1 #include "config.h" 2 3 #include "sensorhandler.hpp" 4 5 #include "fruread.hpp" 6 7 #include <systemd/sd-bus.h> 8 9 #include <ipmid/api.hpp> 10 #include <ipmid/entity_map_json.hpp> 11 #include <ipmid/types.hpp> 12 #include <ipmid/utils.hpp> 13 #include <phosphor-logging/elog-errors.hpp> 14 #include <phosphor-logging/lg2.hpp> 15 #include <sdbusplus/message/types.hpp> 16 #include <xyz/openbmc_project/Common/error.hpp> 17 #include <xyz/openbmc_project/Sensor/Value/server.hpp> 18 19 #include <bitset> 20 #include <cmath> 21 #include <cstring> 22 #include <set> 23 24 static constexpr uint8_t fruInventoryDevice = 0x10; 25 static constexpr uint8_t IPMIFruInventory = 0x02; 26 static constexpr uint8_t BMCTargetAddress = 0x20; 27 28 extern int updateSensorRecordFromSSRAESC(const void*); 29 extern sd_bus* bus; 30 31 namespace ipmi 32 { 33 namespace sensor 34 { 35 extern const IdInfoMap sensors; 36 } // namespace sensor 37 } // namespace ipmi 38 39 extern const FruMap frus; 40 41 using namespace phosphor::logging; 42 using InternalFailure = 43 sdbusplus::error::xyz::openbmc_project::common::InternalFailure; 44 45 void register_netfn_sen_functions() __attribute__((constructor)); 46 47 struct sensorTypemap_t 48 { 49 uint8_t number; 50 uint8_t typecode; 51 char dbusname[32]; 52 }; 53 54 sensorTypemap_t g_SensorTypeMap[] = { 55 56 {0x01, 0x6F, "Temp"}, 57 {0x0C, 0x6F, "DIMM"}, 58 {0x0C, 0x6F, "MEMORY_BUFFER"}, 59 {0x07, 0x6F, "PROC"}, 60 {0x07, 0x6F, "CORE"}, 61 {0x07, 0x6F, "CPU"}, 62 {0x0F, 0x6F, "BootProgress"}, 63 {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor 64 // type code os 0x09 65 {0xC3, 0x6F, "BootCount"}, 66 {0x1F, 0x6F, "OperatingSystemStatus"}, 67 {0x12, 0x6F, "SYSTEM_EVENT"}, 68 {0xC7, 0x03, "SYSTEM"}, 69 {0xC7, 0x03, "MAIN_PLANAR"}, 70 {0xC2, 0x6F, "PowerCap"}, 71 {0x0b, 0xCA, "PowerSupplyRedundancy"}, 72 {0xDA, 0x03, "TurboAllowed"}, 73 {0xD8, 0xC8, "PowerSupplyDerating"}, 74 {0xFF, 0x00, ""}, 75 }; 76 77 struct sensor_data_t 78 { 79 uint8_t sennum; 80 } __attribute__((packed)); 81 82 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>; 83 SDRCacheMap sdrCacheMap __attribute__((init_priority(101))); 84 85 using SensorThresholdMap = 86 std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>; 87 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101))); 88 89 #ifdef FEATURE_SENSORS_CACHE 90 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches 91 __attribute__((init_priority(101))); 92 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches 93 __attribute__((init_priority(101))); 94 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches 95 __attribute__((init_priority(101))); 96 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch 97 __attribute__((init_priority(101))); 98 99 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101))); 100 101 // It is needed to know which objects belong to which service, so that when a 102 // service exits without interfacesRemoved signal, we could invaildate the cache 103 // that is related to the service. It uses below two variables: 104 // - idToServiceMap records which sensors are known to have a related service; 105 // - serviceToIdMap maps a service to the sensors. 106 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>; 107 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101))); 108 109 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>; 110 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101))); 111 112 static void fillSensorIdServiceMap(const std::string&, 113 const std::string& /*intf*/, uint8_t id, 114 const std::string& service) 115 { 116 if (idToServiceMap.find(id) != idToServiceMap.end()) 117 { 118 return; 119 } 120 idToServiceMap[id] = service; 121 serviceToIdMap[service].insert(id); 122 } 123 124 static void fillSensorIdServiceMap(const std::string& obj, 125 const std::string& intf, uint8_t id) 126 { 127 if (idToServiceMap.find(id) != idToServiceMap.end()) 128 { 129 return; 130 } 131 try 132 { 133 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 134 auto service = ipmi::getService(bus, intf, obj); 135 idToServiceMap[id] = service; 136 serviceToIdMap[service].insert(id); 137 } 138 catch (...) 139 { 140 // Ignore 141 } 142 } 143 144 void initSensorMatches() 145 { 146 using namespace sdbusplus::bus::match::rules; 147 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 148 for (const auto& s : ipmi::sensor::sensors) 149 { 150 sensorAddedMatches.emplace( 151 s.first, 152 std::make_unique<sdbusplus::bus::match_t>( 153 bus, interfacesAdded() + argNpath(0, s.second.sensorPath), 154 [id = s.first, obj = s.second.sensorPath, 155 intf = s.second.propertyInterfaces.begin()->first]( 156 auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); })); 157 sensorRemovedMatches.emplace( 158 s.first, 159 std::make_unique<sdbusplus::bus::match_t>( 160 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath), 161 [id = s.first](auto& /*msg*/) { 162 // Ideally this should work. 163 // But when a service is terminated or crashed, it does not 164 // emit interfacesRemoved signal. In that case it's handled 165 // by sensorsOwnerMatch 166 sensorCacheMap[id].reset(); 167 })); 168 sensorUpdatedMatches.emplace( 169 s.first, 170 std::make_unique<sdbusplus::bus::match_t>( 171 bus, 172 type::signal() + path(s.second.sensorPath) + 173 member("PropertiesChanged"s) + 174 interface("org.freedesktop.DBus.Properties"s), 175 [&s](auto& msg) { 176 fillSensorIdServiceMap( 177 s.second.sensorPath, 178 s.second.propertyInterfaces.begin()->first, s.first); 179 try 180 { 181 // This is signal callback 182 std::string interfaceName; 183 msg.read(interfaceName); 184 ipmi::PropertyMap props; 185 msg.read(props); 186 s.second.getFunc(s.first, s.second, props); 187 } 188 catch (const std::exception& e) 189 { 190 sensorCacheMap[s.first].reset(); 191 } 192 })); 193 } 194 sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>( 195 bus, nameOwnerChanged(), [](auto& msg) { 196 std::string name; 197 std::string oldOwner; 198 std::string newOwner; 199 msg.read(name, oldOwner, newOwner); 200 201 if (!name.empty() && newOwner.empty()) 202 { 203 // The service exits 204 const auto it = serviceToIdMap.find(name); 205 if (it == serviceToIdMap.end()) 206 { 207 return; 208 } 209 for (const auto& id : it->second) 210 { 211 // Invalidate cache 212 sensorCacheMap[id].reset(); 213 } 214 } 215 }); 216 } 217 #endif 218 219 // Use a lookup table to find the interface name of a specific sensor 220 // This will be used until an alternative is found. this is the first 221 // step for mapping IPMI 222 int find_openbmc_path(uint8_t num, dbus_interface_t* interface) 223 { 224 const auto& sensor_it = ipmi::sensor::sensors.find(num); 225 if (sensor_it == ipmi::sensor::sensors.end()) 226 { 227 // The sensor map does not contain the sensor requested 228 return -EINVAL; 229 } 230 231 const auto& info = sensor_it->second; 232 233 std::string serviceName{}; 234 try 235 { 236 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 237 serviceName = 238 ipmi::getService(bus, info.sensorInterface, info.sensorPath); 239 } 240 catch (const sdbusplus::exception_t&) 241 { 242 std::fprintf(stderr, "Failed to get %s busname: %s\n", 243 info.sensorPath.c_str(), serviceName.c_str()); 244 return -EINVAL; 245 } 246 247 interface->sensortype = info.sensorType; 248 strcpy(interface->bus, serviceName.c_str()); 249 strcpy(interface->path, info.sensorPath.c_str()); 250 // Take the interface name from the beginning of the DbusInterfaceMap. This 251 // works for the Value interface but may not suffice for more complex 252 // sensors. 253 // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 254 strcpy(interface->interface, 255 info.propertyInterfaces.begin()->first.c_str()); 256 interface->sensornumber = num; 257 258 return 0; 259 } 260 261 ///////////////////////////////////////////////////////////////////// 262 // 263 // Routines used by ipmi commands wanting to interact on the dbus 264 // 265 ///////////////////////////////////////////////////////////////////// 266 int set_sensor_dbus_state_s(uint8_t number, const char* method, 267 const char* value) 268 { 269 dbus_interface_t a; 270 int r; 271 sd_bus_error error = SD_BUS_ERROR_NULL; 272 sd_bus_message* m = NULL; 273 274 r = find_openbmc_path(number, &a); 275 276 if (r < 0) 277 { 278 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 279 return 0; 280 } 281 282 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 283 method); 284 if (r < 0) 285 { 286 std::fprintf(stderr, "Failed to create a method call: %s", 287 strerror(-r)); 288 goto final; 289 } 290 291 r = sd_bus_message_append(m, "v", "s", value); 292 if (r < 0) 293 { 294 std::fprintf(stderr, "Failed to create a input parameter: %s", 295 strerror(-r)); 296 goto final; 297 } 298 299 r = sd_bus_call(bus, m, 0, &error, NULL); 300 if (r < 0) 301 { 302 std::fprintf(stderr, "Failed to call the method: %s", strerror(-r)); 303 } 304 305 final: 306 sd_bus_error_free(&error); 307 m = sd_bus_message_unref(m); 308 309 return 0; 310 } 311 int set_sensor_dbus_state_y(uint8_t number, const char* method, 312 const uint8_t value) 313 { 314 dbus_interface_t a; 315 int r; 316 sd_bus_error error = SD_BUS_ERROR_NULL; 317 sd_bus_message* m = NULL; 318 319 r = find_openbmc_path(number, &a); 320 321 if (r < 0) 322 { 323 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 324 return 0; 325 } 326 327 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 328 method); 329 if (r < 0) 330 { 331 std::fprintf(stderr, "Failed to create a method call: %s", 332 strerror(-r)); 333 goto final; 334 } 335 336 r = sd_bus_message_append(m, "v", "i", value); 337 if (r < 0) 338 { 339 std::fprintf(stderr, "Failed to create a input parameter: %s", 340 strerror(-r)); 341 goto final; 342 } 343 344 r = sd_bus_call(bus, m, 0, &error, NULL); 345 if (r < 0) 346 { 347 std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); 348 } 349 350 final: 351 sd_bus_error_free(&error); 352 m = sd_bus_message_unref(m); 353 354 return 0; 355 } 356 357 uint8_t dbus_to_sensor_type(char* p) 358 { 359 sensorTypemap_t* s = g_SensorTypeMap; 360 char r = 0; 361 while (s->number != 0xFF) 362 { 363 if (!strcmp(s->dbusname, p)) 364 { 365 r = s->typecode; 366 break; 367 } 368 s++; 369 } 370 371 if (s->number == 0xFF) 372 printf("Failed to find Sensor Type %s\n", p); 373 374 return r; 375 } 376 377 uint8_t get_type_from_interface(dbus_interface_t dbus_if) 378 { 379 uint8_t type; 380 381 // This is where sensors that do not exist in dbus but do 382 // exist in the host code stop. This should indicate it 383 // is not a supported sensor 384 if (dbus_if.interface[0] == 0) 385 { 386 return 0; 387 } 388 389 // Fetch type from interface itself. 390 if (dbus_if.sensortype != 0) 391 { 392 type = dbus_if.sensortype; 393 } 394 else 395 { 396 // Non InventoryItems 397 char* p = strrchr(dbus_if.path, '/'); 398 type = dbus_to_sensor_type(p + 1); 399 } 400 401 return type; 402 } 403 404 // Replaces find_sensor 405 uint8_t find_type_for_sensor_number(uint8_t num) 406 { 407 int r; 408 dbus_interface_t dbus_if; 409 r = find_openbmc_path(num, &dbus_if); 410 if (r < 0) 411 { 412 std::fprintf(stderr, "Could not find sensor %d\n", num); 413 return 0; 414 } 415 return get_type_from_interface(dbus_if); 416 } 417 418 /** 419 * @brief implements the get sensor type command. 420 * @param - sensorNumber 421 * 422 * @return IPMI completion code plus response data on success. 423 * - sensorType 424 * - eventType 425 **/ 426 427 ipmi::RspType<uint8_t, // sensorType 428 uint8_t // eventType 429 > 430 ipmiGetSensorType(uint8_t sensorNumber) 431 { 432 const auto it = ipmi::sensor::sensors.find(sensorNumber); 433 if (it == ipmi::sensor::sensors.end()) 434 { 435 // The sensor map does not contain the sensor requested 436 return ipmi::responseSensorInvalid(); 437 } 438 439 const auto& info = it->second; 440 uint8_t sensorType = info.sensorType; 441 uint8_t eventType = info.sensorReadingType; 442 443 return ipmi::responseSuccess(sensorType, eventType); 444 } 445 446 const std::set<std::string> analogSensorInterfaces = { 447 "xyz.openbmc_project.Sensor.Value", 448 "xyz.openbmc_project.Control.FanPwm", 449 }; 450 451 bool isAnalogSensor(const std::string& interface) 452 { 453 return (analogSensorInterfaces.count(interface)); 454 } 455 456 /** 457 @brief This command is used to set sensorReading. 