1 #include "config.h" 2 3 #include "sensorhandler.hpp" 4 5 #include "fruread.hpp" 6 7 #include <mapper.h> 8 #include <systemd/sd-bus.h> 9 10 #include <ipmid/api.hpp> 11 #include <ipmid/entity_map_json.hpp> 12 #include <ipmid/types.hpp> 13 #include <ipmid/utils.hpp> 14 #include <phosphor-logging/elog-errors.hpp> 15 #include <phosphor-logging/log.hpp> 16 #include <sdbusplus/message/types.hpp> 17 #include <xyz/openbmc_project/Common/error.hpp> 18 #include <xyz/openbmc_project/Sensor/Value/server.hpp> 19 20 #include <bitset> 21 #include <cmath> 22 #include <cstring> 23 #include <set> 24 25 static constexpr uint8_t fruInventoryDevice = 0x10; 26 static constexpr uint8_t IPMIFruInventory = 0x02; 27 static constexpr uint8_t BMCSlaveAddress = 0x20; 28 29 extern int updateSensorRecordFromSSRAESC(const void*); 30 extern sd_bus* bus; 31 32 namespace ipmi 33 { 34 namespace sensor 35 { 36 extern const IdInfoMap sensors; 37 } // namespace sensor 38 } // namespace ipmi 39 40 extern const FruMap frus; 41 42 using namespace phosphor::logging; 43 using InternalFailure = 44 sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure; 45 46 void register_netfn_sen_functions() __attribute__((constructor)); 47 48 struct sensorTypemap_t 49 { 50 uint8_t number; 51 uint8_t typecode; 52 char dbusname[32]; 53 }; 54 55 sensorTypemap_t g_SensorTypeMap[] = { 56 57 {0x01, 0x6F, "Temp"}, 58 {0x0C, 0x6F, "DIMM"}, 59 {0x0C, 0x6F, "MEMORY_BUFFER"}, 60 {0x07, 0x6F, "PROC"}, 61 {0x07, 0x6F, "CORE"}, 62 {0x07, 0x6F, "CPU"}, 63 {0x0F, 0x6F, "BootProgress"}, 64 {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor 65 // type code os 0x09 66 {0xC3, 0x6F, "BootCount"}, 67 {0x1F, 0x6F, "OperatingSystemStatus"}, 68 {0x12, 0x6F, "SYSTEM_EVENT"}, 69 {0xC7, 0x03, "SYSTEM"}, 70 {0xC7, 0x03, "MAIN_PLANAR"}, 71 {0xC2, 0x6F, "PowerCap"}, 72 {0x0b, 0xCA, "PowerSupplyRedundancy"}, 73 {0xDA, 0x03, "TurboAllowed"}, 74 {0xD8, 0xC8, "PowerSupplyDerating"}, 75 {0xFF, 0x00, ""}, 76 }; 77 78 struct sensor_data_t 79 { 80 uint8_t sennum; 81 } __attribute__((packed)); 82 83 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>; 84 SDRCacheMap sdrCacheMap __attribute__((init_priority(101))); 85 86 using SensorThresholdMap = 87 std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>; 88 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101))); 89 90 #ifdef FEATURE_SENSORS_CACHE 91 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches 92 __attribute__((init_priority(101))); 93 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches 94 __attribute__((init_priority(101))); 95 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches 96 __attribute__((init_priority(101))); 97 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch 98 __attribute__((init_priority(101))); 99 100 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101))); 101 102 // It is needed to know which objects belong to which service, so that when a 103 // service exits without interfacesRemoved signal, we could invaildate the cache 104 // that is related to the service. It uses below two variables: 105 // - idToServiceMap records which sensors are known to have a related service; 106 // - serviceToIdMap maps a service to the sensors. 107 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>; 108 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101))); 109 110 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>; 111 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101))); 112 113 static void fillSensorIdServiceMap(const std::string&, 114 const std::string& /*intf*/, uint8_t id, 115 const std::string& service) 116 { 117 if (idToServiceMap.find(id) != idToServiceMap.end()) 118 { 119 return; 120 } 121 idToServiceMap[id] = service; 122 serviceToIdMap[service].insert(id); 123 } 124 125 static void fillSensorIdServiceMap(const std::string& obj, 126 const std::string& intf, uint8_t id) 127 { 128 if (idToServiceMap.find(id) != idToServiceMap.end()) 129 { 130 return; 131 } 132 try 133 { 134 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 135 auto service = ipmi::getService(bus, intf, obj); 136 idToServiceMap[id] = service; 137 serviceToIdMap[service].insert(id); 138 } 139 catch (...) 140 { 141 // Ignore 142 } 143 } 144 145 void initSensorMatches() 146 { 147 using namespace sdbusplus::bus::match::rules; 148 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 149 for (const auto& s : ipmi::sensor::sensors) 150 { 151 sensorAddedMatches.emplace( 152 s.first, 153 std::make_unique<sdbusplus::bus::match_t>( 154 bus, interfacesAdded() + argNpath(0, s.second.sensorPath), 155 [id = s.first, obj = s.second.sensorPath, 156 intf = s.second.propertyInterfaces.begin()->first]( 157 auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); })); 158 sensorRemovedMatches.emplace( 159 s.first, 160 std::make_unique<sdbusplus::bus::match_t>( 161 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath), 162 [id = s.first](auto& /*msg*/) { 163 // Ideally this should work. 164 // But when a service is terminated or crashed, it does not 165 // emit interfacesRemoved signal. In that case it's handled 166 // by sensorsOwnerMatch 167 sensorCacheMap[id].reset(); 168 })); 169 sensorUpdatedMatches.emplace( 170 s.first, std::make_unique<sdbusplus::bus::match_t>( 171 bus, 172 type::signal() + path(s.second.sensorPath) + 173 member("PropertiesChanged"s) + 174 interface("org.freedesktop.DBus.Properties"s), 175 [&s](auto& msg) { 176 fillSensorIdServiceMap(s.second.sensorPath, 177 s.second.propertyInterfaces.begin()->first, 178 s.first); 179 try 180 { 181 // This is signal callback 182 std::string interfaceName; 183 msg.read(interfaceName); 184 ipmi::PropertyMap props; 185 msg.read(props); 186 s.second.getFunc(s.first, s.second, props); 187 } 188 catch (const std::exception& e) 189 { 190 sensorCacheMap[s.first].reset(); 191 } 192 })); 193 } 194 sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>( 195 bus, nameOwnerChanged(), [](auto& msg) { 