1 #include "config.h"
2 
3 #include "sensorhandler.hpp"
4 
5 #include "entity_map_json.hpp"
6 #include "fruread.hpp"
7 
8 #include <mapper.h>
9 #include <systemd/sd-bus.h>
10 
11 #include <bitset>
12 #include <cmath>
13 #include <cstring>
14 #include <ipmid/api.hpp>
15 #include <ipmid/types.hpp>
16 #include <ipmid/utils.hpp>
17 #include <phosphor-logging/elog-errors.hpp>
18 #include <phosphor-logging/log.hpp>
19 #include <sdbusplus/message/types.hpp>
20 #include <set>
21 #include <xyz/openbmc_project/Common/error.hpp>
22 #include <xyz/openbmc_project/Sensor/Value/server.hpp>
23 
24 static constexpr uint8_t fruInventoryDevice = 0x10;
25 static constexpr uint8_t IPMIFruInventory = 0x02;
26 static constexpr uint8_t BMCSlaveAddress = 0x20;
27 
28 extern int updateSensorRecordFromSSRAESC(const void*);
29 extern sd_bus* bus;
30 
31 namespace ipmi
32 {
33 namespace sensor
34 {
35 extern const IdInfoMap sensors;
36 } // namespace sensor
37 } // namespace ipmi
38 
39 extern const FruMap frus;
40 
41 using namespace phosphor::logging;
42 using InternalFailure =
43     sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure;
44 
45 void register_netfn_sen_functions() __attribute__((constructor));
46 
47 struct sensorTypemap_t
48 {
49     uint8_t number;
50     uint8_t typecode;
51     char dbusname[32];
52 };
53 
54 sensorTypemap_t g_SensorTypeMap[] = {
55 
56     {0x01, 0x6F, "Temp"},
57     {0x0C, 0x6F, "DIMM"},
58     {0x0C, 0x6F, "MEMORY_BUFFER"},
59     {0x07, 0x6F, "PROC"},
60     {0x07, 0x6F, "CORE"},
61     {0x07, 0x6F, "CPU"},
62     {0x0F, 0x6F, "BootProgress"},
63     {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor
64                                // type code os 0x09
65     {0xC3, 0x6F, "BootCount"},
66     {0x1F, 0x6F, "OperatingSystemStatus"},
67     {0x12, 0x6F, "SYSTEM_EVENT"},
68     {0xC7, 0x03, "SYSTEM"},
69     {0xC7, 0x03, "MAIN_PLANAR"},
70     {0xC2, 0x6F, "PowerCap"},
71     {0x0b, 0xCA, "PowerSupplyRedundancy"},
72     {0xDA, 0x03, "TurboAllowed"},
73     {0xD8, 0xC8, "PowerSupplyDerating"},
74     {0xFF, 0x00, ""},
75 };
76 
77 struct sensor_data_t
78 {
79     uint8_t sennum;
80 } __attribute__((packed));
81 
82 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>;
83 SDRCacheMap sdrCacheMap __attribute__((init_priority(101)));
84 
85 using SensorThresholdMap =
86     std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>;
87 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101)));
88 
89 #ifdef FEATURE_SENSORS_CACHE
90 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches
91     __attribute__((init_priority(101)));
92 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches
93     __attribute__((init_priority(101)));
94 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches
95     __attribute__((init_priority(101)));
96 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch
97     __attribute__((init_priority(101)));
98 
99 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101)));
100 
101 // It is needed to know which objects belong to which service, so that when a
102 // service exits without interfacesRemoved signal, we could invaildate the cache
103 // that is related to the service. It uses below two variables:
104 // - idToServiceMap records which sensors are known to have a related service;
105 // - serviceToIdMap maps a service to the sensors.
106 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>;
107 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101)));
108 
109 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>;
110 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101)));
111 
112 static void fillSensorIdServiceMap(const std::string&,
113                                    const std::string& /*intf*/, uint8_t id,
114                                    const std::string& service)
115 {
116     if (idToServiceMap.find(id) != idToServiceMap.end())
117     {
118         return;
119     }
120     idToServiceMap[id] = service;
121     serviceToIdMap[service].insert(id);
122 }
123 
124 static void fillSensorIdServiceMap(const std::string& obj,
125                                    const std::string& intf, uint8_t id)
126 {
127     if (idToServiceMap.find(id) != idToServiceMap.end())
128     {
129         return;
130     }
131     try
132     {
133         sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
134         auto service = ipmi::getService(bus, intf, obj);
135         idToServiceMap[id] = service;
136         serviceToIdMap[service].insert(id);
137     }
138     catch (...)
139     {
140         // Ignore
141     }
142 }
143 
144 void initSensorMatches()
145 {
146     using namespace sdbusplus::bus::match::rules;
147     sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
148     for (const auto& s : ipmi::sensor::sensors)
149     {
150         sensorAddedMatches.emplace(
151             s.first,
152             std::make_unique<sdbusplus::bus::match_t>(
153                 bus, interfacesAdded() + argNpath(0, s.second.sensorPath),
154                 [id = s.first, obj = s.second.sensorPath,
155                  intf = s.second.propertyInterfaces.begin()->first](
156                     auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); }));
157         sensorRemovedMatches.emplace(
158             s.first,
159             std::make_unique<sdbusplus::bus::match_t>(
160                 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath),
161                 [id = s.first](auto& /*msg*/) {
162                     // Ideally this should work.
