1 #include "config.h"
2 
3 #include "sensorhandler.hpp"
4 
5 #include "fruread.hpp"
6 
7 #include <mapper.h>
8 #include <systemd/sd-bus.h>
9 
10 #include <ipmid/api.hpp>
11 #include <ipmid/entity_map_json.hpp>
12 #include <ipmid/types.hpp>
13 #include <ipmid/utils.hpp>
14 #include <phosphor-logging/elog-errors.hpp>
15 #include <phosphor-logging/log.hpp>
16 #include <sdbusplus/message/types.hpp>
17 #include <xyz/openbmc_project/Common/error.hpp>
18 #include <xyz/openbmc_project/Sensor/Value/server.hpp>
19 
20 #include <bitset>
21 #include <cmath>
22 #include <cstring>
23 #include <set>
24 
25 static constexpr uint8_t fruInventoryDevice = 0x10;
26 static constexpr uint8_t IPMIFruInventory = 0x02;
27 static constexpr uint8_t BMCTargetAddress = 0x20;
28 
29 extern int updateSensorRecordFromSSRAESC(const void*);
30 extern sd_bus* bus;
31 
32 namespace ipmi
33 {
34 namespace sensor
35 {
36 extern const IdInfoMap sensors;
37 } // namespace sensor
38 } // namespace ipmi
39 
40 extern const FruMap frus;
41 
42 using namespace phosphor::logging;
43 using InternalFailure =
44     sdbusplus::error::xyz::openbmc_project::common::InternalFailure;
45 
46 void register_netfn_sen_functions() __attribute__((constructor));
47 
48 struct sensorTypemap_t
49 {
50     uint8_t number;
51     uint8_t typecode;
52     char dbusname[32];
53 };
54 
55 sensorTypemap_t g_SensorTypeMap[] = {
56 
57     {0x01, 0x6F, "Temp"},
58     {0x0C, 0x6F, "DIMM"},
59     {0x0C, 0x6F, "MEMORY_BUFFER"},
60     {0x07, 0x6F, "PROC"},
61     {0x07, 0x6F, "CORE"},
62     {0x07, 0x6F, "CPU"},
63     {0x0F, 0x6F, "BootProgress"},
64     {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor
65                                // type code os 0x09
66     {0xC3, 0x6F, "BootCount"},
67     {0x1F, 0x6F, "OperatingSystemStatus"},
68     {0x12, 0x6F, "SYSTEM_EVENT"},
69     {0xC7, 0x03, "SYSTEM"},
70     {0xC7, 0x03, "MAIN_PLANAR"},
71     {0xC2, 0x6F, "PowerCap"},
72     {0x0b, 0xCA, "PowerSupplyRedundancy"},
73     {0xDA, 0x03, "TurboAllowed"},
74     {0xD8, 0xC8, "PowerSupplyDerating"},
75     {0xFF, 0x00, ""},
76 };
77 
78 struct sensor_data_t
79 {
80     uint8_t sennum;
81 } __attribute__((packed));
82 
83 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>;
84 SDRCacheMap sdrCacheMap __attribute__((init_priority(101)));
85 
86 using SensorThresholdMap =
87     std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>;
88 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101)));
89 
90 #ifdef FEATURE_SENSORS_CACHE
91 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches
92     __attribute__((init_priority(101)));
93 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches
94     __attribute__((init_priority(101)));
95 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches
96     __attribute__((init_priority(101)));
97 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch
98     __attribute__((init_priority(101)));
99 
100 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101)));
101 
102 // It is needed to know which objects belong to which service, so that when a
103 // service exits without interfacesRemoved signal, we could invaildate the cache
104 // that is related to the service. It uses below two variables:
105 // - idToServiceMap records which sensors are known to have a related service;
106 // - serviceToIdMap maps a service to the sensors.
107 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>;
108 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101)));
109 
110 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>;
111 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101)));
112 
113 static void fillSensorIdServiceMap(const std::string&,
114                                    const std::string& /*intf*/, uint8_t id,
115                                    const std::string& service)
116 {
117     if (idToServiceMap.find(id) != idToServiceMap.end())
118     {
119         return;
120     }
121     idToServiceMap[id] = service;
122     serviceToIdMap[service].insert(id);
123 }
124 
125 static void fillSensorIdServiceMap(const std::string& obj,
126                                    const std::string& intf, uint8_t id)
127 {
128     if (idToServiceMap.find(id) != idToServiceMap.end())
129     {
130         return;
131     }
132     try
133     {
134         sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
135         auto service = ipmi::getService(bus, intf, obj);
136         idToServiceMap[id] = service;
137         serviceToIdMap[service].insert(id);
138     }
139     catch (...)
140     {
141         // Ignore
142     }
143 }
144 
145 void initSensorMatches()
146 {
147     using namespace sdbusplus::bus::match::rules;
148     sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
149     for (const auto& s : ipmi::sensor::sensors)
150     {
151         sensorAddedMatches.emplace(
152             s.first,
153             std::make_unique<sdbusplus::bus::match_t>(
154                 bus, interfacesAdded() + argNpath(0, s.second.sensorPath),
155                 [id = s.first, obj = s.second.sensorPath,
156                  intf = s.second.propertyInterfaces.begin()->first](
157                     auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); }));
158         sensorRemovedMatches.emplace(
159             s.first,
160             std::make_unique<sdbusplus::bus::match_t>(
161                 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath),
162                 [id = s.first](auto& /*msg*/) {
163             // Ideally this should work.