196 std::string name; 197 std::string oldOwner; 198 std::string newOwner; 199 msg.read(name, oldOwner, newOwner); 200 201 if (!name.empty() && newOwner.empty()) 202 { 203 // The service exits 204 const auto it = serviceToIdMap.find(name); 205 if (it == serviceToIdMap.end()) 206 { 207 return; 208 } 209 for (const auto& id : it->second) 210 { 211 // Invalidate cache 212 sensorCacheMap[id].reset(); 213 } 214 } 215 }); 216 } 217 #endif 218 219 int get_bus_for_path(const char* path, char** busname) 220 { 221 return mapper_get_service(bus, path, busname); 222 } 223 224 // Use a lookup table to find the interface name of a specific sensor 225 // This will be used until an alternative is found. this is the first 226 // step for mapping IPMI 227 int find_openbmc_path(uint8_t num, dbus_interface_t* interface) 228 { 229 int rc; 230 231 const auto& sensor_it = ipmi::sensor::sensors.find(num); 232 if (sensor_it == ipmi::sensor::sensors.end()) 233 { 234 // The sensor map does not contain the sensor requested 235 return -EINVAL; 236 } 237 238 const auto& info = sensor_it->second; 239 240 char* busname = nullptr; 241 rc = get_bus_for_path(info.sensorPath.c_str(), &busname); 242 if (rc < 0) 243 { 244 std::fprintf(stderr, "Failed to get %s busname: %s\n", 245 info.sensorPath.c_str(), busname); 246 goto final; 247 } 248 249 interface->sensortype = info.sensorType; 250 strcpy(interface->bus, busname); 251 strcpy(interface->path, info.sensorPath.c_str()); 252 // Take the interface name from the beginning of the DbusInterfaceMap. This 253 // works for the Value interface but may not suffice for more complex 254 // sensors. 255 // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 256 strcpy(interface->interface, 257 info.propertyInterfaces.begin()->first.c_str()); 258 interface->sensornumber = num; 259 260 final: 261 free(busname); 262 return rc; 263 } 264 265 ///////////////////////////////////////////////////////////////////// 266 // 267 // Routines used by ipmi commands wanting to interact on the dbus 268 // 269 ///////////////////////////////////////////////////////////////////// 270 int set_sensor_dbus_state_s(uint8_t number, const char* method, 271 const char* value) 272 { 273 dbus_interface_t a; 274 int r; 275 sd_bus_error error = SD_BUS_ERROR_NULL; 276 sd_bus_message* m = NULL; 277 278 r = find_openbmc_path(number, &a); 279 280 if (r < 0) 281 { 282 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 283 return 0; 284 } 285 286 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 287 method); 288 if (r < 0) 289 { 290 std::fprintf(stderr, "Failed to create a method call: %s", 291 strerror(-r)); 292 goto final; 293 } 294 295 r = sd_bus_message_append(m, "v", "s", value); 296 if (r < 0) 297 { 298 std::fprintf(stderr, "Failed to create a input parameter: %s", 299 strerror(-r)); 300 goto final; 301 } 302 303 r = sd_bus_call(bus, m, 0, &error, NULL); 304 if (r < 0) 305 { 306 std::fprintf(stderr, "Failed to call the method: %s", strerror(-r)); 307 } 308 309 final: 310 sd_bus_error_free(&error); 311 m = sd_bus_message_unref(m); 312 313 return 0; 314 } 315 int set_sensor_dbus_state_y(uint8_t number, const char* method, 316 const uint8_t value) 317 { 318 dbus_interface_t a; 319 int r; 320 sd_bus_error error = SD_BUS_ERROR_NULL; 321 sd_bus_message* m = NULL; 322 323 r = find_openbmc_path(number, &a); 324 325 if (r < 0) 326 { 327 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 328 return 0; 329 } 330 331 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 332 method); 333 if (r < 0) 334 { 335 std::fprintf(stderr, "Failed to create a method call: %s", 336 strerror(-r)); 337 goto final; 338 } 339 340 r = sd_bus_message_append(m, "v", "i", value); 341 if (r < 0) 342 { 343 std::fprintf(stderr, "Failed to create a input parameter: %s", 344 strerror(-r)); 345 goto final; 346 } 347 348 r = sd_bus_call(bus, m, 0, &error, NULL); 349 if (r < 0) 350 { 351 std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); 352 } 353 354 final: 355 sd_bus_error_free(&error); 356 m = sd_bus_message_unref(m); 357 358 return 0; 359 } 360 361 uint8_t dbus_to_sensor_type(char* p) 362 { 363 sensorTypemap_t* s = g_SensorTypeMap; 364 char r = 0; 365 while (s->number != 0xFF) 366 { 367 if (!strcmp(s->dbusname, p)) 368 { 369 r = s->typecode; 370 break; 371 } 372 s++; 373 } 374 375 if (s->number == 0xFF) 376 printf("Failed to find Sensor Type %s\n", p); 377 378 return r; 379 } 380 381 uint8_t get_type_from_interface(dbus_interface_t dbus_if) 382 { 383 uint8_t type; 384 385 // This is where sensors that do not exist in dbus but do 386 // exist in the host code stop. This should indicate it 387 // is not a supported sensor 388 if (dbus_if.interface[0] == 0) 389 { 390 return 0; 391 } 392 393 // Fetch type from interface itself. 394 if (dbus_if.sensortype != 0) 395 { 396 type = dbus_if.sensortype; 397 } 398 else 399 { 400 // Non InventoryItems 401 char* p = strrchr(dbus_if.path, '/'); 402 type = dbus_to_sensor_type(p + 1); 403 } 404 405 return type; 406 } 407 408 // Replaces find_sensor 409 uint8_t find_type_for_sensor_number(uint8_t num) 410 { 411 int r; 412 dbus_interface_t dbus_if; 413 r = find_openbmc_path(num, &dbus_if); 414 if (r < 0) 415 { 416 std::fprintf(stderr, "Could not find sensor %d\n", num); 417 return 0; 418 } 419 return get_type_from_interface(dbus_if); 420 } 421 422 /** 423 * @brief implements the get sensor type command. 424 * @param - sensorNumber 425 * 426 * @return IPMI completion code plus response data on success. 427 * - sensorType 428 * - eventType 429 **/ 430 431 ipmi::RspType<uint8_t, // sensorType 432 uint8_t // eventType 433 > 434 ipmiGetSensorType(uint8_t sensorNumber) 435 { 436 uint8_t sensorType = find_type_for_sensor_number(sensorNumber); 437 438 if (sensorType == 0) 439 { 440 return ipmi::responseSensorInvalid(); 441 } 442 443 constexpr uint8_t eventType = 0x6F; 444 return ipmi::responseSuccess(sensorType, eventType); 445 } 446 447 const std::set<std::string> analogSensorInterfaces = { 448 "xyz.openbmc_project.Sensor.Value", 449 "xyz.openbmc_project.Control.FanPwm", 450 }; 451 452 bool isAnalogSensor(const std::string& interface) 453 { 454 return (analogSensorInterfaces.count(interface)); 455 } 456 457 /** 458 @brief This command is used to set sensorReading. 