458 459 @param 460 - sensorNumber 461 - operation 462 - reading 463 - assertOffset0_7 464 - assertOffset8_14 465 - deassertOffset0_7 466 - deassertOffset8_14 467 - eventData1 468 - eventData2 469 - eventData3 470 471 @return completion code on success. 472 **/ 473 474 ipmi::RspType<> ipmiSetSensorReading( 475 uint8_t sensorNumber, uint8_t operation, uint8_t reading, 476 uint8_t assertOffset0_7, uint8_t assertOffset8_14, 477 uint8_t deassertOffset0_7, uint8_t deassertOffset8_14, uint8_t eventData1, 478 uint8_t eventData2, uint8_t eventData3) 479 { 480 lg2::debug("IPMI SET_SENSOR, sensorNumber: {SENSOR_NUM}", "SENSOR_NUM", 481 lg2::hex, sensorNumber); 482 483 if (sensorNumber == 0xFF) 484 { 485 return ipmi::responseInvalidFieldRequest(); 486 } 487 ipmi::sensor::SetSensorReadingReq cmdData; 488 489 cmdData.number = sensorNumber; 490 cmdData.operation = operation; 491 cmdData.reading = reading; 492 cmdData.assertOffset0_7 = assertOffset0_7; 493 cmdData.assertOffset8_14 = assertOffset8_14; 494 cmdData.deassertOffset0_7 = deassertOffset0_7; 495 cmdData.deassertOffset8_14 = deassertOffset8_14; 496 cmdData.eventData1 = eventData1; 497 cmdData.eventData2 = eventData2; 498 cmdData.eventData3 = eventData3; 499 500 // Check if the Sensor Number is present 501 const auto iter = ipmi::sensor::sensors.find(sensorNumber); 502 if (iter == ipmi::sensor::sensors.end()) 503 { 504 updateSensorRecordFromSSRAESC(&sensorNumber); 505 return ipmi::responseSuccess(); 506 } 507 508 try 509 { 510 if (ipmi::sensor::Mutability::Write != 511 (iter->second.mutability & ipmi::sensor::Mutability::Write)) 512 { 513 lg2::error("Sensor Set operation is not allowed, " 514 "sensorNumber: {SENSOR_NUM}", 515 "SENSOR_NUM", lg2::hex, sensorNumber); 516 return ipmi::responseIllegalCommand(); 517 } 518 auto ipmiRC = iter->second.updateFunc(cmdData, iter->second); 519 return ipmi::response(ipmiRC); 520 } 521 catch (const InternalFailure& e) 522 { 523 lg2::error("Set sensor failed, sensorNumber: {SENSOR_NUM}", 524 "SENSOR_NUM", lg2::hex, sensorNumber); 525 commit<InternalFailure>(); 526 return ipmi::responseUnspecifiedError(); 527 } 528 catch (const std::runtime_error& e) 529 { 530 lg2::error("runtime error: {ERROR}", "ERROR", e); 531 return ipmi::responseUnspecifiedError(); 532 } 533 } 534 535 /** @brief implements the get sensor reading command 536 * @param sensorNum - sensor number 537 * 538 * @returns IPMI completion code plus response data 539 * - senReading - sensor reading 540 * - reserved 541 * - readState - sensor reading state enabled 542 * - senScanState - sensor scan state disabled 543 * - allEventMessageState - all Event message state disabled 544 * - assertionStatesLsb - threshold levels states 545 * - assertionStatesMsb - discrete reading sensor states 546 */ 547 ipmi::RspType<uint8_t, // sensor reading 548 549 uint5_t, // reserved 550 bool, // reading state 551 bool, // 0 = sensor scanning state disabled 552 bool, // 0 = all event messages disabled 553 554 uint8_t, // threshold levels states 555 uint8_t // discrete reading sensor states 556 > 557 ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx, 558 uint8_t sensorNum) 559 { 560 if (sensorNum == 0xFF) 561 { 562 return ipmi::responseInvalidFieldRequest(); 563 } 564 565 const auto iter = ipmi::sensor::sensors.find(sensorNum); 566 if (iter == ipmi::sensor::sensors.end()) 567 { 568 return ipmi::responseSensorInvalid(); 569 } 570 if (ipmi::sensor::Mutability::Read != 571 (iter->second.mutability & ipmi::sensor::Mutability::Read)) 572 { 573 return ipmi::responseIllegalCommand(); 574 } 575 576 try 577 { 578 #ifdef FEATURE_SENSORS_CACHE 579 auto& sensorData = sensorCacheMap[sensorNum]; 580 if (!sensorData.has_value()) 581 { 582 // No cached value, try read it 583 std::string service; 584 boost::system::error_code ec; 585 const auto& sensorInfo = iter->second; 586 ec = ipmi::getService(ctx, sensorInfo.sensorInterface, 587 sensorInfo.sensorPath, service); 588 if (ec) 589 { 590 return ipmi::responseUnspecifiedError(); 591 } 592 fillSensorIdServiceMap(sensorInfo.sensorPath, 593 sensorInfo.propertyInterfaces.begin()->first, 594 iter->first, service); 595 596 ipmi::PropertyMap props; 597 ec = ipmi::getAllDbusProperties( 598 ctx, service, sensorInfo.sensorPath, 599 sensorInfo.propertyInterfaces.begin()->first, props); 600 if (ec) 601 { 602 fprintf(stderr, "Failed to get sensor %s, %d: %s\n", 603 sensorInfo.sensorPath.c_str(), ec.value(), 604 ec.message().c_str()); 605 // Intitilizing with default values 606 constexpr uint8_t senReading = 0; 607 constexpr uint5_t reserved{0}; 608 constexpr bool readState = true; 609 constexpr bool senScanState = false; 610 constexpr bool allEventMessageState = false; 611 constexpr uint8_t assertionStatesLsb = 0; 612 constexpr uint8_t assertionStatesMsb = 0; 613 614 return ipmi::responseSuccess( 615 senReading, reserved, readState, senScanState, 616 allEventMessageState, assertionStatesLsb, 617 assertionStatesMsb); 618 } 619 sensorInfo.getFunc(sensorNum, sensorInfo, props); 620 } 621 return ipmi::responseSuccess( 622 sensorData->response.reading, uint5_t(0), 623 sensorData->response.readingOrStateUnavailable, 624 sensorData->response.scanningEnabled, 625 sensorData->response.allEventMessagesEnabled, 626 sensorData->response.thresholdLevelsStates, 627 sensorData->response.discreteReadingSensorStates); 628 629 #else 630 ipmi::sensor::GetSensorResponse getResponse = 631 iter->second.getFunc(iter->second); 632 633 return ipmi::responseSuccess( 634 getResponse.reading, uint5_t(0), 635 getResponse.readingOrStateUnavailable, getResponse.scanningEnabled, 636 getResponse.allEventMessagesEnabled, 637 getResponse.thresholdLevelsStates, 638 getResponse.discreteReadingSensorStates); 639 #endif 640 } 641 #ifdef UPDATE_FUNCTIONAL_ON_FAIL 642 catch (const SensorFunctionalError& e) 643 { 644 return ipmi::responseResponseError(); 645 } 646 #endif 