1 #include "config.h"
2 
3 #include "sensorhandler.hpp"
4 
5 #include "entity_map_json.hpp"
6 #include "fruread.hpp"
7 
8 #include <mapper.h>
9 #include <systemd/sd-bus.h>
10 
11 #include <bitset>
12 #include <cmath>
13 #include <cstring>
14 #include <ipmid/api.hpp>
15 #include <ipmid/types.hpp>
16 #include <ipmid/utils.hpp>
17 #include <phosphor-logging/elog-errors.hpp>
18 #include <phosphor-logging/log.hpp>
19 #include <sdbusplus/message/types.hpp>
20 #include <set>
21 #include <xyz/openbmc_project/Common/error.hpp>
22 #include <xyz/openbmc_project/Sensor/Value/server.hpp>
23 
24 static constexpr uint8_t fruInventoryDevice = 0x10;
25 static constexpr uint8_t IPMIFruInventory = 0x02;
26 static constexpr uint8_t BMCSlaveAddress = 0x20;
27 
28 extern int updateSensorRecordFromSSRAESC(const void*);
29 extern sd_bus* bus;
30 
31 namespace ipmi
32 {
33 namespace sensor
34 {
35 extern const IdInfoMap sensors;
36 } // namespace sensor
37 } // namespace ipmi
38 
39 extern const FruMap frus;
40 
41 using namespace phosphor::logging;
42 using InternalFailure =
43     sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure;
44 
45 void register_netfn_sen_functions() __attribute__((constructor));
46 
47 struct sensorTypemap_t
48 {
49     uint8_t number;
50     uint8_t typecode;
51     char dbusname[32];
52 };
53 
54 sensorTypemap_t g_SensorTypeMap[] = {
55 
56     {0x01, 0x6F, "Temp"},
57     {0x0C, 0x6F, "DIMM"},
58     {0x0C, 0x6F, "MEMORY_BUFFER"},
59     {0x07, 0x6F, "PROC"},
60     {0x07, 0x6F, "CORE"},
61     {0x07, 0x6F, "CPU"},
62     {0x0F, 0x6F, "BootProgress"},
63     {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor
64                                // type code os 0x09
65     {0xC3, 0x6F, "BootCount"},
66     {0x1F, 0x6F, "OperatingSystemStatus"},
67     {0x12, 0x6F, "SYSTEM_EVENT"},
68     {0xC7, 0x03, "SYSTEM"},
69     {0xC7, 0x03, "MAIN_PLANAR"},
70     {0xC2, 0x6F, "PowerCap"},
71     {0x0b, 0xCA, "PowerSupplyRedundancy"},
72     {0xDA, 0x03, "TurboAllowed"},
73     {0xD8, 0xC8, "PowerSupplyDerating"},
74     {0xFF, 0x00, ""},
75 };
76 
77 struct sensor_data_t
78 {
79     uint8_t sennum;
80 } __attribute__((packed));
81 
82 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>;
83 SDRCacheMap sdrCacheMap __attribute__((init_priority(101)));
84 
85 using SensorThresholdMap =
86     std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>;
87 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101)));
88 
89 #ifdef FEATURE_SENSORS_CACHE
90 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches
91     __attribute__((init_priority(101)));
92 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches
93     __attribute__((init_priority(101)));
94 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches
95     __attribute__((init_priority(101)));
96 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch
97     __attribute__((init_priority(101)));
98 
99 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101)));
100 
101 // It is needed to know which objects belong to which service, so that when a
102 // service exits without interfacesRemoved signal, we could invaildate the cache
103 // that is related to the service. It uses below two variables:
104 // - idToServiceMap records which sensors are known to have a related service;
105 // - serviceToIdMap maps a service to the sensors.
106 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>;
107 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101)));
108 
109 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>;
110 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101)));
111 
112 static void fillSensorIdServiceMap(const std::string&,
113                                    const std::string& /*intf*/, uint8_t id,
114                                    const std::string& service)
115 {
116     if (idToServiceMap.find(id) != idToServiceMap.end())
117     {
118         return;
119     }
120     idToServiceMap[id] = service;
121     serviceToIdMap[service].insert(id);
122 }
123 
124 static void fillSensorIdServiceMap(const std::string& obj,
125                                    const std::string& intf, uint8_t id)
126 {
127     if (idToServiceMap.find(id) != idToServiceMap.end())
128     {
129         return;
130     }
131     try
132     {
133         sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
134         auto service = ipmi::getService(bus, intf, obj);
135         idToServiceMap[id] = service;
136         serviceToIdMap[service].insert(id);
137     }
138     catch (...)
139     {
140         // Ignore
141     }
142 }
143 
144 void initSensorMatches()
145 {
146     using namespace sdbusplus::bus::match::rules;
147     sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
148     for (const auto& s : ipmi::sensor::sensors)
149     {
150         sensorAddedMatches.emplace(
151             s.first,
152             std::make_unique<sdbusplus::bus::match_t>(
153                 bus, interfacesAdded() + argNpath(0, s.second.sensorPath),
154                 [id = s.first, obj = s.second.sensorPath,
155                  intf = s.second.propertyInterfaces.begin()->first](
156                     auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); }));
157         sensorRemovedMatches.emplace(
158             s.first,
159             std::make_unique<sdbusplus::bus::match_t>(
160                 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath),
161                 [id = s.first](auto& /*msg*/) {
162                     // Ideally this should work.