459 460 @param 461 - sensorNumber 462 - operation 463 - reading 464 - assertOffset0_7 465 - assertOffset8_14 466 - deassertOffset0_7 467 - deassertOffset8_14 468 - eventData1 469 - eventData2 470 - eventData3 471 472 @return completion code on success. 473 **/ 474 475 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation, 476 uint8_t reading, uint8_t assertOffset0_7, 477 uint8_t assertOffset8_14, 478 uint8_t deassertOffset0_7, 479 uint8_t deassertOffset8_14, 480 uint8_t eventData1, uint8_t eventData2, 481 uint8_t eventData3) 482 { 483 log<level::DEBUG>("IPMI SET_SENSOR", 484 entry("SENSOR_NUM=0x%02x", sensorNumber)); 485 486 if (sensorNumber == 0xFF) 487 { 488 return ipmi::responseInvalidFieldRequest(); 489 } 490 ipmi::sensor::SetSensorReadingReq cmdData; 491 492 cmdData.number = sensorNumber; 493 cmdData.operation = operation; 494 cmdData.reading = reading; 495 cmdData.assertOffset0_7 = assertOffset0_7; 496 cmdData.assertOffset8_14 = assertOffset8_14; 497 cmdData.deassertOffset0_7 = deassertOffset0_7; 498 cmdData.deassertOffset8_14 = deassertOffset8_14; 499 cmdData.eventData1 = eventData1; 500 cmdData.eventData2 = eventData2; 501 cmdData.eventData3 = eventData3; 502 503 // Check if the Sensor Number is present 504 const auto iter = ipmi::sensor::sensors.find(sensorNumber); 505 if (iter == ipmi::sensor::sensors.end()) 506 { 507 updateSensorRecordFromSSRAESC(&sensorNumber); 508 return ipmi::responseSuccess(); 509 } 510 511 try 512 { 513 if (ipmi::sensor::Mutability::Write != 514 (iter->second.mutability & ipmi::sensor::Mutability::Write)) 515 { 516 log<level::ERR>("Sensor Set operation is not allowed", 517 entry("SENSOR_NUM=%d", sensorNumber)); 518 return ipmi::responseIllegalCommand(); 519 } 520 auto ipmiRC = iter->second.updateFunc(cmdData, iter->second); 521 return ipmi::response(ipmiRC); 522 } 523 catch (const InternalFailure& e) 524 { 525 log<level::ERR>("Set sensor failed", 526 entry("SENSOR_NUM=%d", sensorNumber)); 527 commit<InternalFailure>(); 528 return ipmi::responseUnspecifiedError(); 529 } 530 catch (const std::runtime_error& e) 531 { 532 log<level::ERR>(e.what()); 533 return ipmi::responseUnspecifiedError(); 534 } 535 } 536 537 /** @brief implements the get sensor reading command 538 * @param sensorNum - sensor number 539 * 540 * @returns IPMI completion code plus response data 541 * - senReading - sensor reading 542 * - reserved 543 * - readState - sensor reading state enabled 544 * - senScanState - sensor scan state disabled 545 * - allEventMessageState - all Event message state disabled 546 * - assertionStatesLsb - threshold levels states 547 * - assertionStatesMsb - discrete reading sensor states 548 */ 549 ipmi::RspType<uint8_t, // sensor reading 550 551 uint5_t, // reserved 552 bool, // reading state 553 bool, // 0 = sensor scanning state disabled 554 bool, // 0 = all event messages disabled 555 556 uint8_t, // threshold levels states 557 uint8_t // discrete reading sensor states 558 > 559 ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx, 560 uint8_t sensorNum) 561 { 562 if (sensorNum == 0xFF) 563 { 564 return ipmi::responseInvalidFieldRequest(); 565 } 566 567 const auto iter = ipmi::sensor::sensors.find(sensorNum); 568 if (iter == ipmi::sensor::sensors.end()) 569 { 570 return ipmi::responseSensorInvalid(); 571 } 572 if (ipmi::sensor::Mutability::Read != 573 (iter->second.mutability & ipmi::sensor::Mutability::Read)) 574 { 575 return ipmi::responseIllegalCommand(); 576 } 577 578 try 579 { 580 #ifdef FEATURE_SENSORS_CACHE 581 auto& sensorData = sensorCacheMap[sensorNum]; 582 if (!sensorData.has_value()) 583 { 584 // No cached value, try read it 585 std::string service; 586 boost::system::error_code ec; 587 const auto& sensorInfo = iter->second; 588 ec = ipmi::getService(ctx, sensorInfo.sensorInterface, 589 sensorInfo.sensorPath, service); 590 if (ec) 591 { 592 return ipmi::responseUnspecifiedError(); 593 } 594 fillSensorIdServiceMap(sensorInfo.sensorPath, 595 sensorInfo.propertyInterfaces.begin()->first, 596 iter->first, service); 597 598 ipmi::PropertyMap props; 599 ec = ipmi::getAllDbusProperties( 600 ctx, service, sensorInfo.sensorPath, 601 sensorInfo.propertyInterfaces.begin()->first, props); 602 if (ec) 603 { 604 fprintf(stderr, "Failed to get sensor %s, %d: %s\n", 605 sensorInfo.sensorPath.c_str(), ec.value(), 606 ec.message().c_str()); 607 // Intitilizing with default values 608 constexpr uint8_t senReading = 0; 609 constexpr uint5_t reserved{0}; 610 constexpr bool readState = true; 611 constexpr bool senScanState = false; 612 constexpr bool allEventMessageState = false; 613 constexpr uint8_t assertionStatesLsb = 0; 614 constexpr uint8_t assertionStatesMsb = 0; 615 616 return ipmi::responseSuccess(senReading, reserved, readState, 617 senScanState, allEventMessageState, 618 assertionStatesLsb, 619 assertionStatesMsb); 620 } 621 sensorInfo.getFunc(sensorNum, sensorInfo, props); 622 } 623 return ipmi::responseSuccess( 624 sensorData->response.reading, uint5_t(0), 625 sensorData->response.readingOrStateUnavailable, 626 sensorData->response.scanningEnabled, 627 sensorData->response.allEventMessagesEnabled, 628 sensorData->response.thresholdLevelsStates, 629 sensorData->response.discreteReadingSensorStates); 630 631 #else 632 ipmi::sensor::GetSensorResponse getResponse = 633 iter->second.getFunc(iter->second); 634 635 return ipmi::responseSuccess(getResponse.reading, uint5_t(0), 636 getResponse.readingOrStateUnavailable, 637 getResponse.scanningEnabled, 638 getResponse.allEventMessagesEnabled, 639 getResponse.thresholdLevelsStates, 640 getResponse.discreteReadingSensorStates); 