xref: /openbmc/phosphor-host-ipmid/sensorhandler.cpp (revision 3b1071ad94c13c90fe2b0257f1f23a29e56f81a8)
1 #include "config.h"
2 
3 #include "sensorhandler.hpp"
4 
5 #include "fruread.hpp"
6 
7 #include <systemd/sd-bus.h>
8 
9 #include <ipmid/api.hpp>
10 #include <ipmid/entity_map_json.hpp>
11 #include <ipmid/types.hpp>
12 #include <ipmid/utils.hpp>
13 #include <phosphor-logging/elog-errors.hpp>
14 #include <phosphor-logging/lg2.hpp>
15 #include <sdbusplus/message/types.hpp>
16 #include <xyz/openbmc_project/Common/error.hpp>
17 #include <xyz/openbmc_project/Sensor/Value/server.hpp>
18 
19 #include <bitset>
20 #include <cmath>
21 #include <cstring>
22 #include <set>
23 
24 static constexpr uint8_t fruInventoryDevice = 0x10;
25 static constexpr uint8_t IPMIFruInventory = 0x02;
26 static constexpr uint8_t BMCTargetAddress = 0x20;
27 
28 extern int updateSensorRecordFromSSRAESC(const void*);
29 extern sd_bus* bus;
30 
31 namespace ipmi
32 {
33 namespace sensor
34 {
35 extern const IdInfoMap sensors;
36 } // namespace sensor
37 } // namespace ipmi
38 
39 extern const FruMap frus;
40 
41 using namespace phosphor::logging;
42 using InternalFailure =
43     sdbusplus::error::xyz::openbmc_project::common::InternalFailure;
44 
45 void register_netfn_sen_functions() __attribute__((constructor));
46 
47 struct sensorTypemap_t
48 {
49     uint8_t number;
50     uint8_t typecode;
51     char dbusname[32];
52 };
53 
54 sensorTypemap_t g_SensorTypeMap[] = {
55 
56     {0x01, 0x6F, "Temp"},
57     {0x0C, 0x6F, "DIMM"},
58     {0x0C, 0x6F, "MEMORY_BUFFER"},
59     {0x07, 0x6F, "PROC"},
60     {0x07, 0x6F, "CORE"},
61     {0x07, 0x6F, "CPU"},
62     {0x0F, 0x6F, "BootProgress"},
63     {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor
64                                // type code os 0x09
65     {0xC3, 0x6F, "BootCount"},
66     {0x1F, 0x6F, "OperatingSystemStatus"},
67     {0x12, 0x6F, "SYSTEM_EVENT"},
68     {0xC7, 0x03, "SYSTEM"},
69     {0xC7, 0x03, "MAIN_PLANAR"},
70     {0xC2, 0x6F, "PowerCap"},
71     {0x0b, 0xCA, "PowerSupplyRedundancy"},
72     {0xDA, 0x03, "TurboAllowed"},
73     {0xD8, 0xC8, "PowerSupplyDerating"},
74     {0xFF, 0x00, ""},
75 };
76 
77 struct sensor_data_t
78 {
79     uint8_t sennum;
80 } __attribute__((packed));
81 
82 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>;
83 SDRCacheMap sdrCacheMap __attribute__((init_priority(101)));
84 
85 using SensorThresholdMap =
86     std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>;
87 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101)));
88 
89 #ifdef FEATURE_SENSORS_CACHE
90 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches
91     __attribute__((init_priority(101)));
92 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches
93     __attribute__((init_priority(101)));
94 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches
95     __attribute__((init_priority(101)));
96 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch
97     __attribute__((init_priority(101)));
98 
99 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101)));
100 
101 // It is needed to know which objects belong to which service, so that when a
102 // service exits without interfacesRemoved signal, we could invaildate the cache
103 // that is related to the service. It uses below two variables:
104 // - idToServiceMap records which sensors are known to have a related service;
105 // - serviceToIdMap maps a service to the sensors.
106 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>;
107 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101)));
108 
109 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>;
110 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101)));
111 
112 static void fillSensorIdServiceMap(const std::string&,
113                                    const std::string& /*intf*/, uint8_t id,
114                                    const std::string& service)
115 {
116     if (idToServiceMap.find(id) != idToServiceMap.end())
117     {
118         return;
119     }
120     idToServiceMap[id] = service;
121     serviceToIdMap[service].insert(id);
122 }
123 
124 static void fillSensorIdServiceMap(const std::string& obj,
125                                    const std::string& intf, uint8_t id)
126 {
127     if (idToServiceMap.find(id) != idToServiceMap.end())
128     {
129         return;
130     }
131     try
132     {
133         sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
134         auto service = ipmi::getService(bus, intf, obj);
135         idToServiceMap[id] = service;
136         serviceToIdMap[service].insert(id);
137     }
138     catch (...)
139     {
140         // Ignore
141     }
142 }
143 
144 void initSensorMatches()
145 {
146     using namespace sdbusplus::bus::match::rules;
147     sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
148     for (const auto& s : ipmi::sensor::sensors)
149     {
150         sensorAddedMatches.emplace(
151             s.first,
152             std::make_unique<sdbusplus::bus::match_t>(
153                 bus, interfacesAdded() + argNpath(0, s.second.sensorPath),
154                 [id = s.first, obj = s.second.sensorPath,
155                  intf = s.second.propertyInterfaces.begin()->first](
156                     auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); }));
157         sensorRemovedMatches.emplace(
158             s.first,
159             std::make_unique<sdbusplus::bus::match_t>(
160                 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath),
161                 [id = s.first](auto& /*msg*/) {
162             // Ideally this should work.