164             // But when a service is terminated or crashed, it does not
165             // emit interfacesRemoved signal. In that case it's handled
166             // by sensorsOwnerMatch
167             sensorCacheMap[id].reset();
168         }));
169         sensorUpdatedMatches.emplace(
170             s.first, std::make_unique<sdbusplus::bus::match_t>(
171                          bus,
172                          type::signal() + path(s.second.sensorPath) +
173                              member("PropertiesChanged"s) +
174                              interface("org.freedesktop.DBus.Properties"s),
175                          [&s](auto& msg) {
176             fillSensorIdServiceMap(s.second.sensorPath,
177                                    s.second.propertyInterfaces.begin()->first,
178                                    s.first);
179             try
180             {
181                 // This is signal callback
182                 std::string interfaceName;
183                 msg.read(interfaceName);
184                 ipmi::PropertyMap props;
185                 msg.read(props);
186                 s.second.getFunc(s.first, s.second, props);
187             }
188             catch (const std::exception& e)
189             {
190                 sensorCacheMap[s.first].reset();
191             }
192         }));
193     }
194     sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>(
195         bus, nameOwnerChanged(), [](auto& msg) {
196         std::string name;
197         std::string oldOwner;
198         std::string newOwner;
199         msg.read(name, oldOwner, newOwner);
200 
201         if (!name.empty() && newOwner.empty())
202         {
203             // The service exits
204             const auto it = serviceToIdMap.find(name);
205             if (it == serviceToIdMap.end())
206             {
207                 return;
208             }
209             for (const auto& id : it->second)
210             {
211                 // Invalidate cache
212                 sensorCacheMap[id].reset();
213             }
214         }
215     });
216 }
217 #endif
218 
219 int get_bus_for_path(const char* path, char** busname)
220 {
221     return mapper_get_service(bus, path, busname);
222 }
223 
224 // Use a lookup table to find the interface name of a specific sensor
225 // This will be used until an alternative is found.  this is the first
226 // step for mapping IPMI
227 int find_openbmc_path(uint8_t num, dbus_interface_t* interface)
228 {
229     int rc;
230 
231     const auto& sensor_it = ipmi::sensor::sensors.find(num);
232     if (sensor_it == ipmi::sensor::sensors.end())
233     {
234         // The sensor map does not contain the sensor requested
235         return -EINVAL;
236     }
237 
238     const auto& info = sensor_it->second;
239 
240     char* busname = nullptr;
241     rc = get_bus_for_path(info.sensorPath.c_str(), &busname);
242     if (rc < 0)
243     {
244         std::fprintf(stderr, "Failed to get %s busname: %s\n",
245                      info.sensorPath.c_str(), busname);
246         goto final;
247     }
248 
249     interface->sensortype = info.sensorType;
250     strcpy(interface->bus, busname);
251     strcpy(interface->path, info.sensorPath.c_str());
252     // Take the interface name from the beginning of the DbusInterfaceMap. This
253     // works for the Value interface but may not suffice for more complex
254     // sensors.
255     // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103
256     strcpy(interface->interface,
257            info.propertyInterfaces.begin()->first.c_str());
258     interface->sensornumber = num;
259 
260 final:
261     free(busname);
262     return rc;
263 }
264 
265 /////////////////////////////////////////////////////////////////////
266 //
267 // Routines used by ipmi commands wanting to interact on the dbus
268 //
269 /////////////////////////////////////////////////////////////////////
270 int set_sensor_dbus_state_s(uint8_t number, const char* method,
271                             const char* value)
272 {
273     dbus_interface_t a;
274     int r;
275     sd_bus_error error = SD_BUS_ERROR_NULL;
276     sd_bus_message* m = NULL;
277 
278     r = find_openbmc_path(number, &a);
279 
280     if (r < 0)
281     {
282         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
283         return 0;
284     }
285 
286     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
287                                        method);
288     if (r < 0)
289     {
290         std::fprintf(stderr, "Failed to create a method call: %s",
291                      strerror(-r));
292         goto final;
293     }
294 
295     r = sd_bus_message_append(m, "v", "s", value);
296     if (r < 0)
297     {
298         std::fprintf(stderr, "Failed to create a input parameter: %s",
299                      strerror(-r));
300         goto final;
301     }
302 
303     r = sd_bus_call(bus, m, 0, &error, NULL);
304     if (r < 0)
305     {
306         std::fprintf(stderr, "Failed to call the method: %s", strerror(-r));
307     }
308 
309 final:
310     sd_bus_error_free(&error);
311     m = sd_bus_message_unref(m);
312 
313     return 0;
314 }
315 int set_sensor_dbus_state_y(uint8_t number, const char* method,
316                             const uint8_t value)
317 {
318     dbus_interface_t a;
319     int r;
320     sd_bus_error error = SD_BUS_ERROR_NULL;
321     sd_bus_message* m = NULL;
322 
323     r = find_openbmc_path(number, &a);
324 
325     if (r < 0)
326     {
327         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
328         return 0;
329     }
330 
331     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
332                                        method);
333     if (r < 0)
334     {
335         std::fprintf(stderr, "Failed to create a method call: %s",
336                      strerror(-r));
337         goto final;
338     }
339 
340     r = sd_bus_message_append(m, "v", "i", value);
341     if (r < 0)
342     {
343         std::fprintf(stderr, "Failed to create a input parameter: %s",
344                      strerror(-r));
345         goto final;
346     }
347 
348     r = sd_bus_call(bus, m, 0, &error, NULL);
349     if (r < 0)
350     {
351         std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r));
352     }
353 
354 final:
355     sd_bus_error_free(&error);
356     m = sd_bus_message_unref(m);
357 
358     return 0;
359 }
360 
361 uint8_t dbus_to_sensor_type(char* p)
362 {
363     sensorTypemap_t* s = g_SensorTypeMap;
364     char r = 0;
365     while (s->number != 0xFF)
366     {
367         if (!strcmp(s->dbusname, p))
368         {
369             r = s->typecode;
370             break;
371         }
372         s++;
373     }
374 
375     if (s->number == 0xFF)
376         printf("Failed to find Sensor Type %s\n", p);
377 
378     return r;
379 }
380 
381 uint8_t get_type_from_interface(dbus_interface_t dbus_if)
382 {
383     uint8_t type;
384 
385     // This is where sensors that do not exist in dbus but do
386     // exist in the host code stop.  This should indicate it
387     // is not a supported sensor
388     if (dbus_if.interface[0] == 0)
389     {
390         return 0;
391     }
392 
393     // Fetch type from interface itself.
394     if (dbus_if.sensortype != 0)
395     {
396         type = dbus_if.sensortype;
397     }
398     else
399     {
400         // Non InventoryItems
401         char* p = strrchr(dbus_if.path, '/');
402         type = dbus_to_sensor_type(p + 1);
403     }
404 
405     return type;
406 }
407 
408 // Replaces find_sensor
409 uint8_t find_type_for_sensor_number(uint8_t num)
410 {
411     int r;
412     dbus_interface_t dbus_if;
413     r = find_openbmc_path(num, &dbus_if);
414     if (r < 0)
415     {
416         std::fprintf(stderr, "Could not find sensor %d\n", num);
417         return 0;
418     }
419     return get_type_from_interface(dbus_if);
420 }
421 
422 /**
423  *  @brief implements the get sensor type command.
424  *  @param - sensorNumber
425  *
426  *  @return IPMI completion code plus response data on success.