163                     // But when a service is terminated or crashed, it does not
164                     // emit interfacesRemoved signal. In that case it's handled
165                     // by sensorsOwnerMatch
166                     sensorCacheMap[id].reset();
167                 }));
168         sensorUpdatedMatches.emplace(
169             s.first, std::make_unique<sdbusplus::bus::match_t>(
170                          bus,
171                          type::signal() + path(s.second.sensorPath) +
172                              member("PropertiesChanged"s) +
173                              interface("org.freedesktop.DBus.Properties"s),
174                          [&s](auto& msg) {
175                              fillSensorIdServiceMap(
176                                  s.second.sensorPath,
177                                  s.second.propertyInterfaces.begin()->first,
178                                  s.first);
179                              try
180                              {
181                                  // This is signal callback
182                                  std::string interfaceName;
183                                  msg.read(interfaceName);
184                                  ipmi::PropertyMap props;
185                                  msg.read(props);
186                                  s.second.getFunc(s.first, s.second, props);
187                              }
188                              catch (const std::exception& e)
189                              {
190                                  sensorCacheMap[s.first].reset();
191                              }
192                          }));
193     }
194     sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>(
195         bus, nameOwnerChanged(), [](auto& msg) {
196             std::string name;
197             std::string oldOwner;
198             std::string newOwner;
199             msg.read(name, oldOwner, newOwner);
200 
201             if (!name.empty() && newOwner.empty())
202             {
203                 // The service exits
204                 const auto it = serviceToIdMap.find(name);
205                 if (it == serviceToIdMap.end())
206                 {
207                     return;
208                 }
209                 for (const auto& id : it->second)
210                 {
211                     // Invalidate cache
212                     sensorCacheMap[id].reset();
213                 }
214             }
215         });
216 }
217 #endif
218 
219 int get_bus_for_path(const char* path, char** busname)
220 {
221     return mapper_get_service(bus, path, busname);
222 }
223 
224 // Use a lookup table to find the interface name of a specific sensor
225 // This will be used until an alternative is found.  this is the first
226 // step for mapping IPMI
227 int find_openbmc_path(uint8_t num, dbus_interface_t* interface)
228 {
229     int rc;
230 
231     const auto& sensor_it = ipmi::sensor::sensors.find(num);
232     if (sensor_it == ipmi::sensor::sensors.end())
233     {
234         // The sensor map does not contain the sensor requested
235         return -EINVAL;
236     }
237 
238     const auto& info = sensor_it->second;
239 
240     char* busname = nullptr;
241     rc = get_bus_for_path(info.sensorPath.c_str(), &busname);
242     if (rc < 0)
243     {
244         std::fprintf(stderr, "Failed to get %s busname: %s\n",
245                      info.sensorPath.c_str(), busname);
246         goto final;
247     }
248 
249     interface->sensortype = info.sensorType;
250     strcpy(interface->bus, busname);
251     strcpy(interface->path, info.sensorPath.c_str());
252     // Take the interface name from the beginning of the DbusInterfaceMap. This
253     // works for the Value interface but may not suffice for more complex
254     // sensors.
255     // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103
256     strcpy(interface->interface,
257            info.propertyInterfaces.begin()->first.c_str());
258     interface->sensornumber = num;
259 
260 final:
261     free(busname);
262     return rc;
263 }
264 
265 /////////////////////////////////////////////////////////////////////
266 //
267 // Routines used by ipmi commands wanting to interact on the dbus
268 //
269 /////////////////////////////////////////////////////////////////////
270 int set_sensor_dbus_state_s(uint8_t number, const char* method,
271                             const char* value)
272 {
273 
274     dbus_interface_t a;
275     int r;
276     sd_bus_error error = SD_BUS_ERROR_NULL;
277     sd_bus_message* m = NULL;
278 
279     r = find_openbmc_path(number, &a);
280 
281     if (r < 0)
282     {
283         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
284         return 0;
285     }
286 
287     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
288                                        method);
289     if (r < 0)
290     {
291         std::fprintf(stderr, "Failed to create a method call: %s",
292                      strerror(-r));
293         goto final;
294     }
295 
296     r = sd_bus_message_append(m, "v", "s", value);
297     if (r < 0)
298     {
299         std::fprintf(stderr, "Failed to create a input parameter: %s",
300                      strerror(-r));
301         goto final;
302     }
303 
304     r = sd_bus_call(bus, m, 0, &error, NULL);
305     if (r < 0)
306     {
307         std::fprintf(stderr, "Failed to call the method: %s", strerror(-r));
308     }
309 
310 final:
311     sd_bus_error_free(&error);
312     m = sd_bus_message_unref(m);
313 
314     return 0;
315 }
316 int set_sensor_dbus_state_y(uint8_t number, const char* method,
317                             const uint8_t value)
318 {
319 
320     dbus_interface_t a;
321     int r;
322     sd_bus_error error = SD_BUS_ERROR_NULL;
323     sd_bus_message* m = NULL;
324 
325     r = find_openbmc_path(number, &a);
326 
327     if (r < 0)
328     {
329         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
330         return 0;
331     }
332 
333     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
334                                        method);
335     if (r < 0)
336     {
337         std::fprintf(stderr, "Failed to create a method call: %s",
338                      strerror(-r));
339         goto final;
340     }
341 
342     r = sd_bus_message_append(m, "v", "i", value);
343     if (r < 0)
344     {
345         std::fprintf(stderr, "Failed to create a input parameter: %s",
346                      strerror(-r));
347         goto final;
348     }
349 
350     r = sd_bus_call(bus, m, 0, &error, NULL);
351     if (r < 0)
352     {
353         std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r));
354     }
355 
356 final:
357     sd_bus_error_free(&error);
358     m = sd_bus_message_unref(m);
359 
360     return 0;
361 }
362 
363 uint8_t dbus_to_sensor_type(char* p)
364 {
365 
366     sensorTypemap_t* s = g_SensorTypeMap;
367     char r = 0;
368     while (s->number != 0xFF)
369     {
370         if (!strcmp(s->dbusname, p))
371         {
372             r = s->typecode;
373             break;
374         }
375         s++;
376     }
377 
378     if (s->number == 0xFF)
379         printf("Failed to find Sensor Type %s\n", p);
380 
381     return r;
382 }
383 
384 uint8_t get_type_from_interface(dbus_interface_t dbus_if)
385 {
386 
387     uint8_t type;
388 
389     // This is where sensors that do not exist in dbus but do
390     // exist in the host code stop.  This should indicate it
391     // is not a supported sensor
392     if (dbus_if.interface[0] == 0)
393     {
394         return 0;
395     }
396 
397     // Fetch type from interface itself.
398     if (dbus_if.sensortype != 0)
399     {
400         type = dbus_if.sensortype;
401     }
402     else
403     {
404         // Non InventoryItems
405         char* p = strrchr(dbus_if.path, '/');
406         type = dbus_to_sensor_type(p + 1);
407     }
408 
409     return type;
410 }
411 
412 // Replaces find_sensor
413 uint8_t find_type_for_sensor_number(uint8_t num)
414 {
415     int r;
416     dbus_interface_t dbus_if;
417     r = find_openbmc_path(num, &dbus_if);
418     if (r < 0)
419     {
420         std::fprintf(stderr, "Could not find sensor %d\n", num);
421         return 0;
422     }
423     return get_type_from_interface(dbus_if);
424 }
425 
426 /**
427  *  @brief implements the get sensor type command.
428  *  @param - sensorNumber
429  *
430  *  @return IPMI completion code plus response data on success.