641 #endif 642 } 643 #ifdef UPDATE_FUNCTIONAL_ON_FAIL 644 catch (const SensorFunctionalError& e) 645 { 646 return ipmi::responseResponseError(); 647 } 648 #endif 649 catch (const std::exception& e) 650 { 651 // Intitilizing with default values 652 constexpr uint8_t senReading = 0; 653 constexpr uint5_t reserved{0}; 654 constexpr bool readState = true; 655 constexpr bool senScanState = false; 656 constexpr bool allEventMessageState = false; 657 constexpr uint8_t assertionStatesLsb = 0; 658 constexpr uint8_t assertionStatesMsb = 0; 659 660 return ipmi::responseSuccess(senReading, reserved, readState, 661 senScanState, allEventMessageState, 662 assertionStatesLsb, assertionStatesMsb); 663 } 664 } 665 666 get_sdr::GetSensorThresholdsResponse 667 getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 668 { 669 get_sdr::GetSensorThresholdsResponse resp{}; 670 constexpr auto warningThreshIntf = 671 "xyz.openbmc_project.Sensor.Threshold.Warning"; 672 constexpr auto criticalThreshIntf = 673 "xyz.openbmc_project.Sensor.Threshold.Critical"; 674 675 const auto iter = ipmi::sensor::sensors.find(sensorNum); 676 const auto info = iter->second; 677 678 std::string service; 679 boost::system::error_code ec; 680 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 681 if (ec) 682 { 683 return resp; 684 } 685 686 ipmi::PropertyMap warnThresholds; 687 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 688 warningThreshIntf, warnThresholds); 689 int32_t minClamp; 690 int32_t maxClamp; 691 int32_t rawData; 692 constexpr uint8_t sensorUnitsSignedBits = 2 << 6; 693 constexpr uint8_t signedDataFormat = 0x80; 694 if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat) 695 { 696 minClamp = std::numeric_limits<int8_t>::lowest(); 697 maxClamp = std::numeric_limits<int8_t>::max(); 698 } 699 else 700 { 701 minClamp = std::numeric_limits<uint8_t>::lowest(); 702 maxClamp = std::numeric_limits<uint8_t>::max(); 703 } 704 if (!ec) 705 { 706 double warnLow = ipmi::mappedVariant<double>( 707 warnThresholds, "WarningLow", 708 std::numeric_limits<double>::quiet_NaN()); 709 double warnHigh = ipmi::mappedVariant<double>( 710 warnThresholds, "WarningHigh", 711 std::numeric_limits<double>::quiet_NaN()); 712 713 if (std::isfinite(warnLow)) 714 { 715 warnLow *= std::pow(10, info.scale - info.exponentR); 716 rawData = round((warnLow - info.scaledOffset) / info.coefficientM); 717 resp.lowerNonCritical = 718 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 719 resp.validMask |= static_cast<uint8_t>( 720 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); 721 } 722 723 if (std::isfinite(warnHigh)) 724 { 725 warnHigh *= std::pow(10, info.scale - info.exponentR); 726 rawData = round((warnHigh - info.scaledOffset) / info.coefficientM); 727 resp.upperNonCritical = 728 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 729 resp.validMask |= static_cast<uint8_t>( 730 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); 731 } 732 } 733 734 ipmi::PropertyMap critThresholds; 735 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 736 criticalThreshIntf, critThresholds); 737 if (!ec) 738 { 739 double critLow = ipmi::mappedVariant<double>( 740 critThresholds, "CriticalLow", 741 std::numeric_limits<double>::quiet_NaN()); 742 double critHigh = ipmi::mappedVariant<double>( 743 critThresholds, "CriticalHigh", 744 std::numeric_limits<double>::quiet_NaN()); 745 746 if (std::isfinite(critLow)) 747 { 748 critLow *= std::pow(10, info.scale - info.exponentR); 749 rawData = round((critLow - info.scaledOffset) / info.coefficientM); 750 resp.lowerCritical = 751 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 752 resp.validMask |= static_cast<uint8_t>( 753 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); 754 } 755 756 if (std::isfinite(critHigh)) 757 { 758 critHigh *= std::pow(10, info.scale - info.exponentR); 759 rawData = round((critHigh - info.scaledOffset) / info.coefficientM); 760 resp.upperCritical = 761 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 762 resp.validMask |= static_cast<uint8_t>( 763 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); 764 } 765 } 766 767 return resp; 768 } 769 770 /** @brief implements the get sensor thresholds command 771 * @param ctx - IPMI context pointer 772 * @param sensorNum - sensor number 773 * 774 * @returns IPMI completion code plus response data 775 * - validMask - threshold mask 776 * - lower non-critical threshold - IPMI messaging state 777 * - lower critical threshold - link authentication state 778 * - lower non-recoverable threshold - callback state 779 * - upper non-critical threshold 780 * - upper critical 781 * - upper non-recoverable 782 */ 783 ipmi::RspType<uint8_t, // validMask 784 uint8_t, // lowerNonCritical 785 uint8_t, // lowerCritical 786 uint8_t, // lowerNonRecoverable 787 uint8_t, // upperNonCritical 788 uint8_t, // upperCritical 789 uint8_t // upperNonRecoverable 790 > 791 ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 792 { 793 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 794 795 const auto iter = ipmi::sensor::sensors.find(sensorNum); 796 if (iter == ipmi::sensor::sensors.end()) 797 { 798 return ipmi::responseSensorInvalid(); 799 } 800 801 const auto info = iter->second; 802 803 // Proceed only if the sensor value interface is implemented. 