427  *   - sensorType
428  *   - eventType
429  **/
430 
431 ipmi::RspType<uint8_t, // sensorType
432               uint8_t  // eventType
433               >
434     ipmiGetSensorType(uint8_t sensorNumber)
435 {
436     const auto it = ipmi::sensor::sensors.find(sensorNumber);
437     if (it == ipmi::sensor::sensors.end())
438     {
439         // The sensor map does not contain the sensor requested
440         return ipmi::responseSensorInvalid();
441     }
442 
443     const auto& info = it->second;
444     uint8_t sensorType = info.sensorType;
445     uint8_t eventType = info.sensorReadingType;
446 
447     return ipmi::responseSuccess(sensorType, eventType);
448 }
449 
450 const std::set<std::string> analogSensorInterfaces = {
451     "xyz.openbmc_project.Sensor.Value",
452     "xyz.openbmc_project.Control.FanPwm",
453 };
454 
455 bool isAnalogSensor(const std::string& interface)
456 {
457     return (analogSensorInterfaces.count(interface));
458 }
459 
460 /**
461 @brief This command is used to set sensorReading.
462 
463 @param
464     -  sensorNumber
465     -  operation
466     -  reading
467     -  assertOffset0_7
468     -  assertOffset8_14
469     -  deassertOffset0_7
470     -  deassertOffset8_14
471     -  eventData1
472     -  eventData2
473     -  eventData3
474 
475 @return completion code on success.
476 **/
477 
478 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation,
479                                      uint8_t reading, uint8_t assertOffset0_7,
480                                      uint8_t assertOffset8_14,
481                                      uint8_t deassertOffset0_7,
482                                      uint8_t deassertOffset8_14,
483                                      uint8_t eventData1, uint8_t eventData2,
484                                      uint8_t eventData3)
485 {
486     log<level::DEBUG>("IPMI SET_SENSOR",
487                       entry("SENSOR_NUM=0x%02x", sensorNumber));
488 
489     if (sensorNumber == 0xFF)
490     {
491         return ipmi::responseInvalidFieldRequest();
492     }
493     ipmi::sensor::SetSensorReadingReq cmdData;
494 
495     cmdData.number = sensorNumber;
496     cmdData.operation = operation;
497     cmdData.reading = reading;
498     cmdData.assertOffset0_7 = assertOffset0_7;
499     cmdData.assertOffset8_14 = assertOffset8_14;
500     cmdData.deassertOffset0_7 = deassertOffset0_7;
501     cmdData.deassertOffset8_14 = deassertOffset8_14;
502     cmdData.eventData1 = eventData1;
503     cmdData.eventData2 = eventData2;
504     cmdData.eventData3 = eventData3;
505 
506     // Check if the Sensor Number is present
507     const auto iter = ipmi::sensor::sensors.find(sensorNumber);
508     if (iter == ipmi::sensor::sensors.end())
509     {
510         updateSensorRecordFromSSRAESC(&sensorNumber);
511         return ipmi::responseSuccess();
512     }
513 
514     try
515     {
516         if (ipmi::sensor::Mutability::Write !=
517             (iter->second.mutability & ipmi::sensor::Mutability::Write))
518         {
519             log<level::ERR>("Sensor Set operation is not allowed",
520                             entry("SENSOR_NUM=%d", sensorNumber));
521             return ipmi::responseIllegalCommand();
522         }
523         auto ipmiRC = iter->second.updateFunc(cmdData, iter->second);
524         return ipmi::response(ipmiRC);
525     }
526     catch (const InternalFailure& e)
527     {
528         log<level::ERR>("Set sensor failed",
529                         entry("SENSOR_NUM=%d", sensorNumber));
530         commit<InternalFailure>();
531         return ipmi::responseUnspecifiedError();
532     }
533     catch (const std::runtime_error& e)
534     {
535         log<level::ERR>(e.what());
536         return ipmi::responseUnspecifiedError();
537     }
538 }
539 
540 /** @brief implements the get sensor reading command
541  *  @param sensorNum - sensor number
542  *
543  *  @returns IPMI completion code plus response data
544  *   - senReading           - sensor reading
545  *   - reserved
546  *   - readState            - sensor reading state enabled
547  *   - senScanState         - sensor scan state disabled
548  *   - allEventMessageState - all Event message state disabled
549  *   - assertionStatesLsb   - threshold levels states
550  *   - assertionStatesMsb   - discrete reading sensor states
551  */
552 ipmi::RspType<uint8_t, // sensor reading
553 
554               uint5_t, // reserved
555               bool,    // reading state
556               bool,    // 0 = sensor scanning state disabled
557               bool,    // 0 = all event messages disabled
558 
559               uint8_t, // threshold levels states
560               uint8_t  // discrete reading sensor states
561               >
562     ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx,
563                                uint8_t sensorNum)
564 {
565     if (sensorNum == 0xFF)
566     {
567         return ipmi::responseInvalidFieldRequest();
568     }
569 
570     const auto iter = ipmi::sensor::sensors.find(sensorNum);
571     if (iter == ipmi::sensor::sensors.end())
572     {
573         return ipmi::responseSensorInvalid();
574     }
575     if (ipmi::sensor::Mutability::Read !=
576         (iter->second.mutability & ipmi::sensor::Mutability::Read))
577     {
578         return ipmi::responseIllegalCommand();
579     }
580 
581     try
582     {
583 #ifdef FEATURE_SENSORS_CACHE
584         auto& sensorData = sensorCacheMap[sensorNum];
585         if (!sensorData.has_value())
586         {
587             // No cached value, try read it
588             std::string service;
589             boost::system::error_code ec;
590             const auto& sensorInfo = iter->second;
591             ec = ipmi::getService(ctx, sensorInfo.sensorInterface,
592                                   sensorInfo.sensorPath, service);
593             if (ec)
594             {
595                 return ipmi::responseUnspecifiedError();
596             }
597             fillSensorIdServiceMap(sensorInfo.sensorPath,
598                                    sensorInfo.propertyInterfaces.begin()->first,
599                                    iter->first, service);
600 
601             ipmi::PropertyMap props;
602             ec = ipmi::getAllDbusProperties(
603                 ctx, service, sensorInfo.sensorPath,
604                 sensorInfo.propertyInterfaces.begin()->first, props);
605             if (ec)
606             {
607                 fprintf(stderr, "Failed to get sensor %s, %d: %s\n",
608                         sensorInfo.sensorPath.c_str(), ec.value(),
609                         ec.message().c_str());
610                 // Intitilizing with default values
611                 constexpr uint8_t senReading = 0;
612                 constexpr uint5_t reserved{0};
613                 constexpr bool readState = true;
614                 constexpr bool senScanState = false;
615                 constexpr bool allEventMessageState = false;
616                 constexpr uint8_t assertionStatesLsb = 0;
617                 constexpr uint8_t assertionStatesMsb = 0;
618 
619                 return ipmi::responseSuccess(senReading, reserved, readState,
620                                              senScanState, allEventMessageState,
621                                              assertionStatesLsb,
622                                              assertionStatesMsb);
623             }
624             sensorInfo.getFunc(sensorNum, sensorInfo, props);
