1 #include "config.h" 2 3 #include "sensorhandler.hpp" 4 5 #include "fruread.hpp" 6 7 #include <systemd/sd-bus.h> 8 9 #include <ipmid/api.hpp> 10 #include <ipmid/entity_map_json.hpp> 11 #include <ipmid/types.hpp> 12 #include <ipmid/utils.hpp> 13 #include <phosphor-logging/elog-errors.hpp> 14 #include <phosphor-logging/lg2.hpp> 15 #include <sdbusplus/message/types.hpp> 16 #include <xyz/openbmc_project/Common/error.hpp> 17 #include <xyz/openbmc_project/Sensor/Value/server.hpp> 18 19 #include <bitset> 20 #include <cmath> 21 #include <cstring> 22 #include <set> 23 24 static constexpr uint8_t fruInventoryDevice = 0x10; 25 static constexpr uint8_t IPMIFruInventory = 0x02; 26 static constexpr uint8_t BMCTargetAddress = 0x20; 27 28 extern int updateSensorRecordFromSSRAESC(const void*); 29 extern sd_bus* bus; 30 31 namespace ipmi 32 { 33 namespace sensor 34 { 35 extern const IdInfoMap sensors; 36 } // namespace sensor 37 } // namespace ipmi 38 39 extern const FruMap frus; 40 41 using namespace phosphor::logging; 42 using InternalFailure = 43 sdbusplus::error::xyz::openbmc_project::common::InternalFailure; 44 45 void register_netfn_sen_functions() __attribute__((constructor)); 46 47 struct sensorTypemap_t 48 { 49 uint8_t number; 50 uint8_t typecode; 51 char dbusname[32]; 52 }; 53 54 sensorTypemap_t g_SensorTypeMap[] = { 55 56 {0x01, 0x6F, "Temp"}, 57 {0x0C, 0x6F, "DIMM"}, 58 {0x0C, 0x6F, "MEMORY_BUFFER"}, 59 {0x07, 0x6F, "PROC"}, 60 {0x07, 0x6F, "CORE"}, 61 {0x07, 0x6F, "CPU"}, 62 {0x0F, 0x6F, "BootProgress"}, 63 {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor 64 // type code os 0x09 65 {0xC3, 0x6F, "BootCount"}, 66 {0x1F, 0x6F, "OperatingSystemStatus"}, 67 {0x12, 0x6F, "SYSTEM_EVENT"}, 68 {0xC7, 0x03, "SYSTEM"}, 69 {0xC7, 0x03, "MAIN_PLANAR"}, 70 {0xC2, 0x6F, "PowerCap"}, 71 {0x0b, 0xCA, "PowerSupplyRedundancy"}, 72 {0xDA, 0x03, "TurboAllowed"}, 73 {0xD8, 0xC8, "PowerSupplyDerating"}, 74 {0xFF, 0x00, ""}, 75 }; 76 77 struct sensor_data_t 78 { 79 uint8_t sennum; 80 } __attribute__((packed)); 81 82 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>; 83 SDRCacheMap sdrCacheMap __attribute__((init_priority(101))); 84 85 using SensorThresholdMap = 86 std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>; 87 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101))); 88 89 #ifdef FEATURE_SENSORS_CACHE 90 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches 91 __attribute__((init_priority(101))); 92 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches 93 __attribute__((init_priority(101))); 94 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches 95 __attribute__((init_priority(101))); 96 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch 97 __attribute__((init_priority(101))); 98 99 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101))); 100 101 // It is needed to know which objects belong to which service, so that when a 102 // service exits without interfacesRemoved signal, we could invaildate the cache 103 // that is related to the service. It uses below two variables: 104 // - idToServiceMap records which sensors are known to have a related service; 105 // - serviceToIdMap maps a service to the sensors. 106 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>; 107 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101))); 108 109 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>; 110 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101))); 111 112 static void fillSensorIdServiceMap(const std::string&, 113 const std::string& /*intf*/, uint8_t id, 114 const std::string& service) 115 { 116 if (idToServiceMap.find(id) != idToServiceMap.end()) 117 { 118 return; 119 } 120 idToServiceMap[id] = service; 121 serviceToIdMap[service].insert(id); 122 } 123 124 static void fillSensorIdServiceMap(const std::string& obj, 125 const std::string& intf, uint8_t id) 126 { 127 if (idToServiceMap.find(id) != idToServiceMap.end()) 128 { 129 return; 130 } 131 try 132 { 133 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 134 auto service = ipmi::getService(bus, intf, obj); 135 idToServiceMap[id] = service; 136 serviceToIdMap[service].insert(id); 137 } 138 catch (...) 139 { 140 // Ignore 141 } 142 } 143 144 void initSensorMatches() 145 { 146 using namespace sdbusplus::bus::match::rules; 147 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 148 for (const auto& s : ipmi::sensor::sensors) 149 { 150 sensorAddedMatches.emplace( 151 s.first, 152 std::make_unique<sdbusplus::bus::match_t>( 153 bus, interfacesAdded() + argNpath(0, s.second.sensorPath), 154 [id = s.first, obj = s.second.sensorPath, 155 intf = s.second.propertyInterfaces.begin()->first]( 156 auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); })); 157 sensorRemovedMatches.emplace( 158 s.first, 159 std::make_unique<sdbusplus::bus::match_t>( 160 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath), 161 [id = s.first](auto& /*msg*/) { 162 // Ideally this should work. 163 // But when a service is terminated or crashed, it does not 164 // emit interfacesRemoved signal. In that case it's handled 165 // by sensorsOwnerMatch 166 sensorCacheMap[id].reset(); 167 })); 168 sensorUpdatedMatches.emplace( 169 s.first, std::make_unique<sdbusplus::bus::match_t>( 170 bus, 171 type::signal() + path(s.second.sensorPath) + 172 member("PropertiesChanged"s) + 173 interface("org.freedesktop.DBus.Properties"s), 174 [&s](auto& msg) { 175 fillSensorIdServiceMap(s.second.sensorPath, 176 s.second.propertyInterfaces.begin()->first, 177 s.first); 178 try 179 { 180 // This is signal callback 181 std::string interfaceName; 182 msg.read(interfaceName); 183 ipmi::PropertyMap props; 184 msg.read(props); 185 s.second.getFunc(s.first, s.second, props); 186 } 187 catch (const std::exception& e) 188 { 189 sensorCacheMap[s.first].reset(); 190 } 191 })); 192 } 193 sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>( 194 bus, nameOwnerChanged(), [](auto& msg) { 195 std::string name; 196 