163             // But when a service is terminated or crashed, it does not
164             // emit interfacesRemoved signal. In that case it's handled
165             // by sensorsOwnerMatch
166             sensorCacheMap[id].reset();
167         }));
168         sensorUpdatedMatches.emplace(
169             s.first, std::make_unique<sdbusplus::bus::match_t>(
170                          bus,
171                          type::signal() + path(s.second.sensorPath) +
172                              member("PropertiesChanged"s) +
173                              interface("org.freedesktop.DBus.Properties"s),
174                          [&s](auto& msg) {
175             fillSensorIdServiceMap(s.second.sensorPath,
176                                    s.second.propertyInterfaces.begin()->first,
177                                    s.first);
178             try
179             {
180                 // This is signal callback
181                 std::string interfaceName;
182                 msg.read(interfaceName);
183                 ipmi::PropertyMap props;
184                 msg.read(props);
185                 s.second.getFunc(s.first, s.second, props);
186             }
187             catch (const std::exception& e)
188             {
189                 sensorCacheMap[s.first].reset();
190             }
191         }));
192     }
193     sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>(
194         bus, nameOwnerChanged(), [](auto& msg) {
195         std::string name;
196         std::string oldOwner;
197         std::string newOwner;
198         msg.read(name, oldOwner, newOwner);
199 
200         if (!name.empty() && newOwner.empty())
201         {
202             // The service exits
203             const auto it = serviceToIdMap.find(name);
204             if (it == serviceToIdMap.end())
205             {
206                 return;
207             }
208             for (const auto& id : it->second)
209             {
210                 // Invalidate cache
211                 sensorCacheMap[id].reset();
212             }
213         }
214     });
215 }
216 #endif
217 
218 // Use a lookup table to find the interface name of a specific sensor
219 // This will be used until an alternative is found.  this is the first
220 // step for mapping IPMI
221 int find_openbmc_path(uint8_t num, dbus_interface_t* interface)
222 {
223     const auto& sensor_it = ipmi::sensor::sensors.find(num);
224     if (sensor_it == ipmi::sensor::sensors.end())
225     {
226         // The sensor map does not contain the sensor requested
227         return -EINVAL;
228     }
229 
230     const auto& info = sensor_it->second;
231 
232     std::string serviceName{};
233     try
234     {
235         sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
236         serviceName = ipmi::getService(bus, info.sensorInterface,
237                                        info.sensorPath);
238     }
239     catch (const sdbusplus::exception_t&)
240     {
241         std::fprintf(stderr, "Failed to get %s busname: %s\n",
242                      info.sensorPath.c_str(), serviceName.c_str());
243         return -EINVAL;
244     }
245 
246     interface->sensortype = info.sensorType;
247     strcpy(interface->bus, serviceName.c_str());
248     strcpy(interface->path, info.sensorPath.c_str());
249     // Take the interface name from the beginning of the DbusInterfaceMap. This
250     // works for the Value interface but may not suffice for more complex
251     // sensors.
252     // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103
253     strcpy(interface->interface,
254            info.propertyInterfaces.begin()->first.c_str());
255     interface->sensornumber = num;
256 
257     return 0;
258 }
259 
260 /////////////////////////////////////////////////////////////////////
261 //
262 // Routines used by ipmi commands wanting to interact on the dbus
263 //
264 /////////////////////////////////////////////////////////////////////
265 int set_sensor_dbus_state_s(uint8_t number, const char* method,
266                             const char* value)
267 {
268     dbus_interface_t a;
269     int r;
270     sd_bus_error error = SD_BUS_ERROR_NULL;
271     sd_bus_message* m = NULL;
272 
273     r = find_openbmc_path(number, &a);
274 
275     if (r < 0)
276     {
277         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
278         return 0;
279     }
280 
281     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
282                                        method);
283     if (r < 0)
284     {
285         std::fprintf(stderr, "Failed to create a method call: %s",
286                      strerror(-r));
287         goto final;
288     }
289 
290     r = sd_bus_message_append(m, "v", "s", value);
291     if (r < 0)
292     {
293         std::fprintf(stderr, "Failed to create a input parameter: %s",
294                      strerror(-r));
295         goto final;
296     }
297 
298     r = sd_bus_call(bus, m, 0, &error, NULL);
299     if (r < 0)
300     {
301         std::fprintf(stderr, "Failed to call the method: %s", strerror(-r));
302     }
303 
304 final:
305     sd_bus_error_free(&error);
306     m = sd_bus_message_unref(m);
307 
308     return 0;
309 }
310 int set_sensor_dbus_state_y(uint8_t number, const char* method,
311                             const uint8_t value)
312 {
313     dbus_interface_t a;
314     int r;
315     sd_bus_error error = SD_BUS_ERROR_NULL;
316     sd_bus_message* m = NULL;
317 
318     r = find_openbmc_path(number, &a);
319 
320     if (r < 0)
321     {
322         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
323         return 0;
324     }
325 
326     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
327                                        method);
328     if (r < 0)
329     {
330         std::fprintf(stderr, "Failed to create a method call: %s",
331                      strerror(-r));
332         goto final;
333     }
334 
335     r = sd_bus_message_append(m, "v", "i", value);
336     if (r < 0)
337     {
338         std::fprintf(stderr, "Failed to create a input parameter: %s",
339                      strerror(-r));
340         goto final;
341     }
342 
343     r = sd_bus_call(bus, m, 0, &error, NULL);
344     if (r < 0)
345     {
346         std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r));
347     }
348 
349 final:
350     sd_bus_error_free(&error);
351     m = sd_bus_message_unref(m);
352 
353     return 0;
354 }
355 
356 uint8_t dbus_to_sensor_type(char* p)
357 {
358     sensorTypemap_t* s = g_SensorTypeMap;
359     char r = 0;
360     while (s->number != 0xFF)
361     {
362         if (!strcmp(s->dbusname, p))
363         {
364             r = s->typecode;
365             break;
366         }
367         s++;
368     }
369 
370     if (s->number == 0xFF)
371         printf("Failed to find Sensor Type %s\n", p);
372 
373     return r;
374 }
375 
376 uint8_t get_type_from_interface(dbus_interface_t dbus_if)
377 {
378     uint8_t type;
379 
380     // This is where sensors that do not exist in dbus but do
381     // exist in the host code stop.  This should indicate it
382     // is not a supported sensor
383     if (dbus_if.interface[0] == 0)
384     {
385         return 0;
386     }
387 
388     // Fetch type from interface itself.
389     if (dbus_if.sensortype != 0)
390     {
391         type = dbus_if.sensortype;
392     }
393     else
394     {
395         // Non InventoryItems
396         char* p = strrchr(dbus_if.path, '/');
397         type = dbus_to_sensor_type(p + 1);
398     }
399 
400     return type;
401 }
402 
403 // Replaces find_sensor
404 uint8_t find_type_for_sensor_number(uint8_t num)
405 {
406     int r;
407     dbus_interface_t dbus_if;
408     r = find_openbmc_path(num, &dbus_if);
409     if (r < 0)
410     {
411         std::fprintf(stderr, "Could not find sensor %d\n", num);
412         return 0;
413     }
414     return get_type_from_interface(dbus_if);
415 }
416 
417 /**
418  *  @brief implements the get sensor type command.
419  *  @param - sensorNumber
420  *
421  *  @return IPMI completion code plus response data on success.
