1 #include "config.h" 2 3 #include "sensorhandler.hpp" 4 5 #include "entity_map_json.hpp" 6 #include "fruread.hpp" 7 8 #include <mapper.h> 9 #include <systemd/sd-bus.h> 10 11 #include <bitset> 12 #include <cmath> 13 #include <cstring> 14 #include <ipmid/api.hpp> 15 #include <ipmid/types.hpp> 16 #include <ipmid/utils.hpp> 17 #include <phosphor-logging/elog-errors.hpp> 18 #include <phosphor-logging/log.hpp> 19 #include <sdbusplus/message/types.hpp> 20 #include <set> 21 #include <xyz/openbmc_project/Common/error.hpp> 22 #include <xyz/openbmc_project/Sensor/Value/server.hpp> 23 24 static constexpr uint8_t fruInventoryDevice = 0x10; 25 static constexpr uint8_t IPMIFruInventory = 0x02; 26 static constexpr uint8_t BMCSlaveAddress = 0x20; 27 28 extern int updateSensorRecordFromSSRAESC(const void*); 29 extern sd_bus* bus; 30 31 namespace ipmi 32 { 33 namespace sensor 34 { 35 extern const IdInfoMap sensors; 36 } // namespace sensor 37 } // namespace ipmi 38 39 extern const FruMap frus; 40 41 using namespace phosphor::logging; 42 using InternalFailure = 43 sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure; 44 45 void register_netfn_sen_functions() __attribute__((constructor)); 46 47 struct sensorTypemap_t 48 { 49 uint8_t number; 50 uint8_t typecode; 51 char dbusname[32]; 52 }; 53 54 sensorTypemap_t g_SensorTypeMap[] = { 55 56 {0x01, 0x6F, "Temp"}, 57 {0x0C, 0x6F, "DIMM"}, 58 {0x0C, 0x6F, "MEMORY_BUFFER"}, 59 {0x07, 0x6F, "PROC"}, 60 {0x07, 0x6F, "CORE"}, 61 {0x07, 0x6F, "CPU"}, 62 {0x0F, 0x6F, "BootProgress"}, 63 {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor 64 // type code os 0x09 65 {0xC3, 0x6F, "BootCount"}, 66 {0x1F, 0x6F, "OperatingSystemStatus"}, 67 {0x12, 0x6F, "SYSTEM_EVENT"}, 68 {0xC7, 0x03, "SYSTEM"}, 69 {0xC7, 0x03, "MAIN_PLANAR"}, 70 {0xC2, 0x6F, "PowerCap"}, 71 {0x0b, 0xCA, "PowerSupplyRedundancy"}, 72 {0xDA, 0x03, "TurboAllowed"}, 73 {0xD8, 0xC8, "PowerSupplyDerating"}, 74 {0xFF, 0x00, ""}, 75 }; 76 77 struct sensor_data_t 78 { 79 uint8_t sennum; 80 } __attribute__((packed)); 81 82 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>; 83 SDRCacheMap sdrCacheMap __attribute__((init_priority(101))); 84 85 using SensorThresholdMap = 86 std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>; 87 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101))); 88 89 #ifdef FEATURE_SENSORS_CACHE 90 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match::match>> 91 sensorAddedMatches __attribute__((init_priority(101))); 92 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match::match>> 93 sensorUpdatedMatches __attribute__((init_priority(101))); 94 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match::match>> 95 sensorRemovedMatches __attribute__((init_priority(101))); 96 std::unique_ptr<sdbusplus::bus::match::match> sensorsOwnerMatch 97 __attribute__((init_priority(101))); 98 99 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101))); 100 101 // It is needed to know which objects belong to which service, so that when a 102 // service exits without interfacesRemoved signal, we could invaildate the cache 103 // that is related to the service. It uses below two variables: 104 // - idToServiceMap records which sensors are known to have a related service; 105 // - serviceToIdMap maps a service to the sensors. 106 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>; 107 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101))); 108 109 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>; 110 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101))); 111 112 static void fillSensorIdServiceMap(const std::string& obj, 113 const std::string& /*intf*/, uint8_t id, 114 const std::string& service) 115 { 116 if (idToServiceMap.find(id) != idToServiceMap.end()) 117 { 118 return; 119 } 120 idToServiceMap[id] = service; 121 serviceToIdMap[service].insert(id); 122 } 123 124 static void fillSensorIdServiceMap(const std::string& obj, 125 const std::string& intf, uint8_t id) 126 { 127 if (idToServiceMap.find(id) != idToServiceMap.end()) 128 { 129 return; 130 } 131 try 132 { 133 sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()}; 134 auto service = ipmi::getService(bus, intf, obj); 135 idToServiceMap[id] = service; 136 serviceToIdMap[service].insert(id); 137 } 138 catch (...) 139 { 140 // Ignore 141 } 142 } 143 144 void initSensorMatches() 145 { 146 using namespace sdbusplus::bus::match::rules; 147 sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()}; 148 for (const auto& s : ipmi::sensor::sensors) 149 { 150 sensorAddedMatches.emplace( 151 s.first, 152 std::make_unique<sdbusplus::bus::match::match>( 153 bus, interfacesAdded() + argNpath(0, s.second.sensorPath), 154 [id = s.first, obj = s.second.sensorPath, 155 intf = s.second.propertyInterfaces.begin()->first]( 156 auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); })); 157 sensorRemovedMatches.emplace( 158 s.first, 159 std::make_unique<sdbusplus::bus::match::match>( 160 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath), 161 [id = s.first](auto& /*msg*/) { 162 // Ideally this should work. 163 // But when a service is terminated or crashed, it does not 164 // emit interfacesRemoved signal. In that case it's handled 165 // by sensorsOwnerMatch 166 sensorCacheMap[id].reset(); 167 })); 168 sensorUpdatedMatches.emplace( 169 s.first, std::make_unique<sdbusplus::bus::match::match>( 170 bus, 171 type::signal() + path(s.second.sensorPath) + 172 member("PropertiesChanged"s) + 173 interface("org.freedesktop.DBus.Properties"s), 174 [&s](auto& msg) { 175 fillSensorIdServiceMap( 176 s.second.sensorPath, 177 s.second.propertyInterfaces.begin()->first, 178 s.first); 179 try 180 { 181 // This is signal callback 182 std::string interfaceName; 183 msg.read(interfaceName); 184 ipmi::PropertyMap props; 185 msg.read(props); 186 s.second.getFunc(s.first, s.second, props); 187 } 188 