std::string oldOwner; 197 std::string newOwner; 198 msg.read(name, oldOwner, newOwner); 199 200 if (!name.empty() && newOwner.empty()) 201 { 202 // The service exits 203 const auto it = serviceToIdMap.find(name); 204 if (it == serviceToIdMap.end()) 205 { 206 return; 207 } 208 for (const auto& id : it->second) 209 { 210 // Invalidate cache 211 sensorCacheMap[id].reset(); 212 } 213 } 214 }); 215 } 216 #endif 217 218 // Use a lookup table to find the interface name of a specific sensor 219 // This will be used until an alternative is found. this is the first 220 // step for mapping IPMI 221 int find_openbmc_path(uint8_t num, dbus_interface_t* interface) 222 { 223 const auto& sensor_it = ipmi::sensor::sensors.find(num); 224 if (sensor_it == ipmi::sensor::sensors.end()) 225 { 226 // The sensor map does not contain the sensor requested 227 return -EINVAL; 228 } 229 230 const auto& info = sensor_it->second; 231 232 std::string serviceName{}; 233 try 234 { 235 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 236 serviceName = ipmi::getService(bus, info.sensorInterface, 237 info.sensorPath); 238 } 239 catch (const sdbusplus::exception_t&) 240 { 241 std::fprintf(stderr, "Failed to get %s busname: %s\n", 242 info.sensorPath.c_str(), serviceName.c_str()); 243 return -EINVAL; 244 } 245 246 interface->sensortype = info.sensorType; 247 strcpy(interface->bus, serviceName.c_str()); 248 strcpy(interface->path, info.sensorPath.c_str()); 249 // Take the interface name from the beginning of the DbusInterfaceMap. This 250 // works for the Value interface but may not suffice for more complex 251 // sensors. 252 // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 253 strcpy(interface->interface, 254 info.propertyInterfaces.begin()->first.c_str()); 255 interface->sensornumber = num; 256 257 return 0; 258 } 259 260 ///////////////////////////////////////////////////////////////////// 261 // 262 // Routines used by ipmi commands wanting to interact on the dbus 263 // 264 ///////////////////////////////////////////////////////////////////// 265 int set_sensor_dbus_state_s(uint8_t number, const char* method, 266 const char* value) 267 { 268 dbus_interface_t a; 269 int r; 270 sd_bus_error error = SD_BUS_ERROR_NULL; 271 sd_bus_message* m = NULL; 272 273 r = find_openbmc_path(number, &a); 274 275 if (r < 0) 276 { 277 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 278 return 0; 279 } 280 281 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 282 method); 283 if (r < 0) 284 { 285 std::fprintf(stderr, "Failed to create a method call: %s", 286 strerror(-r)); 287 goto final; 288 } 289 290 r = sd_bus_message_append(m, "v", "s", value); 291 if (r < 0) 292 { 293 std::fprintf(stderr, "Failed to create a input parameter: %s", 294 strerror(-r)); 295 goto final; 296 } 297 298 r = sd_bus_call(bus, m, 0, &error, NULL); 299 if (r < 0) 300 { 301 std::fprintf(stderr, "Failed to call the method: %s", strerror(-r)); 302 } 303 304 final: 305 sd_bus_error_free(&error); 306 m = sd_bus_message_unref(m); 307 308 return 0; 309 } 310 int set_sensor_dbus_state_y(uint8_t number, const char* method, 311 const uint8_t value) 312 { 313 dbus_interface_t a; 314 int r; 315 sd_bus_error error = SD_BUS_ERROR_NULL; 316 sd_bus_message* m = NULL; 317 318 r = find_openbmc_path(number, &a); 319 320 if (r < 0) 321 { 322 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 323 return 0; 324 } 325 326 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 327 method); 328 if (r < 0) 329 { 330 std::fprintf(stderr, "Failed to create a method call: %s", 331 strerror(-r)); 332 goto final; 333 } 334 335 r = sd_bus_message_append(m, "v", "i", value); 336 if (r < 0) 337 { 338 std::fprintf(stderr, "Failed to create a input parameter: %s", 339 strerror(-r)); 340 goto final; 341 } 342 343 r = sd_bus_call(bus, m, 0, &error, NULL); 344 if (r < 0) 345 { 346 std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); 347 } 348 349 final: 350 sd_bus_error_free(&error); 351 m = sd_bus_message_unref(m); 352 353 return 0; 354 } 355 356 uint8_t dbus_to_sensor_type(char* p) 357 { 358 sensorTypemap_t* s = g_SensorTypeMap; 359 char r = 0; 360 while (s->number != 0xFF) 361 { 362 if (!strcmp(s->dbusname, p)) 363 { 364 r = s->typecode; 365 break; 366 } 367 s++; 368 } 369 370 if (s->number == 0xFF) 371 printf("Failed to find Sensor Type %s\n", p); 372 373 return r; 374 } 375 376 uint8_t get_type_from_interface(dbus_interface_t dbus_if) 377 { 378 uint8_t type; 379 380 // This is where sensors that do not exist in dbus but do 381 // exist in the host code stop. This should indicate it 382 // is not a supported sensor 383 if (dbus_if.interface[0] == 0) 384 { 385 return 0; 386 } 387 388 // Fetch type from interface itself. 389 if (dbus_if.sensortype != 0) 390 { 391 type = dbus_if.sensortype; 392 } 393 else 394 { 395 // Non InventoryItems 396 char* p = strrchr(dbus_if.path, '/'); 397 type = dbus_to_sensor_type(p + 1); 398 } 399 400 return type; 401 } 402 403 // Replaces find_sensor 404 uint8_t find_type_for_sensor_number(uint8_t num) 405 { 406 int r; 407 dbus_interface_t dbus_if; 408 r = find_openbmc_path(num, &dbus_if); 409 if (r < 0) 410 { 411 std::fprintf(stderr, "Could not find sensor %d\n", num); 412 return 0; 413 } 414 return get_type_from_interface(dbus_if); 415 } 416 417 /** 418 * @brief implements the get sensor type command. 419 * @param - sensorNumber 420 * 421 * @return IPMI completion code plus response data on success. 422 * - sensorType 423 * - eventType 424 **/ 425 426 ipmi::RspType<uint8_t, // sensorType 427 uint8_t // eventType 428 > 429 ipmiGetSensorType(uint8_t sensorNumber) 430 { 431 const auto it = ipmi::sensor::sensors.find(sensorNumber); 432 if (it == ipmi::sensor::sensors.end()) 433 { 434 // The sensor map does not contain the sensor requested 435 return ipmi::responseSensorInvalid(); 436 } 437 438 const auto& info = it->second; 439 uint8_t sensorType = info.sensorType; 440 uint8_t eventType = info.sensorReadingType; 441 442 return ipmi::responseSuccess(sensorType, eventType); 443 } 444 445 const std::set<std::string> analogSensorInterfaces = { 446 "xyz.openbmc_project.Sensor.Value", 447 "xyz.openbmc_project.Control.FanPwm", 448 }; 449 450 bool isAnalogSensor(const std::string& interface) 451 { 452 return (analogSensorInterfaces.count(interface)); 453 } 454 455 /** 456 @brief This command is used to set sensorReading. 