625         }
626         return ipmi::responseSuccess(
627             sensorData->response.reading, uint5_t(0),
628             sensorData->response.readingOrStateUnavailable,
629             sensorData->response.scanningEnabled,
630             sensorData->response.allEventMessagesEnabled,
631             sensorData->response.thresholdLevelsStates,
632             sensorData->response.discreteReadingSensorStates);
633 
634 #else
635         ipmi::sensor::GetSensorResponse getResponse =
636             iter->second.getFunc(iter->second);
637 
638         return ipmi::responseSuccess(getResponse.reading, uint5_t(0),
639                                      getResponse.readingOrStateUnavailable,
640                                      getResponse.scanningEnabled,
641                                      getResponse.allEventMessagesEnabled,
642                                      getResponse.thresholdLevelsStates,
643                                      getResponse.discreteReadingSensorStates);
644 #endif
645     }
646 #ifdef UPDATE_FUNCTIONAL_ON_FAIL
647     catch (const SensorFunctionalError& e)
648     {
649         return ipmi::responseResponseError();
650     }
651 #endif
652     catch (const std::exception& e)
653     {
654         // Intitilizing with default values
655         constexpr uint8_t senReading = 0;
656         constexpr uint5_t reserved{0};
657         constexpr bool readState = true;
658         constexpr bool senScanState = false;
659         constexpr bool allEventMessageState = false;
660         constexpr uint8_t assertionStatesLsb = 0;
661         constexpr uint8_t assertionStatesMsb = 0;
662 
663         return ipmi::responseSuccess(senReading, reserved, readState,
664                                      senScanState, allEventMessageState,
665                                      assertionStatesLsb, assertionStatesMsb);
666     }
667 }
668 
669 get_sdr::GetSensorThresholdsResponse
670     getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
671 {
672     get_sdr::GetSensorThresholdsResponse resp{};
673     constexpr auto warningThreshIntf =
674         "xyz.openbmc_project.Sensor.Threshold.Warning";
675     constexpr auto criticalThreshIntf =
676         "xyz.openbmc_project.Sensor.Threshold.Critical";
677 
678     const auto iter = ipmi::sensor::sensors.find(sensorNum);
679     const auto info = iter->second;
680 
681     std::string service;
682     boost::system::error_code ec;
683     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
684     if (ec)
685     {
686         return resp;
687     }
688 
689     ipmi::PropertyMap warnThresholds;
690     ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
691                                     warningThreshIntf, warnThresholds);
692     int32_t minClamp;
693     int32_t maxClamp;
694     int32_t rawData;
695     constexpr uint8_t sensorUnitsSignedBits = 2 << 6;
696     constexpr uint8_t signedDataFormat = 0x80;
697     if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat)
698     {
699         minClamp = std::numeric_limits<int8_t>::lowest();
700         maxClamp = std::numeric_limits<int8_t>::max();
701     }
702     else
703     {
704         minClamp = std::numeric_limits<uint8_t>::lowest();
705         maxClamp = std::numeric_limits<uint8_t>::max();
706     }
707     if (!ec)
708     {
709         double warnLow = ipmi::mappedVariant<double>(
710             warnThresholds, "WarningLow",
711             std::numeric_limits<double>::quiet_NaN());
712         double warnHigh = ipmi::mappedVariant<double>(
713             warnThresholds, "WarningHigh",
714             std::numeric_limits<double>::quiet_NaN());
715 
716         if (std::isfinite(warnLow))
717         {
718             warnLow *= std::pow(10, info.scale - info.exponentR);
719             rawData = round((warnLow - info.scaledOffset) / info.coefficientM);
720             resp.lowerNonCritical =
721                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
722             resp.validMask |= static_cast<uint8_t>(
723                 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK);
724         }
725 
726         if (std::isfinite(warnHigh))
727         {
728             warnHigh *= std::pow(10, info.scale - info.exponentR);
729             rawData = round((warnHigh - info.scaledOffset) / info.coefficientM);
730             resp.upperNonCritical =
731                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
732             resp.validMask |= static_cast<uint8_t>(
733                 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK);
734         }
735     }
736 
737     ipmi::PropertyMap critThresholds;
738     ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
739                                     criticalThreshIntf, critThresholds);
740     if (!ec)
741     {
742         double critLow = ipmi::mappedVariant<double>(
743             critThresholds, "CriticalLow",
744             std::numeric_limits<double>::quiet_NaN());
745         double critHigh = ipmi::mappedVariant<double>(
746             critThresholds, "CriticalHigh",
747             std::numeric_limits<double>::quiet_NaN());
748 
749         if (std::isfinite(critLow))
750         {
751             critLow *= std::pow(10, info.scale - info.exponentR);
752             rawData = round((critLow - info.scaledOffset) / info.coefficientM);
753             resp.lowerCritical =
754                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
755             resp.validMask |= static_cast<uint8_t>(
756                 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK);
757         }
758 
759         if (std::isfinite(critHigh))
760         {
761             critHigh *= std::pow(10, info.scale - info.exponentR);
762             rawData = round((critHigh - info.scaledOffset) / info.coefficientM);
763             resp.upperCritical =
764                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
765             resp.validMask |= static_cast<uint8_t>(
766                 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK);
767         }
768     }
769 
770     return resp;
771 }
772 
773 /** @brief implements the get sensor thresholds command
774  *  @param ctx - IPMI context pointer
775  *  @param sensorNum - sensor number
776  *
777  *  @returns IPMI completion code plus response data
778  *   - validMask - threshold mask
779  *   - lower non-critical threshold - IPMI messaging state
780  *   - lower critical threshold - link authentication state
781  *   - lower non-recoverable threshold - callback state
782  *   - upper non-critical threshold
783  *   - upper critical
784  *   - upper non-recoverable
785  */
786 ipmi::RspType<uint8_t, // validMask
787               uint8_t, // lowerNonCritical
788               uint8_t, // lowerCritical
789               uint8_t, // lowerNonRecoverable
790               uint8_t, // upperNonCritical
791               uint8_t, // upperCritical
792               uint8_t  // upperNonRecoverable
793               >
794     ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
795 {
796     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
797 
798     const auto iter = ipmi::sensor::sensors.find(sensorNum);
799     if (iter == ipmi::sensor::sensors.end())
800     {
801         return ipmi::responseSensorInvalid();
802     }
803 
804     const auto info = iter->second;
805 
806     // Proceed only if the sensor value interface is implemented.