163                     // But when a service is terminated or crashed, it does not
164                     // emit interfacesRemoved signal. In that case it's handled
165                     // by sensorsOwnerMatch
166                     sensorCacheMap[id].reset();
167                 }));
168         sensorUpdatedMatches.emplace(
169             s.first, std::make_unique<sdbusplus::bus::match_t>(
170                          bus,
171                          type::signal() + path(s.second.sensorPath) +
172                              member("PropertiesChanged"s) +
173                              interface("org.freedesktop.DBus.Properties"s),
174                          [&s](auto& msg) {
175                              fillSensorIdServiceMap(
176                                  s.second.sensorPath,
177                                  s.second.propertyInterfaces.begin()->first,
178                                  s.first);
179                              try
180                              {
181                                  // This is signal callback
182                                  std::string interfaceName;
183                                  msg.read(interfaceName);
184                                  ipmi::PropertyMap props;
185                                  msg.read(props);
186                                  s.second.getFunc(s.first, s.second, props);
187                              }
188                              catch (const std::exception& e)
189                              {
190                                  sensorCacheMap[s.first].reset();
191                              }
192                          }));
193     }
194     sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>(
195         bus, nameOwnerChanged(), [](auto& msg) {
196             std::string name;
197             std::string oldOwner;
198             std::string newOwner;
199             msg.read(name, oldOwner, newOwner);
200 
201             if (!name.empty() && newOwner.empty())
202             {
203                 // The service exits
204                 const auto it = serviceToIdMap.find(name);
205                 if (it == serviceToIdMap.end())
206                 {
207                     return;
208                 }
209                 for (const auto& id : it->second)
210                 {
211                     // Invalidate cache
212                     sensorCacheMap[id].reset();
213                 }
214             }
215         });
216 }
217 #endif
218 
219 int get_bus_for_path(const char* path, char** busname)
220 {
221     return mapper_get_service(bus, path, busname);
222 }
223 
224 // Use a lookup table to find the interface name of a specific sensor
225 // This will be used until an alternative is found.  this is the first
226 // step for mapping IPMI
227 int find_openbmc_path(uint8_t num, dbus_interface_t* interface)
228 {
229     int rc;
230 
231     const auto& sensor_it = ipmi::sensor::sensors.find(num);
232     if (sensor_it == ipmi::sensor::sensors.end())
233     {
234         // The sensor map does not contain the sensor requested
235         return -EINVAL;
236     }
237 
238     const auto& info = sensor_it->second;
239 
240     char* busname = nullptr;
241     rc = get_bus_for_path(info.sensorPath.c_str(), &busname);
242     if (rc < 0)
243     {
244         std::fprintf(stderr, "Failed to get %s busname: %s\n",
245                      info.sensorPath.c_str(), busname);
246         goto final;
247     }
248 
249     interface->sensortype = info.sensorType;
250     strcpy(interface->bus, busname);
251     strcpy(interface->path, info.sensorPath.c_str());
252     // Take the interface name from the beginning of the DbusInterfaceMap. This
253     // works for the Value interface but may not suffice for more complex
254     // sensors.
255     // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103
256     strcpy(interface->interface,
257            info.propertyInterfaces.begin()->first.c_str());
258     interface->sensornumber = num;
259 
260 final:
261     free(busname);
262     return rc;
263 }
264 
265 /////////////////////////////////////////////////////////////////////
266 //
267 // Routines used by ipmi commands wanting to interact on the dbus
268 //
269 /////////////////////////////////////////////////////////////////////
270 int set_sensor_dbus_state_s(uint8_t number, const char* method,
271                             const char* value)
272 {
273 
274     dbus_interface_t a;
275     int r;
276     sd_bus_error error = SD_BUS_ERROR_NULL;
277     sd_bus_message* m = NULL;
278 
279     r = find_openbmc_path(number, &a);
280 
281     if (r < 0)
282     {
283         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
284         return 0;
285     }
286 
287     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
288                                        method);
289     if (r < 0)
290     {
291         std::fprintf(stderr, "Failed to create a method call: %s",
292                      strerror(-r));
293         goto final;
294     }
295 
296     r = sd_bus_message_append(m, "v", "s", value);
297     if (r < 0)
298     {
299         std::fprintf(stderr, "Failed to create a input parameter: %s",
300                      strerror(-r));
301         goto final;
302     }
303 
304     r = sd_bus_call(bus, m, 0, &error, NULL);
305     if (r < 0)
306     {
307         std::fprintf(stderr, "Failed to call the method: %s", strerror(-r));
308     }
309 
310 final:
311     sd_bus_error_free(&error);
312     m = sd_bus_message_unref(m);
313 
314     return 0;
315 }
316 int set_sensor_dbus_state_y(uint8_t number, const char* method,
317                             const uint8_t value)
318 {
319 
320     dbus_interface_t a;
321     int r;
322     sd_bus_error error = SD_BUS_ERROR_NULL;
323     sd_bus_message* m = NULL;
324 
325     r = find_openbmc_path(number, &a);
326 
327     if (r < 0)
328     {
329         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
330         return 0;
331     }
332 
333     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
334                                        method);
335     if (r < 0)
336     {
337         std::fprintf(stderr, "Failed to create a method call: %s",
338                      strerror(-r));
339         goto final;
340     }
341 
342     r = sd_bus_message_append(m, "v", "i", value);
343     if (r < 0)
344     {
345         std::fprintf(stderr, "Failed to create a input parameter: %s",
346                      strerror(-r));
347         goto final;
348     }
349 
350     r = sd_bus_call(bus, m, 0, &error, NULL);
351     if (r < 0)
352     {
353         std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r));
354     }
355 
356 final:
357     sd_bus_error_free(&error);
358     m = sd_bus_message_unref(m);
359 
360     return 0;
361 }
362 
363 uint8_t dbus_to_sensor_type(char* p)
364 {
365 
366     sensorTypemap_t* s = g_SensorTypeMap;
367     char r = 0;
368     while (s->number != 0xFF)
369     {
370         if (!strcmp(s->dbusname, p))
371         {
372             r = s->typecode;
373             break;
374         }
375         s++;
376     }
377 
378     if (s->number == 0xFF)
379         printf("Failed to find Sensor Type %s\n", p);
380 
381     return r;
382 }
383 
384 uint8_t get_type_from_interface(dbus_interface_t dbus_if)
385 {
386 
387     uint8_t type;
388 
389     // This is where sensors that do not exist in dbus but do
390     // exist in the host code stop.  This should indicate it
391     // is not a supported sensor
392     if (dbus_if.interface[0] == 0)
393     {
394         return 0;
395     }
396 
397     // Fetch type from interface itself.
398     if (dbus_if.sensortype != 0)
399     {
400         type = dbus_if.sensortype;
401     }
402     else
403     {
404         // Non InventoryItems
405         char* p = strrchr(dbus_if.path, '/');
406         type = dbus_to_sensor_type(p + 1);
407     }
408 
409     return type;
410 }
411 
412 // Replaces find_sensor
413 uint8_t find_type_for_sensor_number(uint8_t num)
414 {
415     int r;
416     dbus_interface_t dbus_if;
417     r = find_openbmc_path(num, &dbus_if);
418     if (r < 0)
419     {
420         std::fprintf(stderr, "Could not find sensor %d\n", num);
421         return 0;
422     }
423     return get_type_from_interface(dbus_if);
424 }
425 
426 /**
427  *  @brief implements the get sensor type command.
428  *  @param - sensorNumber
429  *
430  *  @return IPMI completion code plus response data on success.