457 458 @param 459 - sensorNumber 460 - operation 461 - reading 462 - assertOffset0_7 463 - assertOffset8_14 464 - deassertOffset0_7 465 - deassertOffset8_14 466 - eventData1 467 - eventData2 468 - eventData3 469 470 @return completion code on success. 471 **/ 472 473 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation, 474 uint8_t reading, uint8_t assertOffset0_7, 475 uint8_t assertOffset8_14, 476 uint8_t deassertOffset0_7, 477 uint8_t deassertOffset8_14, 478 uint8_t eventData1, uint8_t eventData2, 479 uint8_t eventData3) 480 { 481 lg2::debug("IPMI SET_SENSOR, sensorNumber: {SENSOR_NUM}", "SENSOR_NUM", 482 lg2::hex, sensorNumber); 483 484 if (sensorNumber == 0xFF) 485 { 486 return ipmi::responseInvalidFieldRequest(); 487 } 488 ipmi::sensor::SetSensorReadingReq cmdData; 489 490 cmdData.number = sensorNumber; 491 cmdData.operation = operation; 492 cmdData.reading = reading; 493 cmdData.assertOffset0_7 = assertOffset0_7; 494 cmdData.assertOffset8_14 = assertOffset8_14; 495 cmdData.deassertOffset0_7 = deassertOffset0_7; 496 cmdData.deassertOffset8_14 = deassertOffset8_14; 497 cmdData.eventData1 = eventData1; 498 cmdData.eventData2 = eventData2; 499 cmdData.eventData3 = eventData3; 500 501 // Check if the Sensor Number is present 502 const auto iter = ipmi::sensor::sensors.find(sensorNumber); 503 if (iter == ipmi::sensor::sensors.end()) 504 { 505 updateSensorRecordFromSSRAESC(&sensorNumber); 506 return ipmi::responseSuccess(); 507 } 508 509 try 510 { 511 if (ipmi::sensor::Mutability::Write != 512 (iter->second.mutability & ipmi::sensor::Mutability::Write)) 513 { 514 lg2::error("Sensor Set operation is not allowed, " 515 "sensorNumber: {SENSOR_NUM}", 516 "SENSOR_NUM", lg2::hex, sensorNumber); 517 return ipmi::responseIllegalCommand(); 518 } 519 auto ipmiRC = iter->second.updateFunc(cmdData, iter->second); 520 return ipmi::response(ipmiRC); 521 } 522 catch (const InternalFailure& e) 523 { 524 lg2::error("Set sensor failed, sensorNumber: {SENSOR_NUM}", 525 "SENSOR_NUM", lg2::hex, sensorNumber); 526 commit<InternalFailure>(); 527 return ipmi::responseUnspecifiedError(); 528 } 529 catch (const std::runtime_error& e) 530 { 531 lg2::error("runtime error: {ERROR}", "ERROR", e); 532 return ipmi::responseUnspecifiedError(); 533 } 534 } 535 536 /** @brief implements the get sensor reading command 537 * @param sensorNum - sensor number 538 * 539 * @returns IPMI completion code plus response data 540 * - senReading - sensor reading 541 * - reserved 542 * - readState - sensor reading state enabled 543 * - senScanState - sensor scan state disabled 544 * - allEventMessageState - all Event message state disabled 545 * - assertionStatesLsb - threshold levels states 546 * - assertionStatesMsb - discrete reading sensor states 547 */ 548 ipmi::RspType<uint8_t, // sensor reading 549 550 uint5_t, // reserved 551 bool, // reading state 552 bool, // 0 = sensor scanning state disabled 553 bool, // 0 = all event messages disabled 554 555 uint8_t, // threshold levels states 556 uint8_t // discrete reading sensor states 557 > 558 ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx, 559 uint8_t sensorNum) 560 { 561 if (sensorNum == 0xFF) 562 { 563 return ipmi::responseInvalidFieldRequest(); 564 } 565 566 const auto iter = ipmi::sensor::sensors.find(sensorNum); 567 if (iter == ipmi::sensor::sensors.end()) 568 { 569 return ipmi::responseSensorInvalid(); 570 } 571 if (ipmi::sensor::Mutability::Read != 572 (iter->second.mutability & ipmi::sensor::Mutability::Read)) 573 { 574 return ipmi::responseIllegalCommand(); 575 } 576 577 try 578 { 579 #ifdef FEATURE_SENSORS_CACHE 580 auto& sensorData = sensorCacheMap[sensorNum]; 581 if (!sensorData.has_value()) 582 { 583 // No cached value, try read it 584 std::string service; 585 boost::system::error_code ec; 586 const auto& sensorInfo = iter->second; 587 ec = ipmi::getService(ctx, sensorInfo.sensorInterface, 588 sensorInfo.sensorPath, service); 589 if (ec) 590 { 591 return ipmi::responseUnspecifiedError(); 592 } 593 fillSensorIdServiceMap(sensorInfo.sensorPath, 594 sensorInfo.propertyInterfaces.begin()->first, 595 iter->first, service); 596 597 ipmi::PropertyMap props; 598 ec = ipmi::getAllDbusProperties( 599 ctx, service, sensorInfo.sensorPath, 600 sensorInfo.propertyInterfaces.begin()->first, props); 601 if (ec) 602 { 603 fprintf(stderr, "Failed to get sensor %s, %d: %s\n", 604 sensorInfo.sensorPath.c_str(), ec.value(), 605 ec.message().c_str()); 606 // Intitilizing with default values 607 constexpr uint8_t senReading = 0; 608 constexpr uint5_t reserved{0}; 609 constexpr bool readState = true; 610 constexpr bool senScanState = false; 611 constexpr bool allEventMessageState = false; 612 constexpr uint8_t assertionStatesLsb = 0; 613 constexpr uint8_t assertionStatesMsb = 0; 614 615 return ipmi::responseSuccess(senReading, reserved, readState, 616 senScanState, allEventMessageState, 617 assertionStatesLsb, 618 assertionStatesMsb); 619 } 620 sensorInfo.getFunc(sensorNum, sensorInfo, props); 621 } 622 return ipmi::responseSuccess( 623 sensorData->response.reading, uint5_t(0), 624 sensorData->response.readingOrStateUnavailable, 625 sensorData->response.scanningEnabled, 626 sensorData->response.allEventMessagesEnabled, 627 sensorData->response.thresholdLevelsStates, 628 sensorData->response.discreteReadingSensorStates); 629 630 #else 631 ipmi::sensor::GetSensorResponse getResponse = 632 iter->second.getFunc(iter->second); 633 634 return ipmi::responseSuccess(getResponse.reading, uint5_t(0), 635 getResponse.readingOrStateUnavailable, 