807     if (info.propertyInterfaces.find(valueInterface) ==
808         info.propertyInterfaces.end())
809     {
810         // return with valid mask as 0
811         return ipmi::responseSuccess();
812     }
813 
814     auto it = sensorThresholdMap.find(sensorNum);
815     if (it == sensorThresholdMap.end())
816     {
817         sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum);
818     }
819 
820     const auto& resp = sensorThresholdMap[sensorNum];
821 
822     return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical,
823                                  resp.lowerCritical, resp.lowerNonRecoverable,
824                                  resp.upperNonCritical, resp.upperCritical,
825                                  resp.upperNonRecoverable);
826 }
827 
828 /** @brief implements the Set Sensor threshold command
829  *  @param sensorNumber        - sensor number
830  *  @param lowerNonCriticalThreshMask
831  *  @param lowerCriticalThreshMask
832  *  @param lowerNonRecovThreshMask
833  *  @param upperNonCriticalThreshMask
834  *  @param upperCriticalThreshMask
835  *  @param upperNonRecovThreshMask
836  *  @param reserved
837  *  @param lowerNonCritical    - lower non-critical threshold
838  *  @param lowerCritical       - Lower critical threshold
839  *  @param lowerNonRecoverable - Lower non recovarable threshold
840  *  @param upperNonCritical    - Upper non-critical threshold
841  *  @param upperCritical       - Upper critical
842  *  @param upperNonRecoverable - Upper Non-recoverable
843  *
844  *  @returns IPMI completion code
845  */
846 ipmi::RspType<> ipmiSenSetSensorThresholds(
847     ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask,
848     bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask,
849     bool upperNonCriticalThreshMask, bool upperCriticalThreshMask,
850     bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical,
851     uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical,
852     uint8_t upperCritical, uint8_t)
853 {
854     if (reserved)
855     {
856         return ipmi::responseInvalidFieldRequest();
857     }
858 
859     // lower nc and upper nc not suppported on any sensor
860     if (lowerNonRecovThreshMask || upperNonRecovThreshMask)
861     {
862         return ipmi::responseInvalidFieldRequest();
863     }
864 
865     // if none of the threshold mask are set, nothing to do
866     if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask |
867           lowerNonRecovThreshMask | upperNonCriticalThreshMask |
868           upperCriticalThreshMask | upperNonRecovThreshMask))
869     {
870         return ipmi::responseSuccess();
871     }
872 
873     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
874 
875     const auto iter = ipmi::sensor::sensors.find(sensorNum);
876     if (iter == ipmi::sensor::sensors.end())
877     {
878         return ipmi::responseSensorInvalid();
879     }
880 
881     const auto& info = iter->second;
882 
883     // Proceed only if the sensor value interface is implemented.
884     if (info.propertyInterfaces.find(valueInterface) ==
885         info.propertyInterfaces.end())
886     {
887         // return with valid mask as 0
888         return ipmi::responseSuccess();
889     }
890 
891     constexpr auto warningThreshIntf =
892         "xyz.openbmc_project.Sensor.Threshold.Warning";
893     constexpr auto criticalThreshIntf =
894         "xyz.openbmc_project.Sensor.Threshold.Critical";
895 
896     std::string service;
897     boost::system::error_code ec;
898     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
899     if (ec)
900     {
901         return ipmi::responseResponseError();
902     }
903     // store a vector of property name, value to set, and interface
904     std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet;
905 
906     // define the indexes of the tuple
907     constexpr uint8_t propertyName = 0;
908     constexpr uint8_t thresholdValue = 1;
909     constexpr uint8_t interface = 2;
910     // verifiy all needed fields are present
911     if (lowerCriticalThreshMask || upperCriticalThreshMask)
912     {
913         ipmi::PropertyMap findThreshold;
914         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
915                                         criticalThreshIntf, findThreshold);
916 
917         if (!ec)
918         {
919             if (lowerCriticalThreshMask)
920             {
921                 auto findLower = findThreshold.find("CriticalLow");
922                 if (findLower == findThreshold.end())
923                 {
924                     return ipmi::responseInvalidFieldRequest();
925                 }
926                 thresholdsToSet.emplace_back("CriticalLow", lowerCritical,
927                                              criticalThreshIntf);
928             }
929             if (upperCriticalThreshMask)
930             {
931                 auto findUpper = findThreshold.find("CriticalHigh");
932                 if (findUpper == findThreshold.end())
933                 {
934                     return ipmi::responseInvalidFieldRequest();
935                 }
936                 thresholdsToSet.emplace_back("CriticalHigh", upperCritical,
937                                              criticalThreshIntf);
938             }
939         }
940     }
941     if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask)
942     {
943         ipmi::PropertyMap findThreshold;
944         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
945                                         warningThreshIntf, findThreshold);
946 
947         if (!ec)
948         {
949             if (lowerNonCriticalThreshMask)
950             {
951                 auto findLower = findThreshold.find("WarningLow");
952                 if (findLower == findThreshold.end())
953                 {
954                     return ipmi::responseInvalidFieldRequest();
955                 }
956                 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical,
957                                              warningThreshIntf);
958             }
959             if (upperNonCriticalThreshMask)
960             {
961                 auto findUpper = findThreshold.find("WarningHigh");
962                 if (findUpper == findThreshold.end())
963                 {
964                     return ipmi::responseInvalidFieldRequest();
965                 }
966                 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical,
967                                              warningThreshIntf);
968             }
969         }
970     }
971     for (const auto& property : thresholdsToSet)
972     {
973         // from section 36.3 in the IPMI Spec, assume all linear
974         double valueToSet =
975             ((info.coefficientM * std::get<thresholdValue>(property)) +
976              (info.scaledOffset * std::pow(10.0, info.scale))) *
977             std::pow(10.0, info.exponentR);
978         ipmi::setDbusProperty(
979             ctx, service, info.sensorPath, std::get<interface>(property),
980             std::get<propertyName>(property), ipmi::Value(valueToSet));
981     }
982 
983     // Invalidate the cache
984     sensorThresholdMap.erase(sensorNum);
985     return ipmi::responseSuccess();
986 }
987 
988 /** @brief implements the get SDR Info command
989  *  @param count - Operation
990  *
991  *  @returns IPMI completion code plus response data
992  *   - sdrCount - sensor/SDR count
993  *   - lunsAndDynamicPopulation - static/Dynamic sensor population flag
994  */
995 ipmi::RspType<uint8_t, // respcount
996               uint8_t  // dynamic population flags
997               >
998     ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)
999 {
1000     uint8_t sdrCount;
1001     // multiple LUNs not supported.