catch (const std::exception& e) 189 { 190 sensorCacheMap[s.first].reset(); 191 } 192 })); 193 sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match::match>( 194 bus, nameOwnerChanged(), [](auto& msg) { 195 std::string name; 196 std::string oldOwner; 197 std::string newOwner; 198 msg.read(name, oldOwner, newOwner); 199 200 if (!name.empty() && newOwner.empty()) 201 { 202 // The service exits 203 const auto it = serviceToIdMap.find(name); 204 if (it == serviceToIdMap.end()) 205 { 206 return; 207 } 208 for (const auto& id : it->second) 209 { 210 // Invalidate cache 211 sensorCacheMap[id].reset(); 212 } 213 } 214 }); 215 } 216 } 217 #endif 218 219 int get_bus_for_path(const char* path, char** busname) 220 { 221 return mapper_get_service(bus, path, busname); 222 } 223 224 // Use a lookup table to find the interface name of a specific sensor 225 // This will be used until an alternative is found. this is the first 226 // step for mapping IPMI 227 int find_openbmc_path(uint8_t num, dbus_interface_t* interface) 228 { 229 int rc; 230 231 const auto& sensor_it = ipmi::sensor::sensors.find(num); 232 if (sensor_it == ipmi::sensor::sensors.end()) 233 { 234 // The sensor map does not contain the sensor requested 235 return -EINVAL; 236 } 237 238 const auto& info = sensor_it->second; 239 240 char* busname = nullptr; 241 rc = get_bus_for_path(info.sensorPath.c_str(), &busname); 242 if (rc < 0) 243 { 244 std::fprintf(stderr, "Failed to get %s busname: %s\n", 245 info.sensorPath.c_str(), busname); 246 goto final; 247 } 248 249 interface->sensortype = info.sensorType; 250 strcpy(interface->bus, busname); 251 strcpy(interface->path, info.sensorPath.c_str()); 252 // Take the interface name from the beginning of the DbusInterfaceMap. This 253 // works for the Value interface but may not suffice for more complex 254 // sensors. 255 // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 256 strcpy(interface->interface, 257 info.propertyInterfaces.begin()->first.c_str()); 258 interface->sensornumber = num; 259 260 final: 261 free(busname); 262 return rc; 263 } 264 265 ///////////////////////////////////////////////////////////////////// 266 // 267 // Routines used by ipmi commands wanting to interact on the dbus 268 // 269 ///////////////////////////////////////////////////////////////////// 270 int set_sensor_dbus_state_s(uint8_t number, const char* method, 271 const char* value) 272 { 273 274 dbus_interface_t a; 275 int r; 276 sd_bus_error error = SD_BUS_ERROR_NULL; 277 sd_bus_message* m = NULL; 278 279 r = find_openbmc_path(number, &a); 280 281 if (r < 0) 282 { 283 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 284 return 0; 285 } 286 287 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 288 method); 289 if (r < 0) 290 { 291 std::fprintf(stderr, "Failed to create a method call: %s", 292 strerror(-r)); 293 goto final; 294 } 295 296 r = sd_bus_message_append(m, "v", "s", value); 297 if (r < 0) 298 { 299 std::fprintf(stderr, "Failed to create a input parameter: %s", 300 strerror(-r)); 301 goto final; 302 } 303 304 r = sd_bus_call(bus, m, 0, &error, NULL); 305 if (r < 0) 306 { 307 std::fprintf(stderr, "Failed to call the method: %s", strerror(-r)); 308 } 309 310 final: 311 sd_bus_error_free(&error); 312 m = sd_bus_message_unref(m); 313 314 return 0; 315 } 316 int set_sensor_dbus_state_y(uint8_t number, const char* method, 317 const uint8_t value) 318 { 319 320 dbus_interface_t a; 321 int r; 322 sd_bus_error error = SD_BUS_ERROR_NULL; 323 sd_bus_message* m = NULL; 324 325 r = find_openbmc_path(number, &a); 326 327 if (r < 0) 328 { 329 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 330 return 0; 331 } 332 333 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 334 method); 335 if (r < 0) 336 { 337 std::fprintf(stderr, "Failed to create a method call: %s", 338 strerror(-r)); 339 goto final; 340 } 341 342 r = sd_bus_message_append(m, "v", "i", value); 343 if (r < 0) 344 { 345 std::fprintf(stderr, "Failed to create a input parameter: %s", 346 strerror(-r)); 347 goto final; 348 } 349 350 r = sd_bus_call(bus, m, 0, &error, NULL); 351 if (r < 0) 352 { 353 std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); 354 } 355 356 final: 357 sd_bus_error_free(&error); 358 m = sd_bus_message_unref(m); 359 360 return 0; 361 } 362 363 uint8_t dbus_to_sensor_type(char* p) 364 { 365 366 sensorTypemap_t* s = g_SensorTypeMap; 367 char r = 0; 368 while (s->number != 0xFF) 369 { 370 if (!strcmp(s->dbusname, p)) 371 { 372 r = s->typecode; 373 break; 374 } 375 s++; 376 } 377 378 if (s->number == 0xFF) 379 printf("Failed to find Sensor Type %s\n", p); 380 381 return r; 382 } 383 384 uint8_t get_type_from_interface(dbus_interface_t dbus_if) 385 { 386 387 uint8_t type; 388 389 // This is where sensors that do not exist in dbus but do 390 // exist in the host code stop. This should indicate it 391 // is not a supported sensor 392 if (dbus_if.interface[0] == 0) 393 { 394 return 0; 395 } 396 397 // Fetch type from interface itself. 398 if (dbus_if.sensortype != 0) 399 { 400 type = dbus_if.sensortype; 401 } 402 else 403 { 404 // Non InventoryItems 405 char* p = strrchr(dbus_if.path, '/'); 406 type = dbus_to_sensor_type(p + 1); 407 } 408 409 return type; 410 } 411 412 // Replaces find_sensor 413 uint8_t find_type_for_sensor_number(uint8_t num) 414 { 415 int r; 416 dbus_interface_t dbus_if; 417 r = find_openbmc_path(num, &dbus_if); 418 if (r < 0) 419 { 420 std::fprintf(stderr, "Could not find sensor %d\n", num); 421 return 0; 422 } 423 return get_type_from_interface(dbus_if); 424 } 425 426 /** 427 * @brief implements the get sensor type command. 428 * @param - sensorNumber 429 * 430 * @return IPMI completion code plus response data on success. 