431  *   - sensorType
432  *   - eventType
433  **/
434 
435 ipmi::RspType<uint8_t, // sensorType
436               uint8_t  // eventType
437               >
438     ipmiGetSensorType(uint8_t sensorNumber)
439 {
440     uint8_t sensorType = find_type_for_sensor_number(sensorNumber);
441 
442     if (sensorType == 0)
443     {
444         return ipmi::responseSensorInvalid();
445     }
446 
447     constexpr uint8_t eventType = 0x6F;
448     return ipmi::responseSuccess(sensorType, eventType);
449 }
450 
451 const std::set<std::string> analogSensorInterfaces = {
452     "xyz.openbmc_project.Sensor.Value",
453     "xyz.openbmc_project.Control.FanPwm",
454 };
455 
456 bool isAnalogSensor(const std::string& interface)
457 {
458     return (analogSensorInterfaces.count(interface));
459 }
460 
461 /**
462 @brief This command is used to set sensorReading.
463 
464 @param
465     -  sensorNumber
466     -  operation
467     -  reading
468     -  assertOffset0_7
469     -  assertOffset8_14
470     -  deassertOffset0_7
471     -  deassertOffset8_14
472     -  eventData1
473     -  eventData2
474     -  eventData3
475 
476 @return completion code on success.
477 **/
478 
479 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation,
480                                      uint8_t reading, uint8_t assertOffset0_7,
481                                      uint8_t assertOffset8_14,
482                                      uint8_t deassertOffset0_7,
483                                      uint8_t deassertOffset8_14,
484                                      uint8_t eventData1, uint8_t eventData2,
485                                      uint8_t eventData3)
486 {
487     log<level::DEBUG>("IPMI SET_SENSOR",
488                       entry("SENSOR_NUM=0x%02x", sensorNumber));
489 
490     if (sensorNumber == 0xFF)
491     {
492         return ipmi::responseInvalidFieldRequest();
493     }
494     ipmi::sensor::SetSensorReadingReq cmdData;
495 
496     cmdData.number = sensorNumber;
497     cmdData.operation = operation;
498     cmdData.reading = reading;
499     cmdData.assertOffset0_7 = assertOffset0_7;
500     cmdData.assertOffset8_14 = assertOffset8_14;
501     cmdData.deassertOffset0_7 = deassertOffset0_7;
502     cmdData.deassertOffset8_14 = deassertOffset8_14;
503     cmdData.eventData1 = eventData1;
504     cmdData.eventData2 = eventData2;
505     cmdData.eventData3 = eventData3;
506 
507     // Check if the Sensor Number is present
508     const auto iter = ipmi::sensor::sensors.find(sensorNumber);
509     if (iter == ipmi::sensor::sensors.end())
510     {
511         updateSensorRecordFromSSRAESC(&sensorNumber);
512         return ipmi::responseSuccess();
513     }
514 
515     try
516     {
517         if (ipmi::sensor::Mutability::Write !=
518             (iter->second.mutability & ipmi::sensor::Mutability::Write))
519         {
520             log<level::ERR>("Sensor Set operation is not allowed",
521                             entry("SENSOR_NUM=%d", sensorNumber));
522             return ipmi::responseIllegalCommand();
523         }
524         auto ipmiRC = iter->second.updateFunc(cmdData, iter->second);
525         return ipmi::response(ipmiRC);
526     }
527     catch (const InternalFailure& e)
528     {
529         log<level::ERR>("Set sensor failed",
530                         entry("SENSOR_NUM=%d", sensorNumber));
531         commit<InternalFailure>();
532         return ipmi::responseUnspecifiedError();
533     }
534     catch (const std::runtime_error& e)
535     {
536         log<level::ERR>(e.what());
537         return ipmi::responseUnspecifiedError();
538     }
539 }
540 
541 /** @brief implements the get sensor reading command
542  *  @param sensorNum - sensor number
543  *
544  *  @returns IPMI completion code plus response data
545  *   - senReading           - sensor reading
546  *   - reserved
547  *   - readState            - sensor reading state enabled
548  *   - senScanState         - sensor scan state disabled
549  *   - allEventMessageState - all Event message state disabled
550  *   - assertionStatesLsb   - threshold levels states
551  *   - assertionStatesMsb   - discrete reading sensor states
552  */
553 ipmi::RspType<uint8_t, // sensor reading
554 
555               uint5_t, // reserved
556               bool,    // reading state
557               bool,    // 0 = sensor scanning state disabled
558               bool,    // 0 = all event messages disabled
559 
560               uint8_t, // threshold levels states
561               uint8_t  // discrete reading sensor states
562               >
563     ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx,
564                                uint8_t sensorNum)
565 {
566     if (sensorNum == 0xFF)
567     {
568         return ipmi::responseInvalidFieldRequest();
569     }
570 
571     const auto iter = ipmi::sensor::sensors.find(sensorNum);
572     if (iter == ipmi::sensor::sensors.end())
573     {
574         return ipmi::responseSensorInvalid();
575     }
576     if (ipmi::sensor::Mutability::Read !=
577         (iter->second.mutability & ipmi::sensor::Mutability::Read))
578     {
579         return ipmi::responseIllegalCommand();
580     }
581 
582     try
583     {
584 #ifdef FEATURE_SENSORS_CACHE
585         auto& sensorData = sensorCacheMap[sensorNum];
586         if (!sensorData.has_value())
587         {
588             // No cached value, try read it
589             std::string service;
590             boost::system::error_code ec;
591             const auto& sensorInfo = iter->second;
592             ec = ipmi::getService(ctx, sensorInfo.sensorInterface,
593                                   sensorInfo.sensorPath, service);
594             if (ec)
595             {
596                 return ipmi::responseUnspecifiedError();
597             }
598             fillSensorIdServiceMap(sensorInfo.sensorPath,
599                                    sensorInfo.propertyInterfaces.begin()->first,
600                                    iter->first, service);
601 
602             ipmi::PropertyMap props;
603             ec = ipmi::getAllDbusProperties(
604                 ctx, service, sensorInfo.sensorPath,
605                 sensorInfo.propertyInterfaces.begin()->first, props);
606             if (ec)
607             {
608                 fprintf(stderr, "Failed to get sensor %s, %d: %s\n",
609                         sensorInfo.sensorPath.c_str(), ec.value(),
610                         ec.message().c_str());
611                 // Intitilizing with default values
612                 constexpr uint8_t senReading = 0;
613                 constexpr uint5_t reserved{0};
614                 constexpr bool readState = true;
615                 constexpr bool senScanState = false;
616                 constexpr bool allEventMessageState = false;
617                 constexpr uint8_t assertionStatesLsb = 0;
618                 constexpr uint8_t assertionStatesMsb = 0;
619 