1002     constexpr uint8_t lunsAndDynamicPopulation = 1;
1003     constexpr uint8_t getSdrCount = 0x01;
1004     constexpr uint8_t getSensorCount = 0x00;
1005 
1006     if (count.value_or(0) == getSdrCount)
1007     {
1008         // Get SDR count. This returns the total number of SDRs in the device.
1009         const auto& entityRecords =
1010             ipmi::sensor::EntityInfoMapContainer::getContainer()
1011                 ->getIpmiEntityRecords();
1012         sdrCount = ipmi::sensor::sensors.size() + frus.size() +
1013                    entityRecords.size();
1014     }
1015     else if (count.value_or(0) == getSensorCount)
1016     {
1017         // Get Sensor count. This returns the number of sensors
1018         sdrCount = ipmi::sensor::sensors.size();
1019     }
1020     else
1021     {
1022         return ipmi::responseInvalidCommandOnLun();
1023     }
1024 
1025     return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation);
1026 }
1027 
1028 /** @brief implements the reserve SDR command
1029  *  @returns IPMI completion code plus response data
1030  *   - reservationID - reservation ID
1031  */
1032 ipmi::RspType<uint16_t> ipmiSensorReserveSdr()
1033 {
1034     // A constant reservation ID is okay until we implement add/remove SDR.
1035     constexpr uint16_t reservationID = 1;
1036 
1037     return ipmi::responseSuccess(reservationID);
1038 }
1039 
1040 void setUnitFieldsForObject(const ipmi::sensor::Info* info,
1041                             get_sdr::SensorDataFullRecordBody* body)
1042 {
1043     namespace server = sdbusplus::server::xyz::openbmc_project::sensor;
1044     try
1045     {
1046         auto unit = server::Value::convertUnitFromString(info->unit);
1047         // Unit strings defined in
1048         // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml
1049         switch (unit)
1050         {
1051             case server::Value::Unit::DegreesC:
1052                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C;
1053                 break;
1054             case server::Value::Unit::RPMS:
1055                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM;
1056                 break;
1057             case server::Value::Unit::Volts:
1058                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS;
1059                 break;
1060             case server::Value::Unit::Meters:
1061                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS;
1062                 break;
1063             case server::Value::Unit::Amperes:
1064                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES;
1065                 break;
1066             case server::Value::Unit::Joules:
1067                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES;
1068                 break;
1069             case server::Value::Unit::Watts:
1070                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS;
1071                 break;
1072             default:
1073                 // Cannot be hit.
1074                 std::fprintf(stderr, "Unknown value unit type: = %s\n",
1075                              info->unit.c_str());
1076         }
1077     }
1078     catch (const sdbusplus::exception::InvalidEnumString& e)
1079     {
1080         log<level::WARNING>("Warning: no unit provided for sensor!");
1081     }
1082 }
1083 
1084 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body,
1085                                      const ipmi::sensor::Info* info,
1086                                      ipmi_data_len_t)
1087 {
1088     /* Functional sensor case */
1089     if (isAnalogSensor(info->propertyInterfaces.begin()->first))
1090     {
1091         body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no
1092                                                    // rate, no modifier, not a %
1093         /* Unit info */
1094         setUnitFieldsForObject(info, body);
1095 
1096         get_sdr::body::set_b(info->coefficientB, body);
1097         get_sdr::body::set_m(info->coefficientM, body);
1098         get_sdr::body::set_b_exp(info->exponentB, body);
1099         get_sdr::body::set_r_exp(info->exponentR, body);
1100     }
1101 
1102     /* ID string */
1103     auto id_string = info->sensorName;
1104 
1105     if (id_string.empty())
1106     {
1107         id_string = info->sensorNameFunc(*info);
1108     }
1109 
1110     if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH)
1111     {
1112         get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body);
1113     }
1114     else
1115     {
1116         get_sdr::body::set_id_strlen(id_string.length(), body);
1117     }
1118     get_sdr::body::set_id_type(3, body); // "8-bit ASCII + Latin 1"
1119     strncpy(body->id_string, id_string.c_str(),
1120             get_sdr::body::get_id_strlen(body));
1121 
1122     return IPMI_CC_OK;
1123 };
1124 
1125 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response,
1126                             ipmi_data_len_t data_len)
1127 {
1128     auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
1129     auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
1130     get_sdr::SensorDataFruRecord record{};
1131     auto dataLength = 0;
1132 
1133     auto fru = frus.begin();
1134     uint8_t fruID{};
1135     auto recordID = get_sdr::request::get_record_id(req);
1136 
1137     fruID = recordID - FRU_RECORD_ID_START;
1138     fru = frus.find(fruID);
1139     if (fru == frus.end())
1140     {
1141         return IPMI_CC_SENSOR_INVALID;
1142     }
1143 
1144     /* Header */
1145     get_sdr::header::set_record_id(recordID, &(record.header));
1146     record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1147     record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD;
1148     record.header.record_length = sizeof(record.key) + sizeof(record.body);
1149 
1150     /* Key */
1151     record.key.fruID = fruID;
1152     record.key.accessLun |= IPMI_LOGICAL_FRU;
1153     record.key.deviceAddress = BMCTargetAddress;
1154 
1155     /* Body */
1156     record.body.entityID = fru->second[0].entityID;
1157     record.body.entityInstance = fru->second[0].entityInstance;
1158     record.body.deviceType = fruInventoryDevice;
1159     record.body.deviceTypeModifier = IPMIFruInventory;
1160 
1161     /* Device ID string */
1162     auto deviceID =
1163         fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1,
1164                                    fru->second[0].path.length());
1165 
1166     if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH)
1167     {
1168         get_sdr::body::set_device_id_strlen(
1169             get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body));
1170     }
1171     else
1172     {
1173         get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body));
1174     }
1175 
1176     strncpy(record.body.deviceID, deviceID.c_str(),
1177             get_sdr::body::get_device_id_strlen(&(record.body)));
1178 
1179     if (++fru == frus.end())
1180     {
1181         // we have reached till end of fru, so assign the next record id to
1182         // 512(Max fru ID = 511) + Entity Record ID(may start with 0).