431 * - sensorType 432 * - eventType 433 **/ 434 435 ipmi::RspType<uint8_t, // sensorType 436 uint8_t // eventType 437 > 438 ipmiGetSensorType(uint8_t sensorNumber) 439 { 440 uint8_t sensorType = find_type_for_sensor_number(sensorNumber); 441 442 if (sensorType == 0) 443 { 444 return ipmi::responseSensorInvalid(); 445 } 446 447 constexpr uint8_t eventType = 0x6F; 448 return ipmi::responseSuccess(sensorType, eventType); 449 } 450 451 const std::set<std::string> analogSensorInterfaces = { 452 "xyz.openbmc_project.Sensor.Value", 453 "xyz.openbmc_project.Control.FanPwm", 454 }; 455 456 bool isAnalogSensor(const std::string& interface) 457 { 458 return (analogSensorInterfaces.count(interface)); 459 } 460 461 /** 462 @brief This command is used to set sensorReading. 463 464 @param 465 - sensorNumber 466 - operation 467 - reading 468 - assertOffset0_7 469 - assertOffset8_14 470 - deassertOffset0_7 471 - deassertOffset8_14 472 - eventData1 473 - eventData2 474 - eventData3 475 476 @return completion code on success. 477 **/ 478 479 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation, 480 uint8_t reading, uint8_t assertOffset0_7, 481 uint8_t assertOffset8_14, 482 uint8_t deassertOffset0_7, 483 uint8_t deassertOffset8_14, 484 uint8_t eventData1, uint8_t eventData2, 485 uint8_t eventData3) 486 { 487 log<level::DEBUG>("IPMI SET_SENSOR", 488 entry("SENSOR_NUM=0x%02x", sensorNumber)); 489 490 if (sensorNumber == 0xFF) 491 { 492 return ipmi::responseInvalidFieldRequest(); 493 } 494 ipmi::sensor::SetSensorReadingReq cmdData; 495 496 cmdData.number = sensorNumber; 497 cmdData.operation = operation; 498 cmdData.reading = reading; 499 cmdData.assertOffset0_7 = assertOffset0_7; 500 cmdData.assertOffset8_14 = assertOffset8_14; 501 cmdData.deassertOffset0_7 = deassertOffset0_7; 502 cmdData.deassertOffset8_14 = deassertOffset8_14; 503 cmdData.eventData1 = eventData1; 504 cmdData.eventData2 = eventData2; 505 cmdData.eventData3 = eventData3; 506 507 // Check if the Sensor Number is present 508 const auto iter = ipmi::sensor::sensors.find(sensorNumber); 509 if (iter == ipmi::sensor::sensors.end()) 510 { 511 updateSensorRecordFromSSRAESC(&sensorNumber); 512 return ipmi::responseSuccess(); 513 } 514 515 try 516 { 517 if (ipmi::sensor::Mutability::Write != 518 (iter->second.mutability & ipmi::sensor::Mutability::Write)) 519 { 520 log<level::ERR>("Sensor Set operation is not allowed", 521 entry("SENSOR_NUM=%d", sensorNumber)); 522 return ipmi::responseIllegalCommand(); 523 } 524 auto ipmiRC = iter->second.updateFunc(cmdData, iter->second); 525 return ipmi::response(ipmiRC); 526 } 527 catch (const InternalFailure& e) 528 { 529 log<level::ERR>("Set sensor failed", 530 entry("SENSOR_NUM=%d", sensorNumber)); 531 commit<InternalFailure>(); 532 return ipmi::responseUnspecifiedError(); 533 } 534 catch (const std::runtime_error& e) 535 { 536 log<level::ERR>(e.what()); 537 return ipmi::responseUnspecifiedError(); 538 } 539 } 540 541 /** @brief implements the get sensor reading command 542 * @param sensorNum - sensor number 543 * 544 * @returns IPMI completion code plus response data 545 * - senReading - sensor reading 546 * - reserved 547 * - readState - sensor reading state enabled 548 * - senScanState - sensor scan state disabled 549 * - allEventMessageState - all Event message state disabled 550 * - assertionStatesLsb - threshold levels states 551 * - assertionStatesMsb - discrete reading sensor states 552 */ 553 ipmi::RspType<uint8_t, // sensor reading 554 555 uint5_t, // reserved 556 bool, // reading state 557 bool, // 0 = sensor scanning state disabled 558 bool, // 0 = all event messages disabled 559 560 uint8_t, // threshold levels states 561 uint8_t // discrete reading sensor states 562 > 563 ipmiSensorGetSensorReading(ipmi::Context::ptr& ctx, uint8_t sensorNum) 564 { 565 if (sensorNum == 0xFF) 566 { 567 return ipmi::responseInvalidFieldRequest(); 568 } 569 570 const auto iter = ipmi::sensor::sensors.find(sensorNum); 571 if (iter == ipmi::sensor::sensors.end()) 572 { 573 return ipmi::responseSensorInvalid(); 574 } 575 if (ipmi::sensor::Mutability::Read != 576 (iter->second.mutability & ipmi::sensor::Mutability::Read)) 577 { 578 return ipmi::responseIllegalCommand(); 579 } 580 581 try 582 { 583 #ifdef FEATURE_SENSORS_CACHE 584 auto& sensorData = sensorCacheMap[sensorNum]; 585 if (!sensorData.has_value()) 586 { 587 // No cached value, try read it 588 std::string service; 589 boost::system::error_code ec; 590 const auto& sensorInfo = iter->second; 591 ec = ipmi::getService(ctx, sensorInfo.sensorInterface, 592 sensorInfo.sensorPath, service); 593 if (ec) 594 { 595 return ipmi::responseUnspecifiedError(); 596 } 597 fillSensorIdServiceMap(sensorInfo.sensorPath, 598 sensorInfo.propertyInterfaces.begin()->first, 599 iter->first, service); 600 601 ipmi::PropertyMap props; 602 ec = ipmi::getAllDbusProperties( 603 ctx, service, sensorInfo.sensorPath, 604 sensorInfo.propertyInterfaces.begin()->first, props); 605 if (ec) 606 { 607 fprintf(stderr, "Failed to get sensor %s, %d: %s\n", 608 sensorInfo.sensorPath.c_str(), ec.value(), 609 ec.message().c_str()); 610 // Intitilizing with default values 611 constexpr uint8_t senReading = 0; 612 constexpr uint5_t reserved{0}; 613 constexpr bool readState = true; 614 constexpr bool senScanState = false; 615 constexpr bool allEventMessageState = false; 616 constexpr uint8_t assertionStatesLsb = 0; 617 constexpr uint8_t assertionStatesMsb = 0; 618 619 return ipmi::responseSuccess(senReading, reserved, readState, 620 senScanState, allEventMessageState, 621 assertionStatesLsb, 622 assertionStatesMsb); 623 } 624 sensorInfo.getFunc(sensorNum, sensorInfo, props); 625 } 626 return ipmi::responseSuccess( 627 sensorData->response.reading, uint5_t(0), 628 sensorData->response.readingOrStateUnavailable, 629 sensorData->response.scanningEnabled, 630 sensorData->response.allEventMessagesEnabled, 631 sensorData->response.thresholdLevelsStates, 632 sensorData->response.discreteReadingSensorStates); 633 634 #else 635 