_BUFFER"}, 59 {0x07, 0x6F, "PROC"}, 60 {0x07, 0x6F, "CORE"}, 61 {0x07, 0x6F, "CPU"}, 62 {0x0F, 0x6F, "BootProgress"}, 63 {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor 64 // type code os 0x09 65 {0xC3, 0x6F, "BootCount"}, 66 {0x1F, 0x6F, "OperatingSystemStatus"}, 67 {0x12, 0x6F, "SYSTEM_EVENT"}, 68 {0xC7, 0x03, "SYSTEM"}, 69 {0xC7, 0x03, "MAIN_PLANAR"}, 70 {0xC2, 0x6F, "PowerCap"}, 71 {0x0b, 0xCA, "PowerSupplyRedundancy"}, 72 {0xDA, 0x03, "TurboAllowed"}, 73 {0xD8, 0xC8, "PowerSupplyDerating"}, 74 {0xFF, 0x00, ""}, 75 }; 76 77 struct sensor_data_t 78 { 79 uint8_t sennum; 80 } __attribute__((packed)); 81 82 int get_bus_for_path(const char* path, char** busname) 83 { 84 return mapper_get_service(bus, path, busname); 85 } 86 87 // Use a lookup table to find the interface name of a specific sensor 88 // This will be used until an alternative is found. this is the first 89 // step for mapping IPMI 90 int find_openbmc_path(uint8_t num, dbus_interface_t* interface) 91 { 92 int rc; 93 94 const auto& sensor_it = ipmi::sensor::sensors.find(num); 95 if (sensor_it == ipmi::sensor::sensors.end()) 96 { 97 // The sensor map does not contain the sensor requested 98 return -EINVAL; 99 } 100 101 const auto& info = sensor_it->second; 102 103 char* busname = nullptr; 104 rc = get_bus_for_path(info.sensorPath.c_str(), &busname); 105 if (rc < 0) 106 { 107 std::fprintf(stderr, "Failed to get %s busname: %s\n", 108 info.sensorPath.c_str(), busname); 109 goto final; 110 } 111 112 interface->sensortype = info.sensorType; 113 strcpy(interface->bus, busname); 114 strcpy(interface->path, info.sensorPath.c_str()); 115 // Take the interface name from the beginning of the DbusInterfaceMap. This 116 // works for the Value interface but may not suffice for more complex 117 // sensors. 118 // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 119 strcpy(interface->interface, 120 info.propertyInterfaces.begin()->first.c_str()); 121 interface->sensornumber = num; 122 123 final: 124 free(busname); 125 return rc; 126 } 127 128 ///////////////////////////////////////////////////////////////////// 129 // 130 // Routines used by ipmi commands wanting to interact on the dbus 131 // 132 ///////////////////////////////////////////////////////////////////// 133 int set_sensor_dbus_state_s(uint8_t number, const char* method, 134 const char* value) 135 { 136 137 dbus_interface_t a; 138 int r; 139 sd_bus_error error = SD_BUS_ERROR_NULL; 140 sd_bus_message* m = NULL; 141 142 r = find_openbmc_path(number, &a); 143 144 if (r < 0) 145 { 146 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 147 return 0; 148 } 149 150 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 151 method); 152 if (r < 0) 153 { 154 std::fprintf(stderr, "Failed to create a method call: %s", 155 strerror(-r)); 156 goto final; 157 } 158 159 r = sd_bus_message_append(m, "v", "s", value); 160 if (r < 0) 161 { 162 std::fprintf(stderr, "Failed to create a input parameter: %s", 163 strerror(-r)); 164 goto final; 165 } 166 167 r = sd_bus_call(bus, m, 0, &error, NULL); 168 if (r < 0) 169 { 170 std::fprintf(stderr, "Failed to call the method: %s", strerror(-r)); 171 } 172 173 final: 174 sd_bus_error_free(&error); 175 m = sd_bus_message_unref(m); 176 177 return 0; 178 } 179 int set_sensor_dbus_state_y(uint8_t number, const char* method, 180 const uint8_t value) 181 { 182 183 dbus_interface_t a; 184 int r; 185 sd_bus_error error = SD_BUS_ERROR_NULL; 186 sd_bus_message* m = NULL; 187 188 r = find_openbmc_path(number, &a); 189 190 if (r < 0) 191 { 192 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 193 return 0; 194 } 195 196 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 197 method); 198 if (r < 0) 199 { 200 std::fprintf(stderr, "Failed to create a method call: %s", 201 strerror(-r)); 202 goto final; 203 } 204 205 r = sd_bus_message_append(m, "v", "i", value); 206 if (r < 0) 207 { 208 std::fprintf(stderr, "Failed to create a input parameter: %s", 209 strerror(-r)); 210 goto final; 211 } 212 213 r = sd_bus_call(bus, m, 0, &error, NULL); 214 if (r < 0) 215 { 216 