636 getResponse.scanningEnabled, 637 getResponse.allEventMessagesEnabled, 638 getResponse.thresholdLevelsStates, 639 getResponse.discreteReadingSensorStates); 640 #endif 641 } 642 #ifdef UPDATE_FUNCTIONAL_ON_FAIL 643 catch (const SensorFunctionalError& e) 644 { 645 return ipmi::responseResponseError(); 646 } 647 #endif 648 catch (const std::exception& e) 649 { 650 // Intitilizing with default values 651 constexpr uint8_t senReading = 0; 652 constexpr uint5_t reserved{0}; 653 constexpr bool readState = true; 654 constexpr bool senScanState = false; 655 constexpr bool allEventMessageState = false; 656 constexpr uint8_t assertionStatesLsb = 0; 657 constexpr uint8_t assertionStatesMsb = 0; 658 659 return ipmi::responseSuccess(senReading, reserved, readState, 660 senScanState, allEventMessageState, 661 assertionStatesLsb, assertionStatesMsb); 662 } 663 } 664 665 get_sdr::GetSensorThresholdsResponse 666 getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 667 { 668 get_sdr::GetSensorThresholdsResponse resp{}; 669 constexpr auto warningThreshIntf = 670 "xyz.openbmc_project.Sensor.Threshold.Warning"; 671 constexpr auto criticalThreshIntf = 672 "xyz.openbmc_project.Sensor.Threshold.Critical"; 673 674 const auto iter = ipmi::sensor::sensors.find(sensorNum); 675 const auto info = iter->second; 676 677 std::string service; 678 boost::system::error_code ec; 679 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 680 if (ec) 681 { 682 return resp; 683 } 684 685 ipmi::PropertyMap warnThresholds; 686 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 687 warningThreshIntf, warnThresholds); 688 int32_t minClamp; 689 int32_t maxClamp; 690 int32_t rawData; 691 constexpr uint8_t sensorUnitsSignedBits = 2 << 6; 692 constexpr uint8_t signedDataFormat = 0x80; 693 if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat) 694 { 695 minClamp = std::numeric_limits<int8_t>::lowest(); 696 maxClamp = std::numeric_limits<int8_t>::max(); 697 } 698 else 699 { 700 minClamp = std::numeric_limits<uint8_t>::lowest(); 701 maxClamp = std::numeric_limits<uint8_t>::max(); 702 } 703 if (!ec) 704 { 705 double warnLow = ipmi::mappedVariant<double>( 706 warnThresholds, "WarningLow", 707 std::numeric_limits<double>::quiet_NaN()); 708 double warnHigh = ipmi::mappedVariant<double>( 709 warnThresholds, "WarningHigh", 710 std::numeric_limits<double>::quiet_NaN()); 711 712 if (std::isfinite(warnLow)) 713 { 714 warnLow *= std::pow(10, info.scale - info.exponentR); 715 rawData = round((warnLow - info.scaledOffset) / info.coefficientM); 716 resp.lowerNonCritical = 717 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 718 resp.validMask |= static_cast<uint8_t>( 719 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); 720 } 721 722 if (std::isfinite(warnHigh)) 723 { 724 warnHigh *= std::pow(10, info.scale - info.exponentR); 725 rawData = round((warnHigh - info.scaledOffset) / info.coefficientM); 726 resp.upperNonCritical = 727 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 728 resp.validMask |= static_cast<uint8_t>( 729 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); 730 } 731 } 732 733 ipmi::PropertyMap critThresholds; 734 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 735 criticalThreshIntf, critThresholds); 736 if (!ec) 737 { 738 double critLow = ipmi::mappedVariant<double>( 739 critThresholds, "CriticalLow", 740 std::numeric_limits<double>::quiet_NaN()); 741 double critHigh = ipmi::mappedVariant<double>( 742 critThresholds, "CriticalHigh", 743 std::numeric_limits<double>::quiet_NaN()); 744 745 if (std::isfinite(critLow)) 746 { 747 critLow *= std::pow(10, info.scale - info.exponentR); 748 rawData = round((critLow - info.scaledOffset) / info.coefficientM); 749 resp.lowerCritical = 750 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 751 resp.validMask |= static_cast<uint8_t>( 752 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); 753 } 754 755 if (std::isfinite(critHigh)) 756 { 757 critHigh *= std::pow(10, info.scale - info.exponentR); 758 rawData = round((critHigh - info.scaledOffset) / info.coefficientM); 759 resp.upperCritical = 760 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 761 resp.validMask |= static_cast<uint8_t>( 762 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); 763 } 764 } 765 766 return resp; 767 } 768 769 /** @brief implements the get sensor thresholds command 770 * @param ctx - IPMI context pointer 771 * @param sensorNum - sensor number 772 * 773 * @returns IPMI completion code plus response data 774 * - validMask - threshold mask 775 * - lower non-critical threshold - IPMI messaging state 776 * - lower critical threshold - link authentication state 777 * - lower non-recoverable threshold - callback state 778 * - upper non-critical threshold 779 * - upper critical 780 * - upper non-recoverable 781 */ 782 ipmi::RspType<uint8_t, // validMask 783 uint8_t, // lowerNonCritical 784 uint8_t, // lowerCritical 785 uint8_t, // lowerNonRecoverable 786 uint8_t, // upperNonCritical 787 uint8_t, // upperCritical 788 uint8_t // upperNonRecoverable 789 > 790 ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 791 { 792 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 793 794 const auto iter = ipmi::sensor::sensors.find(sensorNum); 795 if (iter == ipmi::sensor::sensors.end()) 796 { 797 return ipmi::responseSensorInvalid(); 798 } 799 800 const auto info = iter->second; 801 802 // Proceed only if the sensor value interface is implemented. 