620                 return ipmi::responseSuccess(senReading, reserved, readState,
621                                              senScanState, allEventMessageState,
622                                              assertionStatesLsb,
623                                              assertionStatesMsb);
624             }
625             sensorInfo.getFunc(sensorNum, sensorInfo, props);
626         }
627         return ipmi::responseSuccess(
628             sensorData->response.reading, uint5_t(0),
629             sensorData->response.readingOrStateUnavailable,
630             sensorData->response.scanningEnabled,
631             sensorData->response.allEventMessagesEnabled,
632             sensorData->response.thresholdLevelsStates,
633             sensorData->response.discreteReadingSensorStates);
634 
635 #else
636         ipmi::sensor::GetSensorResponse getResponse =
637             iter->second.getFunc(iter->second);
638 
639         return ipmi::responseSuccess(getResponse.reading, uint5_t(0),
640                                      getResponse.readingOrStateUnavailable,
641                                      getResponse.scanningEnabled,
642                                      getResponse.allEventMessagesEnabled,
643                                      getResponse.thresholdLevelsStates,
644                                      getResponse.discreteReadingSensorStates);
645 #endif
646     }
647 #ifdef UPDATE_FUNCTIONAL_ON_FAIL
648     catch (const SensorFunctionalError& e)
649     {
650         return ipmi::responseResponseError();
651     }
652 #endif
653     catch (const std::exception& e)
654     {
655         // Intitilizing with default values
656         constexpr uint8_t senReading = 0;
657         constexpr uint5_t reserved{0};
658         constexpr bool readState = true;
659         constexpr bool senScanState = false;
660         constexpr bool allEventMessageState = false;
661         constexpr uint8_t assertionStatesLsb = 0;
662         constexpr uint8_t assertionStatesMsb = 0;
663 
664         return ipmi::responseSuccess(senReading, reserved, readState,
665                                      senScanState, allEventMessageState,
666                                      assertionStatesLsb, assertionStatesMsb);
667     }
668 }
669 
670 get_sdr::GetSensorThresholdsResponse
671     getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
672 {
673     get_sdr::GetSensorThresholdsResponse resp{};
674     constexpr auto warningThreshIntf =
675         "xyz.openbmc_project.Sensor.Threshold.Warning";
676     constexpr auto criticalThreshIntf =
677         "xyz.openbmc_project.Sensor.Threshold.Critical";
678 
679     const auto iter = ipmi::sensor::sensors.find(sensorNum);
680     const auto info = iter->second;
681 
682     std::string service;
683     boost::system::error_code ec;
684     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
685     if (ec)
686     {
687         return resp;
688     }
689 
690     ipmi::PropertyMap warnThresholds;
691     ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
692                                     warningThreshIntf, warnThresholds);
693     if (!ec)
694     {
695         double warnLow = std::visit(ipmi::VariantToDoubleVisitor(),
696                                     warnThresholds["WarningLow"]);
697         double warnHigh = std::visit(ipmi::VariantToDoubleVisitor(),
698                                      warnThresholds["WarningHigh"]);
699 
700         if (std::isfinite(warnLow))
701         {
702             warnLow *= std::pow(10, info.scale - info.exponentR);
703             resp.lowerNonCritical = static_cast<uint8_t>(
704                 (warnLow - info.scaledOffset) / info.coefficientM);
705             resp.validMask |= static_cast<uint8_t>(
706                 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK);
707         }
708 
709         if (std::isfinite(warnHigh))
710         {
711             warnHigh *= std::pow(10, info.scale - info.exponentR);
712             resp.upperNonCritical = static_cast<uint8_t>(
713                 (warnHigh - info.scaledOffset) / info.coefficientM);
714             resp.validMask |= static_cast<uint8_t>(
715                 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK);
716         }
717     }
718 
719     ipmi::PropertyMap critThresholds;
720     ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
721                                     criticalThreshIntf, critThresholds);
722     if (!ec)
723     {
724         double critLow = std::visit(ipmi::VariantToDoubleVisitor(),
725                                     critThresholds["CriticalLow"]);
726         double critHigh = std::visit(ipmi::VariantToDoubleVisitor(),
727                                      critThresholds["CriticalHigh"]);
728 
729         if (std::isfinite(critLow))
730         {
731             critLow *= std::pow(10, info.scale - info.exponentR);
732             resp.lowerCritical = static_cast<uint8_t>(
733                 (critLow - info.scaledOffset) / info.coefficientM);
734             resp.validMask |= static_cast<uint8_t>(
735                 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK);
736         }
737 
738         if (std::isfinite(critHigh))
739         {
740             critHigh *= std::pow(10, info.scale - info.exponentR);
741             resp.upperCritical = static_cast<uint8_t>(
742                 (critHigh - info.scaledOffset) / info.coefficientM);
743             resp.validMask |= static_cast<uint8_t>(
744                 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK);
745         }
746     }
747 
748     return resp;
749 }
750 
751 /** @brief implements the get sensor thresholds command
752  *  @param ctx - IPMI context pointer
753  *  @param sensorNum - sensor number
754  *
755  *  @returns IPMI completion code plus response data
756  *   - validMask - threshold mask
757  *   - lower non-critical threshold - IPMI messaging state
758  *   - lower critical threshold - link authentication state
759  *   - lower non-recoverable threshold - callback state
760  *   - upper non-critical threshold
761  *   - upper critical
762  *   - upper non-recoverable
763  */
764 ipmi::RspType<uint8_t, // validMask
765               uint8_t, // lowerNonCritical
766               uint8_t, // lowerCritical
767               uint8_t, // lowerNonRecoverable
768               uint8_t, // upperNonCritical
769               uint8_t, // upperCritical
770               uint8_t  // upperNonRecoverable
771               >
772     ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
773 {
774     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
775 
776     const auto iter = ipmi::sensor::sensors.find(sensorNum);
777     if (iter == ipmi::sensor::sensors.end())
778     {
779         return ipmi::responseSensorInvalid();
780     }
781 
782     const auto info = iter->second;
783 
784     // Proceed only if the sensor value interface is implemented.