431  *   - sensorType
432  *   - eventType
433  **/
434 
435 ipmi::RspType<uint8_t, // sensorType
436               uint8_t  // eventType
437               >
438     ipmiGetSensorType(uint8_t sensorNumber)
439 {
440     uint8_t sensorType = find_type_for_sensor_number(sensorNumber);
441 
442     if (sensorType == 0)
443     {
444         return ipmi::responseSensorInvalid();
445     }
446 
447     constexpr uint8_t eventType = 0x6F;
448     return ipmi::responseSuccess(sensorType, eventType);
449 }
450 
451 const std::set<std::string> analogSensorInterfaces = {
452     "xyz.openbmc_project.Sensor.Value",
453     "xyz.openbmc_project.Control.FanPwm",
454 };
455 
456 bool isAnalogSensor(const std::string& interface)
457 {
458     return (analogSensorInterfaces.count(interface));
459 }
460 
461 /**
462 @brief This command is used to set sensorReading.
463 
464 @param
465     -  sensorNumber
466     -  operation
467     -  reading
468     -  assertOffset0_7
469     -  assertOffset8_14
470     -  deassertOffset0_7
471     -  deassertOffset8_14
472     -  eventData1
473     -  eventData2
474     -  eventData3
475 
476 @return completion code on success.
477 **/
478 
479 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation,
480                                      uint8_t reading, uint8_t assertOffset0_7,
481                                      uint8_t assertOffset8_14,
482                                      uint8_t deassertOffset0_7,
483                                      uint8_t deassertOffset8_14,
484                                      uint8_t eventData1, uint8_t eventData2,
485                                      uint8_t eventData3)
486 {
487     log<level::DEBUG>("IPMI SET_SENSOR",
488                       entry("SENSOR_NUM=0x%02x", sensorNumber));
489 
490     if (sensorNumber == 0xFF)
491     {
492         return ipmi::responseInvalidFieldRequest();
493     }
494     ipmi::sensor::SetSensorReadingReq cmdData;
495 
496     cmdData.number = sensorNumber;
497     cmdData.operation = operation;
498     cmdData.reading = reading;
499     cmdData.assertOffset0_7 = assertOffset0_7;
500     cmdData.assertOffset8_14 = assertOffset8_14;
501     cmdData.deassertOffset0_7 = deassertOffset0_7;
502     cmdData.deassertOffset8_14 = deassertOffset8_14;
503     cmdData.eventData1 = eventData1;
504     cmdData.eventData2 = eventData2;
505     cmdData.eventData3 = eventData3;
506 
507     // Check if the Sensor Number is present
508     const auto iter = ipmi::sensor::sensors.find(sensorNumber);
509     if (iter == ipmi::sensor::sensors.end())
510     {
511         updateSensorRecordFromSSRAESC(&sensorNumber);
512         return ipmi::responseSuccess();
513     }
514 
515     try
516     {
517         if (ipmi::sensor::Mutability::Write !=
518             (iter->second.mutability & ipmi::sensor::Mutability::Write))
519         {
520             log<level::ERR>("Sensor Set operation is not allowed",
521                             entry("SENSOR_NUM=%d", sensorNumber));
522             return ipmi::responseIllegalCommand();
523         }
524         auto ipmiRC = iter->second.updateFunc(cmdData, iter->second);
525         return ipmi::response(ipmiRC);
526     }
527     catch (const InternalFailure& e)
528     {
529         log<level::ERR>("Set sensor failed",
530                         entry("SENSOR_NUM=%d", sensorNumber));
531         commit<InternalFailure>();
532         return ipmi::responseUnspecifiedError();
533     }
534     catch (const std::runtime_error& e)
535     {
536         log<level::ERR>(e.what());
537         return ipmi::responseUnspecifiedError();
538     }
539 }
540 
541 /** @brief implements the get sensor reading command
542  *  @param sensorNum - sensor number
543  *
544  *  @returns IPMI completion code plus response data
545  *   - senReading           - sensor reading
546  *   - reserved
547  *   - readState            - sensor reading state enabled
548  *   - senScanState         - sensor scan state disabled
549  *   - allEventMessageState - all Event message state disabled
550  *   - assertionStatesLsb   - threshold levels states
551  *   - assertionStatesMsb   - discrete reading sensor states
552  */
553 ipmi::RspType<uint8_t, // sensor reading
554 
555               uint5_t, // reserved
556               bool,    // reading state
557               bool,    // 0 = sensor scanning state disabled
558               bool,    // 0 = all event messages disabled
559 
560               uint8_t, // threshold levels states
561               uint8_t  // discrete reading sensor states
562               >
563     ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx,
564                                uint8_t sensorNum)
565 {
566     if (sensorNum == 0xFF)
567     {
568         return ipmi::responseInvalidFieldRequest();
569     }
570 
571     const auto iter = ipmi::sensor::sensors.find(sensorNum);
572     if (iter == ipmi::sensor::sensors.end())
573     {
574         return ipmi::responseSensorInvalid();
575     }
576     if (ipmi::sensor::Mutability::Read !=
577         (iter->second.mutability & ipmi::sensor::Mutability::Read))
578     {
579         return ipmi::responseIllegalCommand();
580     }
581 
582     try
583     {
584 #ifdef FEATURE_SENSORS_CACHE
585         auto& sensorData = sensorCacheMap[sensorNum];
586         if (!sensorData.has_value())
587         {
588             // No cached value, try read it
589             std::string service;
590             boost::system::error_code ec;
591             const auto& sensorInfo = iter->second;
592             ec = ipmi::getService(ctx, sensorInfo.sensorInterface,
593                                   sensorInfo.sensorPath, service);
594             if (ec)
595             {
596                 return ipmi::responseUnspecifiedError();
597             }
598             fillSensorIdServiceMap(sensorInfo.sensorPath,
599                                    sensorInfo.propertyInterfaces.begin()->first,
600                                    iter->first, service);
601 
602             ipmi::PropertyMap props;
603             ec = ipmi::getAllDbusProperties(
604                 ctx, service, sensorInfo.sensorPath,
605                 sensorInfo.propertyInterfaces.begin()->first, props);
606             if (ec)
607             {
608                 fprintf(stderr, "Failed to get sensor %s, %d: %s\n",
609                         sensorInfo.sensorPath.c_str(), ec.value(),
610                         ec.message().c_str());
611                 // Intitilizing with default values
612                 constexpr uint8_t senReading = 0;
613                 constexpr uint5_t reserved{0};
614                 constexpr bool readState = true;
615                 constexpr bool senScanState = false;
616                 constexpr bool allEventMessageState = false;
617                 constexpr uint8_t assertionStatesLsb = 0;
618                 constexpr uint8_t assertionStatesMsb = 0;
619 
620                 return ipmi::responseSuccess(senReading, reserved, readState,