422  *   - sensorType
423  *   - eventType
424  **/
425 
426 ipmi::RspType<uint8_t, // sensorType
427               uint8_t  // eventType
428               >
429     ipmiGetSensorType(uint8_t sensorNumber)
430 {
431     const auto it = ipmi::sensor::sensors.find(sensorNumber);
432     if (it == ipmi::sensor::sensors.end())
433     {
434         // The sensor map does not contain the sensor requested
435         return ipmi::responseSensorInvalid();
436     }
437 
438     const auto& info = it->second;
439     uint8_t sensorType = info.sensorType;
440     uint8_t eventType = info.sensorReadingType;
441 
442     return ipmi::responseSuccess(sensorType, eventType);
443 }
444 
445 const std::set<std::string> analogSensorInterfaces = {
446     "xyz.openbmc_project.Sensor.Value",
447     "xyz.openbmc_project.Control.FanPwm",
448 };
449 
450 bool isAnalogSensor(const std::string& interface)
451 {
452     return (analogSensorInterfaces.count(interface));
453 }
454 
455 /**
456 @brief This command is used to set sensorReading.
457 
458 @param
459     -  sensorNumber
460     -  operation
461     -  reading
462     -  assertOffset0_7
463     -  assertOffset8_14
464     -  deassertOffset0_7
465     -  deassertOffset8_14
466     -  eventData1
467     -  eventData2
468     -  eventData3
469 
470 @return completion code on success.
471 **/
472 
473 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation,
474                                      uint8_t reading, uint8_t assertOffset0_7,
475                                      uint8_t assertOffset8_14,
476                                      uint8_t deassertOffset0_7,
477                                      uint8_t deassertOffset8_14,
478                                      uint8_t eventData1, uint8_t eventData2,
479                                      uint8_t eventData3)
480 {
481     lg2::debug("IPMI SET_SENSOR, sensorNumber: {SENSOR_NUM}", "SENSOR_NUM",
482                lg2::hex, sensorNumber);
483 
484     if (sensorNumber == 0xFF)
485     {
486         return ipmi::responseInvalidFieldRequest();
487     }
488     ipmi::sensor::SetSensorReadingReq cmdData;
489 
490     cmdData.number = sensorNumber;
491     cmdData.operation = operation;
492     cmdData.reading = reading;
493     cmdData.assertOffset0_7 = assertOffset0_7;
494     cmdData.assertOffset8_14 = assertOffset8_14;
495     cmdData.deassertOffset0_7 = deassertOffset0_7;
496     cmdData.deassertOffset8_14 = deassertOffset8_14;
497     cmdData.eventData1 = eventData1;
498     cmdData.eventData2 = eventData2;
499     cmdData.eventData3 = eventData3;
500 
501     // Check if the Sensor Number is present
502     const auto iter = ipmi::sensor::sensors.find(sensorNumber);
503     if (iter == ipmi::sensor::sensors.end())
504     {
505         updateSensorRecordFromSSRAESC(&sensorNumber);
506         return ipmi::responseSuccess();
507     }
508 
509     try
510     {
511         if (ipmi::sensor::Mutability::Write !=
512             (iter->second.mutability & ipmi::sensor::Mutability::Write))
513         {
514             lg2::error("Sensor Set operation is not allowed, "
515                        "sensorNumber: {SENSOR_NUM}",
516                        "SENSOR_NUM", lg2::hex, sensorNumber);
517             return ipmi::responseIllegalCommand();
518         }
519         auto ipmiRC = iter->second.updateFunc(cmdData, iter->second);
520         return ipmi::response(ipmiRC);
521     }
522     catch (const InternalFailure& e)
523     {
524         lg2::error("Set sensor failed, sensorNumber: {SENSOR_NUM}",
525                    "SENSOR_NUM", lg2::hex, sensorNumber);
526         commit<InternalFailure>();
527         return ipmi::responseUnspecifiedError();
528     }
529     catch (const std::runtime_error& e)
530     {
531         lg2::error("runtime error: {ERROR}", "ERROR", e);
532         return ipmi::responseUnspecifiedError();
533     }
534 }
535 
536 /** @brief implements the get sensor reading command
537  *  @param sensorNum - sensor number
538  *
539  *  @returns IPMI completion code plus response data
540  *   - senReading           - sensor reading
541  *   - reserved
542  *   - readState            - sensor reading state enabled
543  *   - senScanState         - sensor scan state disabled
544  *   - allEventMessageState - all Event message state disabled
545  *   - assertionStatesLsb   - threshold levels states
546  *   - assertionStatesMsb   - discrete reading sensor states
547  */
548 ipmi::RspType<uint8_t, // sensor reading
549 
550               uint5_t, // reserved
551               bool,    // reading state
552               bool,    // 0 = sensor scanning state disabled
553               bool,    // 0 = all event messages disabled
554 
555               uint8_t, // threshold levels states
556               uint8_t  // discrete reading sensor states
557               >
558     ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx,
559                                uint8_t sensorNum)
560 {
561     if (sensorNum == 0xFF)
562     {
563         return ipmi::responseInvalidFieldRequest();
564     }
565 
566     const auto iter = ipmi::sensor::sensors.find(sensorNum);
567     if (iter == ipmi::sensor::sensors.end())
568     {
569         return ipmi::responseSensorInvalid();
570     }
571     if (ipmi::sensor::Mutability::Read !=
572         (iter->second.mutability & ipmi::sensor::Mutability::Read))
573     {
574         return ipmi::responseIllegalCommand();
575     }
576 
577     try
578     {
579 #ifdef FEATURE_SENSORS_CACHE
580         auto& sensorData = sensorCacheMap[sensorNum];
581         if (!sensorData.has_value())
582         {
583             // No cached value, try read it
584             std::string service;
585             boost::system::error_code ec;
586             const auto& sensorInfo = iter->second;
587             ec = ipmi::getService(ctx, sensorInfo.sensorInterface,
588                                   sensorInfo.sensorPath, service);
589             if (ec)
590             {
591                 return ipmi::responseUnspecifiedError();
592             }
593             fillSensorIdServiceMap(sensorInfo.sensorPath,
594                                    sensorInfo.propertyInterfaces.begin()->first,
595                                    iter->first, service);
596 
597             ipmi::PropertyMap props;
598             ec = ipmi::getAllDbusProperties(
599                 ctx, service, sensorInfo.sensorPath,
600                 sensorInfo.propertyInterfaces.begin()->first, props);
601             if (ec)
602             {
603                 fprintf(stderr, "Failed to get sensor %s, %d: %s\n",
604                         sensorInfo.sensorPath.c_str(), ec.value(),
605                         ec.message().c_str());
606                 // Intitilizing with default values
607                 constexpr uint8_t senReading = 0;
608                 constexpr uint5_t reserved{0};
609                 constexpr bool readState = true;
610                 constexpr bool senScanState = false;
611                 constexpr bool allEventMessageState = false;
612                 constexpr uint8_t assertionStatesLsb = 0;
613                 constexpr uint8_t assertionStatesMsb = 0;
614 
615                 return ipmi::responseSuccess(senReading, reserved, readState,
616                                              senScanState, allEventMessageState,
617                                              assertionStatesLsb,
618                                              assertionStatesMsb);