std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); 217 } 218 219 final: 220 sd_bus_error_free(&error); 221 m = sd_bus_message_unref(m); 222 223 return 0; 224 } 225 226 uint8_t dbus_to_sensor_type(char* p) 227 { 228 229 sensorTypemap_t* s = g_SensorTypeMap; 230 char r = 0; 231 while (s->number != 0xFF) 232 { 233 if (!strcmp(s->dbusname, p)) 234 { 235 r = s->typecode; 236 break; 237 } 238 s++; 239 } 240 241 if (s->number == 0xFF) 242 printf("Failed to find Sensor Type %s\n", p); 243 244 return r; 245 } 246 247 uint8_t get_type_from_interface(dbus_interface_t dbus_if) 248 { 249 250 uint8_t type; 251 252 // This is where sensors that do not exist in dbus but do 253 // exist in the host code stop. This should indicate it 254 // is not a supported sensor 255 if (dbus_if.interface[0] == 0) 256 { 257 return 0; 258 } 259 260 // Fetch type from interface itself. 261 if (dbus_if.sensortype != 0) 262 { 263 type = dbus_if.sensortype; 264 } 265 else 266 { 267 // Non InventoryItems 268 char* p = strrchr(dbus_if.path, '/'); 269 type = dbus_to_sensor_type(p + 1); 270 } 271 272 return type; 273 } 274 275 // Replaces find_sensor 276 uint8_t find_type_for_sensor_number(uint8_t num) 277 { 278 int r; 279 dbus_interface_t dbus_if; 280 r = find_openbmc_path(num, &dbus_if); 281 if (r < 0) 282 { 283 std::fprintf(stderr, "Could not find sensor %d\n", num); 284 return 0; 285 } 286 return get_type_from_interface(dbus_if); 287 } 288 289 /** 290 * @brief implements the get sensor type command. 291 * @param - sensorNumber 292 * 293 * @return IPMI completion code plus response data on success. 294 * - sensorType 295 * - eventType 296 **/ 297 298 ipmi::RspType<uint8_t, // sensorType 299 uint8_t // eventType 300 > 301 ipmiGetSensorType(uint8_t sensorNumber) 302 { 303 uint8_t sensorType = find_type_for_sensor_number(sensorNumber); 304 305 if (sensorType == 0) 306 { 307 return ipmi::responseSensorInvalid(); 308 } 309 310 constexpr uint8_t eventType = 0x6F; 311 return ipmi::responseSuccess(sensorType, eventType); 312 } 313 314 const std::set<std::string> analogSensorInterfaces = { 315 "xyz.openbmc_project.Sensor.Value", 316 "xyz.openbmc_project.Control.FanPwm", 317 }; 318 319 bool isAnalogSensor(const std::string& interface) 320 { 321 return (analogSensorInterfaces.count(interface)); 322 } 323 324 /** 325 @brief This command is used to set sensorReading. 326 327 @param 328 - sensorNumber 329 - operation 330 - reading 331 - assertOffset0_7 332 - assertOffset8_14 333 - deassertOffset0_7 334 - deassertOffset8_14 335 - eventData1 336 - eventData2 337 - eventData3 338 339 @return completion code on success. 340 **/ 341 342 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation, 343 uint8_t reading, uint8_t assertOffset0_7, 344 uint8_t assertOffset8_14, 345 uint8_t deassertOffset0_7, 346 uint8_t deassertOffset8_14, 347 uint8_t eventData1, uint8_t eventData2, 348 uint8_t eventData3) 349 { 350 log<level::DEBUG>("IPMI SET_SENSOR", 351 entry("SENSOR_NUM=0x%02x", sensorNumber)); 352 353 ipmi::sensor::SetSensorReadingReq cmdData; 354 355 cmdData.number = sensorNumber; 356 cmdData.operation = operation; 357 cmdData.reading = reading; 358 cmdData.assertOffset0_7 = assertOffset0_7; 359 cmdData.assertOffset8_14 = assertOffset8_14; 360 cmdData.deassertOffset0_7 = deassertOffset0_7; 361 cmdData.deassertOffset8_14 = deassertOffset8_14; 362 cmdData.eventData1 = eventData1; 363 cmdData.eventData2 = eventData2; 364 cmdData.eventData3 = eventData3; 365 366 // Check if the Sensor Number is present 367 const auto iter = ipmi::sensor::sensors.find(sensorNumber); 368 if (iter == ipmi::sensor::sensors.end()) 369 { 370 updateSensorRecordFromSSRAESC(&sensorNumber); 371 return ipmi::responseSuccess(); 372 } 373 374 try 375 { 376 if (ipmi::sensor::Mutability::Write != 377 (iter->second.mutability & ipmi::sensor::Mutability::Write)) 378 { 379 log<level::ERR>("Sensor Set operation is not allowed", 380 entry("SENSOR_NUM=%d", sensorNumber)); 381 return ipmi::responseIllegalCommand(); 382 } 383 auto ipmiRC = iter->second.updateFunc(cmdData, iter->second); 384 return