804 if (info.propertyInterfaces.find(valueInterface) == 805 info.propertyInterfaces.end()) 806 { 807 // return with valid mask as 0 808 return ipmi::responseSuccess(); 809 } 810 811 auto it = sensorThresholdMap.find(sensorNum); 812 if (it == sensorThresholdMap.end()) 813 { 814 sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum); 815 } 816 817 const auto& resp = sensorThresholdMap[sensorNum]; 818 819 return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical, 820 resp.lowerCritical, resp.lowerNonRecoverable, 821 resp.upperNonCritical, resp.upperCritical, 822 resp.upperNonRecoverable); 823 } 824 825 /** @brief implements the Set Sensor threshold command 826 * @param sensorNumber - sensor number 827 * @param lowerNonCriticalThreshMask 828 * @param lowerCriticalThreshMask 829 * @param lowerNonRecovThreshMask 830 * @param upperNonCriticalThreshMask 831 * @param upperCriticalThreshMask 832 * @param upperNonRecovThreshMask 833 * @param reserved 834 * @param lowerNonCritical - lower non-critical threshold 835 * @param lowerCritical - Lower critical threshold 836 * @param lowerNonRecoverable - Lower non recovarable threshold 837 * @param upperNonCritical - Upper non-critical threshold 838 * @param upperCritical - Upper critical 839 * @param upperNonRecoverable - Upper Non-recoverable 840 * 841 * @returns IPMI completion code 842 */ 843 ipmi::RspType<> ipmiSenSetSensorThresholds( 844 ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask, 845 bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask, 846 bool upperNonCriticalThreshMask, bool upperCriticalThreshMask, 847 bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical, 848 uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical, 849 uint8_t upperCritical, uint8_t) 850 { 851 if (reserved) 852 { 853 return ipmi::responseInvalidFieldRequest(); 854 } 855 856 // lower nc and upper nc not suppported on any sensor 857 if (lowerNonRecovThreshMask || upperNonRecovThreshMask) 858 { 859 return ipmi::responseInvalidFieldRequest(); 860 } 861 862 // if none of the threshold mask are set, nothing to do 863 if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask | 864 lowerNonRecovThreshMask | upperNonCriticalThreshMask | 865 upperCriticalThreshMask | upperNonRecovThreshMask)) 866 { 867 return ipmi::responseSuccess(); 868 } 869 870 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 871 872 const auto iter = ipmi::sensor::sensors.find(sensorNum); 873 if (iter == ipmi::sensor::sensors.end()) 874 { 875 return ipmi::responseSensorInvalid(); 876 } 877 878 const auto& info = iter->second; 879 880 // Proceed only if the sensor value interface is implemented. 881 if (info.propertyInterfaces.find(valueInterface) == 882 info.propertyInterfaces.end()) 883 { 884 // return with valid mask as 0 885 return ipmi::responseSuccess(); 886 } 887 888 constexpr auto warningThreshIntf = 889 "xyz.openbmc_project.Sensor.Threshold.Warning"; 890 constexpr auto criticalThreshIntf = 891 "xyz.openbmc_project.Sensor.Threshold.Critical"; 892 893 std::string service; 894 boost::system::error_code ec; 895 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 896 if (ec) 897 { 898 return ipmi::responseResponseError(); 899 } 900 // store a vector of property name, value to set, and interface 901 std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet; 902 903 // define the indexes of the tuple 904 constexpr uint8_t propertyName = 0; 905 constexpr uint8_t thresholdValue = 1; 906 constexpr uint8_t interface = 2; 907 // verifiy all needed fields are present 908 if (lowerCriticalThreshMask || upperCriticalThreshMask) 909 { 910 ipmi::PropertyMap findThreshold; 911 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 912 criticalThreshIntf, findThreshold); 913 914 if (!ec) 915 { 916 if (lowerCriticalThreshMask) 917 { 918 auto findLower = findThreshold.find("CriticalLow"); 919 if (findLower == findThreshold.end()) 920 { 921 return ipmi::responseInvalidFieldRequest(); 922 } 923 thresholdsToSet.emplace_back("CriticalLow", lowerCritical, 924 criticalThreshIntf); 925 } 926 if (upperCriticalThreshMask) 927 { 928 auto findUpper = findThreshold.find("CriticalHigh"); 929 if (findUpper == findThreshold.end()) 930 { 931 return ipmi::responseInvalidFieldRequest(); 932 } 933 thresholdsToSet.emplace_back("CriticalHigh", upperCritical, 934 criticalThreshIntf); 935 } 936 } 937 } 938 if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask) 939 { 940 ipmi::PropertyMap findThreshold; 941 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 942 warningThreshIntf, findThreshold); 943 944 if (!ec) 945 { 946 if (lowerNonCriticalThreshMask) 947 { 948 auto findLower = findThreshold.find("WarningLow"); 949 if (findLower == findThreshold.end()) 950 { 951 return ipmi::responseInvalidFieldRequest(); 952 } 953 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical, 954 warningThreshIntf); 955 } 956 if (upperNonCriticalThreshMask) 957 { 958 auto findUpper = findThreshold.find("WarningHigh"); 959 if (findUpper == findThreshold.end()) 960 { 961 return ipmi::responseInvalidFieldRequest(); 962 } 963 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical, 964 warningThreshIntf); 965 } 966 } 967 } 968 for (const auto& property : thresholdsToSet) 969 { 970 // from section 36.3 in the IPMI Spec, assume all linear 971 double valueToSet = 972 ((info.coefficientM * std::get<thresholdValue>(property)) + 973 (info.scaledOffset * std::pow(10.0, info.scale))) * 974 std::pow(10.0, info.exponentR); 975 ipmi::setDbusProperty( 976 ctx, service, info.sensorPath, std::get<interface>(property), 977 std::get<propertyName>(property), ipmi::Value(valueToSet)); 978 } 979 980 // Invalidate the cache 981 sensorThresholdMap.erase(sensorNum); 982 return ipmi::responseSuccess(); 983 } 984 985 /** @brief implements the get SDR Info command 986 * @param count - Operation 987 * 988 * @returns IPMI completion code plus response data 989 * - sdrCount - sensor/SDR count 990 * - lunsAndDynamicPopulation - static/Dynamic sensor population flag 991 */ 992 ipmi::RspType<uint8_t, // respcount 993 uint8_t // dynamic population flags 994 > 995 ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count) 996 { 997 uint8_t sdrCount; 998 // multiple LUNs not supported. 999 constexpr uint8_t lunsAndDynamicPopulation = 1; 1000 constexpr uint8_t getSdrCount = 0x01; 1001 constexpr uint8_t getSensorCount = 0x00; 1002 1003 if (count.value_or(0) == getSdrCount) 1004 { 1005 // Get SDR count. This returns the total number of SDRs in the device. 