647 catch (const std::exception& e) 648 { 649 // Intitilizing with default values 650 constexpr uint8_t senReading = 0; 651 constexpr uint5_t reserved{0}; 652 constexpr bool readState = true; 653 constexpr bool senScanState = false; 654 constexpr bool allEventMessageState = false; 655 constexpr uint8_t assertionStatesLsb = 0; 656 constexpr uint8_t assertionStatesMsb = 0; 657 658 return ipmi::responseSuccess(senReading, reserved, readState, 659 senScanState, allEventMessageState, 660 assertionStatesLsb, assertionStatesMsb); 661 } 662 } 663 664 void updateWarningThreshold(uint8_t lowerValue, uint8_t upperValue, 665 get_sdr::GetSensorThresholdsResponse& resp) 666 { 667 resp.lowerNonCritical = lowerValue; 668 resp.upperNonCritical = upperValue; 669 if (lowerValue) 670 { 671 resp.validMask |= static_cast<uint8_t>( 672 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); 673 } 674 675 if (upperValue) 676 { 677 resp.validMask |= static_cast<uint8_t>( 678 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); 679 } 680 } 681 682 void updateCriticalThreshold(uint8_t lowerValue, uint8_t upperValue, 683 get_sdr::GetSensorThresholdsResponse& resp) 684 { 685 resp.lowerCritical = lowerValue; 686 resp.upperCritical = upperValue; 687 if (lowerValue) 688 { 689 resp.validMask |= static_cast<uint8_t>( 690 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); 691 } 692 693 if (upperValue) 694 { 695 resp.validMask |= static_cast<uint8_t>( 696 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); 697 } 698 } 699 700 void updateNonRecoverableThreshold(uint8_t lowerValue, uint8_t upperValue, 701 get_sdr::GetSensorThresholdsResponse& resp) 702 { 703 resp.lowerNonRecoverable = lowerValue; 704 resp.upperNonRecoverable = upperValue; 705 if (lowerValue) 706 { 707 resp.validMask |= static_cast<uint8_t>( 708 ipmi::sensor::ThresholdMask::NON_RECOVERABLE_LOW_MASK); 709 } 710 711 if (upperValue) 712 { 713 resp.validMask |= static_cast<uint8_t>( 714 ipmi::sensor::ThresholdMask::NON_RECOVERABLE_HIGH_MASK); 715 } 716 } 717 718 get_sdr::GetSensorThresholdsResponse 719 getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 720 { 721 get_sdr::GetSensorThresholdsResponse resp{}; 722 const auto iter = ipmi::sensor::sensors.find(sensorNum); 723 const auto info = iter->second; 724 725 std::string service; 726 boost::system::error_code ec; 727 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 728 if (ec) 729 { 730 return resp; 731 } 732 733 int32_t minClamp; 734 int32_t maxClamp; 735 int32_t rawData; 736 constexpr uint8_t sensorUnitsSignedBits = 2 << 6; 737 constexpr uint8_t signedDataFormat = 0x80; 738 if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat) 739 { 740 minClamp = std::numeric_limits<int8_t>::lowest(); 741 maxClamp = std::numeric_limits<int8_t>::max(); 742 } 743 else 744 { 745 minClamp = std::numeric_limits<uint8_t>::lowest(); 746 maxClamp = std::numeric_limits<uint8_t>::max(); 747 } 748 749 static std::vector<std::string> thresholdNames{"Warning", "Critical", 750 "NonRecoverable"}; 751 752 for (const auto& thresholdName : thresholdNames) 753 { 754 std::string thresholdInterface = 755 "xyz.openbmc_project.Sensor.Threshold." + thresholdName; 756 std::string thresholdLow = thresholdName + "Low"; 757 std::string thresholdHigh = thresholdName + "High"; 758 759 ipmi::PropertyMap thresholds; 760 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 761 thresholdInterface, thresholds); 762 if (ec) 763 { 764 continue; 765 } 766 767 double lowValue = ipmi::mappedVariant<double>( 768 thresholds, thresholdLow, std::numeric_limits<double>::quiet_NaN()); 769 double highValue = ipmi::mappedVariant<double>( 770 thresholds, thresholdHigh, 771 std::numeric_limits<double>::quiet_NaN()); 772 773 uint8_t lowerValue = 0; 774 uint8_t upperValue = 0; 775 if (std::isfinite(lowValue)) 776 { 777 lowValue *= std::pow(10, info.scale - info.exponentR); 778 rawData = round((lowValue - info.scaledOffset) / info.coefficientM); 779 lowerValue = 780 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 781 } 782 783 if (std::isfinite(highValue)) 784 { 785 highValue *= std::pow(10, info.scale - info.exponentR); 786 rawData = 787 round((highValue - info.scaledOffset) / info.coefficientM); 788 upperValue = 789 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 790 } 791 792 if (thresholdName == "Warning") 793 { 794 updateWarningThreshold(lowerValue, upperValue, resp); 795 } 796 else if (thresholdName == "Critical") 797 { 798 updateCriticalThreshold(lowerValue, upperValue, resp); 799 } 800 else if (thresholdName == "NonRecoverable") 801 { 802 updateNonRecoverableThreshold(lowerValue, upperValue, resp); 803 } 804 } 805 806 return resp; 807 } 808 809 /** @brief implements the get sensor thresholds command 810 * @param ctx - IPMI context pointer 811 * @param sensorNum - sensor number 812 * 813 * @returns IPMI completion code plus response data 814 * - validMask - threshold mask 815 * - lower non-critical threshold - IPMI messaging state 816 * - lower critical threshold - link authentication state 817 * - lower non-recoverable threshold - callback state 818 * - upper non-critical threshold 819 * - upper critical 820 * - upper non-recoverable 821 */ 822 ipmi::RspType<uint8_t, // validMask 823 uint8_t, // lowerNonCritical 824 uint8_t, // lowerCritical 825 uint8_t, // lowerNonRecoverable 826 uint8_t, // upperNonCritical 827 uint8_t, // upperCritical 828 uint8_t // upperNonRecoverable 829 > 830 ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 831 { 832 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 833 834 const auto iter = ipmi::sensor::sensors.find(sensorNum); 835 if (iter == ipmi::sensor::sensors.end()) 836 { 837 return ipmi::responseSensorInvalid(); 838 } 839 840 const auto info = iter->second; 841 842 // Proceed only if the sensor value interface is implemented. 