785     if (info.propertyInterfaces.find(valueInterface) ==
786         info.propertyInterfaces.end())
787     {
788         // return with valid mask as 0
789         return ipmi::responseSuccess();
790     }
791 
792     auto it = sensorThresholdMap.find(sensorNum);
793     if (it == sensorThresholdMap.end())
794     {
795         sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum);
796     }
797 
798     const auto& resp = sensorThresholdMap[sensorNum];
799 
800     return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical,
801                                  resp.lowerCritical, resp.lowerNonRecoverable,
802                                  resp.upperNonCritical, resp.upperCritical,
803                                  resp.upperNonRecoverable);
804 }
805 
806 /** @brief implements the Set Sensor threshold command
807  *  @param sensorNumber        - sensor number
808  *  @param lowerNonCriticalThreshMask
809  *  @param lowerCriticalThreshMask
810  *  @param lowerNonRecovThreshMask
811  *  @param upperNonCriticalThreshMask
812  *  @param upperCriticalThreshMask
813  *  @param upperNonRecovThreshMask
814  *  @param reserved
815  *  @param lowerNonCritical    - lower non-critical threshold
816  *  @param lowerCritical       - Lower critical threshold
817  *  @param lowerNonRecoverable - Lower non recovarable threshold
818  *  @param upperNonCritical    - Upper non-critical threshold
819  *  @param upperCritical       - Upper critical
820  *  @param upperNonRecoverable - Upper Non-recoverable
821  *
822  *  @returns IPMI completion code
823  */
824 ipmi::RspType<> ipmiSenSetSensorThresholds(
825     ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask,
826     bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask,
827     bool upperNonCriticalThreshMask, bool upperCriticalThreshMask,
828     bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical,
829     uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical,
830     uint8_t upperCritical, uint8_t)
831 {
832     if (reserved)
833     {
834         return ipmi::responseInvalidFieldRequest();
835     }
836 
837     // lower nc and upper nc not suppported on any sensor
838     if (lowerNonRecovThreshMask || upperNonRecovThreshMask)
839     {
840         return ipmi::responseInvalidFieldRequest();
841     }
842 
843     // if none of the threshold mask are set, nothing to do
844     if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask |
845           lowerNonRecovThreshMask | upperNonCriticalThreshMask |
846           upperCriticalThreshMask | upperNonRecovThreshMask))
847     {
848         return ipmi::responseSuccess();
849     }
850 
851     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
852 
853     const auto iter = ipmi::sensor::sensors.find(sensorNum);
854     if (iter == ipmi::sensor::sensors.end())
855     {
856         return ipmi::responseSensorInvalid();
857     }
858 
859     const auto& info = iter->second;
860 
861     // Proceed only if the sensor value interface is implemented.
862     if (info.propertyInterfaces.find(valueInterface) ==
863         info.propertyInterfaces.end())
864     {
865         // return with valid mask as 0
866         return ipmi::responseSuccess();
867     }
868 
869     constexpr auto warningThreshIntf =
870         "xyz.openbmc_project.Sensor.Threshold.Warning";
871     constexpr auto criticalThreshIntf =
872         "xyz.openbmc_project.Sensor.Threshold.Critical";
873 
874     std::string service;
875     boost::system::error_code ec;
876     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
877     if (ec)
878     {
879         return ipmi::responseResponseError();
880     }
881     // store a vector of property name, value to set, and interface
882     std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet;
883 
884     // define the indexes of the tuple
885     constexpr uint8_t propertyName = 0;
886     constexpr uint8_t thresholdValue = 1;
887     constexpr uint8_t interface = 2;
888     // verifiy all needed fields are present
889     if (lowerCriticalThreshMask || upperCriticalThreshMask)
890     {
891 
892         ipmi::PropertyMap findThreshold;
893         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
894                                         criticalThreshIntf, findThreshold);
895 
896         if (!ec)
897         {
898             if (lowerCriticalThreshMask)
899             {
900                 auto findLower = findThreshold.find("CriticalLow");
901                 if (findLower == findThreshold.end())
902                 {
903                     return ipmi::responseInvalidFieldRequest();
904                 }
905                 thresholdsToSet.emplace_back("CriticalLow", lowerCritical,
906                                              criticalThreshIntf);
907             }
908             if (upperCriticalThreshMask)
909             {
910                 auto findUpper = findThreshold.find("CriticalHigh");
911                 if (findUpper == findThreshold.end())
912                 {
913                     return ipmi::responseInvalidFieldRequest();
914                 }
915                 thresholdsToSet.emplace_back("CriticalHigh", upperCritical,
916                                              criticalThreshIntf);
917             }
918         }
919     }
920     if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask)
921     {
922         ipmi::PropertyMap findThreshold;
923         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
924                                         warningThreshIntf, findThreshold);
925 
926         if (!ec)
927         {
928             if (lowerNonCriticalThreshMask)
929             {
930                 auto findLower = findThreshold.find("WarningLow");
931                 if (findLower == findThreshold.end())
932                 {
933                     return ipmi::responseInvalidFieldRequest();
934                 }
935                 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical,
936                                              warningThreshIntf);
937             }
938             if (upperNonCriticalThreshMask)
939             {
940                 auto findUpper = findThreshold.find("WarningHigh");
941                 if (findUpper == findThreshold.end())
942                 {
943                     return ipmi::responseInvalidFieldRequest();
944                 }
945                 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical,
946                                              warningThreshIntf);
947             }
948         }
949     }
950     for (const auto& property : thresholdsToSet)
951     {
952         // from section 36.3 in the IPMI Spec, assume all linear
953         double valueToSet =
954             ((info.coefficientM * std::get<thresholdValue>(property)) +
955              (info.scaledOffset * std::pow(10.0, info.scale))) *
956             std::pow(10.0, info.exponentR);
957         ipmi::setDbusProperty(
958             ctx, service, info.sensorPath, std::get<interface>(property),
959             std::get<propertyName>(property), ipmi::Value(valueToSet));
960     }
961 
962     // Invalidate the cache
963     sensorThresholdMap.erase(sensorNum);
964     return ipmi::responseSuccess();
965 }
966 
967 /** @brief implements the get SDR Info command
968  *  @param count - Operation
969  *
970  *  @returns IPMI completion code plus response data
971  *   - sdrCount - sensor/SDR count
972  *   - lunsAndDynamicPopulation - static/Dynamic sensor population flag
973  */
974 ipmi::RspType<uint8_t, // respcount
975               uint8_t  // dynamic population flags
976               >
977     ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)
978 {
979     uint8_t sdrCount;
980     // multiple LUNs not supported.
981     constexpr uint8_t lunsAndDynamicPopulation = 1;
982     constexpr uint8_t getSdrCount = 0x01;
983     constexpr uint8_t getSensorCount = 0x00;
984 
985     if (count.value_or(0) == getSdrCount)
986     {
987         // Get SDR count. This returns the total number of SDRs in the device.