621                                              senScanState, allEventMessageState,
622                                              assertionStatesLsb,
623                                              assertionStatesMsb);
624             }
625             sensorInfo.getFunc(sensorNum, sensorInfo, props);
626         }
627         return ipmi::responseSuccess(
628             sensorData->response.reading, uint5_t(0),
629             sensorData->response.readingOrStateUnavailable,
630             sensorData->response.scanningEnabled,
631             sensorData->response.allEventMessagesEnabled,
632             sensorData->response.thresholdLevelsStates,
633             sensorData->response.discreteReadingSensorStates);
634 
635 #else
636         ipmi::sensor::GetSensorResponse getResponse =
637             iter->second.getFunc(iter->second);
638 
639         return ipmi::responseSuccess(getResponse.reading, uint5_t(0),
640                                      getResponse.readingOrStateUnavailable,
641                                      getResponse.scanningEnabled,
642                                      getResponse.allEventMessagesEnabled,
643                                      getResponse.thresholdLevelsStates,
644                                      getResponse.discreteReadingSensorStates);
645 #endif
646     }
647 #ifdef UPDATE_FUNCTIONAL_ON_FAIL
648     catch (const SensorFunctionalError& e)
649     {
650         return ipmi::responseResponseError();
651     }
652 #endif
653     catch (const std::exception& e)
654     {
655         // Intitilizing with default values
656         constexpr uint8_t senReading = 0;
657         constexpr uint5_t reserved{0};
658         constexpr bool readState = true;
659         constexpr bool senScanState = false;
660         constexpr bool allEventMessageState = false;
661         constexpr uint8_t assertionStatesLsb = 0;
662         constexpr uint8_t assertionStatesMsb = 0;
663 
664         return ipmi::responseSuccess(senReading, reserved, readState,
665                                      senScanState, allEventMessageState,
666                                      assertionStatesLsb, assertionStatesMsb);
667     }
668 }
669 
670 get_sdr::GetSensorThresholdsResponse
671     getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
672 {
673     get_sdr::GetSensorThresholdsResponse resp{};
674     constexpr auto warningThreshIntf =
675         "xyz.openbmc_project.Sensor.Threshold.Warning";
676     constexpr auto criticalThreshIntf =
677         "xyz.openbmc_project.Sensor.Threshold.Critical";
678 
679     const auto iter = ipmi::sensor::sensors.find(sensorNum);
680     const auto info = iter->second;
681 
682     std::string service;
683     boost::system::error_code ec;
684     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
685     if (ec)
686     {
687         return resp;
688     }
689 
690     ipmi::PropertyMap warnThresholds;
691     ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
692                                     warningThreshIntf, warnThresholds);
693     if (!ec)
694     {
695         double warnLow = ipmi::mappedVariant<double>(
696             warnThresholds, "WarningLow",
697             std::numeric_limits<double>::quiet_NaN());
698         double warnHigh = ipmi::mappedVariant<double>(
699             warnThresholds, "WarningHigh",
700             std::numeric_limits<double>::quiet_NaN());
701 
702         if (std::isfinite(warnLow))
703         {
704             warnLow *= std::pow(10, info.scale - info.exponentR);
705             resp.lowerNonCritical = static_cast<uint8_t>(
706                 round((warnLow - info.scaledOffset) / info.coefficientM));
707             resp.validMask |= static_cast<uint8_t>(
708                 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK);
709         }
710 
711         if (std::isfinite(warnHigh))
712         {
713             warnHigh *= std::pow(10, info.scale - info.exponentR);
714             resp.upperNonCritical = static_cast<uint8_t>(
715                 round((warnHigh - info.scaledOffset) / info.coefficientM));
716             resp.validMask |= static_cast<uint8_t>(
717                 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK);
718         }
719     }
720 
721     ipmi::PropertyMap critThresholds;
722     ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
723                                     criticalThreshIntf, critThresholds);
724     if (!ec)
725     {
726         double critLow = ipmi::mappedVariant<double>(
727             critThresholds, "CriticalLow",
728             std::numeric_limits<double>::quiet_NaN());
729         double critHigh = ipmi::mappedVariant<double>(
730             critThresholds, "CriticalHigh",
731             std::numeric_limits<double>::quiet_NaN());
732 
733         if (std::isfinite(critLow))
734         {
735             critLow *= std::pow(10, info.scale - info.exponentR);
736             resp.lowerCritical = static_cast<uint8_t>(
737                 round((critLow - info.scaledOffset) / info.coefficientM));
738             resp.validMask |= static_cast<uint8_t>(
739                 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK);
740         }
741 
742         if (std::isfinite(critHigh))
743         {
744             critHigh *= std::pow(10, info.scale - info.exponentR);
745             resp.upperCritical = static_cast<uint8_t>(
746                 round((critHigh - info.scaledOffset) / info.coefficientM));
747             resp.validMask |= static_cast<uint8_t>(
748                 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK);
749         }
750     }
751 
752     return resp;
753 }
754 
755 /** @brief implements the get sensor thresholds command
756  *  @param ctx - IPMI context pointer
757  *  @param sensorNum - sensor number
758  *
759  *  @returns IPMI completion code plus response data
760  *   - validMask - threshold mask
761  *   - lower non-critical threshold - IPMI messaging state
762  *   - lower critical threshold - link authentication state
763  *   - lower non-recoverable threshold - callback state
764  *   - upper non-critical threshold
765  *   - upper critical
766  *   - upper non-recoverable
767  */
768 ipmi::RspType<uint8_t, // validMask
769               uint8_t, // lowerNonCritical
770               uint8_t, // lowerCritical
771               uint8_t, // lowerNonRecoverable
772               uint8_t, // upperNonCritical
773               uint8_t, // upperCritical
774               uint8_t  // upperNonRecoverable
775               >
776     ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
777 {
778     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
779 
780     const auto iter = ipmi::sensor::sensors.find(sensorNum);
781     if (iter == ipmi::sensor::sensors.end())
782     {
783         return ipmi::responseSensorInvalid();
784     }
785 
786     const auto info = iter->second;
787 
788     // Proceed only if the sensor value interface is implemented.