1183         const auto& entityRecords =
1184             ipmi::sensor::EntityInfoMapContainer::getContainer()
1185                 ->getIpmiEntityRecords();
1186         auto next_record_id = (entityRecords.size())
1187                                   ? entityRecords.begin()->first +
1188                                         ENTITY_RECORD_ID_START
1189                                   : END_OF_RECORD;
1190         get_sdr::response::set_next_record_id(next_record_id, resp);
1191     }
1192     else
1193     {
1194         get_sdr::response::set_next_record_id(
1195             (FRU_RECORD_ID_START + fru->first), resp);
1196     }
1197 
1198     // Check for invalid offset size
1199     if (req->offset > sizeof(record))
1200     {
1201         return IPMI_CC_PARM_OUT_OF_RANGE;
1202     }
1203 
1204     dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
1205                           sizeof(record) - req->offset);
1206 
1207     std::memcpy(resp->record_data,
1208                 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
1209 
1210     *data_len = dataLength;
1211     *data_len += 2; // additional 2 bytes for next record ID
1212 
1213     return IPMI_CC_OK;
1214 }
1215 
1216 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response,
1217                                ipmi_data_len_t data_len)
1218 {
1219     auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
1220     auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
1221     get_sdr::SensorDataEntityRecord record{};
1222     auto dataLength = 0;
1223 
1224     const auto& entityRecords =
1225         ipmi::sensor::EntityInfoMapContainer::getContainer()
1226             ->getIpmiEntityRecords();
1227     auto entity = entityRecords.begin();
1228     uint8_t entityRecordID;
1229     auto recordID = get_sdr::request::get_record_id(req);
1230 
1231     entityRecordID = recordID - ENTITY_RECORD_ID_START;
1232     entity = entityRecords.find(entityRecordID);
1233     if (entity == entityRecords.end())
1234     {
1235         return IPMI_CC_SENSOR_INVALID;
1236     }
1237 
1238     /* Header */
1239     get_sdr::header::set_record_id(recordID, &(record.header));
1240     record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1241     record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD;
1242     record.header.record_length = sizeof(record.key) + sizeof(record.body);
1243 
1244     /* Key */
1245     record.key.containerEntityId = entity->second.containerEntityId;
1246     record.key.containerEntityInstance = entity->second.containerEntityInstance;
1247     get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked,
1248                             &(record.key));
1249     record.key.entityId1 = entity->second.containedEntities[0].first;
1250     record.key.entityInstance1 = entity->second.containedEntities[0].second;
1251 
1252     /* Body */
1253     record.body.entityId2 = entity->second.containedEntities[1].first;
1254     record.body.entityInstance2 = entity->second.containedEntities[1].second;
1255     record.body.entityId3 = entity->second.containedEntities[2].first;
1256     record.body.entityInstance3 = entity->second.containedEntities[2].second;
1257     record.body.entityId4 = entity->second.containedEntities[3].first;
1258     record.body.entityInstance4 = entity->second.containedEntities[3].second;
1259 
1260     if (++entity == entityRecords.end())
1261     {
1262         get_sdr::response::set_next_record_id(END_OF_RECORD,
1263                                               resp); // last record
1264     }
1265     else
1266     {
1267         get_sdr::response::set_next_record_id(
1268             (ENTITY_RECORD_ID_START + entity->first), resp);
1269     }
1270 
1271     // Check for invalid offset size
1272     if (req->offset > sizeof(record))
1273     {
1274         return IPMI_CC_PARM_OUT_OF_RANGE;
1275     }
1276 
1277     dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
1278                           sizeof(record) - req->offset);
1279 
1280     std::memcpy(resp->record_data,
1281                 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
1282 
1283     *data_len = dataLength;
1284     *data_len += 2; // additional 2 bytes for next record ID
1285 
1286     return IPMI_CC_OK;
1287 }
1288 
1289 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request,
1290                             ipmi_response_t response, ipmi_data_len_t data_len,
1291                             ipmi_context_t)
1292 {
1293     ipmi_ret_t ret = IPMI_CC_OK;
1294     get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request;
1295     get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response;
1296 
1297     // Note: we use an iterator so we can provide the next ID at the end of
1298     // the call.
1299     auto sensor = ipmi::sensor::sensors.begin();
1300     auto recordID = get_sdr::request::get_record_id(req);
1301 
1302     // At the beginning of a scan, the host side will send us id=0.
1303     if (recordID != 0)
1304     {
1305         // recordID 0 to 255 means it is a FULL record.
1306         // recordID 256 to 511 means it is a FRU record.
1307         // recordID greater then 511 means it is a Entity Association
1308         // record. Currently we are supporting three record types: FULL
1309         // record, FRU record and Enttiy Association record.
1310         if (recordID >= ENTITY_RECORD_ID_START)
1311         {
1312             return ipmi_entity_get_sdr(request, response, data_len);
1313         }
1314         else if (recordID >= FRU_RECORD_ID_START &&
1315                  recordID < ENTITY_RECORD_ID_START)
1316         {
1317             return ipmi_fru_get_sdr(request, response, data_len);
1318         }
1319         else
1320         {
1321             sensor = ipmi::sensor::sensors.find(recordID);
1322             if (sensor == ipmi::sensor::sensors.end())
1323             {
1324                 return IPMI_CC_SENSOR_INVALID;
1325             }
1326         }
1327     }
1328 
1329     uint8_t sensor_id = sensor->first;
1330 
1331     auto it = sdrCacheMap.find(sensor_id);
1332     if (it == sdrCacheMap.end())
1333     {
1334         /* Header */
1335         get_sdr::SensorDataFullRecord record = {};
1336         get_sdr::header::set_record_id(sensor_id, &(record.header));
1337         record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1
1338         record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD;
1339         record.header.record_length = sizeof(record.key) + sizeof(record.body);
1340 
1341         /* Key */
1342         get_sdr::key::set_owner_id_bmc(&(record.key));
1343         record.key.sensor_number = sensor_id;
1344 
1345         /* Body */
1346         record.body.entity_id = sensor->second.entityType;
1347         record.body.sensor_type = sensor->second.sensorType;
1348         record.body.event_reading_type = sensor->second.sensorReadingType;
1349         record.body.entity_instance = sensor->second.instance;
1350         if (ipmi::sensor::Mutability::Write ==
1351             (sensor->second.mutability & ipmi::sensor::Mutability::Write))
1352         {
1353             get_sdr::body::init_settable_state(true, &(record.body));
1354         }
1355 
1356         // Set the type-specific details given the DBus interface
1357         populate_record_from_dbus(&(record.body), &(sensor->second), data_len);
1358         sdrCacheMap[sensor_id] = std::move(record);
1359     }
1360 
1361     const auto& record = sdrCacheMap[sensor_id];
1362 
1363     if (++sensor == ipmi::sensor::sensors.end())
1364     {
1365         // we have reached till end of sensor, so assign the next record id
1366         // to 256(Max Sensor ID = 255) + FRU ID(may start with 0).