803 if (info.propertyInterfaces.find(valueInterface) == 804 info.propertyInterfaces.end()) 805 { 806 // return with valid mask as 0 807 return ipmi::responseSuccess(); 808 } 809 810 auto it = sensorThresholdMap.find(sensorNum); 811 if (it == sensorThresholdMap.end()) 812 { 813 sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum); 814 } 815 816 const auto& resp = sensorThresholdMap[sensorNum]; 817 818 return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical, 819 resp.lowerCritical, resp.lowerNonRecoverable, 820 resp.upperNonCritical, resp.upperCritical, 821 resp.upperNonRecoverable); 822 } 823 824 /** @brief implements the Set Sensor threshold command 825 * @param sensorNumber - sensor number 826 * @param lowerNonCriticalThreshMask 827 * @param lowerCriticalThreshMask 828 * @param lowerNonRecovThreshMask 829 * @param upperNonCriticalThreshMask 830 * @param upperCriticalThreshMask 831 * @param upperNonRecovThreshMask 832 * @param reserved 833 * @param lowerNonCritical - lower non-critical threshold 834 * @param lowerCritical - Lower critical threshold 835 * @param lowerNonRecoverable - Lower non recovarable threshold 836 * @param upperNonCritical - Upper non-critical threshold 837 * @param upperCritical - Upper critical 838 * @param upperNonRecoverable - Upper Non-recoverable 839 * 840 * @returns IPMI completion code 841 */ 842 ipmi::RspType<> ipmiSenSetSensorThresholds( 843 ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask, 844 bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask, 845 bool upperNonCriticalThreshMask, bool upperCriticalThreshMask, 846 bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical, 847 uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical, 848 uint8_t upperCritical, uint8_t) 849 { 850 if (reserved) 851 { 852 return ipmi::responseInvalidFieldRequest(); 853 } 854 855 // lower nc and upper nc not suppported on any sensor 856 if (lowerNonRecovThreshMask || upperNonRecovThreshMask) 857 { 858 return ipmi::responseInvalidFieldRequest(); 859 } 860 861 // if none of the threshold mask are set, nothing to do 862 if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask | 863 lowerNonRecovThreshMask | upperNonCriticalThreshMask | 864 upperCriticalThreshMask | upperNonRecovThreshMask)) 865 { 866 return ipmi::responseSuccess(); 867 } 868 869 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 870 871 const auto iter = ipmi::sensor::sensors.find(sensorNum); 872 if (iter == ipmi::sensor::sensors.end()) 873 { 874 return ipmi::responseSensorInvalid(); 875 } 876 877 const auto& info = iter->second; 878 879 // Proceed only if the sensor value interface is implemented. 880 if (info.propertyInterfaces.find(valueInterface) == 881 info.propertyInterfaces.end()) 882 { 883 // return with valid mask as 0 884 return ipmi::responseSuccess(); 885 } 886 887 constexpr auto warningThreshIntf = 888 "xyz.openbmc_project.Sensor.Threshold.Warning"; 889 constexpr auto criticalThreshIntf = 890 "xyz.openbmc_project.Sensor.Threshold.Critical"; 891 892 std::string service; 893 boost::system::error_code ec; 894 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 895 if (ec) 896 { 897 return ipmi::responseResponseError(); 898 } 899 // store a vector of property name, value to set, and interface 900 std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet; 901 902 // define the indexes of the tuple 903 constexpr uint8_t propertyName = 0; 904 constexpr uint8_t thresholdValue = 1; 905 constexpr uint8_t interface = 2; 906 // verifiy all needed fields are present 907 if (lowerCriticalThreshMask || upperCriticalThreshMask) 908 { 909 ipmi::PropertyMap findThreshold; 910 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 911 criticalThreshIntf, findThreshold); 912 913 if (!ec) 914 { 915 if (lowerCriticalThreshMask) 916 { 917 auto findLower = findThreshold.find("CriticalLow"); 918 if (findLower == findThreshold.end()) 919 { 920 return ipmi::responseInvalidFieldRequest(); 921 } 922 thresholdsToSet.emplace_back("CriticalLow", lowerCritical, 923 criticalThreshIntf); 924 } 925 if (upperCriticalThreshMask) 926 { 927 auto findUpper = findThreshold.find("CriticalHigh"); 928 if (findUpper == findThreshold.end()) 929 { 930 return ipmi::responseInvalidFieldRequest(); 931 } 932 thresholdsToSet.emplace_back("CriticalHigh", upperCritical, 933 criticalThreshIntf); 934 } 935 } 936 } 937 if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask) 938 { 939 ipmi::PropertyMap findThreshold; 940 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 941 warningThreshIntf, findThreshold); 942 943 if (!ec) 944 { 945 if (lowerNonCriticalThreshMask) 946 { 947 auto findLower = findThreshold.find("WarningLow"); 948 if (findLower == findThreshold.end()) 949 { 950 return ipmi::responseInvalidFieldRequest(); 951 } 952 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical, 953 warningThreshIntf); 954 } 955 if (upperNonCriticalThreshMask) 956 { 957 auto findUpper = findThreshold.find("WarningHigh"); 958 if (findUpper == findThreshold.end()) 959 { 960 return ipmi::responseInvalidFieldRequest(); 961 } 962 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical, 963 warningThreshIntf); 964 } 965 } 966 } 967 for (const auto& property : thresholdsToSet) 968 { 969 // from section 36.3 in the IPMI Spec, assume all linear 970 double valueToSet = 971 ((info.coefficientM * std::get<thresholdValue>(property)) + 972 (info.scaledOffset * std::pow(10.0, info.scale))) * 973 std::pow(10.0, info.exponentR); 974 ipmi::setDbusProperty( 975 ctx, service, info.sensorPath, std::get<interface>(property), 976 std::get<propertyName>(property), ipmi::Value(valueToSet)); 977 } 978 979 // Invalidate the cache 980 sensorThresholdMap.erase(sensorNum); 981 return ipmi::responseSuccess(); 982 } 983 984 /** @brief implements the get SDR Info command 985 * @param count - Operation 986 * 987 * @returns IPMI completion code plus response data 988 * - sdrCount - sensor/SDR count 989 * - lunsAndDynamicPopulation - static/Dynamic sensor population flag 990 */ 991 ipmi::RspType<uint8_t, // respcount 992 uint8_t // dynamic population flags 993 > 994 ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count) 995 { 996 uint8_t sdrCount; 997 // multiple LUNs not supported. 998 constexpr uint8_t lunsAndDynamicPopulation = 1; 999 constexpr uint8_t getSdrCount = 0x01; 1000 constexpr uint8_t getSensorCount = 0x00; 1001 1002 if (count.value_or(0) == getSdrCount) 1003 { 1004 // Get SDR count. This returns the total number of SDRs in the device. 