ipmi::sensor::GetSensorResponse getResponse = 636 iter->second.getFunc(iter->second); 637 638 return ipmi::responseSuccess(getResponse.reading, uint5_t(0), 639 getResponse.readingOrStateUnavailable, 640 getResponse.scanningEnabled, 641 getResponse.allEventMessagesEnabled, 642 getResponse.thresholdLevelsStates, 643 getResponse.discreteReadingSensorStates); 644 #endif 645 } 646 #ifdef UPDATE_FUNCTIONAL_ON_FAIL 647 catch (const SensorFunctionalError& e) 648 { 649 return ipmi::responseResponseError(); 650 } 651 #endif 652 catch (const std::exception& e) 653 { 654 // Intitilizing with default values 655 constexpr uint8_t senReading = 0; 656 constexpr uint5_t reserved{0}; 657 constexpr bool readState = true; 658 constexpr bool senScanState = false; 659 constexpr bool allEventMessageState = false; 660 constexpr uint8_t assertionStatesLsb = 0; 661 constexpr uint8_t assertionStatesMsb = 0; 662 663 return ipmi::responseSuccess(senReading, reserved, readState, 664 senScanState, allEventMessageState, 665 assertionStatesLsb, assertionStatesMsb); 666 } 667 } 668 669 get_sdr::GetSensorThresholdsResponse 670 getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 671 { 672 get_sdr::GetSensorThresholdsResponse resp{}; 673 constexpr auto warningThreshIntf = 674 "xyz.openbmc_project.Sensor.Threshold.Warning"; 675 constexpr auto criticalThreshIntf = 676 "xyz.openbmc_project.Sensor.Threshold.Critical"; 677 678 const auto iter = ipmi::sensor::sensors.find(sensorNum); 679 const auto info = iter->second; 680 681 std::string service; 682 boost::system::error_code ec; 683 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 684 if (ec) 685 { 686 return resp; 687 } 688 689 ipmi::PropertyMap warnThresholds; 690 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 691 warningThreshIntf, warnThresholds); 692 if (!ec) 693 { 694 double warnLow = std::visit(ipmi::VariantToDoubleVisitor(), 695 warnThresholds["WarningLow"]); 696 double warnHigh = std::visit(ipmi::VariantToDoubleVisitor(), 697 warnThresholds["WarningHigh"]); 698 699 if (std::isfinite(warnLow)) 700 { 701 warnLow *= std::pow(10, info.scale - info.exponentR); 702 resp.lowerNonCritical = static_cast<uint8_t>( 703 (warnLow - info.scaledOffset) / info.coefficientM); 704 resp.validMask |= static_cast<uint8_t>( 705 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); 706 } 707 708 if (std::isfinite(warnHigh)) 709 { 710 warnHigh *= std::pow(10, info.scale - info.exponentR); 711 resp.upperNonCritical = static_cast<uint8_t>( 712 (warnHigh - info.scaledOffset) / info.coefficientM); 713 resp.validMask |= static_cast<uint8_t>( 714 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); 715 } 716 } 717 718 ipmi::PropertyMap critThresholds; 719 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 720 criticalThreshIntf, critThresholds); 721 if (!ec) 722 { 723 double critLow = std::visit(ipmi::VariantToDoubleVisitor(), 724 critThresholds["CriticalLow"]); 725 double critHigh = std::visit(ipmi::VariantToDoubleVisitor(), 726 critThresholds["CriticalHigh"]); 727 728 if (std::isfinite(critLow)) 729 { 730 critLow *= std::pow(10, info.scale - info.exponentR); 731 resp.lowerCritical = static_cast<uint8_t>( 732 (critLow - info.scaledOffset) / info.coefficientM); 733 resp.validMask |= static_cast<uint8_t>( 734 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); 735 } 736 737 if (std::isfinite(critHigh)) 738 { 739 critHigh *= std::pow(10, info.scale - info.exponentR); 740 resp.upperCritical = static_cast<uint8_t>( 741 (critHigh - info.scaledOffset) / info.coefficientM); 742 resp.validMask |= static_cast<uint8_t>( 743 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); 744 } 745 } 746 747 return resp; 748 } 749 750 /** @brief implements the get sensor thresholds command 751 * @param ctx - IPMI context pointer 752 * @param sensorNum - sensor number 753 * 754 * @returns IPMI completion code plus response data 755 * - validMask - threshold mask 756 * - lower non-critical threshold - IPMI messaging state 757 * - lower critical threshold - link authentication state 758 * - lower non-recoverable threshold - callback state 759 * - upper non-critical threshold 760 * - upper critical 761 * - upper non-recoverable 762 */ 763 ipmi::RspType<uint8_t, // validMask 764 uint8_t, // lowerNonCritical 765 uint8_t, // lowerCritical 766 uint8_t, // lowerNonRecoverable 767 uint8_t, // upperNonCritical 768 uint8_t, // upperCritical 769 uint8_t // upperNonRecoverable 770 > 771 ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 772 { 773 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 774 775 const auto iter = ipmi::sensor::sensors.find(sensorNum); 776 if (iter == ipmi::sensor::sensors.end()) 777 { 778 return ipmi::responseSensorInvalid(); 779 } 780 781 const auto info = iter->second; 782 783 // Proceed only if the sensor value interface is implemented. 784 if (info.propertyInterfaces.find(valueInterface) == 785 info.propertyInterfaces.end()) 786 { 787 // return with valid mask as 0 788 return ipmi::responseSuccess(); 789 } 790 791 auto it = sensorThresholdMap.find(sensorNum); 792 if (it == sensorThresholdMap.end()) 793 { 794 sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum); 795 } 796 797 const auto& resp = sensorThresholdMap[sensorNum]; 798 799 return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical, 800 resp.lowerCritical, resp.lowerNonRecoverable, 801 resp.upperNonCritical, resp.upperCritical, 802 resp.upperNonRecoverable); 803 } 804 805 /** @brief implements the Set Sensor threshold command 806 * @param sensorNumber - sensor number 807 * @param lowerNonCriticalThreshMask 808 * @param lowerCriticalThreshMask 809 * @param lowerNonRecovThreshMask 810 * @param upperNonCriticalThreshMask 811 * @param upperCriticalThreshMask 812 * @param upperNonRecovThreshMask 813 * @param reserved 814 * @param lowerNonCritical - lower non-critical threshold 815 * @param lowerCritical - Lower critical threshold 816 * @param lowerNonRecoverable - Lower non recovarable threshold 817 * @param upperNonCritical - Upper non-critical threshold 818 * @param upperCritical - Upper critical 819 * @param upperNonRecoverable - Upper Non-recoverable 820 * 821 * @returns IPMI completion code 822 */ 823 ipmi::RspType<> ipmiSenSetSensorThresholds( 824 ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask, 825 bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask, 826 bool upperNonCriticalThreshMask, bool upperCriticalThreshMask, 827 bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical, 828 uint8_t lowerCritical, uint8_t lowerNonRecoverable, 829 uint8_t upperNonCritical, uint8_t upperCritical, 830 uint8_t upperNonRecoverable) 831 { 832 if (reserved) 833 { 834 return ipmi::responseInvalidFieldRequest(); 835 } 836 837 // lower nc and upper nc not suppported on any sensor 838 if (lowerNonRecovThreshMask || upperNonRecovThreshMask) 839 { 840 return ipmi::responseInvalidFieldRequest(); 841 } 842 843 // if none of the threshold mask are set, nothing to do 844 if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask | 845 lowerNonRecovThreshMask | upperNonCriticalThreshMask | 846 upperCriticalThreshMask | upperNonRecovThreshMask)) 847 { 848 return ipmi::responseSuccess(); 849 } 850 851 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 852 853 const auto iter = ipmi::sensor::sensors.find(sensorNum); 854 if (iter == ipmi::sensor::sensors.end()) 855 { 856 return ipmi::responseSensorInvalid(); 857 } 858 859 const auto& info = iter->second; 860 861 // Proceed only if the sensor value interface is implemented. 862 if (info.propertyInterfaces.find(valueInterface) == 863 info.propertyInterfaces.end()) 864 { 865 // return with valid mask as 0 866 return ipmi::responseSuccess(); 867 } 868 869 constexpr auto warningThreshIntf = 870 "xyz.openbmc_project.Sensor.Threshold.Warning"; 871 constexpr auto criticalThreshIntf = 872 "xyz.openbmc_project.Sensor.Threshold.Critical"; 873 874 std::string service; 875 boost::system::error_code ec; 876 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 877 if (ec) 878 { 879 return ipmi::responseResponseError(); 880 } 881 // store a vector of property name, value to set, and interface 882 std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet; 883 884 // define the indexes of the tuple 885 constexpr uint8_t propertyName = 0; 886 constexpr uint8_t thresholdValue = 1; 887 constexpr uint8_t interface = 2; 888 // verifiy all needed fields are present 889 if (lowerCriticalThreshMask || upperCriticalThreshMask) 890 { 891 892 ipmi::PropertyMap findThreshold; 893 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 894 criticalThreshIntf, findThreshold); 895 896 if (!ec) 897 { 898 if (lowerCriticalThreshMask) 899 { 900 auto findLower = findThreshold.find("CriticalLow"); 901 if (findLower == findThreshold.end()) 902 { 903 return ipmi::responseInvalidFieldRequest(); 904 } 905 thresholdsToSet.emplace_back("CriticalLow", lowerCritical, 906 criticalThreshIntf); 907 } 908 if (upperCriticalThreshMask) 909 { 910 auto findUpper = findThreshold.find("CriticalHigh"); 911 if (findUpper == findThreshold.end()) 912 { 913 return ipmi::responseInvalidFieldRequest(); 914 } 915 thresholdsToSet.emplace_back("CriticalHigh", upperCritical, 916 criticalThreshIntf); 917 } 918 } 919 } 920 if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask) 921 { 922 ipmi::PropertyMap findThreshold; 923 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 924 warningThreshIntf, findThreshold); 925 926 if (!ec) 927 { 928 if (lowerNonCriticalThreshMask) 929 { 930 auto findLower = findThreshold.find("WarningLow"); 931 if (findLower == findThreshold.end()) 932 { 933 return ipmi::responseInvalidFieldRequest(); 934 } 935 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical, 936 warningThreshIntf); 937 } 938 if (upperNonCriticalThreshMask) 939 { 940 auto findUpper = findThreshold.find("WarningHigh"); 941 if (findUpper == findThreshold.end()) 942 { 943 return ipmi::responseInvalidFieldRequest(); 944 } 945 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical, 946 warningThreshIntf); 947 } 948 } 949 } 950 for (const auto& property : thresholdsToSet) 951 { 952 // from section 36.3 in the IPMI Spec, assume all linear 953 double valueToSet = 954 ((info.coefficientM * std::get<thresholdValue>(property)) + 955 (info.scaledOffset * std::pow(10.0, info.scale))) * 956 std::pow(10.0, info.exponentR); 957 ipmi::setDbusProperty( 958 ctx, service, info.sensorPath, std::get<interface>(property), 959 std::get<propertyName>(property), ipmi::Value(valueToSet)); 960 } 961 962 // Invalidate the cache 963 sensorThresholdMap.erase(sensorNum); 964 return ipmi::responseSuccess(); 965 } 966 967 /** @brief implements the get SDR Info command 968 * @param count - Operation 969 * 970 * @returns IPMI completion code plus response data 971 * - sdrCount - sensor/SDR count 972 * - lunsAndDynamicPopulation - static/Dynamic sensor population flag 973 */ 974 ipmi::RspType<uint8_t, // respcount 975 uint8_t // dynamic population flags 976 > 977 ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count) 978 { 979 uint8_t sdrCount; 980 // multiple LUNs not supported. 981 constexpr uint8_t lunsAndDynamicPopulation = 1; 982 constexpr uint8_t getSdrCount = 0x01; 983 constexpr uint8_t getSensorCount = 0x00; 984 985 if (count.value_or(0) == getSdrCount) 986 { 987 // Get SDR count. This returns the total number of SDRs in the device. 