789     if (info.propertyInterfaces.find(valueInterface) ==
790         info.propertyInterfaces.end())
791     {
792         // return with valid mask as 0
793         return ipmi::responseSuccess();
794     }
795 
796     auto it = sensorThresholdMap.find(sensorNum);
797     if (it == sensorThresholdMap.end())
798     {
799         sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum);
800     }
801 
802     const auto& resp = sensorThresholdMap[sensorNum];
803 
804     return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical,
805                                  resp.lowerCritical, resp.lowerNonRecoverable,
806                                  resp.upperNonCritical, resp.upperCritical,
807                                  resp.upperNonRecoverable);
808 }
809 
810 /** @brief implements the Set Sensor threshold command
811  *  @param sensorNumber        - sensor number
812  *  @param lowerNonCriticalThreshMask
813  *  @param lowerCriticalThreshMask
814  *  @param lowerNonRecovThreshMask
815  *  @param upperNonCriticalThreshMask
816  *  @param upperCriticalThreshMask
817  *  @param upperNonRecovThreshMask
818  *  @param reserved
819  *  @param lowerNonCritical    - lower non-critical threshold
820  *  @param lowerCritical       - Lower critical threshold
821  *  @param lowerNonRecoverable - Lower non recovarable threshold
822  *  @param upperNonCritical    - Upper non-critical threshold
823  *  @param upperCritical       - Upper critical
824  *  @param upperNonRecoverable - Upper Non-recoverable
825  *
826  *  @returns IPMI completion code
827  */
828 ipmi::RspType<> ipmiSenSetSensorThresholds(
829     ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask,
830     bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask,
831     bool upperNonCriticalThreshMask, bool upperCriticalThreshMask,
832     bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical,
833     uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical,
834     uint8_t upperCritical, uint8_t)
835 {
836     if (reserved)
837     {
838         return ipmi::responseInvalidFieldRequest();
839     }
840 
841     // lower nc and upper nc not suppported on any sensor
842     if (lowerNonRecovThreshMask || upperNonRecovThreshMask)
843     {
844         return ipmi::responseInvalidFieldRequest();
845     }
846 
847     // if none of the threshold mask are set, nothing to do
848     if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask |
849           lowerNonRecovThreshMask | upperNonCriticalThreshMask |
850           upperCriticalThreshMask | upperNonRecovThreshMask))
851     {
852         return ipmi::responseSuccess();
853     }
854 
855     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
856 
857     const auto iter = ipmi::sensor::sensors.find(sensorNum);
858     if (iter == ipmi::sensor::sensors.end())
859     {
860         return ipmi::responseSensorInvalid();
861     }
862 
863     const auto& info = iter->second;
864 
865     // Proceed only if the sensor value interface is implemented.
866     if (info.propertyInterfaces.find(valueInterface) ==
867         info.propertyInterfaces.end())
868     {
869         // return with valid mask as 0
870         return ipmi::responseSuccess();
871     }
872 
873     constexpr auto warningThreshIntf =
874         "xyz.openbmc_project.Sensor.Threshold.Warning";
875     constexpr auto criticalThreshIntf =
876         "xyz.openbmc_project.Sensor.Threshold.Critical";
877 
878     std::string service;
879     boost::system::error_code ec;
880     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
881     if (ec)
882     {
883         return ipmi::responseResponseError();
884     }
885     // store a vector of property name, value to set, and interface
886     std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet;
887 
888     // define the indexes of the tuple
889     constexpr uint8_t propertyName = 0;
890     constexpr uint8_t thresholdValue = 1;
891     constexpr uint8_t interface = 2;
892     // verifiy all needed fields are present
893     if (lowerCriticalThreshMask || upperCriticalThreshMask)
894     {
895 
896         ipmi::PropertyMap findThreshold;
897         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
898                                         criticalThreshIntf, findThreshold);
899 
900         if (!ec)
901         {
902             if (lowerCriticalThreshMask)
903             {
904                 auto findLower = findThreshold.find("CriticalLow");
905                 if (findLower == findThreshold.end())
906                 {
907                     return ipmi::responseInvalidFieldRequest();
908                 }
909                 thresholdsToSet.emplace_back("CriticalLow", lowerCritical,
910                                              criticalThreshIntf);
911             }
912             if (upperCriticalThreshMask)
913             {
914                 auto findUpper = findThreshold.find("CriticalHigh");
915                 if (findUpper == findThreshold.end())
916                 {
917                     return ipmi::responseInvalidFieldRequest();
918                 }
919                 thresholdsToSet.emplace_back("CriticalHigh", upperCritical,
920                                              criticalThreshIntf);
921             }
922         }
923     }
924     if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask)
925     {
926         ipmi::PropertyMap findThreshold;
927         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
928                                         warningThreshIntf, findThreshold);
929 
930         if (!ec)
931         {
932             if (lowerNonCriticalThreshMask)
933             {
934                 auto findLower = findThreshold.find("WarningLow");
935                 if (findLower == findThreshold.end())
936                 {
937                     return ipmi::responseInvalidFieldRequest();
938                 }
939                 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical,
940                                              warningThreshIntf);
941             }
942             if (upperNonCriticalThreshMask)
943             {
944                 auto findUpper = findThreshold.find("WarningHigh");
945                 if (findUpper == findThreshold.end())
946                 {
947                     return ipmi::responseInvalidFieldRequest();
948                 }
949                 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical,
950                                              warningThreshIntf);
951             }
952         }
953     }
954     for (const auto& property : thresholdsToSet)
955     {
956         // from section 36.3 in the IPMI Spec, assume all linear
957         double valueToSet =
958             ((info.coefficientM * std::get<thresholdValue>(property)) +
959              (info.scaledOffset * std::pow(10.0, info.scale))) *
960             std::pow(10.0, info.exponentR);
961         ipmi::setDbusProperty(
962             ctx, service, info.sensorPath, std::get<interface>(property),
963             std::get<propertyName>(property), ipmi::Value(valueToSet));
964     }
965 
966     // Invalidate the cache
967     sensorThresholdMap.erase(sensorNum);
968     return ipmi::responseSuccess();
969 }
970 
971 /** @brief implements the get SDR Info command
972  *  @param count - Operation
973  *
974  *  @returns IPMI completion code plus response data
975  *   - sdrCount - sensor/SDR count
976  *   - lunsAndDynamicPopulation - static/Dynamic sensor population flag
977  */
978 ipmi::RspType<uint8_t, // respcount
979               uint8_t  // dynamic population flags
980               >
981     ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)
982 {
983     uint8_t sdrCount;
984     // multiple LUNs not supported.
985     constexpr uint8_t lunsAndDynamicPopulation = 1;
986     constexpr uint8_t getSdrCount = 0x01;
987     constexpr uint8_t getSensorCount = 0x00;
988 
989     if (count.value_or(0) == getSdrCount)
990     {
991         // Get SDR count. This returns the total number of SDRs in the device.