843 if (info.propertyInterfaces.find(valueInterface) == 844 info.propertyInterfaces.end()) 845 { 846 // return with valid mask as 0 847 return ipmi::responseSuccess(); 848 } 849 850 auto it = sensorThresholdMap.find(sensorNum); 851 if (it == sensorThresholdMap.end()) 852 { 853 auto resp = getSensorThresholds(ctx, sensorNum); 854 if (resp.validMask == 0) 855 { 856 return ipmi::responseSensorInvalid(); 857 } 858 sensorThresholdMap[sensorNum] = std::move(resp); 859 } 860 861 const auto& resp = sensorThresholdMap[sensorNum]; 862 863 return ipmi::responseSuccess( 864 resp.validMask, resp.lowerNonCritical, resp.lowerCritical, 865 resp.lowerNonRecoverable, resp.upperNonCritical, resp.upperCritical, 866 resp.upperNonRecoverable); 867 } 868 869 /** @brief implements the Set Sensor threshold command 870 * @param sensorNumber - sensor number 871 * @param lowerNonCriticalThreshMask 872 * @param lowerCriticalThreshMask 873 * @param lowerNonRecovThreshMask 874 * @param upperNonCriticalThreshMask 875 * @param upperCriticalThreshMask 876 * @param upperNonRecovThreshMask 877 * @param reserved 878 * @param lowerNonCritical - lower non-critical threshold 879 * @param lowerCritical - Lower critical threshold 880 * @param lowerNonRecoverable - Lower non recovarable threshold 881 * @param upperNonCritical - Upper non-critical threshold 882 * @param upperCritical - Upper critical 883 * @param upperNonRecoverable - Upper Non-recoverable 884 * 885 * @returns IPMI completion code 886 */ 887 ipmi::RspType<> ipmiSenSetSensorThresholds( 888 ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask, 889 bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask, 890 bool upperNonCriticalThreshMask, bool upperCriticalThreshMask, 891 bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical, 892 uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical, 893 uint8_t upperCritical, uint8_t) 894 { 895 if (reserved) 896 { 897 return ipmi::responseInvalidFieldRequest(); 898 } 899 900 // lower nc and upper nc not suppported on any sensor 901 if (lowerNonRecovThreshMask || upperNonRecovThreshMask) 902 { 903 return ipmi::responseInvalidFieldRequest(); 904 } 905 906 // if none of the threshold mask are set, nothing to do 907 if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask | 908 lowerNonRecovThreshMask | upperNonCriticalThreshMask | 909 upperCriticalThreshMask | upperNonRecovThreshMask)) 910 { 911 return ipmi::responseSuccess(); 912 } 913 914 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 915 916 const auto iter = ipmi::sensor::sensors.find(sensorNum); 917 if (iter == ipmi::sensor::sensors.end()) 918 { 919 return ipmi::responseSensorInvalid(); 920 } 921 922 const auto& info = iter->second; 923 924 // Proceed only if the sensor value interface is implemented. 925 if (info.propertyInterfaces.find(valueInterface) == 926 info.propertyInterfaces.end()) 927 { 928 // return with valid mask as 0 929 return ipmi::responseSuccess(); 930 } 931 932 constexpr auto warningThreshIntf = 933 "xyz.openbmc_project.Sensor.Threshold.Warning"; 934 constexpr auto criticalThreshIntf = 935 "xyz.openbmc_project.Sensor.Threshold.Critical"; 936 937 std::string service; 938 boost::system::error_code ec; 939 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 940 if (ec) 941 { 942 return ipmi::responseResponseError(); 943 } 944 // store a vector of property name, value to set, and interface 945 std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet; 946 947 // define the indexes of the tuple 948 constexpr uint8_t propertyName = 0; 949 constexpr uint8_t thresholdValue = 1; 950 constexpr uint8_t interface = 2; 951 // verifiy all needed fields are present 952 if (lowerCriticalThreshMask || upperCriticalThreshMask) 953 { 954 ipmi::PropertyMap findThreshold; 955 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 956 criticalThreshIntf, findThreshold); 957 958 if (!ec) 959 { 960 if (lowerCriticalThreshMask) 961 { 962 auto findLower = findThreshold.find("CriticalLow"); 963 if (findLower == findThreshold.end()) 964 { 965 return ipmi::responseInvalidFieldRequest(); 966 } 967 thresholdsToSet.emplace_back("CriticalLow", lowerCritical, 968 criticalThreshIntf); 969 } 970 if (upperCriticalThreshMask) 971 { 972 auto findUpper = findThreshold.find("CriticalHigh"); 973 if (findUpper == findThreshold.end()) 974 { 975 return ipmi::responseInvalidFieldRequest(); 976 } 977 thresholdsToSet.emplace_back("CriticalHigh", upperCritical, 978 criticalThreshIntf); 979 } 980 } 981 } 982 if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask) 983 { 984 ipmi::PropertyMap findThreshold; 985 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 986 warningThreshIntf, findThreshold); 987 988 if (!ec) 989 { 990 if (lowerNonCriticalThreshMask) 991 { 992 auto findLower = findThreshold.find("WarningLow"); 993 if (findLower == findThreshold.end()) 994 { 995 return ipmi::responseInvalidFieldRequest(); 996 } 997 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical, 998 warningThreshIntf); 999 } 1000 if (upperNonCriticalThreshMask) 1001 { 1002 auto findUpper = findThreshold.find("WarningHigh"); 1003 if (findUpper == findThreshold.end()) 1004 { 1005 return ipmi::responseInvalidFieldRequest(); 1006 } 1007 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical, 1008 warningThreshIntf); 1009 } 1010 } 1011 } 1012 for (const auto& property : thresholdsToSet) 1013 { 1014 // from section 36.3 in the IPMI Spec, assume all linear 1015 double valueToSet = 1016 ((info.coefficientM * std::get<thresholdValue>(property)) + 1017 (info.scaledOffset * std::pow(10.0, info.scale))) * 1018 std::pow(10.0, info.exponentR); 1019 ipmi::setDbusProperty( 1020 ctx, service, info.sensorPath, std::get<interface>(property), 1021 std::get<propertyName>(property), ipmi::Value(valueToSet)); 1022 } 1023 1024 // Invalidate the cache 1025 sensorThresholdMap.erase(sensorNum); 1026 return ipmi::responseSuccess(); 1027 } 1028 1029 /** @brief implements the get SDR Info command 1030 * @param count - Operation 1031 * 1032 * @returns IPMI completion code plus response data 1033 * - sdrCount - sensor/SDR count 1034 * - lunsAndDynamicPopulation - static/Dynamic sensor population flag 1035 */ 1036 ipmi::RspType<uint8_t, // respcount 1037 uint8_t // dynamic population flags 1038 > 1039 ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count) 1040 { 1041 uint8_t sdrCount; 1042 // multiple LUNs not supported. 