1005 const auto& entityRecords = 1006 ipmi::sensor::EntityInfoMapContainer::getContainer() 1007 ->getIpmiEntityRecords(); 1008 sdrCount = ipmi::sensor::sensors.size() + frus.size() + 1009 entityRecords.size(); 1010 } 1011 else if (count.value_or(0) == getSensorCount) 1012 { 1013 // Get Sensor count. This returns the number of sensors 1014 sdrCount = ipmi::sensor::sensors.size(); 1015 } 1016 else 1017 { 1018 return ipmi::responseInvalidCommandOnLun(); 1019 } 1020 1021 return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation); 1022 } 1023 1024 /** @brief implements the reserve SDR command 1025 * @returns IPMI completion code plus response data 1026 * - reservationID - reservation ID 1027 */ 1028 ipmi::RspType<uint16_t> ipmiSensorReserveSdr() 1029 { 1030 // A constant reservation ID is okay until we implement add/remove SDR. 1031 constexpr uint16_t reservationID = 1; 1032 1033 return ipmi::responseSuccess(reservationID); 1034 } 1035 1036 void setUnitFieldsForObject(const ipmi::sensor::Info* info, 1037 get_sdr::SensorDataFullRecordBody* body) 1038 { 1039 namespace server = sdbusplus::server::xyz::openbmc_project::sensor; 1040 try 1041 { 1042 auto unit = server::Value::convertUnitFromString(info->unit); 1043 // Unit strings defined in 1044 // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml 1045 switch (unit) 1046 { 1047 case server::Value::Unit::DegreesC: 1048 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; 1049 break; 1050 case server::Value::Unit::RPMS: 1051 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM; 1052 break; 1053 case server::Value::Unit::Volts: 1054 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; 1055 break; 1056 case server::Value::Unit::Meters: 1057 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; 1058 break; 1059 case server::Value::Unit::Amperes: 1060 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; 1061 break; 1062 case server::Value::Unit::Joules: 1063 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; 1064 break; 1065 case server::Value::Unit::Watts: 1066 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; 1067 break; 1068 default: 1069 // Cannot be hit. 1070 std::fprintf(stderr, "Unknown value unit type: = %s\n", 1071 info->unit.c_str()); 1072 } 1073 } 1074 catch (const sdbusplus::exception::InvalidEnumString& e) 1075 { 1076 lg2::warning("Warning: no unit provided for sensor!"); 1077 } 1078 } 1079 1080 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, 1081 const ipmi::sensor::Info* info, 1082 ipmi_data_len_t) 1083 { 1084 /* Functional sensor case */ 1085 if (isAnalogSensor(info->propertyInterfaces.begin()->first)) 1086 { 1087 body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no 1088 // rate, no modifier, not a % 1089 /* Unit info */ 1090 setUnitFieldsForObject(info, body); 1091 1092 get_sdr::body::set_b(info->coefficientB, body); 1093 get_sdr::body::set_m(info->coefficientM, body); 1094 get_sdr::body::set_b_exp(info->exponentB, body); 1095 get_sdr::body::set_r_exp(info->exponentR, body); 1096 } 1097 1098 /* ID string */ 1099 auto id_string = info->sensorName; 1100 1101 if (id_string.empty()) 1102 { 1103 id_string = info->sensorNameFunc(*info); 1104 } 1105 1106 if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) 1107 { 1108 get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); 1109 } 1110 else 1111 { 1112 get_sdr::body::set_id_strlen(id_string.length(), body); 1113 } 1114 get_sdr::body::set_id_type(3, body); // "8-bit ASCII + Latin 1" 1115 strncpy(body->id_string, id_string.c_str(), 1116 get_sdr::body::get_id_strlen(body)); 1117 1118 return IPMI_CC_OK; 1119 }; 1120 1121 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, 1122 ipmi_data_len_t data_len) 1123 { 1124 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1125 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1126 get_sdr::SensorDataFruRecord record{}; 1127 auto dataLength = 0; 1128 1129 auto fru = frus.begin(); 1130 uint8_t fruID{}; 1131 auto recordID = get_sdr::request::get_record_id(req); 1132 1133 fruID = recordID - FRU_RECORD_ID_START; 1134 fru = frus.find(fruID); 1135 if (fru == frus.end()) 1136 { 1137 return IPMI_CC_SENSOR_INVALID; 1138 } 1139 1140 /* Header */ 1141 get_sdr::header::set_record_id(recordID, &(record.header)); 1142 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1143 record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; 1144 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1145 1146 /* Key */ 1147 record.key.fruID = fruID; 1148 record.key.accessLun |= IPMI_LOGICAL_FRU; 1149 record.key.deviceAddress = BMCTargetAddress; 1150 1151 /* Body */ 1152 record.body.entityID = fru->second[0].entityID; 1153 record.body.entityInstance = fru->second[0].entityInstance; 1154 record.body.deviceType = fruInventoryDevice; 1155 record.body.deviceTypeModifier = IPMIFruInventory; 1156 1157 /* Device ID string */ 1158 auto deviceID = 1159 fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, 1160 fru->second[0].path.length()); 1161 1162 if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) 1163 { 1164 get_sdr::body::set_device_id_strlen( 1165 get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); 1166 } 1167 else 1168 { 1169 get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); 1170 } 1171 1172 strncpy(record.body.deviceID, deviceID.c_str(), 1173 get_sdr::body::get_device_id_strlen(&(record.body))); 1174 1175 if (++fru == frus.end()) 1176 { 1177 // we have reached till end of fru, so assign the next record id to 1178 // 512(Max fru ID = 511) + Entity Record ID(may start with 0). 