988 const auto& entityRecords = 989 ipmi::sensor::EntityInfoMapContainer::getContainer() 990 ->getIpmiEntityRecords(); 991 sdrCount = 992 ipmi::sensor::sensors.size() + frus.size() + entityRecords.size(); 993 } 994 else if (count.value_or(0) == getSensorCount) 995 { 996 // Get Sensor count. This returns the number of sensors 997 sdrCount = ipmi::sensor::sensors.size(); 998 } 999 else 1000 { 1001 return ipmi::responseInvalidCommandOnLun(); 1002 } 1003 1004 return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation); 1005 } 1006 1007 /** @brief implements the reserve SDR command 1008 * @returns IPMI completion code plus response data 1009 * - reservationID - reservation ID 1010 */ 1011 ipmi::RspType<uint16_t> ipmiSensorReserveSdr() 1012 { 1013 // A constant reservation ID is okay until we implement add/remove SDR. 1014 constexpr uint16_t reservationID = 1; 1015 1016 return ipmi::responseSuccess(reservationID); 1017 } 1018 1019 void setUnitFieldsForObject(const ipmi::sensor::Info* info, 1020 get_sdr::SensorDataFullRecordBody* body) 1021 { 1022 namespace server = sdbusplus::xyz::openbmc_project::Sensor::server; 1023 try 1024 { 1025 auto unit = server::Value::convertUnitFromString(info->unit); 1026 // Unit strings defined in 1027 // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml 1028 switch (unit) 1029 { 1030 case server::Value::Unit::DegreesC: 1031 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; 1032 break; 1033 case server::Value::Unit::RPMS: 1034 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM; 1035 break; 1036 case server::Value::Unit::Volts: 1037 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; 1038 break; 1039 case server::Value::Unit::Meters: 1040 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; 1041 break; 1042 case server::Value::Unit::Amperes: 1043 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; 1044 break; 1045 case server::Value::Unit::Joules: 1046 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; 1047 break; 1048 case server::Value::Unit::Watts: 1049 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; 1050 break; 1051 default: 1052 // Cannot be hit. 1053 std::fprintf(stderr, "Unknown value unit type: = %s\n", 1054 info->unit.c_str()); 1055 } 1056 } 1057 catch (const sdbusplus::exception::InvalidEnumString& e) 1058 { 1059 log<level::WARNING>("Warning: no unit provided for sensor!"); 1060 } 1061 } 1062 1063 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, 1064 const ipmi::sensor::Info* info, 1065 ipmi_data_len_t data_len) 1066 { 1067 /* Functional sensor case */ 1068 if (isAnalogSensor(info->propertyInterfaces.begin()->first)) 1069 { 1070 body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no 1071 // rate, no modifier, not a % 1072 /* Unit info */ 1073 setUnitFieldsForObject(info, body); 1074 1075 get_sdr::body::set_b(info->coefficientB, body); 1076 get_sdr::body::set_m(info->coefficientM, body); 1077 get_sdr::body::set_b_exp(info->exponentB, body); 1078 get_sdr::body::set_r_exp(info->exponentR, body); 1079 1080 get_sdr::body::set_id_type(0b00, body); // 00 = unicode 1081 } 1082 1083 /* ID string */ 1084 auto id_string = info->sensorName; 1085 1086 if (id_string.empty()) 1087 { 1088 id_string = info->sensorNameFunc(*info); 1089 } 1090 1091 if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) 1092 { 1093 get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); 1094 } 1095 else 1096 { 1097 get_sdr::body::set_id_strlen(id_string.length(), body); 1098 } 1099 strncpy(body->id_string, id_string.c_str(), 1100 get_sdr::body::get_id_strlen(body)); 1101 1102 return IPMI_CC_OK; 1103 }; 1104 1105 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, 1106 ipmi_data_len_t data_len) 1107 { 1108 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1109 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1110 get_sdr::SensorDataFruRecord record{}; 1111 auto dataLength = 0; 1112 1113 auto fru = frus.begin(); 1114 uint8_t fruID{}; 1115 auto recordID = get_sdr::request::get_record_id(req); 1116 1117 fruID = recordID - FRU_RECORD_ID_START; 1118 fru = frus.find(fruID); 1119 if (fru == frus.end()) 1120 { 1121 return IPMI_CC_SENSOR_INVALID; 1122 } 1123 1124 /* Header */ 1125 get_sdr::header::set_record_id(recordID, &(record.header)); 1126 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1127 record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; 1128 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1129 1130 /* Key */ 1131 record.key.fruID = fruID; 1132 record.key.accessLun |= IPMI_LOGICAL_FRU; 1133 record.key.deviceAddress = BMCSlaveAddress; 1134 1135 /* Body */ 1136 record.body.entityID = fru->second[0].entityID; 1137 record.body.entityInstance = fru->second[0].entityInstance; 1138 record.body.deviceType = fruInventoryDevice; 1139 record.body.deviceTypeModifier = IPMIFruInventory; 1140 1141 /* Device ID string */ 1142 auto deviceID = 1143 fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, 1144 fru->second[0].path.length()); 1145 1146 if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) 1147 { 1148 get_sdr::body::set_device_id_strlen( 1149 get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); 1150 } 1151 else 1152 { 1153 get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); 1154 } 1155 1156 strncpy(record.body.deviceID, deviceID.c_str(), 1157 get_sdr::body::get_device_id_strlen(&(record.body))); 1158 1159 if (++fru == frus.end()) 1160 { 1161 // we have reached till end of fru, so assign the next record id to 1162 // 512(Max fru ID = 511) + Entity Record ID(may start with 0). 