988         const auto& entityRecords =
989             ipmi::sensor::EntityInfoMapContainer::getContainer()
990                 ->getIpmiEntityRecords();
991         sdrCount =
992             ipmi::sensor::sensors.size() + frus.size() + entityRecords.size();
993     }
994     else if (count.value_or(0) == getSensorCount)
995     {
996         // Get Sensor count. This returns the number of sensors
997         sdrCount = ipmi::sensor::sensors.size();
998     }
999     else
1000     {
1001         return ipmi::responseInvalidCommandOnLun();
1002     }
1003 
1004     return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation);
1005 }
1006 
1007 /** @brief implements the reserve SDR command
1008  *  @returns IPMI completion code plus response data
1009  *   - reservationID - reservation ID
1010  */
1011 ipmi::RspType<uint16_t> ipmiSensorReserveSdr()
1012 {
1013     // A constant reservation ID is okay until we implement add/remove SDR.
1014     constexpr uint16_t reservationID = 1;
1015 
1016     return ipmi::responseSuccess(reservationID);
1017 }
1018 
1019 void setUnitFieldsForObject(const ipmi::sensor::Info* info,
1020                             get_sdr::SensorDataFullRecordBody* body)
1021 {
1022     namespace server = sdbusplus::xyz::openbmc_project::Sensor::server;
1023     try
1024     {
1025         auto unit = server::Value::convertUnitFromString(info->unit);
1026         // Unit strings defined in
1027         // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml
1028         switch (unit)
1029         {
1030             case server::Value::Unit::DegreesC:
1031                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C;
1032                 break;
1033             case server::Value::Unit::RPMS:
1034                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM;
1035                 break;
1036             case server::Value::Unit::Volts:
1037                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS;
1038                 break;
1039             case server::Value::Unit::Meters:
1040                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS;
1041                 break;
1042             case server::Value::Unit::Amperes:
1043                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES;
1044                 break;
1045             case server::Value::Unit::Joules:
1046                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES;
1047                 break;
1048             case server::Value::Unit::Watts:
1049                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS;
1050                 break;
1051             default:
1052                 // Cannot be hit.
1053                 std::fprintf(stderr, "Unknown value unit type: = %s\n",
1054                              info->unit.c_str());
1055         }
1056     }
1057     catch (const sdbusplus::exception::InvalidEnumString& e)
1058     {
1059         log<level::WARNING>("Warning: no unit provided for sensor!");
1060     }
1061 }
1062 
1063 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body,
1064                                      const ipmi::sensor::Info* info,
1065                                      ipmi_data_len_t)
1066 {
1067     /* Functional sensor case */
1068     if (isAnalogSensor(info->propertyInterfaces.begin()->first))
1069     {
1070         body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no
1071                                                    // rate, no modifier, not a %
1072         /* Unit info */
1073         setUnitFieldsForObject(info, body);
1074 
1075         get_sdr::body::set_b(info->coefficientB, body);
1076         get_sdr::body::set_m(info->coefficientM, body);
1077         get_sdr::body::set_b_exp(info->exponentB, body);
1078         get_sdr::body::set_r_exp(info->exponentR, body);
1079 
1080         get_sdr::body::set_id_type(0b00, body); // 00 = unicode
1081     }
1082 
1083     /* ID string */
1084     auto id_string = info->sensorName;
1085 
1086     if (id_string.empty())
1087     {
1088         id_string = info->sensorNameFunc(*info);
1089     }
1090 
1091     if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH)
1092     {
1093         get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body);
1094     }
1095     else
1096     {
1097         get_sdr::body::set_id_strlen(id_string.length(), body);
1098     }
1099     strncpy(body->id_string, id_string.c_str(),
1100             get_sdr::body::get_id_strlen(body));
1101 
1102     return IPMI_CC_OK;
1103 };
1104 
1105 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response,
1106                             ipmi_data_len_t data_len)
1107 {
1108     auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
1109     auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
1110     get_sdr::SensorDataFruRecord record{};
1111     auto dataLength = 0;
1112 
1113     auto fru = frus.begin();
1114     uint8_t fruID{};
1115     auto recordID = get_sdr::request::get_record_id(req);
1116 
1117     fruID = recordID - FRU_RECORD_ID_START;
1118     fru = frus.find(fruID);
1119     if (fru == frus.end())
1120     {
1121         return IPMI_CC_SENSOR_INVALID;
1122     }
1123 
1124     /* Header */
1125     get_sdr::header::set_record_id(recordID, &(record.header));
1126     record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1127     record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD;
1128     record.header.record_length = sizeof(record.key) + sizeof(record.body);
1129 
1130     /* Key */
1131     record.key.fruID = fruID;
1132     record.key.accessLun |= IPMI_LOGICAL_FRU;
1133     record.key.deviceAddress = BMCSlaveAddress;
1134 
1135     /* Body */
1136     record.body.entityID = fru->second[0].entityID;
1137     record.body.entityInstance = fru->second[0].entityInstance;
1138     record.body.deviceType = fruInventoryDevice;
1139     record.body.deviceTypeModifier = IPMIFruInventory;
1140 
1141     /* Device ID string */
1142     auto deviceID =
1143         fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1,
1144                                    fru->second[0].path.length());
1145 
1146     if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH)
1147     {
1148         get_sdr::body::set_device_id_strlen(
1149             get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body));
1150     }
1151     else
1152     {
1153         get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body));
1154     }
1155 
1156     strncpy(record.body.deviceID, deviceID.c_str(),
1157             get_sdr::body::get_device_id_strlen(&(record.body)));
1158 
1159     if (++fru == frus.end())
1160     {
1161         // we have reached till end of fru, so assign the next record id to
1162         // 512(Max fru ID = 511) + Entity Record ID(may start with 0).