1179 const auto& entityRecords = 1180 ipmi::sensor::EntityInfoMapContainer::getContainer() 1181 ->getIpmiEntityRecords(); 1182 auto next_record_id = (entityRecords.size()) 1183 ? entityRecords.begin()->first + 1184 ENTITY_RECORD_ID_START 1185 : END_OF_RECORD; 1186 get_sdr::response::set_next_record_id(next_record_id, resp); 1187 } 1188 else 1189 { 1190 get_sdr::response::set_next_record_id( 1191 (FRU_RECORD_ID_START + fru->first), resp); 1192 } 1193 1194 // Check for invalid offset size 1195 if (req->offset > sizeof(record)) 1196 { 1197 return IPMI_CC_PARM_OUT_OF_RANGE; 1198 } 1199 1200 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1201 sizeof(record) - req->offset); 1202 1203 std::memcpy(resp->record_data, 1204 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1205 1206 *data_len = dataLength; 1207 *data_len += 2; // additional 2 bytes for next record ID 1208 1209 return IPMI_CC_OK; 1210 } 1211 1212 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response, 1213 ipmi_data_len_t data_len) 1214 { 1215 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1216 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1217 get_sdr::SensorDataEntityRecord record{}; 1218 auto dataLength = 0; 1219 1220 const auto& entityRecords = 1221 ipmi::sensor::EntityInfoMapContainer::getContainer() 1222 ->getIpmiEntityRecords(); 1223 auto entity = entityRecords.begin(); 1224 uint8_t entityRecordID; 1225 auto recordID = get_sdr::request::get_record_id(req); 1226 1227 entityRecordID = recordID - ENTITY_RECORD_ID_START; 1228 entity = entityRecords.find(entityRecordID); 1229 if (entity == entityRecords.end()) 1230 { 1231 return IPMI_CC_SENSOR_INVALID; 1232 } 1233 1234 /* Header */ 1235 get_sdr::header::set_record_id(recordID, &(record.header)); 1236 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1237 record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD; 1238 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1239 1240 /* Key */ 1241 record.key.containerEntityId = entity->second.containerEntityId; 1242 record.key.containerEntityInstance = entity->second.containerEntityInstance; 1243 get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked, 1244 &(record.key)); 1245 record.key.entityId1 = entity->second.containedEntities[0].first; 1246 record.key.entityInstance1 = entity->second.containedEntities[0].second; 1247 1248 /* Body */ 1249 record.body.entityId2 = entity->second.containedEntities[1].first; 1250 record.body.entityInstance2 = entity->second.containedEntities[1].second; 1251 record.body.entityId3 = entity->second.containedEntities[2].first; 1252 record.body.entityInstance3 = entity->second.containedEntities[2].second; 1253 record.body.entityId4 = entity->second.containedEntities[3].first; 1254 record.body.entityInstance4 = entity->second.containedEntities[3].second; 1255 1256 if (++entity == entityRecords.end()) 1257 { 1258 get_sdr::response::set_next_record_id(END_OF_RECORD, 1259 resp); // last record 1260 } 1261 else 1262 { 1263 get_sdr::response::set_next_record_id( 1264 (ENTITY_RECORD_ID_START + entity->first), resp); 1265 } 1266 1267 // Check for invalid offset size 1268 if (req->offset > sizeof(record)) 1269 { 1270 return IPMI_CC_PARM_OUT_OF_RANGE; 1271 } 1272 1273 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1274 sizeof(record) - req->offset); 1275 1276 std::memcpy(resp->record_data, 1277 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1278 1279 *data_len = dataLength; 1280 *data_len += 2; // additional 2 bytes for next record ID 1281 1282 return IPMI_CC_OK; 1283 } 1284 1285 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, 1286 ipmi_response_t response, ipmi_data_len_t data_len, 1287 ipmi_context_t) 1288 { 1289 ipmi_ret_t ret = IPMI_CC_OK; 1290 get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; 1291 get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; 1292 1293 // Note: we use an iterator so we can provide the next ID at the end of 1294 // the call. 1295 auto sensor = ipmi::sensor::sensors.begin(); 1296 auto recordID = get_sdr::request::get_record_id(req); 1297 1298 // At the beginning of a scan, the host side will send us id=0. 1299 if (recordID != 0) 1300 { 1301 // recordID 0 to 255 means it is a FULL record. 1302 // recordID 256 to 511 means it is a FRU record. 1303 // recordID greater then 511 means it is a Entity Association 1304 // record. Currently we are supporting three record types: FULL 1305 // record, FRU record and Enttiy Association record. 1306 if (recordID >= ENTITY_RECORD_ID_START) 1307 { 1308 return ipmi_entity_get_sdr(request, response, data_len); 1309 } 1310 else if (recordID >= FRU_RECORD_ID_START && 1311 recordID < ENTITY_RECORD_ID_START) 1312 { 1313 return ipmi_fru_get_sdr(request, response, data_len); 1314 } 1315 else 1316 { 1317 sensor = ipmi::sensor::sensors.find(recordID); 1318 if (sensor == ipmi::sensor::sensors.end()) 1319 { 1320 return IPMI_CC_SENSOR_INVALID; 1321 } 1322 } 1323 } 1324 1325 uint8_t sensor_id = sensor->first; 1326 1327 auto it = sdrCacheMap.find(sensor_id); 1328 if (it == sdrCacheMap.end()) 1329 { 1330 /* Header */ 1331 get_sdr::SensorDataFullRecord record = {}; 1332 get_sdr::header::set_record_id(sensor_id, &(record.header)); 1333 record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 1334 record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; 1335 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1336 1337 /* Key */ 1338 get_sdr::key::set_owner_id_bmc(&(record.key)); 1339 record.key.sensor_number = sensor_id; 1340 1341 /* Body */ 1342 record.body.entity_id = sensor->second.entityType; 1343 record.body.sensor_type = sensor->second.sensorType; 1344 record.body.event_reading_type = sensor->second.sensorReadingType; 1345 record.body.entity_instance = sensor->second.instance; 1346 if (ipmi::sensor::Mutability::Write == 1347 (sensor->second.mutability & ipmi::sensor::Mutability::Write)) 1348 { 1349 get_sdr::body::init_settable_state(true, &(record.body)); 1350 } 1351 1352 // Set the type-specific details given the DBus interface 1353 populate_record_from_dbus(&(record.body), &(sensor->second), data_len); 1354 sdrCacheMap[sensor_id] = std::move(record); 1355 } 1356 1357 const auto& record = sdrCacheMap[sensor_id]; 1358 1359 if (++sensor == ipmi::sensor::sensors.end()) 1360 { 1361 // we have reached till end of sensor, so assign the next record id 1362 // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). 