1163 const auto& entityRecords = 1164 ipmi::sensor::EntityInfoMapContainer::getContainer() 1165 ->getIpmiEntityRecords(); 1166 auto next_record_id = 1167 (entityRecords.size()) 1168 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START 1169 : END_OF_RECORD; 1170 get_sdr::response::set_next_record_id(next_record_id, resp); 1171 } 1172 else 1173 { 1174 get_sdr::response::set_next_record_id( 1175 (FRU_RECORD_ID_START + fru->first), resp); 1176 } 1177 1178 // Check for invalid offset size 1179 if (req->offset > sizeof(record)) 1180 { 1181 return IPMI_CC_PARM_OUT_OF_RANGE; 1182 } 1183 1184 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1185 sizeof(record) - req->offset); 1186 1187 std::memcpy(resp->record_data, 1188 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1189 1190 *data_len = dataLength; 1191 *data_len += 2; // additional 2 bytes for next record ID 1192 1193 return IPMI_CC_OK; 1194 } 1195 1196 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response, 1197 ipmi_data_len_t data_len) 1198 { 1199 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1200 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1201 get_sdr::SensorDataEntityRecord record{}; 1202 auto dataLength = 0; 1203 1204 const auto& entityRecords = 1205 ipmi::sensor::EntityInfoMapContainer::getContainer() 1206 ->getIpmiEntityRecords(); 1207 auto entity = entityRecords.begin(); 1208 uint8_t entityRecordID; 1209 auto recordID = get_sdr::request::get_record_id(req); 1210 1211 entityRecordID = recordID - ENTITY_RECORD_ID_START; 1212 entity = entityRecords.find(entityRecordID); 1213 if (entity == entityRecords.end()) 1214 { 1215 return IPMI_CC_SENSOR_INVALID; 1216 } 1217 1218 /* Header */ 1219 get_sdr::header::set_record_id(recordID, &(record.header)); 1220 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1221 record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD; 1222 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1223 1224 /* Key */ 1225 record.key.containerEntityId = entity->second.containerEntityId; 1226 record.key.containerEntityInstance = entity->second.containerEntityInstance; 1227 get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked, 1228 &(record.key)); 1229 record.key.entityId1 = entity->second.containedEntities[0].first; 1230 record.key.entityInstance1 = entity->second.containedEntities[0].second; 1231 1232 /* Body */ 1233 record.body.entityId2 = entity->second.containedEntities[1].first; 1234 record.body.entityInstance2 = entity->second.containedEntities[1].second; 1235 record.body.entityId3 = entity->second.containedEntities[2].first; 1236 record.body.entityInstance3 = entity->second.containedEntities[2].second; 1237 record.body.entityId4 = entity->second.containedEntities[3].first; 1238 record.body.entityInstance4 = entity->second.containedEntities[3].second; 1239 1240 if (++entity == entityRecords.end()) 1241 { 1242 get_sdr::response::set_next_record_id(END_OF_RECORD, 1243 resp); // last record 1244 } 1245 else 1246 { 1247 get_sdr::response::set_next_record_id( 1248 (ENTITY_RECORD_ID_START + entity->first), resp); 1249 } 1250 1251 // Check for invalid offset size 1252 if (req->offset > sizeof(record)) 1253 { 1254 return IPMI_CC_PARM_OUT_OF_RANGE; 1255 } 1256 1257 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1258 sizeof(record) - req->offset); 1259 1260 std::memcpy(resp->record_data, 1261 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1262 1263 *data_len = dataLength; 1264 *data_len += 2; // additional 2 bytes for next record ID 1265 1266 return IPMI_CC_OK; 1267 } 1268 1269 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t netfn, ipmi_cmd_t cmd, 1270 ipmi_request_t request, ipmi_response_t response, 1271 ipmi_data_len_t data_len, ipmi_context_t context) 1272 { 1273 ipmi_ret_t ret = IPMI_CC_OK; 1274 get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; 1275 get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; 1276 1277 // Note: we use an iterator so we can provide the next ID at the end of 1278 // the call. 1279 auto sensor = ipmi::sensor::sensors.begin(); 1280 auto recordID = get_sdr::request::get_record_id(req); 1281 1282 // At the beginning of a scan, the host side will send us id=0. 1283 if (recordID != 0) 1284 { 1285 // recordID 0 to 255 means it is a FULL record. 1286 // recordID 256 to 511 means it is a FRU record. 1287 // recordID greater then 511 means it is a Entity Association 1288 // record. Currently we are supporting three record types: FULL 1289 // record, FRU record and Enttiy Association record. 1290 if (recordID >= ENTITY_RECORD_ID_START) 1291 { 1292 return ipmi_entity_get_sdr(request, response, data_len); 1293 } 1294 else if (recordID >= FRU_RECORD_ID_START && 1295 recordID < ENTITY_RECORD_ID_START) 1296 { 1297 return ipmi_fru_get_sdr(request, response, data_len); 1298 } 1299 else 1300 { 1301 sensor = ipmi::sensor::sensors.find(recordID); 1302 if (sensor == ipmi::sensor::sensors.end()) 1303 { 1304 return IPMI_CC_SENSOR_INVALID; 1305 } 1306 } 1307 } 1308 1309 uint8_t sensor_id = sensor->first; 1310 1311 auto it = sdrCacheMap.find(sensor_id); 1312 if (it == sdrCacheMap.end()) 1313 { 1314 /* Header */ 1315 get_sdr::SensorDataFullRecord record = {0}; 1316 get_sdr::header::set_record_id(sensor_id, &(record.header)); 1317 record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 1318 record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; 1319 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1320 1321 /* Key */ 1322 get_sdr::key::set_owner_id_bmc(&(record.key)); 1323 record.key.sensor_number = sensor_id; 1324 1325 /* Body */ 1326 record.body.entity_id = sensor->second.entityType; 1327 record.body.sensor_type = sensor->second.sensorType; 1328 record.body.event_reading_type = sensor->second.sensorReadingType; 1329 record.body.entity_instance = sensor->second.instance; 1330 if (ipmi::sensor::Mutability::Write == 1331 (sensor->second.mutability & ipmi::sensor::Mutability::Write)) 1332 { 1333 get_sdr::body::init_settable_state(true, &(record.body)); 1334 } 1335 1336 // Set the type-specific details given the DBus interface 1337 populate_record_from_dbus(&(record.body), &(sensor->second), data_len); 1338 sdrCacheMap[sensor_id] = std::move(record); 1339 } 1340 1341 const auto& record = sdrCacheMap[sensor_id]; 1342 1343 if (++sensor == ipmi::sensor::sensors.end()) 1344 { 1345 // we have reached till end of sensor, so assign the next record id 1346 // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). 