1163         const auto& entityRecords =
1164             ipmi::sensor::EntityInfoMapContainer::getContainer()
1165                 ->getIpmiEntityRecords();
1166         auto next_record_id =
1167             (entityRecords.size())
1168                 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START
1169                 : END_OF_RECORD;
1170         get_sdr::response::set_next_record_id(next_record_id, resp);
1171     }
1172     else
1173     {
1174         get_sdr::response::set_next_record_id(
1175             (FRU_RECORD_ID_START + fru->first), resp);
1176     }
1177 
1178     // Check for invalid offset size
1179     if (req->offset > sizeof(record))
1180     {
1181         return IPMI_CC_PARM_OUT_OF_RANGE;
1182     }
1183 
1184     dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
1185                           sizeof(record) - req->offset);
1186 
1187     std::memcpy(resp->record_data,
1188                 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
1189 
1190     *data_len = dataLength;
1191     *data_len += 2; // additional 2 bytes for next record ID
1192 
1193     return IPMI_CC_OK;
1194 }
1195 
1196 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response,
1197                                ipmi_data_len_t data_len)
1198 {
1199     auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
1200     auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
1201     get_sdr::SensorDataEntityRecord record{};
1202     auto dataLength = 0;
1203 
1204     const auto& entityRecords =
1205         ipmi::sensor::EntityInfoMapContainer::getContainer()
1206             ->getIpmiEntityRecords();
1207     auto entity = entityRecords.begin();
1208     uint8_t entityRecordID;
1209     auto recordID = get_sdr::request::get_record_id(req);
1210 
1211     entityRecordID = recordID - ENTITY_RECORD_ID_START;
1212     entity = entityRecords.find(entityRecordID);
1213     if (entity == entityRecords.end())
1214     {
1215         return IPMI_CC_SENSOR_INVALID;
1216     }
1217 
1218     /* Header */
1219     get_sdr::header::set_record_id(recordID, &(record.header));
1220     record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1221     record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD;
1222     record.header.record_length = sizeof(record.key) + sizeof(record.body);
1223 
1224     /* Key */
1225     record.key.containerEntityId = entity->second.containerEntityId;
1226     record.key.containerEntityInstance = entity->second.containerEntityInstance;
1227     get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked,
1228                             &(record.key));
1229     record.key.entityId1 = entity->second.containedEntities[0].first;
1230     record.key.entityInstance1 = entity->second.containedEntities[0].second;
1231 
1232     /* Body */
1233     record.body.entityId2 = entity->second.containedEntities[1].first;
1234     record.body.entityInstance2 = entity->second.containedEntities[1].second;
1235     record.body.entityId3 = entity->second.containedEntities[2].first;
1236     record.body.entityInstance3 = entity->second.containedEntities[2].second;
1237     record.body.entityId4 = entity->second.containedEntities[3].first;
1238     record.body.entityInstance4 = entity->second.containedEntities[3].second;
1239 
1240     if (++entity == entityRecords.end())
1241     {
1242         get_sdr::response::set_next_record_id(END_OF_RECORD,
1243                                               resp); // last record
1244     }
1245     else
1246     {
1247         get_sdr::response::set_next_record_id(
1248             (ENTITY_RECORD_ID_START + entity->first), resp);
1249     }
1250 
1251     // Check for invalid offset size
1252     if (req->offset > sizeof(record))
1253     {
1254         return IPMI_CC_PARM_OUT_OF_RANGE;
1255     }
1256 
1257     dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
1258                           sizeof(record) - req->offset);
1259 
1260     std::memcpy(resp->record_data,
1261                 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
1262 
1263     *data_len = dataLength;
1264     *data_len += 2; // additional 2 bytes for next record ID
1265 
1266     return IPMI_CC_OK;
1267 }
1268 
1269 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request,
1270                             ipmi_response_t response, ipmi_data_len_t data_len,
1271                             ipmi_context_t)
1272 {
1273     ipmi_ret_t ret = IPMI_CC_OK;
1274     get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request;
1275     get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response;
1276 
1277     // Note: we use an iterator so we can provide the next ID at the end of
1278     // the call.
1279     auto sensor = ipmi::sensor::sensors.begin();
1280     auto recordID = get_sdr::request::get_record_id(req);
1281 
1282     // At the beginning of a scan, the host side will send us id=0.
1283     if (recordID != 0)
1284     {
1285         // recordID 0 to 255 means it is a FULL record.
1286         // recordID 256 to 511 means it is a FRU record.
1287         // recordID greater then 511 means it is a Entity Association
1288         // record. Currently we are supporting three record types: FULL
1289         // record, FRU record and Enttiy Association record.
1290         if (recordID >= ENTITY_RECORD_ID_START)
1291         {
1292             return ipmi_entity_get_sdr(request, response, data_len);
1293         }
1294         else if (recordID >= FRU_RECORD_ID_START &&
1295                  recordID < ENTITY_RECORD_ID_START)
1296         {
1297             return ipmi_fru_get_sdr(request, response, data_len);
1298         }
1299         else
1300         {
1301             sensor = ipmi::sensor::sensors.find(recordID);
1302             if (sensor == ipmi::sensor::sensors.end())
1303             {
1304                 return IPMI_CC_SENSOR_INVALID;
1305             }
1306         }
1307     }
1308 
1309     uint8_t sensor_id = sensor->first;
1310 
1311     auto it = sdrCacheMap.find(sensor_id);
1312     if (it == sdrCacheMap.end())
1313     {
1314         /* Header */
1315         get_sdr::SensorDataFullRecord record = {};
1316         get_sdr::header::set_record_id(sensor_id, &(record.header));
1317         record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1
1318         record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD;
1319         record.header.record_length = sizeof(record.key) + sizeof(record.body);
1320 
1321         /* Key */
1322         get_sdr::key::set_owner_id_bmc(&(record.key));
1323         record.key.sensor_number = sensor_id;
1324 
1325         /* Body */
1326         record.body.entity_id = sensor->second.entityType;
1327         record.body.sensor_type = sensor->second.sensorType;
1328         record.body.event_reading_type = sensor->second.sensorReadingType;
1329         record.body.entity_instance = sensor->second.instance;
1330         if (ipmi::sensor::Mutability::Write ==
1331             (sensor->second.mutability & ipmi::sensor::Mutability::Write))
1332         {
1333             get_sdr::body::init_settable_state(true, &(record.body));
1334         }
1335 
1336         // Set the type-specific details given the DBus interface
1337         populate_record_from_dbus(&(record.body), &(sensor->second), data_len);
1338         sdrCacheMap[sensor_id] = std::move(record);
1339     }
1340 
1341     const auto& record = sdrCacheMap[sensor_id];
1342 
1343     if (++sensor == ipmi::sensor::sensors.end())
1344     {
1345         // we have reached till end of sensor, so assign the next record id
1346         // to 256(Max Sensor ID = 255) + FRU ID(may start with 0).