992         const auto& entityRecords =
993             ipmi::sensor::EntityInfoMapContainer::getContainer()
994                 ->getIpmiEntityRecords();
995         sdrCount =
996             ipmi::sensor::sensors.size() + frus.size() + entityRecords.size();
997     }
998     else if (count.value_or(0) == getSensorCount)
999     {
1000         // Get Sensor count. This returns the number of sensors
1001         sdrCount = ipmi::sensor::sensors.size();
1002     }
1003     else
1004     {
1005         return ipmi::responseInvalidCommandOnLun();
1006     }
1007 
1008     return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation);
1009 }
1010 
1011 /** @brief implements the reserve SDR command
1012  *  @returns IPMI completion code plus response data
1013  *   - reservationID - reservation ID
1014  */
1015 ipmi::RspType<uint16_t> ipmiSensorReserveSdr()
1016 {
1017     // A constant reservation ID is okay until we implement add/remove SDR.
1018     constexpr uint16_t reservationID = 1;
1019 
1020     return ipmi::responseSuccess(reservationID);
1021 }
1022 
1023 void setUnitFieldsForObject(const ipmi::sensor::Info* info,
1024                             get_sdr::SensorDataFullRecordBody* body)
1025 {
1026     namespace server = sdbusplus::xyz::openbmc_project::Sensor::server;
1027     try
1028     {
1029         auto unit = server::Value::convertUnitFromString(info->unit);
1030         // Unit strings defined in
1031         // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml
1032         switch (unit)
1033         {
1034             case server::Value::Unit::DegreesC:
1035                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C;
1036                 break;
1037             case server::Value::Unit::RPMS:
1038                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM;
1039                 break;
1040             case server::Value::Unit::Volts:
1041                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS;
1042                 break;
1043             case server::Value::Unit::Meters:
1044                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS;
1045                 break;
1046             case server::Value::Unit::Amperes:
1047                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES;
1048                 break;
1049             case server::Value::Unit::Joules:
1050                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES;
1051                 break;
1052             case server::Value::Unit::Watts:
1053                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS;
1054                 break;
1055             default:
1056                 // Cannot be hit.
1057                 std::fprintf(stderr, "Unknown value unit type: = %s\n",
1058                              info->unit.c_str());
1059         }
1060     }
1061     catch (const sdbusplus::exception::InvalidEnumString& e)
1062     {
1063         log<level::WARNING>("Warning: no unit provided for sensor!");
1064     }
1065 }
1066 
1067 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body,
1068                                      const ipmi::sensor::Info* info,
1069                                      ipmi_data_len_t)
1070 {
1071     /* Functional sensor case */
1072     if (isAnalogSensor(info->propertyInterfaces.begin()->first))
1073     {
1074         body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no
1075                                                    // rate, no modifier, not a %
1076         /* Unit info */
1077         setUnitFieldsForObject(info, body);
1078 
1079         get_sdr::body::set_b(info->coefficientB, body);
1080         get_sdr::body::set_m(info->coefficientM, body);
1081         get_sdr::body::set_b_exp(info->exponentB, body);
1082         get_sdr::body::set_r_exp(info->exponentR, body);
1083 
1084         get_sdr::body::set_id_type(0b00, body); // 00 = unicode
1085     }
1086 
1087     /* ID string */
1088     auto id_string = info->sensorName;
1089 
1090     if (id_string.empty())
1091     {
1092         id_string = info->sensorNameFunc(*info);
1093     }
1094 
1095     if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH)
1096     {
1097         get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body);
1098     }
1099     else
1100     {
1101         get_sdr::body::set_id_strlen(id_string.length(), body);
1102     }
1103     strncpy(body->id_string, id_string.c_str(),
1104             get_sdr::body::get_id_strlen(body));
1105 
1106     return IPMI_CC_OK;
1107 };
1108 
1109 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response,
1110                             ipmi_data_len_t data_len)
1111 {
1112     auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
1113     auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
1114     get_sdr::SensorDataFruRecord record{};
1115     auto dataLength = 0;
1116 
1117     auto fru = frus.begin();
1118     uint8_t fruID{};
1119     auto recordID = get_sdr::request::get_record_id(req);
1120 
1121     fruID = recordID - FRU_RECORD_ID_START;
1122     fru = frus.find(fruID);
1123     if (fru == frus.end())
1124     {
1125         return IPMI_CC_SENSOR_INVALID;
1126     }
1127 
1128     /* Header */
1129     get_sdr::header::set_record_id(recordID, &(record.header));
1130     record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1131     record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD;
1132     record.header.record_length = sizeof(record.key) + sizeof(record.body);
1133 
1134     /* Key */
1135     record.key.fruID = fruID;
1136     record.key.accessLun |= IPMI_LOGICAL_FRU;
1137     record.key.deviceAddress = BMCSlaveAddress;
1138 
1139     /* Body */
1140     record.body.entityID = fru->second[0].entityID;
1141     record.body.entityInstance = fru->second[0].entityInstance;
1142     record.body.deviceType = fruInventoryDevice;
1143     record.body.deviceTypeModifier = IPMIFruInventory;
1144 
1145     /* Device ID string */
1146     auto deviceID =
1147         fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1,
1148                                    fru->second[0].path.length());
1149 
1150     if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH)
1151     {
1152         get_sdr::body::set_device_id_strlen(
1153             get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body));
1154     }
1155     else
1156     {
1157         get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body));
1158     }
1159 
1160     strncpy(record.body.deviceID, deviceID.c_str(),
1161             get_sdr::body::get_device_id_strlen(&(record.body)));
1162 
1163     if (++fru == frus.end())
1164     {
1165         // we have reached till end of fru, so assign the next record id to
1166         // 512(Max fru ID = 511) + Entity Record ID(may start with 0).