1347 auto next_record_id = (frus.size()) 1348 ? frus.begin()->first + FRU_RECORD_ID_START 1349 : END_OF_RECORD; 1350 1351 get_sdr::response::set_next_record_id(next_record_id, resp); 1352 } 1353 else 1354 { 1355 get_sdr::response::set_next_record_id(sensor->first, resp); 1356 } 1357 1358 if (req->offset > sizeof(record)) 1359 { 1360 return IPMI_CC_PARM_OUT_OF_RANGE; 1361 } 1362 1363 // data_len will ultimately be the size of the record, plus 1364 // the size of the next record ID: 1365 *data_len = std::min(static_cast<size_t>(req->bytes_to_read), 1366 sizeof(record) - req->offset); 1367 1368 std::memcpy(resp->record_data, 1369 reinterpret_cast<const uint8_t*>(&record) + req->offset, 1370 *data_len); 1371 1372 // data_len should include the LSB and MSB: 1373 *data_len += 1374 sizeof(resp->next_record_id_lsb) + sizeof(resp->next_record_id_msb); 1375 1376 return ret; 1377 } 1378 1379 static bool isFromSystemChannel() 1380 { 1381 // TODO we could not figure out where the request is from based on IPMI 1382 // command handler parameters. because of it, we can not differentiate 1383 // request from SMS/SMM or IPMB channel 1384 return true; 1385 } 1386 1387 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t netfn, ipmi_cmd_t cmd, 1388 ipmi_request_t request, 1389 ipmi_response_t response, 1390 ipmi_data_len_t dataLen, ipmi_context_t context) 1391 { 1392 uint16_t generatorID; 1393 size_t count; 1394 bool assert = true; 1395 std::string sensorPath; 1396 size_t paraLen = *dataLen; 1397 PlatformEventRequest* req; 1398 *dataLen = 0; 1399 1400 if ((paraLen < selSystemEventSizeWith1Bytes) || 1401 (paraLen > selSystemEventSizeWith3Bytes)) 1402 { 1403 return IPMI_CC_REQ_DATA_LEN_INVALID; 1404 } 1405 1406 if (isFromSystemChannel()) 1407 { // first byte for SYSTEM Interface is Generator ID 1408 // +1 to get common struct 1409 req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1); 1410 // Capture the generator ID 1411 generatorID = *reinterpret_cast<uint8_t*>(request); 1412 // Platform Event usually comes from other firmware, like BIOS. 1413 // Unlike BMC sensor, it does not have BMC DBUS sensor path. 1414 sensorPath = "System"; 1415 } 1416 else 1417 { 1418 req = reinterpret_cast<PlatformEventRequest*>(request); 1419 // TODO GenratorID for IPMB is combination of RqSA and RqLUN 1420 generatorID = 0xff; 1421 sensorPath = "IPMB"; 1422 } 1423 // Content of event data field depends on sensor class. 1424 // When data0 bit[5:4] is non-zero, valid data counts is 3. 1425 // When data0 bit[7:6] is non-zero, valid data counts is 2. 1426 if (((req->data[0] & byte3EnableMask) != 0 && 1427 paraLen < selSystemEventSizeWith3Bytes) || 1428 ((req->data[0] & byte2EnableMask) != 0 && 1429 paraLen < selSystemEventSizeWith2Bytes)) 1430 { 1431 return IPMI_CC_REQ_DATA_LEN_INVALID; 1432 } 1433 1434 // Count bytes of Event Data 1435 if ((req->data[0] & byte3EnableMask) != 0) 1436 { 1437 count = 3; 1438 } 1439 else if ((req->data[0] & byte2EnableMask) != 0) 1440 { 1441 count = 2; 1442 } 1443 else 1444 { 1445 count = 1; 1446 } 1447 assert = req->eventDirectionType & directionMask ? false : true; 1448 std::vector<uint8_t> eventData(req->data, req->data + count); 1449 1450 sdbusplus::bus::bus dbus(bus); 1451 std::string service = 1452 ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath); 1453 sdbusplus::message::message writeSEL = dbus.new_method_call( 1454 service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd"); 1455 writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert, 1456 generatorID); 1457 try 1458 { 1459 dbus.call(writeSEL); 1460 } 1461 catch (const sdbusplus::exception_t& e) 1462 { 1463 phosphor::logging::log<phosphor::logging::level::ERR>(e.what()); 1464 return IPMI_CC_UNSPECIFIED_ERROR; 1465 } 1466 return IPMI_CC_OK; 1467 } 1468 1469 void register_netfn_sen_functions() 1470 { 1471 // Handlers with dbus-sdr handler implementation. 1472 // Do not register the hander if it dynamic sensors stack is used. 1473 1474 #ifndef FEATURE_DYNAMIC_SENSORS 1475 1476 #ifdef FEATURE_SENSORS_CACHE 1477 // Initialize the sensor matches 1478 initSensorMatches(); 1479 #endif 1480 1481 // <Set Sensor Reading and Event Status> 1482 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1483 ipmi::sensor_event::cmdSetSensorReadingAndEvtSts, 1484 ipmi::Privilege::Operator, ipmiSetSensorReading); 1485 // <Get Sensor Reading> 1486 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1487 ipmi::sensor_event::cmdGetSensorReading, 1488 ipmi::Privilege::User, ipmiSensorGetSensorReading); 1489 1490 // <Reserve Device SDR Repository> 1491 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1492 ipmi::sensor_event::cmdReserveDeviceSdrRepository, 1493 ipmi::Privilege::User, ipmiSensorReserveSdr); 1494 1495 // <Get Device SDR Info> 1496 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1497 ipmi::sensor_event::cmdGetDeviceSdrInfo, 1498 ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo); 1499 1500 // <Get Sensor Thresholds> 1501 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1502 ipmi::sensor_event::cmdGetSensorThreshold, 1503 ipmi::Privilege::User, ipmiSensorGetSensorThresholds); 1504 1505 // <Set Sensor Thresholds> 1506 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1507 ipmi::sensor_event::cmdSetSensorThreshold, 1508 ipmi::Privilege::User, ipmiSenSetSensorThresholds); 1509 1510 // <Get Device SDR> 1511 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, 1512 ipmi_sen_get_sdr, PRIVILEGE_USER); 1513 1514 #endif 1515 1516 // Common Handers used by both implementation. 1517 1518 // <Platform Event Message> 1519 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr, 1520 ipmicmdPlatformEvent, PRIVILEGE_OPERATOR); 1521 1522 // <Get Sensor Type> 1523 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1524 ipmi::sensor_event::cmdGetSensorType, 1525 ipmi::Privilege::User, ipmiGetSensorType); 1526 1527 return; 1528 } 1529