1363 auto next_record_id = (frus.size()) 1364 ? frus.begin()->first + FRU_RECORD_ID_START 1365 : END_OF_RECORD; 1366 1367 get_sdr::response::set_next_record_id(next_record_id, resp); 1368 } 1369 else 1370 { 1371 get_sdr::response::set_next_record_id(sensor->first, resp); 1372 } 1373 1374 if (req->offset > sizeof(record)) 1375 { 1376 return IPMI_CC_PARM_OUT_OF_RANGE; 1377 } 1378 1379 // data_len will ultimately be the size of the record, plus 1380 // the size of the next record ID: 1381 *data_len = std::min(static_cast<size_t>(req->bytes_to_read), 1382 sizeof(record) - req->offset); 1383 1384 std::memcpy(resp->record_data, 1385 reinterpret_cast<const uint8_t*>(&record) + req->offset, 1386 *data_len); 1387 1388 // data_len should include the LSB and MSB: 1389 *data_len += sizeof(resp->next_record_id_lsb) + 1390 sizeof(resp->next_record_id_msb); 1391 1392 return ret; 1393 } 1394 1395 static bool isFromSystemChannel() 1396 { 1397 // TODO we could not figure out where the request is from based on IPMI 1398 // command handler parameters. because of it, we can not differentiate 1399 // request from SMS/SMM or IPMB channel 1400 return true; 1401 } 1402 1403 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t, 1404 ipmi_request_t request, ipmi_response_t, 1405 ipmi_data_len_t dataLen, ipmi_context_t) 1406 { 1407 uint16_t generatorID; 1408 size_t count; 1409 bool assert = true; 1410 std::string sensorPath; 1411 size_t paraLen = *dataLen; 1412 PlatformEventRequest* req; 1413 *dataLen = 0; 1414 1415 if ((paraLen < selSystemEventSizeWith1Bytes) || 1416 (paraLen > selSystemEventSizeWith3Bytes)) 1417 { 1418 return IPMI_CC_REQ_DATA_LEN_INVALID; 1419 } 1420 1421 if (isFromSystemChannel()) 1422 { // first byte for SYSTEM Interface is Generator ID 1423 // +1 to get common struct 1424 req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1); 1425 // Capture the generator ID 1426 generatorID = *reinterpret_cast<uint8_t*>(request); 1427 // Platform Event usually comes from other firmware, like BIOS. 1428 // Unlike BMC sensor, it does not have BMC DBUS sensor path. 1429 sensorPath = "System"; 1430 } 1431 else 1432 { 1433 req = reinterpret_cast<PlatformEventRequest*>(request); 1434 // TODO GenratorID for IPMB is combination of RqSA and RqLUN 1435 generatorID = 0xff; 1436 sensorPath = "IPMB"; 1437 } 1438 // Content of event data field depends on sensor class. 1439 // When data0 bit[5:4] is non-zero, valid data counts is 3. 1440 // When data0 bit[7:6] is non-zero, valid data counts is 2. 1441 if (((req->data[0] & byte3EnableMask) != 0 && 1442 paraLen < selSystemEventSizeWith3Bytes) || 1443 ((req->data[0] & byte2EnableMask) != 0 && 1444 paraLen < selSystemEventSizeWith2Bytes)) 1445 { 1446 return IPMI_CC_REQ_DATA_LEN_INVALID; 1447 } 1448 1449 // Count bytes of Event Data 1450 if ((req->data[0] & byte3EnableMask) != 0) 1451 { 1452 count = 3; 1453 } 1454 else if ((req->data[0] & byte2EnableMask) != 0) 1455 { 1456 count = 2; 1457 } 1458 else 1459 { 1460 count = 1; 1461 } 1462 assert = req->eventDirectionType & directionMask ? false : true; 1463 std::vector<uint8_t> eventData(req->data, req->data + count); 1464 1465 sdbusplus::bus_t dbus(bus); 1466 std::string service = ipmi::getService(dbus, ipmiSELAddInterface, 1467 ipmiSELPath); 1468 sdbusplus::message_t writeSEL = dbus.new_method_call( 1469 service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd"); 1470 writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert, 1471 generatorID); 1472 try 1473 { 1474 dbus.call(writeSEL); 1475 } 1476 catch (const sdbusplus::exception_t& e) 1477 { 1478 lg2::error("exception message: {ERROR}", "ERROR", e); 1479 return IPMI_CC_UNSPECIFIED_ERROR; 1480 } 1481 return IPMI_CC_OK; 1482 } 1483 1484 void register_netfn_sen_functions() 1485 { 1486 // Handlers with dbus-sdr handler implementation. 1487 // Do not register the hander if it dynamic sensors stack is used. 1488 1489 #ifndef FEATURE_DYNAMIC_SENSORS 1490 1491 #ifdef FEATURE_SENSORS_CACHE 1492 // Initialize the sensor matches 1493 initSensorMatches(); 1494 #endif 1495 1496 // <Set Sensor Reading and Event Status> 1497 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1498 ipmi::sensor_event::cmdSetSensorReadingAndEvtSts, 1499 ipmi::Privilege::Operator, ipmiSetSensorReading); 1500 // <Get Sensor Reading> 1501 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1502 ipmi::sensor_event::cmdGetSensorReading, 1503 ipmi::Privilege::User, ipmiSensorGetSensorReading); 1504 1505 // <Reserve Device SDR Repository> 1506 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1507 ipmi::sensor_event::cmdReserveDeviceSdrRepository, 1508 ipmi::Privilege::User, ipmiSensorReserveSdr); 1509 1510 // <Get Device SDR Info> 1511 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1512 ipmi::sensor_event::cmdGetDeviceSdrInfo, 1513 ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo); 1514 1515 // <Get Sensor Thresholds> 1516 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1517 ipmi::sensor_event::cmdGetSensorThreshold, 1518 ipmi::Privilege::User, ipmiSensorGetSensorThresholds); 1519 1520 // <Set Sensor Thresholds> 1521 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1522 ipmi::sensor_event::cmdSetSensorThreshold, 1523 ipmi::Privilege::User, ipmiSenSetSensorThresholds); 1524 1525 // <Get Device SDR> 1526 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, 1527 ipmi_sen_get_sdr, PRIVILEGE_USER); 1528 1529 #endif 1530 1531 // Common Handers used by both implementation. 1532 1533 // <Platform Event Message> 1534 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr, 1535 ipmicmdPlatformEvent, PRIVILEGE_OPERATOR); 1536 1537 // <Get Sensor Type> 1538 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1539 ipmi::sensor_event::cmdGetSensorType, 1540 ipmi::Privilege::User, ipmiGetSensorType); 1541 1542 return; 1543 } 1544