ipmi::response(ipmiRC); 385 } 386 catch (InternalFailure& e) 387 { 388 log<level::ERR>("Set sensor failed", 389 entry("SENSOR_NUM=%d", sensorNumber)); 390 commit<InternalFailure>(); 391 return ipmi::responseUnspecifiedError(); 392 } 393 catch (const std::runtime_error& e) 394 { 395 log<level::ERR>(e.what()); 396 return ipmi::responseUnspecifiedError(); 397 } 398 } 399 400 /** @brief implements the get sensor reading command 401 * @param sensorNum - sensor number 402 * 403 * @returns IPMI completion code plus response data 404 * - senReading - sensor reading 405 * - reserved 406 * - readState - sensor reading state enabled 407 * - senScanState - sensor scan state disabled 408 * - allEventMessageState - all Event message state disabled 409 * - assertionStatesLsb - threshold levels states 410 * - assertionStatesMsb - discrete reading sensor states 411 */ 412 ipmi::RspType<uint8_t, // sensor reading 413 414 uint5_t, // reserved 415 bool, // reading state 416 bool, // 0 = sensor scanning state disabled 417 bool, // 0 = all event messages disabled 418 419 uint8_t, // threshold levels states 420 uint8_t // discrete reading sensor states 421 > 422 ipmiSensorGetSensorReading(uint8_t sensorNum) 423 { 424 if (sensorNum == 0xFF) 425 { 426 return ipmi::responseInvalidFieldRequest(); 427 } 428 429 const auto iter = ipmi::sensor::sensors.find(sensorNum); 430 if (iter == ipmi::sensor::sensors.end()) 431 { 432 return ipmi::responseSensorInvalid(); 433 } 434 if (ipmi::sensor::Mutability::Read != 435 (iter->second.mutability & ipmi::sensor::Mutability::Read)) 436 { 437 return ipmi::responseIllegalCommand(); 438 } 439 440 try 441 { 442 ipmi::sensor::GetSensorResponse getResponse = 443 iter->second.getFunc(iter->second); 444 445 return ipmi::responseSuccess(getResponse.reading, uint5_t(0), 446 getResponse.readingOrStateUnavailable, 447 getResponse.scanningEnabled, 448 getResponse.allEventMessagesEnabled, 449 getResponse.thresholdLevelsStates, 450 getResponse.discreteReadingSensorStates); 451 } 452 #ifdef UPDATE_FUNCTIONAL_ON_FAIL 453 catch (const SensorFunctionalError& e) 454 { 455 return ipmi::responseResponseError(); 456 } 457 #endif 458 catch (const std::exception& e) 459 { 460 // Intitilizing with default values 461 constexpr uint8_t senReading = 0; 462 constexpr uint5_t reserved{0}; 463 constexpr bool readState = true; 464 constexpr bool senScanState = false; 465 constexpr bool allEventMessageState = false; 466 constexpr uint8_t assertionStatesLsb = 0; 467 constexpr uint8_t assertionStatesMsb = 0; 468 469 return ipmi::responseSuccess(senReading, reserved, readState, 470 senScanState, allEventMessageState, 471 assertionStatesLsb, assertionStatesMsb); 472 } 473 } 474 475 get_sdr::GetSensorThresholdsResponse getSensorThresholds(uint8_t sensorNum) 476 { 477 get_sdr::GetSensorThresholdsResponse resp{}; 478 constexpr auto warningThreshIntf = 479 "xyz.openbmc_project.Sensor.Threshold.Warning"; 480 constexpr auto criticalThreshIntf = 481 "xyz.openbmc_project.Sensor.Threshold.Critical"; 482 483 sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()}; 484 485 const auto iter = ipmi::sensor::sensors.find(sensorNum); 486 const auto info = iter->second; 487 488 auto service = ipmi::getService(bus, info.sensorInterface, info.sensorPath); 489 490 auto warnThresholds = ipmi::getAllDbusProperties( 491 bus, service, info.sensorPath, warningThreshIntf); 492 493 double warnLow = std::visit(ipmi::VariantToDoubleVisitor(), 494 warnThresholds["WarningLow"]); 495 double warnHigh = std::visit(ipmi::VariantToDoubleVisitor(), 496 warnThresholds["WarningHigh"]); 497 498 if (std::isfinite(warnLow)) 499 { 500 warnLow *= std::pow(10, info.scale - info.exponentR); 501 resp.lowerNonCritical = static_cast<uint8_t>( 502 (warnLow - info.scaledOffset) / info.coefficientM); 503 resp.validMask |= static_cast<uint8_t>( 504 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); 505 } 506 507 if (std::isfinite(warnHigh)) 508 { 509 warnHigh *= std::pow(10, info.scale - info.exponentR); 510 resp.upperNonCritical = static_cast<uint8_t>( 511 (warnHigh - info.scaledOffset) / info.coefficientM); 