619             }
620             sensorInfo.getFunc(sensorNum, sensorInfo, props);
621         }
622         return ipmi::responseSuccess(
623             sensorData->response.reading, uint5_t(0),
624             sensorData->response.readingOrStateUnavailable,
625             sensorData->response.scanningEnabled,
626             sensorData->response.allEventMessagesEnabled,
627             sensorData->response.thresholdLevelsStates,
628             sensorData->response.discreteReadingSensorStates);
629 
630 #else
631         ipmi::sensor::GetSensorResponse getResponse =
632             iter->second.getFunc(iter->second);
633 
634         return ipmi::responseSuccess(getResponse.reading, uint5_t(0),
635                                      getResponse.readingOrStateUnavailable,
636                                      getResponse.scanningEnabled,
637                                      getResponse.allEventMessagesEnabled,
638                                      getResponse.thresholdLevelsStates,
639                                      getResponse.discreteReadingSensorStates);
640 #endif
641     }
642 #ifdef UPDATE_FUNCTIONAL_ON_FAIL
643     catch (const SensorFunctionalError& e)
644     {
645         return ipmi::responseResponseError();
646     }
647 #endif
648     catch (const std::exception& e)
649     {
650         // Intitilizing with default values
651         constexpr uint8_t senReading = 0;
652         constexpr uint5_t reserved{0};
653         constexpr bool readState = true;
654         constexpr bool senScanState = false;
655         constexpr bool allEventMessageState = false;
656         constexpr uint8_t assertionStatesLsb = 0;
657         constexpr uint8_t assertionStatesMsb = 0;
658 
659         return ipmi::responseSuccess(senReading, reserved, readState,
660                                      senScanState, allEventMessageState,
661                                      assertionStatesLsb, assertionStatesMsb);
662     }
663 }
664 
665 get_sdr::GetSensorThresholdsResponse
666     getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
667 {
668     get_sdr::GetSensorThresholdsResponse resp{};
669     constexpr auto warningThreshIntf =
670         "xyz.openbmc_project.Sensor.Threshold.Warning";
671     constexpr auto criticalThreshIntf =
672         "xyz.openbmc_project.Sensor.Threshold.Critical";
673 
674     const auto iter = ipmi::sensor::sensors.find(sensorNum);
675     const auto info = iter->second;
676 
677     std::string service;
678     boost::system::error_code ec;
679     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
680     if (ec)
681     {
682         return resp;
683     }
684 
685     ipmi::PropertyMap warnThresholds;
686     ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
687                                     warningThreshIntf, warnThresholds);
688     int32_t minClamp;
689     int32_t maxClamp;
690     int32_t rawData;
691     constexpr uint8_t sensorUnitsSignedBits = 2 << 6;
692     constexpr uint8_t signedDataFormat = 0x80;
693     if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat)
694     {
695         minClamp = std::numeric_limits<int8_t>::lowest();
696         maxClamp = std::numeric_limits<int8_t>::max();
697     }
698     else
699     {
700         minClamp = std::numeric_limits<uint8_t>::lowest();
701         maxClamp = std::numeric_limits<uint8_t>::max();
702     }
703     if (!ec)
704     {
705         double warnLow = ipmi::mappedVariant<double>(
706             warnThresholds, "WarningLow",
707             std::numeric_limits<double>::quiet_NaN());
708         double warnHigh = ipmi::mappedVariant<double>(
709             warnThresholds, "WarningHigh",
710             std::numeric_limits<double>::quiet_NaN());
711 
712         if (std::isfinite(warnLow))
713         {
714             warnLow *= std::pow(10, info.scale - info.exponentR);
715             rawData = round((warnLow - info.scaledOffset) / info.coefficientM);
716             resp.lowerNonCritical =
717                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
718             resp.validMask |= static_cast<uint8_t>(
719                 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK);
720         }
721 
722         if (std::isfinite(warnHigh))
723         {
724             warnHigh *= std::pow(10, info.scale - info.exponentR);
725             rawData = round((warnHigh - info.scaledOffset) / info.coefficientM);
726             resp.upperNonCritical =
727                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
728             resp.validMask |= static_cast<uint8_t>(
729                 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK);
730         }
731     }
732 
733     ipmi::PropertyMap critThresholds;
734     ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
735                                     criticalThreshIntf, critThresholds);
736     if (!ec)
737     {
738         double critLow = ipmi::mappedVariant<double>(
739             critThresholds, "CriticalLow",
740             std::numeric_limits<double>::quiet_NaN());
741         double critHigh = ipmi::mappedVariant<double>(
742             critThresholds, "CriticalHigh",
743             std::numeric_limits<double>::quiet_NaN());
744 
745         if (std::isfinite(critLow))
746         {
747             critLow *= std::pow(10, info.scale - info.exponentR);
748             rawData = round((critLow - info.scaledOffset) / info.coefficientM);
749             resp.lowerCritical =
750                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
751             resp.validMask |= static_cast<uint8_t>(
752                 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK);
753         }
754 
755         if (std::isfinite(critHigh))
756         {
757             critHigh *= std::pow(10, info.scale - info.exponentR);
758             rawData = round((critHigh - info.scaledOffset) / info.coefficientM);
759             resp.upperCritical =
760                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
761             resp.validMask |= static_cast<uint8_t>(
762                 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK);
763         }
764     }
765 
766     return resp;
767 }
768 
769 /** @brief implements the get sensor thresholds command
770  *  @param ctx - IPMI context pointer
771  *  @param sensorNum - sensor number
772  *
773  *  @returns IPMI completion code plus response data
774  *   - validMask - threshold mask
775  *   - lower non-critical threshold - IPMI messaging state
776  *   - lower critical threshold - link authentication state
777  *   - lower non-recoverable threshold - callback state
778  *   - upper non-critical threshold
779  *   - upper critical
780  *   - upper non-recoverable
781  */
782 ipmi::RspType<uint8_t, // validMask
783               uint8_t, // lowerNonCritical
784               uint8_t, // lowerCritical
785               uint8_t, // lowerNonRecoverable
786               uint8_t, // upperNonCritical
787               uint8_t, // upperCritical
788               uint8_t  // upperNonRecoverable
789               >
790     ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
791 {
792     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
793 
794     const auto iter = ipmi::sensor::sensors.find(sensorNum);
795     if (iter == ipmi::sensor::sensors.end())
796     {
797         return ipmi::responseSensorInvalid();
798     }
799 
800     const auto info = iter->second;
801 
802     // Proceed only if the sensor value interface is implemented.