1167         const auto& entityRecords =
1168             ipmi::sensor::EntityInfoMapContainer::getContainer()
1169                 ->getIpmiEntityRecords();
1170         auto next_record_id =
1171             (entityRecords.size())
1172                 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START
1173                 : END_OF_RECORD;
1174         get_sdr::response::set_next_record_id(next_record_id, resp);
1175     }
1176     else
1177     {
1178         get_sdr::response::set_next_record_id(
1179             (FRU_RECORD_ID_START + fru->first), resp);
1180     }
1181 
1182     // Check for invalid offset size
1183     if (req->offset > sizeof(record))
1184     {
1185         return IPMI_CC_PARM_OUT_OF_RANGE;
1186     }
1187 
1188     dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
1189                           sizeof(record) - req->offset);
1190 
1191     std::memcpy(resp->record_data,
1192                 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
1193 
1194     *data_len = dataLength;
1195     *data_len += 2; // additional 2 bytes for next record ID
1196 
1197     return IPMI_CC_OK;
1198 }
1199 
1200 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response,
1201                                ipmi_data_len_t data_len)
1202 {
1203     auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
1204     auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
1205     get_sdr::SensorDataEntityRecord record{};
1206     auto dataLength = 0;
1207 
1208     const auto& entityRecords =
1209         ipmi::sensor::EntityInfoMapContainer::getContainer()
1210             ->getIpmiEntityRecords();
1211     auto entity = entityRecords.begin();
1212     uint8_t entityRecordID;
1213     auto recordID = get_sdr::request::get_record_id(req);
1214 
1215     entityRecordID = recordID - ENTITY_RECORD_ID_START;
1216     entity = entityRecords.find(entityRecordID);
1217     if (entity == entityRecords.end())
1218     {
1219         return IPMI_CC_SENSOR_INVALID;
1220     }
1221 
1222     /* Header */
1223     get_sdr::header::set_record_id(recordID, &(record.header));
1224     record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1225     record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD;
1226     record.header.record_length = sizeof(record.key) + sizeof(record.body);
1227 
1228     /* Key */
1229     record.key.containerEntityId = entity->second.containerEntityId;
1230     record.key.containerEntityInstance = entity->second.containerEntityInstance;
1231     get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked,
1232                             &(record.key));
1233     record.key.entityId1 = entity->second.containedEntities[0].first;
1234     record.key.entityInstance1 = entity->second.containedEntities[0].second;
1235 
1236     /* Body */
1237     record.body.entityId2 = entity->second.containedEntities[1].first;
1238     record.body.entityInstance2 = entity->second.containedEntities[1].second;
1239     record.body.entityId3 = entity->second.containedEntities[2].first;
1240     record.body.entityInstance3 = entity->second.containedEntities[2].second;
1241     record.body.entityId4 = entity->second.containedEntities[3].first;
1242     record.body.entityInstance4 = entity->second.containedEntities[3].second;
1243 
1244     if (++entity == entityRecords.end())
1245     {
1246         get_sdr::response::set_next_record_id(END_OF_RECORD,
1247                                               resp); // last record
1248     }
1249     else
1250     {
1251         get_sdr::response::set_next_record_id(
1252             (ENTITY_RECORD_ID_START + entity->first), resp);
1253     }
1254 
1255     // Check for invalid offset size
1256     if (req->offset > sizeof(record))
1257     {
1258         return IPMI_CC_PARM_OUT_OF_RANGE;
1259     }
1260 
1261     dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
1262                           sizeof(record) - req->offset);
1263 
1264     std::memcpy(resp->record_data,
1265                 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
1266 
1267     *data_len = dataLength;
1268     *data_len += 2; // additional 2 bytes for next record ID
1269 
1270     return IPMI_CC_OK;
1271 }
1272 
1273 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request,
1274                             ipmi_response_t response, ipmi_data_len_t data_len,
1275                             ipmi_context_t)
1276 {
1277     ipmi_ret_t ret = IPMI_CC_OK;
1278     get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request;
1279     get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response;
1280 
1281     // Note: we use an iterator so we can provide the next ID at the end of
1282     // the call.
1283     auto sensor = ipmi::sensor::sensors.begin();
1284     auto recordID = get_sdr::request::get_record_id(req);
1285 
1286     // At the beginning of a scan, the host side will send us id=0.
1287     if (recordID != 0)
1288     {
1289         // recordID 0 to 255 means it is a FULL record.
1290         // recordID 256 to 511 means it is a FRU record.
1291         // recordID greater then 511 means it is a Entity Association
1292         // record. Currently we are supporting three record types: FULL
1293         // record, FRU record and Enttiy Association record.
1294         if (recordID >= ENTITY_RECORD_ID_START)
1295         {
1296             return ipmi_entity_get_sdr(request, response, data_len);
1297         }
1298         else if (recordID >= FRU_RECORD_ID_START &&
1299                  recordID < ENTITY_RECORD_ID_START)
1300         {
1301             return ipmi_fru_get_sdr(request, response, data_len);
1302         }
1303         else
1304         {
1305             sensor = ipmi::sensor::sensors.find(recordID);
1306             if (sensor == ipmi::sensor::sensors.end())
1307             {
1308                 return IPMI_CC_SENSOR_INVALID;
1309             }
1310         }
1311     }
1312 
1313     uint8_t sensor_id = sensor->first;
1314 
1315     auto it = sdrCacheMap.find(sensor_id);
1316     if (it == sdrCacheMap.end())
1317     {
1318         /* Header */
1319         get_sdr::SensorDataFullRecord record = {};
1320         get_sdr::header::set_record_id(sensor_id, &(record.header));
1321         record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1
1322         record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD;
1323         record.header.record_length = sizeof(record.key) + sizeof(record.body);
1324 
1325         /* Key */
1326         get_sdr::key::set_owner_id_bmc(&(record.key));
1327         record.key.sensor_number = sensor_id;
1328 
1329         /* Body */
1330         record.body.entity_id = sensor->second.entityType;
1331         record.body.sensor_type = sensor->second.sensorType;
1332         record.body.event_reading_type = sensor->second.sensorReadingType;
1333         record.body.entity_instance = sensor->second.instance;
1334         if (ipmi::sensor::Mutability::Write ==
1335             (sensor->second.mutability & ipmi::sensor::Mutability::Write))
1336         {
1337             get_sdr::body::init_settable_state(true, &(record.body));
1338         }
1339 
1340         // Set the type-specific details given the DBus interface
1341         populate_record_from_dbus(&(record.body), &(sensor->second), data_len);
1342         sdrCacheMap[sensor_id] = std::move(record);
1343     }
1344 
1345     const auto& record = sdrCacheMap[sensor_id];
1346 
1347     if (++sensor == ipmi::sensor::sensors.end())
1348     {
1349         // we have reached till end of sensor, so assign the next record id
1350         // to 256(Max Sensor ID = 255) + FRU ID(may start with 0).