1367         auto next_record_id = (frus.size())
1368                                   ? frus.begin()->first + FRU_RECORD_ID_START
1369                                   : END_OF_RECORD;
1370 
1371         get_sdr::response::set_next_record_id(next_record_id, resp);
1372     }
1373     else
1374     {
1375         get_sdr::response::set_next_record_id(sensor->first, resp);
1376     }
1377 
1378     if (req->offset > sizeof(record))
1379     {
1380         return IPMI_CC_PARM_OUT_OF_RANGE;
1381     }
1382 
1383     // data_len will ultimately be the size of the record, plus
1384     // the size of the next record ID:
1385     *data_len = std::min(static_cast<size_t>(req->bytes_to_read),
1386                          sizeof(record) - req->offset);
1387 
1388     std::memcpy(resp->record_data,
1389                 reinterpret_cast<const uint8_t*>(&record) + req->offset,
1390                 *data_len);
1391 
1392     // data_len should include the LSB and MSB:
1393     *data_len += sizeof(resp->next_record_id_lsb) +
1394                  sizeof(resp->next_record_id_msb);
1395 
1396     return ret;
1397 }
1398 
1399 static bool isFromSystemChannel()
1400 {
1401     // TODO we could not figure out where the request is from based on IPMI
1402     // command handler parameters. because of it, we can not differentiate
1403     // request from SMS/SMM or IPMB channel
1404     return true;
1405 }
1406 
1407 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t,
1408                                 ipmi_request_t request, ipmi_response_t,
1409                                 ipmi_data_len_t dataLen, ipmi_context_t)
1410 {
1411     uint16_t generatorID;
1412     size_t count;
1413     bool assert = true;
1414     std::string sensorPath;
1415     size_t paraLen = *dataLen;
1416     PlatformEventRequest* req;
1417     *dataLen = 0;
1418 
1419     if ((paraLen < selSystemEventSizeWith1Bytes) ||
1420         (paraLen > selSystemEventSizeWith3Bytes))
1421     {
1422         return IPMI_CC_REQ_DATA_LEN_INVALID;
1423     }
1424 
1425     if (isFromSystemChannel())
1426     { // first byte for SYSTEM Interface is Generator ID
1427         // +1 to get common struct
1428         req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1);
1429         // Capture the generator ID
1430         generatorID = *reinterpret_cast<uint8_t*>(request);
1431         // Platform Event usually comes from other firmware, like BIOS.
1432         // Unlike BMC sensor, it does not have BMC DBUS sensor path.
1433         sensorPath = "System";
1434     }
1435     else
1436     {
1437         req = reinterpret_cast<PlatformEventRequest*>(request);
1438         // TODO GenratorID for IPMB is combination of RqSA and RqLUN
1439         generatorID = 0xff;
1440         sensorPath = "IPMB";
1441     }
1442     // Content of event data field depends on sensor class.
1443     // When data0 bit[5:4] is non-zero, valid data counts is 3.
1444     // When data0 bit[7:6] is non-zero, valid data counts is 2.
1445     if (((req->data[0] & byte3EnableMask) != 0 &&
1446          paraLen < selSystemEventSizeWith3Bytes) ||
1447         ((req->data[0] & byte2EnableMask) != 0 &&
1448          paraLen < selSystemEventSizeWith2Bytes))
1449     {
1450         return IPMI_CC_REQ_DATA_LEN_INVALID;
1451     }
1452 
1453     // Count bytes of Event Data
1454     if ((req->data[0] & byte3EnableMask) != 0)
1455     {
1456         count = 3;
1457     }
1458     else if ((req->data[0] & byte2EnableMask) != 0)
1459     {
1460         count = 2;
1461     }
1462     else
1463     {
1464         count = 1;
1465     }
1466     assert = req->eventDirectionType & directionMask ? false : true;
1467     std::vector<uint8_t> eventData(req->data, req->data + count);
1468 
1469     sdbusplus::bus_t dbus(bus);
1470     std::string service = ipmi::getService(dbus, ipmiSELAddInterface,
1471                                            ipmiSELPath);
1472     sdbusplus::message_t writeSEL = dbus.new_method_call(
1473         service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd");
1474     writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert,
1475                     generatorID);
1476     try
1477     {
1478         dbus.call(writeSEL);
1479     }
1480     catch (const sdbusplus::exception_t& e)
1481     {
1482         phosphor::logging::log<phosphor::logging::level::ERR>(e.what());
1483         return IPMI_CC_UNSPECIFIED_ERROR;
1484     }
1485     return IPMI_CC_OK;
1486 }
1487 
1488 void register_netfn_sen_functions()
1489 {
1490     // Handlers with dbus-sdr handler implementation.
1491     // Do not register the hander if it dynamic sensors stack is used.
1492 
1493 #ifndef FEATURE_DYNAMIC_SENSORS
1494 
1495 #ifdef FEATURE_SENSORS_CACHE
1496     // Initialize the sensor matches
1497     initSensorMatches();
1498 #endif
1499 
1500     // <Set Sensor Reading and Event Status>
1501     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1502                           ipmi::sensor_event::cmdSetSensorReadingAndEvtSts,
1503                           ipmi::Privilege::Operator, ipmiSetSensorReading);
1504     // <Get Sensor Reading>
1505     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1506                           ipmi::sensor_event::cmdGetSensorReading,
1507                           ipmi::Privilege::User, ipmiSensorGetSensorReading);
1508 
1509     // <Reserve Device SDR Repository>
1510     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1511                           ipmi::sensor_event::cmdReserveDeviceSdrRepository,
1512                           ipmi::Privilege::User, ipmiSensorReserveSdr);
1513 
1514     // <Get Device SDR Info>
1515     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1516                           ipmi::sensor_event::cmdGetDeviceSdrInfo,
1517                           ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo);
1518 
1519     // <Get Sensor Thresholds>
1520     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1521                           ipmi::sensor_event::cmdGetSensorThreshold,
1522                           ipmi::Privilege::User, ipmiSensorGetSensorThresholds);
1523 
1524     // <Set Sensor Thresholds>
1525     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1526                           ipmi::sensor_event::cmdSetSensorThreshold,
1527                           ipmi::Privilege::User, ipmiSenSetSensorThresholds);
1528 
1529     // <Get Device SDR>
1530     ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr,
1531                            ipmi_sen_get_sdr, PRIVILEGE_USER);
1532 
1533 #endif
1534 
1535     // Common Handers used by both implementation.
1536 
1537     // <Platform Event Message>
1538     ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr,
1539                            ipmicmdPlatformEvent, PRIVILEGE_OPERATOR);
1540 
1541     // <Get Sensor Type>
1542     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1543                           ipmi::sensor_event::cmdGetSensorType,
1544                           ipmi::Privilege::User, ipmiGetSensorType);
1545 
1546     return;
1547 }
1548