512 resp.validMask |= static_cast<uint8_t>( 513 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); 514 } 515 516 auto critThresholds = ipmi::getAllDbusProperties( 517 bus, service, info.sensorPath, criticalThreshIntf); 518 519 double critLow = std::visit(ipmi::VariantToDoubleVisitor(), 520 critThresholds["CriticalLow"]); 521 double critHigh = std::visit(ipmi::VariantToDoubleVisitor(), 522 critThresholds["CriticalHigh"]); 523 524 if (std::isfinite(critLow)) 525 { 526 critLow *= std::pow(10, info.scale - info.exponentR); 527 resp.lowerCritical = static_cast<uint8_t>( 528 (critLow - info.scaledOffset) / info.coefficientM); 529 resp.validMask |= static_cast<uint8_t>( 530 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); 531 } 532 533 if (std::isfinite(critHigh)) 534 { 535 critHigh *= std::pow(10, info.scale - info.exponentR); 536 resp.upperCritical = static_cast<uint8_t>( 537 (critHigh - info.scaledOffset) / info.coefficientM); 538 resp.validMask |= static_cast<uint8_t>( 539 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); 540 } 541 542 return resp; 543 } 544 545 /** @brief implements the get sensor thresholds command 546 * @param sensorNum - sensor number 547 * 548 * @returns IPMI completion code plus response data 549 * - validMask - threshold mask 550 * - lower non-critical threshold - IPMI messaging state 551 * - lower critical threshold - link authentication state 552 * - lower non-recoverable threshold - callback state 553 * - upper non-critical threshold 554 * - upper critical 555 * - upper non-recoverable 556 */ 557 ipmi::RspType<uint8_t, // validMask 558 uint8_t, // lowerNonCritical 559 uint8_t, // lowerCritical 560 uint8_t, // lowerNonRecoverable 561 uint8_t, // upperNonCritical 562 uint8_t, // upperCritical 563 uint8_t // upperNonRecoverable 564 > 565 ipmiSensorGetSensorThresholds(uint8_t sensorNum) 566 { 567 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 568 569 const auto iter = ipmi::sensor::sensors.find(sensorNum); 570 if (iter == ipmi::sensor::sensors.end()) 571 { 572 return ipmi::responseSensorInvalid(); 573 } 574 575 const auto info = iter->second; 576 577 // Proceed only if the sensor value interface is implemented. 578 if (info.propertyInterfaces.find(valueInterface) == 579 info.propertyInterfaces.end()) 580 { 581 // return with valid mask as 0 582 return ipmi::responseSuccess(); 583 } 584 585 get_sdr::GetSensorThresholdsResponse resp{}; 586 try 587 { 588 resp = getSensorThresholds(sensorNum); 589 } 590 catch (std::exception& e) 591 { 592 // Mask if the property is not present 593 } 594 595 return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical, 596 resp.lowerCritical, resp.lowerNonRecoverable, 597 resp.upperNonCritical, resp.upperCritical, 598 resp.upperNonRecoverable); 599 } 600 601 /** @brief implements the get SDR Info command 602 * @param count - Operation 603 * 604 * @returns IPMI completion code plus response data 605 * - sdrCount - sensor/SDR count 606 * - lunsAndDynamicPopulation - static/Dynamic sensor population flag 607 */ 608 ipmi::RspType<uint8_t, // respcount 609 uint8_t // dynamic population flags 610 > 611 ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count) 612 { 613 uint8_t sdrCount; 614 // multiple LUNs not supported. 615 constexpr uint8_t lunsAndDynamicPopulation = 1; 616 constexpr uint8_t getSdrCount = 0x01; 617 constexpr uint8_t getSensorCount = 0x00; 618 619 if (count.value_or(0) == getSdrCount) 620 { 621 // Get SDR count. This returns the total number of SDRs in the device. 