1347         auto next_record_id = (frus.size())
1348                                   ? frus.begin()->first + FRU_RECORD_ID_START
1349                                   : END_OF_RECORD;
1350 
1351         get_sdr::response::set_next_record_id(next_record_id, resp);
1352     }
1353     else
1354     {
1355         get_sdr::response::set_next_record_id(sensor->first, resp);
1356     }
1357 
1358     if (req->offset > sizeof(record))
1359     {
1360         return IPMI_CC_PARM_OUT_OF_RANGE;
1361     }
1362 
1363     // data_len will ultimately be the size of the record, plus
1364     // the size of the next record ID:
1365     *data_len = std::min(static_cast<size_t>(req->bytes_to_read),
1366                          sizeof(record) - req->offset);
1367 
1368     std::memcpy(resp->record_data,
1369                 reinterpret_cast<const uint8_t*>(&record) + req->offset,
1370                 *data_len);
1371 
1372     // data_len should include the LSB and MSB:
1373     *data_len +=
1374         sizeof(resp->next_record_id_lsb) + sizeof(resp->next_record_id_msb);
1375 
1376     return ret;
1377 }
1378 
1379 static bool isFromSystemChannel()
1380 {
1381     // TODO we could not figure out where the request is from based on IPMI
1382     // command handler parameters. because of it, we can not differentiate
1383     // request from SMS/SMM or IPMB channel
1384     return true;
1385 }
1386 
1387 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t,
1388                                 ipmi_request_t request, ipmi_response_t,
1389                                 ipmi_data_len_t dataLen, ipmi_context_t)
1390 {
1391     uint16_t generatorID;
1392     size_t count;
1393     bool assert = true;
1394     std::string sensorPath;
1395     size_t paraLen = *dataLen;
1396     PlatformEventRequest* req;
1397     *dataLen = 0;
1398 
1399     if ((paraLen < selSystemEventSizeWith1Bytes) ||
1400         (paraLen > selSystemEventSizeWith3Bytes))
1401     {
1402         return IPMI_CC_REQ_DATA_LEN_INVALID;
1403     }
1404 
1405     if (isFromSystemChannel())
1406     { // first byte for SYSTEM Interface is Generator ID
1407         // +1 to get common struct
1408         req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1);
1409         // Capture the generator ID
1410         generatorID = *reinterpret_cast<uint8_t*>(request);
1411         // Platform Event usually comes from other firmware, like BIOS.
1412         // Unlike BMC sensor, it does not have BMC DBUS sensor path.
1413         sensorPath = "System";
1414     }
1415     else
1416     {
1417         req = reinterpret_cast<PlatformEventRequest*>(request);
1418         // TODO GenratorID for IPMB is combination of RqSA and RqLUN
1419         generatorID = 0xff;
1420         sensorPath = "IPMB";
1421     }
1422     // Content of event data field depends on sensor class.
1423     // When data0 bit[5:4] is non-zero, valid data counts is 3.
1424     // When data0 bit[7:6] is non-zero, valid data counts is 2.
1425     if (((req->data[0] & byte3EnableMask) != 0 &&
1426          paraLen < selSystemEventSizeWith3Bytes) ||
1427         ((req->data[0] & byte2EnableMask) != 0 &&
1428          paraLen < selSystemEventSizeWith2Bytes))
1429     {
1430         return IPMI_CC_REQ_DATA_LEN_INVALID;
1431     }
1432 
1433     // Count bytes of Event Data
1434     if ((req->data[0] & byte3EnableMask) != 0)
1435     {
1436         count = 3;
1437     }
1438     else if ((req->data[0] & byte2EnableMask) != 0)
1439     {
1440         count = 2;
1441     }
1442     else
1443     {
1444         count = 1;
1445     }
1446     assert = req->eventDirectionType & directionMask ? false : true;
1447     std::vector<uint8_t> eventData(req->data, req->data + count);
1448 
1449     sdbusplus::bus_t dbus(bus);
1450     std::string service =
1451         ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath);
1452     sdbusplus::message_t writeSEL = dbus.new_method_call(
1453         service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd");
1454     writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert,
1455                     generatorID);
1456     try
1457     {
1458         dbus.call(writeSEL);
1459     }
1460     catch (const sdbusplus::exception_t& e)
1461     {
1462         phosphor::logging::log<phosphor::logging::level::ERR>(e.what());
1463         return IPMI_CC_UNSPECIFIED_ERROR;
1464     }
1465     return IPMI_CC_OK;
1466 }
1467 
1468 void register_netfn_sen_functions()
1469 {
1470     // Handlers with dbus-sdr handler implementation.
1471     // Do not register the hander if it dynamic sensors stack is used.
1472 
1473 #ifndef FEATURE_DYNAMIC_SENSORS
1474 
1475 #ifdef FEATURE_SENSORS_CACHE
1476     // Initialize the sensor matches
1477     initSensorMatches();
1478 #endif
1479 
1480     // <Set Sensor Reading and Event Status>
1481     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1482                           ipmi::sensor_event::cmdSetSensorReadingAndEvtSts,
1483                           ipmi::Privilege::Operator, ipmiSetSensorReading);
1484     // <Get Sensor Reading>
1485     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1486                           ipmi::sensor_event::cmdGetSensorReading,
1487                           ipmi::Privilege::User, ipmiSensorGetSensorReading);
1488 
1489     // <Reserve Device SDR Repository>
1490     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1491                           ipmi::sensor_event::cmdReserveDeviceSdrRepository,
1492                           ipmi::Privilege::User, ipmiSensorReserveSdr);
1493 
1494     // <Get Device SDR Info>
1495     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1496                           ipmi::sensor_event::cmdGetDeviceSdrInfo,
1497                           ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo);
1498 
1499     // <Get Sensor Thresholds>
1500     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1501                           ipmi::sensor_event::cmdGetSensorThreshold,
1502                           ipmi::Privilege::User, ipmiSensorGetSensorThresholds);
1503 
1504     // <Set Sensor Thresholds>
1505     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1506                           ipmi::sensor_event::cmdSetSensorThreshold,
1507                           ipmi::Privilege::User, ipmiSenSetSensorThresholds);
1508 
1509     // <Get Device SDR>
1510     ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr,
1511                            ipmi_sen_get_sdr, PRIVILEGE_USER);
1512 
1513 #endif
1514 
1515     // Common Handers used by both implementation.
1516 
1517     // <Platform Event Message>
1518     ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr,
1519                            ipmicmdPlatformEvent, PRIVILEGE_OPERATOR);
1520 
1521     // <Get Sensor Type>
1522     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1523                           ipmi::sensor_event::cmdGetSensorType,
1524                           ipmi::Privilege::User, ipmiGetSensorType);
1525 
1526     return;
1527 }
1528