803     if (info.propertyInterfaces.find(valueInterface) ==
804         info.propertyInterfaces.end())
805     {
806         // return with valid mask as 0
807         return ipmi::responseSuccess();
808     }
809 
810     auto it = sensorThresholdMap.find(sensorNum);
811     if (it == sensorThresholdMap.end())
812     {
813         sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum);
814     }
815 
816     const auto& resp = sensorThresholdMap[sensorNum];
817 
818     return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical,
819                                  resp.lowerCritical, resp.lowerNonRecoverable,
820                                  resp.upperNonCritical, resp.upperCritical,
821                                  resp.upperNonRecoverable);
822 }
823 
824 /** @brief implements the Set Sensor threshold command
825  *  @param sensorNumber        - sensor number
826  *  @param lowerNonCriticalThreshMask
827  *  @param lowerCriticalThreshMask
828  *  @param lowerNonRecovThreshMask
829  *  @param upperNonCriticalThreshMask
830  *  @param upperCriticalThreshMask
831  *  @param upperNonRecovThreshMask
832  *  @param reserved
833  *  @param lowerNonCritical    - lower non-critical threshold
834  *  @param lowerCritical       - Lower critical threshold
835  *  @param lowerNonRecoverable - Lower non recovarable threshold
836  *  @param upperNonCritical    - Upper non-critical threshold
837  *  @param upperCritical       - Upper critical
838  *  @param upperNonRecoverable - Upper Non-recoverable
839  *
840  *  @returns IPMI completion code
841  */
842 ipmi::RspType<> ipmiSenSetSensorThresholds(
843     ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask,
844     bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask,
845     bool upperNonCriticalThreshMask, bool upperCriticalThreshMask,
846     bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical,
847     uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical,
848     uint8_t upperCritical, uint8_t)
849 {
850     if (reserved)
851     {
852         return ipmi::responseInvalidFieldRequest();
853     }
854 
855     // lower nc and upper nc not suppported on any sensor
856     if (lowerNonRecovThreshMask || upperNonRecovThreshMask)
857     {
858         return ipmi::responseInvalidFieldRequest();
859     }
860 
861     // if none of the threshold mask are set, nothing to do
862     if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask |
863           lowerNonRecovThreshMask | upperNonCriticalThreshMask |
864           upperCriticalThreshMask | upperNonRecovThreshMask))
865     {
866         return ipmi::responseSuccess();
867     }
868 
869     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
870 
871     const auto iter = ipmi::sensor::sensors.find(sensorNum);
872     if (iter == ipmi::sensor::sensors.end())
873     {
874         return ipmi::responseSensorInvalid();
875     }
876 
877     const auto& info = iter->second;
878 
879     // Proceed only if the sensor value interface is implemented.
880     if (info.propertyInterfaces.find(valueInterface) ==
881         info.propertyInterfaces.end())
882     {
883         // return with valid mask as 0
884         return ipmi::responseSuccess();
885     }
886 
887     constexpr auto warningThreshIntf =
888         "xyz.openbmc_project.Sensor.Threshold.Warning";
889     constexpr auto criticalThreshIntf =
890         "xyz.openbmc_project.Sensor.Threshold.Critical";
891 
892     std::string service;
893     boost::system::error_code ec;
894     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
895     if (ec)
896     {
897         return ipmi::responseResponseError();
898     }
899     // store a vector of property name, value to set, and interface
900     std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet;
901 
902     // define the indexes of the tuple
903     constexpr uint8_t propertyName = 0;
904     constexpr uint8_t thresholdValue = 1;
905     constexpr uint8_t interface = 2;
906     // verifiy all needed fields are present
907     if (lowerCriticalThreshMask || upperCriticalThreshMask)
908     {
909         ipmi::PropertyMap findThreshold;
910         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
911                                         criticalThreshIntf, findThreshold);
912 
913         if (!ec)
914         {
915             if (lowerCriticalThreshMask)
916             {
917                 auto findLower = findThreshold.find("CriticalLow");
918                 if (findLower == findThreshold.end())
919                 {
920                     return ipmi::responseInvalidFieldRequest();
921                 }
922                 thresholdsToSet.emplace_back("CriticalLow", lowerCritical,
923                                              criticalThreshIntf);
924             }
925             if (upperCriticalThreshMask)
926             {
927                 auto findUpper = findThreshold.find("CriticalHigh");
928                 if (findUpper == findThreshold.end())
929                 {
930                     return ipmi::responseInvalidFieldRequest();
931                 }
932                 thresholdsToSet.emplace_back("CriticalHigh", upperCritical,
933                                              criticalThreshIntf);
934             }
935         }
936     }
937     if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask)
938     {
939         ipmi::PropertyMap findThreshold;
940         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
941                                         warningThreshIntf, findThreshold);
942 
943         if (!ec)
944         {
945             if (lowerNonCriticalThreshMask)
946             {
947                 auto findLower = findThreshold.find("WarningLow");
948                 if (findLower == findThreshold.end())
949                 {
950                     return ipmi::responseInvalidFieldRequest();
951                 }
952                 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical,
953                                              warningThreshIntf);
954             }
955             if (upperNonCriticalThreshMask)
956             {
957                 auto findUpper = findThreshold.find("WarningHigh");
958                 if (findUpper == findThreshold.end())
959                 {
960                     return ipmi::responseInvalidFieldRequest();
961                 }
962                 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical,
963                                              warningThreshIntf);
964             }
965         }
966     }
967     for (const auto& property : thresholdsToSet)
968     {
969         // from section 36.3 in the IPMI Spec, assume all linear
970         double valueToSet =
971             ((info.coefficientM * std::get<thresholdValue>(property)) +
972              (info.scaledOffset * std::pow(10.0, info.scale))) *
973             std::pow(10.0, info.exponentR);
974         ipmi::setDbusProperty(
975             ctx, service, info.sensorPath, std::get<interface>(property),
976             std::get<propertyName>(property), ipmi::Value(valueToSet));
977     }
978 
979     // Invalidate the cache
980     sensorThresholdMap.erase(sensorNum);
981     return ipmi::responseSuccess();
982 }
983 
984 /** @brief implements the get SDR Info command
985  *  @param count - Operation
986  *
987  *  @returns IPMI completion code plus response data
988  *   - sdrCount - sensor/SDR count
989  *   - lunsAndDynamicPopulation - static/Dynamic sensor population flag
990  */
991 ipmi::RspType<uint8_t, // respcount
992               uint8_t  // dynamic population flags
993               >
994     ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)
995 {
996     uint8_t sdrCount;
997     // multiple LUNs not supported.