1006 const auto& entityRecords = 1007 ipmi::sensor::EntityInfoMapContainer::getContainer() 1008 ->getIpmiEntityRecords(); 1009 sdrCount = ipmi::sensor::sensors.size() + frus.size() + 1010 entityRecords.size(); 1011 } 1012 else if (count.value_or(0) == getSensorCount) 1013 { 1014 // Get Sensor count. This returns the number of sensors 1015 sdrCount = ipmi::sensor::sensors.size(); 1016 } 1017 else 1018 { 1019 return ipmi::responseInvalidCommandOnLun(); 1020 } 1021 1022 return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation); 1023 } 1024 1025 /** @brief implements the reserve SDR command 1026 * @returns IPMI completion code plus response data 1027 * - reservationID - reservation ID 1028 */ 1029 ipmi::RspType<uint16_t> ipmiSensorReserveSdr() 1030 { 1031 // A constant reservation ID is okay until we implement add/remove SDR. 1032 constexpr uint16_t reservationID = 1; 1033 1034 return ipmi::responseSuccess(reservationID); 1035 } 1036 1037 void setUnitFieldsForObject(const ipmi::sensor::Info* info, 1038 get_sdr::SensorDataFullRecordBody* body) 1039 { 1040 namespace server = sdbusplus::xyz::openbmc_project::Sensor::server; 1041 try 1042 { 1043 auto unit = server::Value::convertUnitFromString(info->unit); 1044 // Unit strings defined in 1045 // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml 1046 switch (unit) 1047 { 1048 case server::Value::Unit::DegreesC: 1049 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; 1050 break; 1051 case server::Value::Unit::RPMS: 1052 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM; 1053 break; 1054 case server::Value::Unit::Volts: 1055 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; 1056 break; 1057 case server::Value::Unit::Meters: 1058 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; 1059 break; 1060 case server::Value::Unit::Amperes: 1061 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; 1062 break; 1063 case server::Value::Unit::Joules: 1064 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; 1065 break; 1066 case server::Value::Unit::Watts: 1067 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; 1068 break; 1069 default: 1070 // Cannot be hit. 1071 std::fprintf(stderr, "Unknown value unit type: = %s\n", 1072 info->unit.c_str()); 1073 } 1074 } 1075 catch (const sdbusplus::exception::InvalidEnumString& e) 1076 { 1077 log<level::WARNING>("Warning: no unit provided for sensor!"); 1078 } 1079 } 1080 1081 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, 1082 const ipmi::sensor::Info* info, 1083 ipmi_data_len_t) 1084 { 1085 /* Functional sensor case */ 1086 if (isAnalogSensor(info->propertyInterfaces.begin()->first)) 1087 { 1088 body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no 1089 // rate, no modifier, not a % 1090 /* Unit info */ 1091 setUnitFieldsForObject(info, body); 1092 1093 get_sdr::body::set_b(info->coefficientB, body); 1094 get_sdr::body::set_m(info->coefficientM, body); 1095 get_sdr::body::set_b_exp(info->exponentB, body); 1096 get_sdr::body::set_r_exp(info->exponentR, body); 1097 } 1098 1099 /* ID string */ 1100 auto id_string = info->sensorName; 1101 1102 if (id_string.empty()) 1103 { 1104 id_string = info->sensorNameFunc(*info); 1105 } 1106 1107 if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) 1108 { 1109 get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); 1110 } 1111 else 1112 { 1113 get_sdr::body::set_id_strlen(id_string.length(), body); 1114 } 1115 get_sdr::body::set_id_type(3, body); // "8-bit ASCII + Latin 1" 1116 strncpy(body->id_string, id_string.c_str(), 1117 get_sdr::body::get_id_strlen(body)); 1118 1119 return IPMI_CC_OK; 1120 }; 1121 1122 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, 1123 ipmi_data_len_t data_len) 1124 { 1125 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1126 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1127 get_sdr::SensorDataFruRecord record{}; 1128 auto dataLength = 0; 1129 1130 auto fru = frus.begin(); 1131 uint8_t fruID{}; 1132 auto recordID = get_sdr::request::get_record_id(req); 1133 1134 fruID = recordID - FRU_RECORD_ID_START; 1135 fru = frus.find(fruID); 1136 if (fru == frus.end()) 1137 { 1138 return IPMI_CC_SENSOR_INVALID; 1139 } 1140 1141 /* Header */ 1142 get_sdr::header::set_record_id(recordID, &(record.header)); 1143 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1144 record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; 1145 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1146 1147 /* Key */ 1148 record.key.fruID = fruID; 1149 record.key.accessLun |= IPMI_LOGICAL_FRU; 1150 record.key.deviceAddress = BMCSlaveAddress; 1151 1152 /* Body */ 1153 record.body.entityID = fru->second[0].entityID; 1154 record.body.entityInstance = fru->second[0].entityInstance; 1155 record.body.deviceType = fruInventoryDevice; 1156 record.body.deviceTypeModifier = IPMIFruInventory; 1157 1158 /* Device ID string */ 1159 auto deviceID = 1160 fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, 1161 fru->second[0].path.length()); 1162 1163 if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) 1164 { 1165 get_sdr::body::set_device_id_strlen( 1166 get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); 1167 } 1168 else 1169 { 1170 get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); 1171 } 1172 1173 strncpy(record.body.deviceID, deviceID.c_str(), 1174 get_sdr::body::get_device_id_strlen(&(record.body))); 1175 1176 if (++fru == frus.end()) 1177 { 1178 // we have reached till end of fru, so assign the next record id to 1179 // 512(Max fru ID = 511) + Entity Record ID(may start with 0). 