622 const auto& entityRecords = 623 ipmi::sensor::EntityInfoMapContainer::getContainer() 624 ->getIpmiEntityRecords(); 625 sdrCount = 626 ipmi::sensor::sensors.size() + frus.size() + entityRecords.size(); 627 } 628 else if (count.value_or(0) == getSensorCount) 629 { 630 // Get Sensor count. This returns the number of sensors 631 sdrCount = ipmi::sensor::sensors.size(); 632 } 633 else 634 { 635 return ipmi::responseInvalidCommandOnLun(); 636 } 637 638 return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation); 639 } 640 641 /** @brief implements the reserve SDR command 642 * @returns IPMI completion code plus response data 643 * - reservationID - reservation ID 644 */ 645 ipmi::RspType<uint16_t> ipmiSensorReserveSdr() 646 { 647 // A constant reservation ID is okay until we implement add/remove SDR. 648 constexpr uint16_t reservationID = 1; 649 650 return ipmi::responseSuccess(reservationID); 651 } 652 653 void setUnitFieldsForObject(const ipmi::sensor::Info* info, 654 get_sdr::SensorDataFullRecordBody* body) 655 { 656 namespace server = sdbusplus::xyz::openbmc_project::Sensor::server; 657 try 658 { 659 auto unit = server::Value::convertUnitFromString(info->unit); 660 // Unit strings defined in 661 // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml 662 switch (unit) 663 { 664 case server::Value::Unit::DegreesC: 665 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; 666 break; 667 case server::Value::Unit::RPMS: 668 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM; 669 break; 670 case server::Value::Unit::Volts: 671 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; 672 break; 673 case server::Value::Unit::Meters: 674 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; 675 break; 676 case server::Value::Unit::Amperes: 677 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; 678 break; 679 case server::Value::Unit::Joules: 680 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; 681 break; 682 case server::Value::Unit::Watts: 683 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; 684 break; 685 default: 686 // Cannot be hit. 687 std::fprintf(stderr, "Unknown value unit type: = %s\n", 688 info->unit.c_str()); 689 } 690 } 691 catch (const sdbusplus::exception::InvalidEnumString& e) 692 { 693 log<level::WARNING>("Warning: no unit provided for sensor!"); 694 } 695 } 696 697 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, 698 const ipmi::sensor::Info* info, 699 ipmi_data_len_t data_len) 700 { 701 /* Functional sensor case */ 702 if (isAnalogSensor(info->propertyInterfaces.begin()->first)) 703 { 704 705 body->sensor_units_1 = 0; // unsigned, no rate, no modifier, not a % 706 707 /* Unit info */ 708 setUnitFieldsForObject(info, body); 709 710 get_sdr::body::set_b(info->coefficientB, body); 711 get_sdr::body::set_m(info->coefficientM, body); 712 get_sdr::body::set_b_exp(info->exponentB, body); 713 get_sdr::body::set_r_exp(info->exponentR, body); 714 715 get_sdr::body::set_id_type(0b00, body); // 00 = unicode 716 } 717 718 /* ID string */ 719 auto id_string = info->sensorName; 720 721 if (id_string.empty()) 722 { 723 id_string = info->sensorNameFunc(*info); 724 } 725 726 if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) 727 { 728 get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); 729 } 730 else 731 { 732 get_sdr::body::set_id_strlen(id_string.length(), body); 733 } 734 strncpy(body->id_string, id_string.c_str(), 735 get_sdr::body::get_id_strlen(body)); 736 737 return IPMI_CC_OK; 738 }; 739 740 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, 741 ipmi_data_len_t data_len) 742 { 743 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 744 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 745 get_sdr::SensorDataFruRecord record{}; 746 auto dataLength = 0; 747 748 auto fru = frus.begin(); 749 uint8_t fruID{}; 750 auto recordID = get_sdr::request::get_record_id(req); 751 752 fruID = recordID - FRU_RECORD_ID_START; 753 fru = frus.find(fruID); 754 if (fru == frus.end()) 755 { 756 return IPMI_CC_SENSOR_INVALID; 757 } 758 759 /* Header */ 760 get_sdr::header::set_record_id(recordID, &(record.header)); 761 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 762 record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; 763 record.header.record_length = sizeof(record.key) + sizeof(record.body); 764 765 /* Key */ 766 record.key.fruID = fruID; 767 record.key.accessLun |= IPMI_LOGICAL_FRU; 768 record.key.deviceAddress = BMCSlaveAddress; 769 770 /* Body */ 771 record.body.entityID = fru->second[0].entityID; 772 record.body.entityInstance = fru->second[0].entityInstance; 773 record.body.deviceType = fruInventoryDevice; 774 record.body.deviceTypeModifier = IPMIFruInventory; 775 776 /* Device ID string */ 777 auto deviceID = 778 fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, 779 fru->second[0].path.length()); 780 781 if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) 782 { 783 get_sdr::body::set_device_id_strlen( 784 get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); 785 } 786 else 787 { 788 get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); 789 } 790 791 strncpy(record.body.deviceID, deviceID.c_str(), 792 get_sdr::body::get_device_id_strlen(&(record.body))); 793 794 if (++fru == frus.end()) 795 { 796 // we have reached till end of fru, so assign the next record id to 797 // 512(Max fru ID = 511) + Entity Record ID(may start with 0). 798 const auto& entityRecords = 799 ipmi::sensor::EntityInfoMapContainer::getContainer() 800 ->getIpmiEntityRecords(); 801 auto next_record_id = 802 (entityRecords.size()) 803 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START 804 : END_OF_RECORD; 805 get_sdr::response::set_next_record_id(next_record_id, resp); 806 } 807 else 808 { 809 get_sdr::response::set_next_record_id( 810 (FRU_RECORD_ID_START + fru->first), resp); 811 } 812 813 // Check for invalid offset size 814 if (req->offset > sizeof(record)) 815 { 816 return IPMI_CC_PARM_OUT_OF_RANGE; 817 } 818 819 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 820 sizeof(record) - req->offset); 821 822 std::memcpy(resp->record_data, 823 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 824 825 *data_len = dataLength; 826 *data_len += 2; // additional 2 bytes for next record ID 827 828 return IPMI_CC_OK; 829 } 830 831 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response, 832 ipmi_data_len_t data_len) 833 { 834 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 835 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 836 get_sdr::SensorDataEntityRecord record{}; 837 auto dataLength = 0; 838 839 const auto& entityRecords = 840 ipmi::sensor::EntityInfoMapContainer::getContainer() 841 ->getIpmiEntityRecords(); 842 auto entity = entityRecords.begin(); 843 uint8_t entityRecordID; 844 auto recordID = get_sdr::request::get_record_id(req); 845 846 entityRecordID = recordID - ENTITY_RECORD_ID_START; 847 entity = entityRecords.find(entityRecordID); 848 if (entity == entityRecords.end()) 849 { 850 return IPMI_CC_SENSOR_INVALID; 851 } 852 853 /* Header */ 854 get_sdr::header::set_record_id(recordID, &(record.header)); 855 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 856 record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD; 857 record.header.record_length = sizeof(record.key) + sizeof(record.body); 858 859 /* Key */ 860 record.key.containerEntityId = entity->second.containerEntityId; 861 record.key.containerEntityInstance = entity->second.containerEntityInstance; 862 get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked, 863 &(record.key)); 864 record.key.entityId1 = entity->second.containedEntities[0].first; 865 record.key.entityInstance1 = entity->second.containedEntities[0].second; 866 867 /* Body */ 868 record.body.entityId2 = entity->second.containedEntities[1].first; 869 record.body.entityInstance2 = entity->second.containedEntities[1].second; 870 record.body.entityId3 = entity->second.containedEntities[2].first; 871 record.body.entityInstance3 = entity->second.containedEntities[2].second; 872 record.body.entityId4 = entity->second.containedEntities[3].first; 873 record.body.entityInstance4 = entity->second.containedEntities[3].second; 874 875 if (++entity == entityRecords.end()) 876 { 877 get_sdr::response::set_next_record_id(END_OF_RECORD, 878 resp); // last record 879 } 880 else 881 { 882 get_sdr::response::set_next_record_id( 883 (ENTITY_RECORD_ID_START + entity->first), resp); 884 } 885 886 // Check for invalid offset size 887 if (req->offset > sizeof(record)) 888 { 889 return IPMI_CC_PARM_OUT_OF_RANGE; 890 } 891 892 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 893 sizeof(record) - req->offset); 894 895 std::memcpy(resp->record_data, 896 