1043 constexpr uint8_t lunsAndDynamicPopulation = 1; 1044 constexpr uint8_t getSdrCount = 0x01; 1045 constexpr uint8_t getSensorCount = 0x00; 1046 1047 if (count.value_or(0) == getSdrCount) 1048 { 1049 // Get SDR count. This returns the total number of SDRs in the device. 1050 const auto& entityRecords = 1051 ipmi::sensor::EntityInfoMapContainer::getContainer() 1052 ->getIpmiEntityRecords(); 1053 sdrCount = ipmi::sensor::sensors.size() + frus.size() + 1054 entityRecords.size(); 1055 } 1056 else if (count.value_or(0) == getSensorCount) 1057 { 1058 // Get Sensor count. This returns the number of sensors 1059 sdrCount = ipmi::sensor::sensors.size(); 1060 } 1061 else 1062 { 1063 return ipmi::responseInvalidCommandOnLun(); 1064 } 1065 1066 return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation); 1067 } 1068 1069 /** @brief implements the reserve SDR command 1070 * @returns IPMI completion code plus response data 1071 * - reservationID - reservation ID 1072 */ 1073 ipmi::RspType<uint16_t> ipmiSensorReserveSdr() 1074 { 1075 // A constant reservation ID is okay until we implement add/remove SDR. 1076 constexpr uint16_t reservationID = 1; 1077 1078 return ipmi::responseSuccess(reservationID); 1079 } 1080 1081 void setUnitFieldsForObject(const ipmi::sensor::Info* info, 1082 get_sdr::SensorDataFullRecordBody* body) 1083 { 1084 namespace server = sdbusplus::server::xyz::openbmc_project::sensor; 1085 try 1086 { 1087 auto unit = server::Value::convertUnitFromString(info->unit); 1088 // Unit strings defined in 1089 // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml 1090 switch (unit) 1091 { 1092 case server::Value::Unit::DegreesC: 1093 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; 1094 break; 1095 case server::Value::Unit::RPMS: 1096 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM; 1097 break; 1098 case server::Value::Unit::Volts: 1099 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; 1100 break; 1101 case server::Value::Unit::Meters: 1102 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; 1103 break; 1104 case server::Value::Unit::Amperes: 1105 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; 1106 break; 1107 case server::Value::Unit::Joules: 1108 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; 1109 break; 1110 case server::Value::Unit::Watts: 1111 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; 1112 break; 1113 default: 1114 // Cannot be hit. 1115 std::fprintf(stderr, "Unknown value unit type: = %s\n", 1116 info->unit.c_str()); 1117 } 1118 } 1119 catch (const sdbusplus::exception::InvalidEnumString& e) 1120 { 1121 lg2::warning("Warning: no unit provided for sensor!"); 1122 } 1123 } 1124 1125 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, 1126 const ipmi::sensor::Info* info, 1127 ipmi_data_len_t) 1128 { 1129 /* Functional sensor case */ 1130 if (isAnalogSensor(info->propertyInterfaces.begin()->first)) 1131 { 1132 body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no 1133 // rate, no modifier, not a % 1134 /* Unit info */ 1135 setUnitFieldsForObject(info, body); 1136 1137 get_sdr::body::set_b(info->coefficientB, body); 1138 get_sdr::body::set_m(info->coefficientM, body); 1139 get_sdr::body::set_b_exp(info->exponentB, body); 1140 get_sdr::body::set_r_exp(info->exponentR, body); 1141 } 1142 1143 /* ID string */ 1144 auto id_string = info->sensorName; 1145 1146 if (id_string.empty()) 1147 { 1148 id_string = info->sensorNameFunc(*info); 1149 } 1150 1151 if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) 1152 { 1153 get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); 1154 } 1155 else 1156 { 1157 get_sdr::body::set_id_strlen(id_string.length(), body); 1158 } 1159 get_sdr::body::set_id_type(3, body); // "8-bit ASCII + Latin 1" 1160 strncpy(body->id_string, id_string.c_str(), 1161 get_sdr::body::get_id_strlen(body)); 1162 1163 return IPMI_CC_OK; 1164 }; 1165 1166 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, 1167 ipmi_data_len_t data_len) 1168 { 1169 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1170 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1171 get_sdr::SensorDataFruRecord record{}; 1172 auto dataLength = 0; 1173 1174 auto fru = frus.begin(); 1175 uint8_t fruID{}; 1176 auto recordID = get_sdr::request::get_record_id(req); 1177 1178 fruID = recordID - FRU_RECORD_ID_START; 1179 fru = frus.find(fruID); 1180 if (fru == frus.end()) 1181 { 1182 return IPMI_CC_SENSOR_INVALID; 1183 } 1184 1185 /* Header */ 1186 get_sdr::header::set_record_id(recordID, &(record.header)); 1187 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1188 record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; 1189 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1190 1191 /* Key */ 1192 record.key.fruID = fruID; 1193 record.key.accessLun |= IPMI_LOGICAL_FRU; 1194 record.key.deviceAddress = BMCTargetAddress; 1195 1196 /* Body */ 1197 record.body.entityID = fru->second[0].entityID; 1198 record.body.entityInstance = fru->second[0].entityInstance; 1199 record.body.deviceType = fruInventoryDevice; 1200 record.body.deviceTypeModifier = IPMIFruInventory; 1201 1202 /* Device ID string */ 1203 auto deviceID = 1204 fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, 1205 fru->second[0].path.length()); 1206 1207 if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) 1208 { 1209 get_sdr::body::set_device_id_strlen( 1210 get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); 1211 } 1212 else 1213 { 1214 get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); 1215 } 1216 1217 strncpy(record.body.deviceID, deviceID.c_str(), 1218 get_sdr::body::get_device_id_strlen(&(record.body))); 1219 1220 if (++fru == frus.end()) 1221 { 1222 // we have reached till end of fru, so assign the next record id to 1223 // 512(Max fru ID = 511) + Entity Record ID(may start with 0). 