1180 const auto& entityRecords = 1181 ipmi::sensor::EntityInfoMapContainer::getContainer() 1182 ->getIpmiEntityRecords(); 1183 auto next_record_id = (entityRecords.size()) 1184 ? entityRecords.begin()->first + 1185 ENTITY_RECORD_ID_START 1186 : END_OF_RECORD; 1187 get_sdr::response::set_next_record_id(next_record_id, resp); 1188 } 1189 else 1190 { 1191 get_sdr::response::set_next_record_id( 1192 (FRU_RECORD_ID_START + fru->first), resp); 1193 } 1194 1195 // Check for invalid offset size 1196 if (req->offset > sizeof(record)) 1197 { 1198 return IPMI_CC_PARM_OUT_OF_RANGE; 1199 } 1200 1201 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1202 sizeof(record) - req->offset); 1203 1204 std::memcpy(resp->record_data, 1205 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1206 1207 *data_len = dataLength; 1208 *data_len += 2; // additional 2 bytes for next record ID 1209 1210 return IPMI_CC_OK; 1211 } 1212 1213 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response, 1214 ipmi_data_len_t data_len) 1215 { 1216 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1217 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1218 get_sdr::SensorDataEntityRecord record{}; 1219 auto dataLength = 0; 1220 1221 const auto& entityRecords = 1222 ipmi::sensor::EntityInfoMapContainer::getContainer() 1223 ->getIpmiEntityRecords(); 1224 auto entity = entityRecords.begin(); 1225 uint8_t entityRecordID; 1226 auto recordID = get_sdr::request::get_record_id(req); 1227 1228 entityRecordID = recordID - ENTITY_RECORD_ID_START; 1229 entity = entityRecords.find(entityRecordID); 1230 if (entity == entityRecords.end()) 1231 { 1232 return IPMI_CC_SENSOR_INVALID; 1233 } 1234 1235 /* Header */ 1236 get_sdr::header::set_record_id(recordID, &(record.header)); 1237 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1238 record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD; 1239 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1240 1241 /* Key */ 1242 record.key.containerEntityId = entity->second.containerEntityId; 1243 record.key.containerEntityInstance = entity->second.containerEntityInstance; 1244 get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked, 1245 &(record.key)); 1246 record.key.entityId1 = entity->second.containedEntities[0].first; 1247 record.key.entityInstance1 = entity->second.containedEntities[0].second; 1248 1249 /* Body */ 1250 record.body.entityId2 = entity->second.containedEntities[1].first; 1251 record.body.entityInstance2 = entity->second.containedEntities[1].second; 1252 record.body.entityId3 = entity->second.containedEntities[2].first; 1253 record.body.entityInstance3 = entity->second.containedEntities[2].second; 1254 record.body.entityId4 = entity->second.containedEntities[3].first; 1255 record.body.entityInstance4 = entity->second.containedEntities[3].second; 1256 1257 if (++entity == entityRecords.end()) 1258 { 1259 get_sdr::response::set_next_record_id(END_OF_RECORD, 1260 resp); // last record 1261 } 1262 else 1263 { 1264 get_sdr::response::set_next_record_id( 1265 (ENTITY_RECORD_ID_START + entity->first), resp); 1266 } 1267 1268 // Check for invalid offset size 1269 if (req->offset > sizeof(record)) 1270 { 1271 return IPMI_CC_PARM_OUT_OF_RANGE; 1272 } 1273 1274 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1275 sizeof(record) - req->offset); 1276 1277 std::memcpy(resp->record_data, 1278 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1279 1280 *data_len = dataLength; 1281 *data_len += 2; // additional 2 bytes for next record ID 1282 1283 return IPMI_CC_OK; 1284 } 1285 1286 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, 1287 ipmi_response_t response, ipmi_data_len_t data_len, 1288 ipmi_context_t) 1289 { 1290 ipmi_ret_t ret = IPMI_CC_OK; 1291 get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; 1292 get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; 1293 1294 // Note: we use an iterator so we can provide the next ID at the end of 1295 // the call. 1296 auto sensor = ipmi::sensor::sensors.begin(); 1297 auto recordID = get_sdr::request::get_record_id(req); 1298 1299 // At the beginning of a scan, the host side will send us id=0. 1300 if (recordID != 0) 1301 { 1302 // recordID 0 to 255 means it is a FULL record. 1303 // recordID 256 to 511 means it is a FRU record. 1304 // recordID greater then 511 means it is a Entity Association 1305 // record. Currently we are supporting three record types: FULL 1306 // record, FRU record and Enttiy Association record. 1307 if (recordID >= ENTITY_RECORD_ID_START) 1308 { 1309 return ipmi_entity_get_sdr(request, response, data_len); 1310 } 1311 else if (recordID >= FRU_RECORD_ID_START && 1312 recordID < ENTITY_RECORD_ID_START) 1313 { 1314 return ipmi_fru_get_sdr(request, response, data_len); 1315 } 1316 else 1317 { 1318 sensor = ipmi::sensor::sensors.find(recordID); 1319 if (sensor == ipmi::sensor::sensors.end()) 1320 { 1321 return IPMI_CC_SENSOR_INVALID; 1322 } 1323 } 1324 } 1325 1326 uint8_t sensor_id = sensor->first; 1327 1328 auto it = sdrCacheMap.find(sensor_id); 1329 if (it == sdrCacheMap.end()) 1330 { 1331 /* Header */ 1332 get_sdr::SensorDataFullRecord record = {}; 1333 get_sdr::header::set_record_id(sensor_id, &(record.header)); 1334 record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 1335 record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; 1336 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1337 1338 /* Key */ 1339 get_sdr::key::set_owner_id_bmc(&(record.key)); 1340 record.key.sensor_number = sensor_id; 1341 1342 /* Body */ 1343 record.body.entity_id = sensor->second.entityType; 1344 record.body.sensor_type = sensor->second.sensorType; 1345 record.body.event_reading_type = sensor->second.sensorReadingType; 1346 record.body.entity_instance = sensor->second.instance; 1347 if (ipmi::sensor::Mutability::Write == 1348 (sensor->second.mutability & ipmi::sensor::Mutability::Write)) 1349 { 1350 get_sdr::body::init_settable_state(true, &(record.body)); 1351 } 1352 1353 // Set the type-specific details given the DBus interface 1354 populate_record_from_dbus(&(record.body), &(sensor->second), data_len); 1355 sdrCacheMap[sensor_id] = std::move(record); 1356 } 1357 1358 const auto& record = sdrCacheMap[sensor_id]; 1359 1360 if (++sensor == ipmi::sensor::sensors.end()) 1361 { 1362 // we have reached till end of sensor, so assign the next record id 1363 // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). 