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 897 898 *data_len = dataLength; 899 *data_len += 2; // additional 2 bytes for next record ID 900 901 return IPMI_CC_OK; 902 } 903 904 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t netfn, ipmi_cmd_t cmd, 905 ipmi_request_t request, ipmi_response_t response, 906 ipmi_data_len_t data_len, ipmi_context_t context) 907 { 908 ipmi_ret_t ret = IPMI_CC_OK; 909 get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; 910 get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; 911 get_sdr::SensorDataFullRecord record = {0}; 912 913 // Note: we use an iterator so we can provide the next ID at the end of 914 // the call. 915 auto sensor = ipmi::sensor::sensors.begin(); 916 auto recordID = get_sdr::request::get_record_id(req); 917 918 // At the beginning of a scan, the host side will send us id=0. 919 if (recordID != 0) 920 { 921 // recordID 0 to 255 means it is a FULL record. 922 // recordID 256 to 511 means it is a FRU record. 923 // recordID greater then 511 means it is a Entity Association 924 // record. Currently we are supporting three record types: FULL 925 // record, FRU record and Enttiy Association record. 926 if (recordID >= ENTITY_RECORD_ID_START) 927 { 928 return ipmi_entity_get_sdr(request, response, data_len); 929 } 930 else if (recordID >= FRU_RECORD_ID_START && 931 recordID < ENTITY_RECORD_ID_START) 932 { 933 return ipmi_fru_get_sdr(request, response, data_len); 934 } 935 else 936 { 937 sensor = ipmi::sensor::sensors.find(recordID); 938 if (sensor == ipmi::sensor::sensors.end()) 939 { 940 return IPMI_CC_SENSOR_INVALID; 941 } 942 } 943 } 944 945 uint8_t sensor_id = sensor->first; 946 947 /* Header */ 948 get_sdr::header::set_record_id(sensor_id, &(record.header)); 949 record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 950 record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; 951 record.header.record_length = sizeof(record.key) + sizeof(record.body); 952 953 /* Key */ 954 get_sdr::key::set_owner_id_bmc(&(record.key)); 955 record.key.sensor_number = sensor_id; 956 957 /* Body */ 958 record.body.entity_id = sensor->second.entityType; 959 record.body.sensor_type = sensor->second.sensorType; 960 record.body.event_reading_type = sensor->second.sensorReadingType; 961 record.body.entity_instance = sensor->second.instance; 962 if (ipmi::sensor::Mutability::Write == 963 (sensor->second.mutability & ipmi::sensor::Mutability::Write)) 964 { 965 get_sdr::body::init_settable_state(true, &(record.body)); 966 } 967 968 // Set the type-specific details given the DBus interface 969 ret = 970 populate_record_from_dbus(&(record.body), &(sensor->second), data_len); 971 972 if (++sensor == ipmi::sensor::sensors.end()) 973 { 974 // we have reached till end of sensor, so assign the next record id 975 // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). 976 auto next_record_id = (frus.size()) 977 ? frus.begin()->first + FRU_RECORD_ID_START 978 : END_OF_RECORD; 979 980 get_sdr::response::set_next_record_id(next_record_id, resp); 981 } 982 else 983 { 984 get_sdr::response::set_next_record_id(sensor->first, resp); 985 } 986 987 if (req->offset > sizeof(record)) 988 { 989 return IPMI_CC_PARM_OUT_OF_RANGE; 990 } 991 992 // data_len will ultimately be the size of the record, plus 993 // the size of the next record ID: 994 *data_len = std::min(static_cast<size_t>(req->bytes_to_read), 995 sizeof(record) - req->offset); 996 997 std::memcpy(resp->record_data, 998 reinterpret_cast<uint8_t*>(&record) + req->offset, *data_len); 999 1000 // data_len should include the LSB and MSB: 1001 *data_len += 1002 sizeof(resp->next_record_id_lsb) + sizeof(resp->next_record_id_msb); 1003 1004 return ret; 1005 } 1006 1007 static bool isFromSystemChannel() 1008 { 1009 // TODO we could not figure out where the request is from based on IPMI 1010 // command handler parameters. because of it, we can not differentiate 1011 // request from SMS/SMM or IPMB channel 1012 return true; 1013 } 1014 1015 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t netfn, ipmi_cmd_t cmd, 1016 