1224 const auto& entityRecords = 1225 ipmi::sensor::EntityInfoMapContainer::getContainer() 1226 ->getIpmiEntityRecords(); 1227 auto next_record_id = 1228 (entityRecords.size()) 1229 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START 1230 : END_OF_RECORD; 1231 get_sdr::response::set_next_record_id(next_record_id, resp); 1232 } 1233 else 1234 { 1235 get_sdr::response::set_next_record_id( 1236 (FRU_RECORD_ID_START + fru->first), resp); 1237 } 1238 1239 // Check for invalid offset size 1240 if (req->offset > sizeof(record)) 1241 { 1242 return IPMI_CC_PARM_OUT_OF_RANGE; 1243 } 1244 1245 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1246 sizeof(record) - req->offset); 1247 1248 std::memcpy(resp->record_data, 1249 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1250 1251 *data_len = dataLength; 1252 *data_len += 2; // additional 2 bytes for next record ID 1253 1254 return IPMI_CC_OK; 1255 } 1256 1257 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response, 1258 ipmi_data_len_t data_len) 1259 { 1260 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1261 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1262 get_sdr::SensorDataEntityRecord record{}; 1263 auto dataLength = 0; 1264 1265 const auto& entityRecords = 1266 ipmi::sensor::EntityInfoMapContainer::getContainer() 1267 ->getIpmiEntityRecords(); 1268 auto entity = entityRecords.begin(); 1269 uint8_t entityRecordID; 1270 auto recordID = get_sdr::request::get_record_id(req); 1271 1272 entityRecordID = recordID - ENTITY_RECORD_ID_START; 1273 entity = entityRecords.find(entityRecordID); 1274 if (entity == entityRecords.end()) 1275 { 1276 return IPMI_CC_SENSOR_INVALID; 1277 } 1278 1279 /* Header */ 1280 get_sdr::header::set_record_id(recordID, &(record.header)); 1281 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1282 record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD; 1283 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1284 1285 /* Key */ 1286 record.key.containerEntityId = entity->second.containerEntityId; 1287 record.key.containerEntityInstance = entity->second.containerEntityInstance; 1288 get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked, 1289 &(record.key)); 1290 record.key.entityId1 = entity->second.containedEntities[0].first; 1291 record.key.entityInstance1 = entity->second.containedEntities[0].second; 1292 1293 /* Body */ 1294 record.body.entityId2 = entity->second.containedEntities[1].first; 1295 record.body.entityInstance2 = entity->second.containedEntities[1].second; 1296 record.body.entityId3 = entity->second.containedEntities[2].first; 1297 record.body.entityInstance3 = entity->second.containedEntities[2].second; 1298 record.body.entityId4 = entity->second.containedEntities[3].first; 1299 record.body.entityInstance4 = entity->second.containedEntities[3].second; 1300 1301 if (++entity == entityRecords.end()) 1302 { 1303 get_sdr::response::set_next_record_id(END_OF_RECORD, 1304 resp); // last record 1305 } 1306 else 1307 { 1308 get_sdr::response::set_next_record_id( 1309 (ENTITY_RECORD_ID_START + entity->first), resp); 1310 } 1311 1312 // Check for invalid offset size 1313 if (req->offset > sizeof(record)) 1314 { 1315 return IPMI_CC_PARM_OUT_OF_RANGE; 1316 } 1317 1318 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1319 sizeof(record) - req->offset); 1320 1321 std::memcpy(resp->record_data, 1322 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1323 1324 *data_len = dataLength; 1325 *data_len += 2; // additional 2 bytes for next record ID 1326 1327 return IPMI_CC_OK; 1328 } 1329 1330 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, 1331 ipmi_response_t response, ipmi_data_len_t data_len, 1332 ipmi_context_t) 1333 { 1334 ipmi_ret_t ret = IPMI_CC_OK; 1335 get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; 1336 get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; 1337 1338 // Note: we use an iterator so we can provide the next ID at the end of 1339 // the call. 1340 auto sensor = ipmi::sensor::sensors.begin(); 1341 auto recordID = get_sdr::request::get_record_id(req); 1342 1343 // At the beginning of a scan, the host side will send us id=0. 1344 if (recordID != 0) 1345 { 1346 // recordID 0 to 255 means it is a FULL record. 1347 // recordID 256 to 511 means it is a FRU record. 1348 // recordID greater then 511 means it is a Entity Association 1349 // record. Currently we are supporting three record types: FULL 1350 // record, FRU record and Enttiy Association record. 1351 if (recordID >= ENTITY_RECORD_ID_START) 1352 { 1353 return ipmi_entity_get_sdr(request, response, data_len); 1354 } 1355 else if (recordID >= FRU_RECORD_ID_START && 1356 recordID < ENTITY_RECORD_ID_START) 1357 { 1358 return ipmi_fru_get_sdr(request, response, data_len); 1359 } 1360 else 1361 { 1362 sensor = ipmi::sensor::sensors.find(recordID); 1363 if (sensor == ipmi::sensor::sensors.end()) 1364 { 1365 return IPMI_CC_SENSOR_INVALID; 1366 } 1367 } 1368 } 1369 1370 uint8_t sensor_id = sensor->first; 1371 1372 auto it = sdrCacheMap.find(sensor_id); 1373 if (it == sdrCacheMap.end()) 1374 { 1375 /* Header */ 1376 get_sdr::SensorDataFullRecord record = {}; 1377 get_sdr::header::set_record_id(sensor_id, &(record.header)); 1378 record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 1379 record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; 1380 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1381 1382 /* Key */ 1383 get_sdr::key::set_owner_id_bmc(&(record.key)); 1384 record.key.sensor_number = sensor_id; 1385 1386 /* Body */ 1387 record.body.entity_id = sensor->second.entityType; 1388 record.body.sensor_type = sensor->second.sensorType; 1389 record.body.event_reading_type = sensor->second.sensorReadingType; 1390 record.body.entity_instance = sensor->second.instance; 1391 if (ipmi::sensor::Mutability::Write == 1392 (sensor->second.mutability & ipmi::sensor::Mutability::Write)) 1393 { 1394 get_sdr::body::init_settable_state(true, &(record.body)); 1395 } 1396 1397 // Set the type-specific details given the DBus interface 1398 populate_record_from_dbus(&(record.body), &(sensor->second), data_len); 1399 sdrCacheMap[sensor_id] = std::move(record); 1400 } 1401 1402 const auto& record = sdrCacheMap[sensor_id]; 1403 1404 if (++sensor == ipmi::sensor::sensors.end()) 1405 { 1406 // we have reached till end of sensor, so assign the next record id 1407 // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). 