998     constexpr uint8_t lunsAndDynamicPopulation = 1;
999     constexpr uint8_t getSdrCount = 0x01;
1000     constexpr uint8_t getSensorCount = 0x00;
1001 
1002     if (count.value_or(0) == getSdrCount)
1003     {
1004         // Get SDR count. This returns the total number of SDRs in the device.
1005         const auto& entityRecords =
1006             ipmi::sensor::EntityInfoMapContainer::getContainer()
1007                 ->getIpmiEntityRecords();
1008         sdrCount = ipmi::sensor::sensors.size() + frus.size() +
1009                    entityRecords.size();
1010     }
1011     else if (count.value_or(0) == getSensorCount)
1012     {
1013         // Get Sensor count. This returns the number of sensors
1014         sdrCount = ipmi::sensor::sensors.size();
1015     }
1016     else
1017     {
1018         return ipmi::responseInvalidCommandOnLun();
1019     }
1020 
1021     return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation);
1022 }
1023 
1024 /** @brief implements the reserve SDR command
1025  *  @returns IPMI completion code plus response data
1026  *   - reservationID - reservation ID
1027  */
1028 ipmi::RspType<uint16_t> ipmiSensorReserveSdr()
1029 {
1030     // A constant reservation ID is okay until we implement add/remove SDR.
1031     constexpr uint16_t reservationID = 1;
1032 
1033     return ipmi::responseSuccess(reservationID);
1034 }
1035 
1036 void setUnitFieldsForObject(const ipmi::sensor::Info* info,
1037                             get_sdr::SensorDataFullRecordBody* body)
1038 {
1039     namespace server = sdbusplus::server::xyz::openbmc_project::sensor;
1040     try
1041     {
1042         auto unit = server::Value::convertUnitFromString(info->unit);
1043         // Unit strings defined in
1044         // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml
1045         switch (unit)
1046         {
1047             case server::Value::Unit::DegreesC:
1048                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C;
1049                 break;
1050             case server::Value::Unit::RPMS:
1051                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM;
1052                 break;
1053             case server::Value::Unit::Volts:
1054                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS;
1055                 break;
1056             case server::Value::Unit::Meters:
1057                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS;
1058                 break;
1059             case server::Value::Unit::Amperes:
1060                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES;
1061                 break;
1062             case server::Value::Unit::Joules:
1063                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES;
1064                 break;
1065             case server::Value::Unit::Watts:
1066                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS;
1067                 break;
1068             default:
1069                 // Cannot be hit.
1070                 std::fprintf(stderr, "Unknown value unit type: = %s\n",
1071                              info->unit.c_str());
1072         }
1073     }
1074     catch (const sdbusplus::exception::InvalidEnumString& e)
1075     {
1076         lg2::warning("Warning: no unit provided for sensor!");
1077     }
1078 }
1079 
1080 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body,
1081                                      const ipmi::sensor::Info* info,
1082                                      ipmi_data_len_t)
1083 {
1084     /* Functional sensor case */
1085     if (isAnalogSensor(info->propertyInterfaces.begin()->first))
1086     {
1087         body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no
1088                                                    // rate, no modifier, not a %
1089         /* Unit info */
1090         setUnitFieldsForObject(info, body);
1091 
1092         get_sdr::body::set_b(info->coefficientB, body);
1093         get_sdr::body::set_m(info->coefficientM, body);
1094         get_sdr::body::set_b_exp(info->exponentB, body);
1095         get_sdr::body::set_r_exp(info->exponentR, body);
1096     }
1097 
1098     /* ID string */
1099     auto id_string = info->sensorName;
1100 
1101     if (id_string.empty())
1102     {
1103         id_string = info->sensorNameFunc(*info);
1104     }
1105 
1106     if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH)
1107     {
1108         get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body);
1109     }
1110     else
1111     {
1112         get_sdr::body::set_id_strlen(id_string.length(), body);
1113     }
1114     get_sdr::body::set_id_type(3, body); // "8-bit ASCII + Latin 1"
1115     strncpy(body->id_string, id_string.c_str(),
1116             get_sdr::body::get_id_strlen(body));
1117 
1118     return IPMI_CC_OK;
1119 };
1120 
1121 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response,
1122                             ipmi_data_len_t data_len)
1123 {
1124     auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
1125     auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
1126     get_sdr::SensorDataFruRecord record{};
1127     auto dataLength = 0;
1128 
1129     auto fru = frus.begin();
1130     uint8_t fruID{};
1131     auto recordID = get_sdr::request::get_record_id(req);
1132 
1133     fruID = recordID - FRU_RECORD_ID_START;
1134     fru = frus.find(fruID);
1135     if (fru == frus.end())
1136     {
1137         return IPMI_CC_SENSOR_INVALID;
1138     }
1139 
1140     /* Header */
1141     get_sdr::header::set_record_id(recordID, &(record.header));
1142     record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1143     record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD;
1144     record.header.record_length = sizeof(record.key) + sizeof(record.body);
1145 
1146     /* Key */
1147     record.key.fruID = fruID;
1148     record.key.accessLun |= IPMI_LOGICAL_FRU;
1149     record.key.deviceAddress = BMCTargetAddress;
1150 
1151     /* Body */
1152     record.body.entityID = fru->second[0].entityID;
1153     record.body.entityInstance = fru->second[0].entityInstance;
1154     record.body.deviceType = fruInventoryDevice;
1155     record.body.deviceTypeModifier = IPMIFruInventory;
1156 
1157     /* Device ID string */
1158     auto deviceID =
1159         fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1,
1160                                    fru->second[0].path.length());
1161 
1162     if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH)
1163     {
1164         get_sdr::body::set_device_id_strlen(
1165             get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body));
1166     }
1167     else
1168     {
1169         get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body));
1170     }
1171 
1172     strncpy(record.body.deviceID, deviceID.c_str(),
1173             get_sdr::body::get_device_id_strlen(&(record.body)));
1174 
1175     if (++fru == frus.end())
1176     {
1177         // we have reached till end of fru, so assign the next record id to
1178         // 512(Max fru ID = 511) + Entity Record ID(may start with 0).