1351         auto next_record_id = (frus.size())
1352                                   ? frus.begin()->first + FRU_RECORD_ID_START
1353                                   : END_OF_RECORD;
1354 
1355         get_sdr::response::set_next_record_id(next_record_id, resp);
1356     }
1357     else
1358     {
1359         get_sdr::response::set_next_record_id(sensor->first, resp);
1360     }
1361 
1362     if (req->offset > sizeof(record))
1363     {
1364         return IPMI_CC_PARM_OUT_OF_RANGE;
1365     }
1366 
1367     // data_len will ultimately be the size of the record, plus
1368     // the size of the next record ID:
1369     *data_len = std::min(static_cast<size_t>(req->bytes_to_read),
1370                          sizeof(record) - req->offset);
1371 
1372     std::memcpy(resp->record_data,
1373                 reinterpret_cast<const uint8_t*>(&record) + req->offset,
1374                 *data_len);
1375 
1376     // data_len should include the LSB and MSB:
1377     *data_len +=
1378         sizeof(resp->next_record_id_lsb) + sizeof(resp->next_record_id_msb);
1379 
1380     return ret;
1381 }
1382 
1383 static bool isFromSystemChannel()
1384 {
1385     // TODO we could not figure out where the request is from based on IPMI
1386     // command handler parameters. because of it, we can not differentiate
1387     // request from SMS/SMM or IPMB channel
1388     return true;
1389 }
1390 
1391 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t,
1392                                 ipmi_request_t request, ipmi_response_t,
1393                                 ipmi_data_len_t dataLen, ipmi_context_t)
1394 {
1395     uint16_t generatorID;
1396     size_t count;
1397     bool assert = true;
1398     std::string sensorPath;
1399     size_t paraLen = *dataLen;
1400     PlatformEventRequest* req;
1401     *dataLen = 0;
1402 
1403     if ((paraLen < selSystemEventSizeWith1Bytes) ||
1404         (paraLen > selSystemEventSizeWith3Bytes))
1405     {
1406         return IPMI_CC_REQ_DATA_LEN_INVALID;
1407     }
1408 
1409     if (isFromSystemChannel())
1410     { // first byte for SYSTEM Interface is Generator ID
1411         // +1 to get common struct
1412         req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1);
1413         // Capture the generator ID
1414         generatorID = *reinterpret_cast<uint8_t*>(request);
1415         // Platform Event usually comes from other firmware, like BIOS.
1416         // Unlike BMC sensor, it does not have BMC DBUS sensor path.
1417         sensorPath = "System";
1418     }
1419     else
1420     {
1421         req = reinterpret_cast<PlatformEventRequest*>(request);
1422         // TODO GenratorID for IPMB is combination of RqSA and RqLUN
1423         generatorID = 0xff;
1424         sensorPath = "IPMB";
1425     }
1426     // Content of event data field depends on sensor class.
1427     // When data0 bit[5:4] is non-zero, valid data counts is 3.
1428     // When data0 bit[7:6] is non-zero, valid data counts is 2.
1429     if (((req->data[0] & byte3EnableMask) != 0 &&
1430          paraLen < selSystemEventSizeWith3Bytes) ||
1431         ((req->data[0] & byte2EnableMask) != 0 &&
1432          paraLen < selSystemEventSizeWith2Bytes))
1433     {
1434         return IPMI_CC_REQ_DATA_LEN_INVALID;
1435     }
1436 
1437     // Count bytes of Event Data
1438     if ((req->data[0] & byte3EnableMask) != 0)
1439     {
1440         count = 3;
1441     }
1442     else if ((req->data[0] & byte2EnableMask) != 0)
1443     {
1444         count = 2;
1445     }
1446     else
1447     {
1448         count = 1;
1449     }
1450     assert = req->eventDirectionType & directionMask ? false : true;
1451     std::vector<uint8_t> eventData(req->data, req->data + count);
1452 
1453     sdbusplus::bus_t dbus(bus);
1454     std::string service =
1455         ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath);
1456     sdbusplus::message_t writeSEL = dbus.new_method_call(
1457         service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd");
1458     writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert,
1459                     generatorID);
1460     try
1461     {
1462         dbus.call(writeSEL);
1463     }
1464     catch (const sdbusplus::exception_t& e)
1465     {
1466         phosphor::logging::log<phosphor::logging::level::ERR>(e.what());
1467         return IPMI_CC_UNSPECIFIED_ERROR;
1468     }
1469     return IPMI_CC_OK;
1470 }
1471 
1472 void register_netfn_sen_functions()
1473 {
1474     // Handlers with dbus-sdr handler implementation.
1475     // Do not register the hander if it dynamic sensors stack is used.
1476 
1477 #ifndef FEATURE_DYNAMIC_SENSORS
1478 
1479 #ifdef FEATURE_SENSORS_CACHE
1480     // Initialize the sensor matches
1481     initSensorMatches();
1482 #endif
1483 
1484     // <Set Sensor Reading and Event Status>
1485     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1486                           ipmi::sensor_event::cmdSetSensorReadingAndEvtSts,
1487                           ipmi::Privilege::Operator, ipmiSetSensorReading);
1488     // <Get Sensor Reading>
1489     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1490                           ipmi::sensor_event::cmdGetSensorReading,
1491                           ipmi::Privilege::User, ipmiSensorGetSensorReading);
1492 
1493     // <Reserve Device SDR Repository>
1494     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1495                           ipmi::sensor_event::cmdReserveDeviceSdrRepository,
1496                           ipmi::Privilege::User, ipmiSensorReserveSdr);
1497 
1498     // <Get Device SDR Info>
1499     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1500                           ipmi::sensor_event::cmdGetDeviceSdrInfo,
1501                           ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo);
1502 
1503     // <Get Sensor Thresholds>
1504     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1505                           ipmi::sensor_event::cmdGetSensorThreshold,
1506                           ipmi::Privilege::User, ipmiSensorGetSensorThresholds);
1507 
1508     // <Set Sensor Thresholds>
1509     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1510                           ipmi::sensor_event::cmdSetSensorThreshold,
1511                           ipmi::Privilege::User, ipmiSenSetSensorThresholds);
1512 
1513     // <Get Device SDR>
1514     ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr,
1515                            ipmi_sen_get_sdr, PRIVILEGE_USER);
1516 
1517 #endif
1518 
1519     // Common Handers used by both implementation.
1520 
1521     // <Platform Event Message>
1522     ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr,
1523                            ipmicmdPlatformEvent, PRIVILEGE_OPERATOR);
1524 
1525     // <Get Sensor Type>
1526     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1527                           ipmi::sensor_event::cmdGetSensorType,
1528                           ipmi::Privilege::User, ipmiGetSensorType);
1529 
1530     return;
1531 }
1532