ipmi_request_t request, 1017 ipmi_response_t response, 1018 ipmi_data_len_t dataLen, ipmi_context_t context) 1019 { 1020 uint16_t generatorID; 1021 size_t count; 1022 bool assert = true; 1023 std::string sensorPath; 1024 size_t paraLen = *dataLen; 1025 PlatformEventRequest* req; 1026 *dataLen = 0; 1027 1028 if ((paraLen < selSystemEventSizeWith1Bytes) || 1029 (paraLen > selSystemEventSizeWith3Bytes)) 1030 { 1031 return IPMI_CC_REQ_DATA_LEN_INVALID; 1032 } 1033 1034 if (isFromSystemChannel()) 1035 { // first byte for SYSTEM Interface is Generator ID 1036 // +1 to get common struct 1037 req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1); 1038 // Capture the generator ID 1039 generatorID = *reinterpret_cast<uint8_t*>(request); 1040 // Platform Event usually comes from other firmware, like BIOS. 1041 // Unlike BMC sensor, it does not have BMC DBUS sensor path. 1042 sensorPath = "System"; 1043 } 1044 else 1045 { 1046 req = reinterpret_cast<PlatformEventRequest*>(request); 1047 // TODO GenratorID for IPMB is combination of RqSA and RqLUN 1048 generatorID = 0xff; 1049 sensorPath = "IPMB"; 1050 } 1051 // Content of event data field depends on sensor class. 1052 // When data0 bit[5:4] is non-zero, valid data counts is 3. 1053 // When data0 bit[7:6] is non-zero, valid data counts is 2. 1054 if (((req->data[0] & byte3EnableMask) != 0 && 1055 paraLen < selSystemEventSizeWith3Bytes) || 1056 ((req->data[0] & byte2EnableMask) != 0 && 1057 paraLen < selSystemEventSizeWith2Bytes)) 1058 { 1059 return IPMI_CC_REQ_DATA_LEN_INVALID; 1060 } 1061 1062 // Count bytes of Event Data 1063 if ((req->data[0] & byte3EnableMask) != 0) 1064 { 1065 count = 3; 1066 } 1067 else if ((req->data[0] & byte2EnableMask) != 0) 1068 { 1069 count = 2; 1070 } 1071 else 1072 { 1073 count = 1; 1074 } 1075 assert = req->eventDirectionType & directionMask ? false : true; 1076 std::vector<uint8_t> eventData(req->data, req->data + count); 1077 1078 sdbusplus::bus::bus dbus(bus); 1079 std::string service = 1080 ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath); 1081 sdbusplus::message::message writeSEL = dbus.new_method_call( 1082 service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd"); 1083 writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert, 1084 generatorID); 1085 try 1086 { 1087 dbus.call(writeSEL); 1088 } 1089 catch (sdbusplus::exception_t& e) 1090 { 1091 phosphor::logging::log<phosphor::logging::level::ERR>(e.what()); 1092 return IPMI_CC_UNSPECIFIED_ERROR; 1093 } 1094 return IPMI_CC_OK; 1095 } 1096 1097 void register_netfn_sen_functions() 1098 { 1099 // <Platform Event Message> 1100 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr, 1101 ipmicmdPlatformEvent, PRIVILEGE_OPERATOR); 1102 1103 // <Get Sensor Type> 1104 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1105 ipmi::sensor_event::cmdGetSensorType, 1106 ipmi::Privilege::User, ipmiGetSensorType); 1107 1108 // <Set Sensor Reading and Event Status> 1109 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1110 ipmi::sensor_event::cmdSetSensorReadingAndEvtSts, 1111 ipmi::Privilege::Operator, ipmiSetSensorReading); 1112 // <Get Sensor Reading> 1113 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1114 ipmi::sensor_event::cmdGetSensorReading, 1115 ipmi::Privilege::User, ipmiSensorGetSensorReading); 1116 1117 // <Reserve Device SDR Repository> 1118 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1119 ipmi::sensor_event::cmdReserveDeviceSdrRepository, 1120 ipmi::Privilege::User, ipmiSensorReserveSdr); 1121 1122 // <Get Device SDR Info> 1123 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1124 ipmi::sensor_event::cmdGetDeviceSdrInfo, 1125 ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo); 1126 1127 // <Get Device SDR> 1128 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, 1129 ipmi_sen_get_sdr, PRIVILEGE_USER); 1130 1131 // <Get Sensor Thresholds> 1132 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1133 ipmi::sensor_event::cmdGetSensorThreshold, 1134 ipmi::Privilege::User, ipmiSensorGetSensorThresholds); 1135 1136 return; 1137 } 1138