1364 auto next_record_id = (frus.size()) 1365 ? frus.begin()->first + FRU_RECORD_ID_START 1366 : END_OF_RECORD; 1367 1368 get_sdr::response::set_next_record_id(next_record_id, resp); 1369 } 1370 else 1371 { 1372 get_sdr::response::set_next_record_id(sensor->first, resp); 1373 } 1374 1375 if (req->offset > sizeof(record)) 1376 { 1377 return IPMI_CC_PARM_OUT_OF_RANGE; 1378 } 1379 1380 // data_len will ultimately be the size of the record, plus 1381 // the size of the next record ID: 1382 *data_len = std::min(static_cast<size_t>(req->bytes_to_read), 1383 sizeof(record) - req->offset); 1384 1385 std::memcpy(resp->record_data, 1386 reinterpret_cast<const uint8_t*>(&record) + req->offset, 1387 *data_len); 1388 1389 // data_len should include the LSB and MSB: 1390 *data_len += sizeof(resp->next_record_id_lsb) + 1391 sizeof(resp->next_record_id_msb); 1392 1393 return ret; 1394 } 1395 1396 static bool isFromSystemChannel() 1397 { 1398 // TODO we could not figure out where the request is from based on IPMI 1399 // command handler parameters. because of it, we can not differentiate 1400 // request from SMS/SMM or IPMB channel 1401 return true; 1402 } 1403 1404 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t, 1405 ipmi_request_t request, ipmi_response_t, 1406 ipmi_data_len_t dataLen, ipmi_context_t) 1407 { 1408 uint16_t generatorID; 1409 size_t count; 1410 bool assert = true; 1411 std::string sensorPath; 1412 size_t paraLen = *dataLen; 1413 PlatformEventRequest* req; 1414 *dataLen = 0; 1415 1416 if ((paraLen < selSystemEventSizeWith1Bytes) || 1417 (paraLen > selSystemEventSizeWith3Bytes)) 1418 { 1419 return IPMI_CC_REQ_DATA_LEN_INVALID; 1420 } 1421 1422 if (isFromSystemChannel()) 1423 { // first byte for SYSTEM Interface is Generator ID 1424 // +1 to get common struct 1425 req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1); 1426 // Capture the generator ID 1427 generatorID = *reinterpret_cast<uint8_t*>(request); 1428 // Platform Event usually comes from other firmware, like BIOS. 1429 // Unlike BMC sensor, it does not have BMC DBUS sensor path. 1430 sensorPath = "System"; 1431 } 1432 else 1433 { 1434 req = reinterpret_cast<PlatformEventRequest*>(request); 1435 // TODO GenratorID for IPMB is combination of RqSA and RqLUN 1436 generatorID = 0xff; 1437 sensorPath = "IPMB"; 1438 } 1439 // Content of event data field depends on sensor class. 1440 // When data0 bit[5:4] is non-zero, valid data counts is 3. 1441 // When data0 bit[7:6] is non-zero, valid data counts is 2. 1442 if (((req->data[0] & byte3EnableMask) != 0 && 1443 paraLen < selSystemEventSizeWith3Bytes) || 1444 ((req->data[0] & byte2EnableMask) != 0 && 1445 paraLen < selSystemEventSizeWith2Bytes)) 1446 { 1447 return IPMI_CC_REQ_DATA_LEN_INVALID; 1448 } 1449 1450 // Count bytes of Event Data 1451 if ((req->data[0] & byte3EnableMask) != 0) 1452 { 1453 count = 3; 1454 } 1455 else if ((req->data[0] & byte2EnableMask) != 0) 1456 { 1457 count = 2; 1458 } 1459 else 1460 { 1461 count = 1; 1462 } 1463 assert = req->eventDirectionType & directionMask ? false : true; 1464 std::vector<uint8_t> eventData(req->data, req->data + count); 1465 1466 sdbusplus::bus_t dbus(bus); 1467 std::string service = ipmi::getService(dbus, ipmiSELAddInterface, 1468 ipmiSELPath); 1469 sdbusplus::message_t writeSEL = dbus.new_method_call( 1470 service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd"); 1471 writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert, 1472 generatorID); 1473 try 1474 { 1475 dbus.call(writeSEL); 1476 } 1477 catch (const sdbusplus::exception_t& e) 1478 { 1479 phosphor::logging::log<phosphor::logging::level::ERR>(e.what()); 1480 return IPMI_CC_UNSPECIFIED_ERROR; 1481 } 1482 return IPMI_CC_OK; 1483 } 1484 1485 void register_netfn_sen_functions() 1486 { 1487 // Handlers with dbus-sdr handler implementation. 1488 // Do not register the hander if it dynamic sensors stack is used. 1489 1490 #ifndef FEATURE_DYNAMIC_SENSORS 1491 1492 #ifdef FEATURE_SENSORS_CACHE 1493 // Initialize the sensor matches 1494 initSensorMatches(); 1495 #endif 1496 1497 // <Set Sensor Reading and Event Status> 1498 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1499 ipmi::sensor_event::cmdSetSensorReadingAndEvtSts, 1500 ipmi::Privilege::Operator, ipmiSetSensorReading); 1501 // <Get Sensor Reading> 1502 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1503 ipmi::sensor_event::cmdGetSensorReading, 1504 ipmi::Privilege::User, ipmiSensorGetSensorReading); 1505 1506 // <Reserve Device SDR Repository> 1507 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1508 ipmi::sensor_event::cmdReserveDeviceSdrRepository, 1509 ipmi::Privilege::User, ipmiSensorReserveSdr); 1510 1511 // <Get Device SDR Info> 1512 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1513 ipmi::sensor_event::cmdGetDeviceSdrInfo, 1514 ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo); 1515 1516 // <Get Sensor Thresholds> 1517 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1518 ipmi::sensor_event::cmdGetSensorThreshold, 1519 ipmi::Privilege::User, ipmiSensorGetSensorThresholds); 1520 1521 // <Set Sensor Thresholds> 1522 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1523 ipmi::sensor_event::cmdSetSensorThreshold, 1524 ipmi::Privilege::User, ipmiSenSetSensorThresholds); 1525 1526 // <Get Device SDR> 1527 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, 1528 ipmi_sen_get_sdr, PRIVILEGE_USER); 1529 1530 #endif 1531 1532 // Common Handers used by both implementation. 1533 1534 // <Platform Event Message> 1535 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr, 1536 ipmicmdPlatformEvent, PRIVILEGE_OPERATOR); 1537 1538 // <Get Sensor Type> 1539 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1540 ipmi::sensor_event::cmdGetSensorType, 1541 ipmi::Privilege::User, ipmiGetSensorType); 1542 1543 return; 1544 } 1545