1179         const auto& entityRecords =
1180             ipmi::sensor::EntityInfoMapContainer::getContainer()
1181                 ->getIpmiEntityRecords();
1182         auto next_record_id = (entityRecords.size())
1183                                   ? entityRecords.begin()->first +
1184                                         ENTITY_RECORD_ID_START
1185                                   : END_OF_RECORD;
1186         get_sdr::response::set_next_record_id(next_record_id, resp);
1187     }
1188     else
1189     {
1190         get_sdr::response::set_next_record_id(
1191             (FRU_RECORD_ID_START + fru->first), resp);
1192     }
1193 
1194     // Check for invalid offset size
1195     if (req->offset > sizeof(record))
1196     {
1197         return IPMI_CC_PARM_OUT_OF_RANGE;
1198     }
1199 
1200     dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
1201                           sizeof(record) - req->offset);
1202 
1203     std::memcpy(resp->record_data,
1204                 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
1205 
1206     *data_len = dataLength;
1207     *data_len += 2; // additional 2 bytes for next record ID
1208 
1209     return IPMI_CC_OK;
1210 }
1211 
1212 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response,
1213                                ipmi_data_len_t data_len)
1214 {
1215     auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
1216     auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
1217     get_sdr::SensorDataEntityRecord record{};
1218     auto dataLength = 0;
1219 
1220     const auto& entityRecords =
1221         ipmi::sensor::EntityInfoMapContainer::getContainer()
1222             ->getIpmiEntityRecords();
1223     auto entity = entityRecords.begin();
1224     uint8_t entityRecordID;
1225     auto recordID = get_sdr::request::get_record_id(req);
1226 
1227     entityRecordID = recordID - ENTITY_RECORD_ID_START;
1228     entity = entityRecords.find(entityRecordID);
1229     if (entity == entityRecords.end())
1230     {
1231         return IPMI_CC_SENSOR_INVALID;
1232     }
1233 
1234     /* Header */
1235     get_sdr::header::set_record_id(recordID, &(record.header));
1236     record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1237     record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD;
1238     record.header.record_length = sizeof(record.key) + sizeof(record.body);
1239 
1240     /* Key */
1241     record.key.containerEntityId = entity->second.containerEntityId;
1242     record.key.containerEntityInstance = entity->second.containerEntityInstance;
1243     get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked,
1244                             &(record.key));
1245     record.key.entityId1 = entity->second.containedEntities[0].first;
1246     record.key.entityInstance1 = entity->second.containedEntities[0].second;
1247 
1248     /* Body */
1249     record.body.entityId2 = entity->second.containedEntities[1].first;
1250     record.body.entityInstance2 = entity->second.containedEntities[1].second;
1251     record.body.entityId3 = entity->second.containedEntities[2].first;
1252     record.body.entityInstance3 = entity->second.containedEntities[2].second;
1253     record.body.entityId4 = entity->second.containedEntities[3].first;
1254     record.body.entityInstance4 = entity->second.containedEntities[3].second;
1255 
1256     if (++entity == entityRecords.end())
1257     {
1258         get_sdr::response::set_next_record_id(END_OF_RECORD,
1259                                               resp); // last record
1260     }
1261     else
1262     {
1263         get_sdr::response::set_next_record_id(
1264             (ENTITY_RECORD_ID_START + entity->first), resp);
1265     }
1266 
1267     // Check for invalid offset size
1268     if (req->offset > sizeof(record))
1269     {
1270         return IPMI_CC_PARM_OUT_OF_RANGE;
1271     }
1272 
1273     dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
1274                           sizeof(record) - req->offset);
1275 
1276     std::memcpy(resp->record_data,
1277                 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
1278 
1279     *data_len = dataLength;
1280     *data_len += 2; // additional 2 bytes for next record ID
1281 
1282     return IPMI_CC_OK;
1283 }
1284 
1285 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request,
1286                             ipmi_response_t response, ipmi_data_len_t data_len,
1287                             ipmi_context_t)
1288 {
1289     ipmi_ret_t ret = IPMI_CC_OK;
1290     get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request;
1291     get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response;
1292 
1293     // Note: we use an iterator so we can provide the next ID at the end of
1294     // the call.
1295     auto sensor = ipmi::sensor::sensors.begin();
1296     auto recordID = get_sdr::request::get_record_id(req);
1297 
1298     // At the beginning of a scan, the host side will send us id=0.
1299     if (recordID != 0)
1300     {
1301         // recordID 0 to 255 means it is a FULL record.
1302         // recordID 256 to 511 means it is a FRU record.
1303         // recordID greater then 511 means it is a Entity Association
1304         // record. Currently we are supporting three record types: FULL
1305         // record, FRU record and Enttiy Association record.
1306         if (recordID >= ENTITY_RECORD_ID_START)
1307         {
1308             return ipmi_entity_get_sdr(request, response, data_len);
1309         }
1310         else if (recordID >= FRU_RECORD_ID_START &&
1311                  recordID < ENTITY_RECORD_ID_START)
1312         {
1313             return ipmi_fru_get_sdr(request, response, data_len);
1314         }
1315         else
1316         {
1317             sensor = ipmi::sensor::sensors.find(recordID);
1318             if (sensor == ipmi::sensor::sensors.end())
1319             {
1320                 return IPMI_CC_SENSOR_INVALID;
1321             }
1322         }
1323     }
1324 
1325     uint8_t sensor_id = sensor->first;
1326 
1327     auto it = sdrCacheMap.find(sensor_id);
1328     if (it == sdrCacheMap.end())
1329     {
1330         /* Header */
1331         get_sdr::SensorDataFullRecord record = {};
1332         get_sdr::header::set_record_id(sensor_id, &(record.header));
1333         record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1
1334         record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD;
1335         record.header.record_length = sizeof(record.key) + sizeof(record.body);
1336 
1337         /* Key */
1338         get_sdr::key::set_owner_id_bmc(&(record.key));
1339         record.key.sensor_number = sensor_id;
1340 
1341         /* Body */
1342         record.body.entity_id = sensor->second.entityType;
1343         record.body.sensor_type = sensor->second.sensorType;
1344         record.body.event_reading_type = sensor->second.sensorReadingType;
1345         record.body.entity_instance = sensor->second.instance;
1346         if (ipmi::sensor::Mutability::Write ==
1347             (sensor->second.mutability & ipmi::sensor::Mutability::Write))
1348         {
1349             get_sdr::body::init_settable_state(true, &(record.body));
1350         }
1351 
1352         // Set the type-specific details given the DBus interface
1353         populate_record_from_dbus(&(record.body), &(sensor->second), data_len);
1354         sdrCacheMap[sensor_id] = std::move(record);
1355     }
1356 
1357     const auto& record = sdrCacheMap[sensor_id];
1358 
1359     if (++sensor == ipmi::sensor::sensors.end())
1360     {
1361         // we have reached till end of sensor, so assign the next record id
1362         // to 256(Max Sensor ID = 255) + FRU ID(may start with 0).