1408 auto next_record_id = (frus.size()) 1409 ? frus.begin()->first + FRU_RECORD_ID_START 1410 : END_OF_RECORD; 1411 1412 get_sdr::response::set_next_record_id(next_record_id, resp); 1413 } 1414 else 1415 { 1416 get_sdr::response::set_next_record_id(sensor->first, resp); 1417 } 1418 1419 if (req->offset > sizeof(record)) 1420 { 1421 return IPMI_CC_PARM_OUT_OF_RANGE; 1422 } 1423 1424 // data_len will ultimately be the size of the record, plus 1425 // the size of the next record ID: 1426 *data_len = std::min(static_cast<size_t>(req->bytes_to_read), 1427 sizeof(record) - req->offset); 1428 1429 std::memcpy(resp->record_data, 1430 reinterpret_cast<const uint8_t*>(&record) + req->offset, 1431 *data_len); 1432 1433 // data_len should include the LSB and MSB: 1434 *data_len += sizeof(resp->next_record_id_lsb) + 1435 sizeof(resp->next_record_id_msb); 1436 1437 return ret; 1438 } 1439 1440 static bool isFromSystemChannel() 1441 { 1442 // TODO we could not figure out where the request is from based on IPMI 1443 // command handler parameters. because of it, we can not differentiate 1444 // request from SMS/SMM or IPMB channel 1445 return true; 1446 } 1447 1448 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t, 1449 ipmi_request_t request, ipmi_response_t, 1450 ipmi_data_len_t dataLen, ipmi_context_t) 1451 { 1452 uint16_t generatorID; 1453 size_t count; 1454 bool assert = true; 1455 std::string sensorPath; 1456 size_t paraLen = *dataLen; 1457 PlatformEventRequest* req; 1458 *dataLen = 0; 1459 1460 if ((paraLen < selSystemEventSizeWith1Bytes) || 1461 (paraLen > selSystemEventSizeWith3Bytes)) 1462 { 1463 return IPMI_CC_REQ_DATA_LEN_INVALID; 1464 } 1465 1466 if (isFromSystemChannel()) 1467 { // first byte for SYSTEM Interface is Generator ID 1468 // +1 to get common struct 1469 req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1); 1470 // Capture the generator ID 1471 generatorID = *reinterpret_cast<uint8_t*>(request); 1472 // Platform Event usually comes from other firmware, like BIOS. 1473 // Unlike BMC sensor, it does not have BMC DBUS sensor path. 1474 sensorPath = "System"; 1475 } 1476 else 1477 { 1478 req = reinterpret_cast<PlatformEventRequest*>(request); 1479 // TODO GenratorID for IPMB is combination of RqSA and RqLUN 1480 generatorID = 0xff; 1481 sensorPath = "IPMB"; 1482 } 1483 // Content of event data field depends on sensor class. 1484 // When data0 bit[5:4] is non-zero, valid data counts is 3. 1485 // When data0 bit[7:6] is non-zero, valid data counts is 2. 1486 if (((req->data[0] & byte3EnableMask) != 0 && 1487 paraLen < selSystemEventSizeWith3Bytes) || 1488 ((req->data[0] & byte2EnableMask) != 0 && 1489 paraLen < selSystemEventSizeWith2Bytes)) 1490 { 1491 return IPMI_CC_REQ_DATA_LEN_INVALID; 1492 } 1493 1494 // Count bytes of Event Data 1495 if ((req->data[0] & byte3EnableMask) != 0) 1496 { 1497 count = 3; 1498 } 1499 else if ((req->data[0] & byte2EnableMask) != 0) 1500 { 1501 count = 2; 1502 } 1503 else 1504 { 1505 count = 1; 1506 } 1507 assert = req->eventDirectionType & directionMask ? false : true; 1508 std::vector<uint8_t> eventData(req->data, req->data + count); 1509 1510 sdbusplus::bus_t dbus(bus); 1511 std::string service = 1512 ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath); 1513 sdbusplus::message_t writeSEL = dbus.new_method_call( 1514 service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd"); 1515 writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert, 1516 generatorID); 1517 try 1518 { 1519 dbus.call(writeSEL); 1520 } 1521 catch (const sdbusplus::exception_t& e) 1522 { 1523 lg2::error("exception message: {ERROR}", "ERROR", e); 1524 return IPMI_CC_UNSPECIFIED_ERROR; 1525 } 1526 return IPMI_CC_OK; 1527 } 1528 1529 void register_netfn_sen_functions() 1530 { 1531 // Handlers with dbus-sdr handler implementation. 1532 // Do not register the hander if it dynamic sensors stack is used. 1533 1534 #ifndef FEATURE_DYNAMIC_SENSORS 1535 1536 #ifdef FEATURE_SENSORS_CACHE 1537 // Initialize the sensor matches 1538 initSensorMatches(); 1539 #endif 1540 1541 // <Set Sensor Reading and Event Status> 1542 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1543 ipmi::sensor_event::cmdSetSensorReadingAndEvtSts, 1544 ipmi::Privilege::Operator, ipmiSetSensorReading); 1545 // <Get Sensor Reading> 1546 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1547 ipmi::sensor_event::cmdGetSensorReading, 1548 ipmi::Privilege::User, ipmiSensorGetSensorReading); 1549 1550 // <Reserve Device SDR Repository> 1551 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1552 ipmi::sensor_event::cmdReserveDeviceSdrRepository, 1553 ipmi::Privilege::User, ipmiSensorReserveSdr); 1554 1555 // <Get Device SDR Info> 1556 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1557 ipmi::sensor_event::cmdGetDeviceSdrInfo, 1558 ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo); 1559 1560 // <Get Sensor Thresholds> 1561 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1562 ipmi::sensor_event::cmdGetSensorThreshold, 1563 ipmi::Privilege::User, ipmiSensorGetSensorThresholds); 1564 1565 // <Set Sensor Thresholds> 1566 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1567 ipmi::sensor_event::cmdSetSensorThreshold, 1568 ipmi::Privilege::User, ipmiSenSetSensorThresholds); 1569 1570 // <Get Device SDR> 1571 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, 1572 ipmi_sen_get_sdr, PRIVILEGE_USER); 1573 1574 #endif 1575 1576 // Common Handers used by both implementation. 1577 1578 // <Platform Event Message> 1579 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr, 1580 ipmicmdPlatformEvent, PRIVILEGE_OPERATOR); 1581 1582 // <Get Sensor Type> 1583 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1584 ipmi::sensor_event::cmdGetSensorType, 1585 ipmi::Privilege::User, ipmiGetSensorType); 1586 1587 return; 1588 } 1589