1363         auto next_record_id = (frus.size())
1364                                   ? frus.begin()->first + FRU_RECORD_ID_START
1365                                   : END_OF_RECORD;
1366 
1367         get_sdr::response::set_next_record_id(next_record_id, resp);
1368     }
1369     else
1370     {
1371         get_sdr::response::set_next_record_id(sensor->first, resp);
1372     }
1373 
1374     if (req->offset > sizeof(record))
1375     {
1376         return IPMI_CC_PARM_OUT_OF_RANGE;
1377     }
1378 
1379     // data_len will ultimately be the size of the record, plus
1380     // the size of the next record ID:
1381     *data_len = std::min(static_cast<size_t>(req->bytes_to_read),
1382                          sizeof(record) - req->offset);
1383 
1384     std::memcpy(resp->record_data,
1385                 reinterpret_cast<const uint8_t*>(&record) + req->offset,
1386                 *data_len);
1387 
1388     // data_len should include the LSB and MSB:
1389     *data_len += sizeof(resp->next_record_id_lsb) +
1390                  sizeof(resp->next_record_id_msb);
1391 
1392     return ret;
1393 }
1394 
1395 static bool isFromSystemChannel()
1396 {
1397     // TODO we could not figure out where the request is from based on IPMI
1398     // command handler parameters. because of it, we can not differentiate
1399     // request from SMS/SMM or IPMB channel
1400     return true;
1401 }
1402 
1403 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t,
1404                                 ipmi_request_t request, ipmi_response_t,
1405                                 ipmi_data_len_t dataLen, ipmi_context_t)
1406 {
1407     uint16_t generatorID;
1408     size_t count;
1409     bool assert = true;
1410     std::string sensorPath;
1411     size_t paraLen = *dataLen;
1412     PlatformEventRequest* req;
1413     *dataLen = 0;
1414 
1415     if ((paraLen < selSystemEventSizeWith1Bytes) ||
1416         (paraLen > selSystemEventSizeWith3Bytes))
1417     {
1418         return IPMI_CC_REQ_DATA_LEN_INVALID;
1419     }
1420 
1421     if (isFromSystemChannel())
1422     { // first byte for SYSTEM Interface is Generator ID
1423         // +1 to get common struct
1424         req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1);
1425         // Capture the generator ID
1426         generatorID = *reinterpret_cast<uint8_t*>(request);
1427         // Platform Event usually comes from other firmware, like BIOS.
1428         // Unlike BMC sensor, it does not have BMC DBUS sensor path.
1429         sensorPath = "System";
1430     }
1431     else
1432     {
1433         req = reinterpret_cast<PlatformEventRequest*>(request);
1434         // TODO GenratorID for IPMB is combination of RqSA and RqLUN
1435         generatorID = 0xff;
1436         sensorPath = "IPMB";
1437     }
1438     // Content of event data field depends on sensor class.
1439     // When data0 bit[5:4] is non-zero, valid data counts is 3.
1440     // When data0 bit[7:6] is non-zero, valid data counts is 2.
1441     if (((req->data[0] & byte3EnableMask) != 0 &&
1442          paraLen < selSystemEventSizeWith3Bytes) ||
1443         ((req->data[0] & byte2EnableMask) != 0 &&
1444          paraLen < selSystemEventSizeWith2Bytes))
1445     {
1446         return IPMI_CC_REQ_DATA_LEN_INVALID;
1447     }
1448 
1449     // Count bytes of Event Data
1450     if ((req->data[0] & byte3EnableMask) != 0)
1451     {
1452         count = 3;
1453     }
1454     else if ((req->data[0] & byte2EnableMask) != 0)
1455     {
1456         count = 2;
1457     }
1458     else
1459     {
1460         count = 1;
1461     }
1462     assert = req->eventDirectionType & directionMask ? false : true;
1463     std::vector<uint8_t> eventData(req->data, req->data + count);
1464 
1465     sdbusplus::bus_t dbus(bus);
1466     std::string service = ipmi::getService(dbus, ipmiSELAddInterface,
1467                                            ipmiSELPath);
1468     sdbusplus::message_t writeSEL = dbus.new_method_call(
1469         service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd");
1470     writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert,
1471                     generatorID);
1472     try
1473     {
1474         dbus.call(writeSEL);
1475     }
1476     catch (const sdbusplus::exception_t& e)
1477     {
1478         lg2::error("exception message: {ERROR}", "ERROR", e);
1479         return IPMI_CC_UNSPECIFIED_ERROR;
1480     }
1481     return IPMI_CC_OK;
1482 }
1483 
1484 void register_netfn_sen_functions()
1485 {
1486     // Handlers with dbus-sdr handler implementation.
1487     // Do not register the hander if it dynamic sensors stack is used.
1488 
1489 #ifndef FEATURE_DYNAMIC_SENSORS
1490 
1491 #ifdef FEATURE_SENSORS_CACHE
1492     // Initialize the sensor matches
1493     initSensorMatches();
1494 #endif
1495 
1496     // <Set Sensor Reading and Event Status>
1497     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1498                           ipmi::sensor_event::cmdSetSensorReadingAndEvtSts,
1499                           ipmi::Privilege::Operator, ipmiSetSensorReading);
1500     // <Get Sensor Reading>
1501     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1502                           ipmi::sensor_event::cmdGetSensorReading,
1503                           ipmi::Privilege::User, ipmiSensorGetSensorReading);
1504 
1505     // <Reserve Device SDR Repository>
1506     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1507                           ipmi::sensor_event::cmdReserveDeviceSdrRepository,
1508                           ipmi::Privilege::User, ipmiSensorReserveSdr);
1509 
1510     // <Get Device SDR Info>
1511     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1512                           ipmi::sensor_event::cmdGetDeviceSdrInfo,
1513                           ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo);
1514 
1515     // <Get Sensor Thresholds>
1516     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1517                           ipmi::sensor_event::cmdGetSensorThreshold,
1518                           ipmi::Privilege::User, ipmiSensorGetSensorThresholds);
1519 
1520     // <Set Sensor Thresholds>
1521     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1522                           ipmi::sensor_event::cmdSetSensorThreshold,
1523                           ipmi::Privilege::User, ipmiSenSetSensorThresholds);
1524 
1525     // <Get Device SDR>
1526     ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr,
1527                            ipmi_sen_get_sdr, PRIVILEGE_USER);
1528 
1529 #endif
1530 
1531     // Common Handers used by both implementation.
1532 
1533     // <Platform Event Message>
1534     ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr,
1535                            ipmicmdPlatformEvent, PRIVILEGE_OPERATOR);
1536 
1537     // <Get Sensor Type>
1538     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1539                           ipmi::sensor_event::cmdGetSensorType,
1540                           ipmi::Privilege::User, ipmiGetSensorType);
1541 
1542     return;
1543 }
1544