1 #include "config.h" 2 3 #include "sensorhandler.hpp" 4 5 #include "entity_map_json.hpp" 6 #include "fruread.hpp" 7 8 #include <mapper.h> 9 #include <systemd/sd-bus.h> 10 11 #include <bitset> 12 #include <cmath> 13 #include <cstring> 14 #include <ipmid/api.hpp> 15 #include <ipmid/types.hpp> 16 #include <ipmid/utils.hpp> 17 #include <phosphor-logging/elog-errors.hpp> 18 #include <phosphor-logging/log.hpp> 19 #include <sdbusplus/message/types.hpp> 20 #include <set> 21 #include <xyz/openbmc_project/Common/error.hpp> 22 #include <xyz/openbmc_project/Sensor/Value/server.hpp> 23 24 static constexpr uint8_t fruInventoryDevice = 0x10; 25 static constexpr uint8_t IPMIFruInventory = 0x02; 26 static constexpr uint8_t BMCSlaveAddress = 0x20; 27 28 extern int updateSensorRecordFromSSRAESC(const void*); 29 extern sd_bus* bus; 30 31 namespace ipmi 32 { 33 namespace sensor 34 { 35 extern const IdInfoMap sensors; 36 } // namespace sensor 37 } // namespace ipmi 38 39 extern const FruMap frus; 40 41 using namespace phosphor::logging; 42 using InternalFailure = 43 sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure; 44 45 void register_netfn_sen_functions() __attribute__((constructor)); 46 47 struct sensorTypemap_t 48 { 49 uint8_t number; 50 uint8_t typecode; 51 char dbusname[32]; 52 }; 53 54 sensorTypemap_t g_SensorTypeMap[] = { 55 56 {0x01, 0x6F, "Temp"}, 57 {0x0C, 0x6F, "DIMM"}, 58 {0x0C, 0x6F, "MEMORY_BUFFER"}, 59 {0x07, 0x6F, "PROC"}, 60 {0x07, 0x6F, "CORE"}, 61 {0x07, 0x6F, "CPU"}, 62 {0x0F, 0x6F, "BootProgress"}, 63 {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor 64 // type code os 0x09 65 {0xC3, 0x6F, "BootCount"}, 66 {0x1F, 0x6F, "OperatingSystemStatus"}, 67 {0x12, 0x6F, "SYSTEM_EVENT"}, 68 {0xC7, 0x03, "SYSTEM"}, 69 {0xC7, 0x03, "MAIN_PLANAR"}, 70 {0xC2, 0x6F, "PowerCap"}, 71 {0x0b, 0xCA, "PowerSupplyRedundancy"}, 72 {0xDA, 0x03, "TurboAllowed"}, 73 {0xD8, 0xC8, "PowerSupplyDerating"}, 74 {0xFF, 0x00, ""}, 75 }; 76 77 struct sensor_data_t 78 { 79 uint8_t sennum; 80 } __attribute__((packed)); 81 82 int get_bus_for_path(const char* path, char** busname) 83 { 84 return mapper_get_service(bus, path, busname); 85 } 86 87 // Use a lookup table to find the interface name of a specific sensor 88 // This will be used until an alternative is found. this is the first 89 // step for mapping IPMI 90 int find_openbmc_path(uint8_t num, dbus_interface_t* interface) 91 { 92 int rc; 93 94 const auto& sensor_it = ipmi::sensor::sensors.find(num); 95 if (sensor_it == ipmi::sensor::sensors.end()) 96 { 97 // The sensor map does not contain the sensor requested 98 return -EINVAL; 99 } 100 101 const auto& info = sensor_it->second; 102 103 char* busname = nullptr; 104 rc = get_bus_for_path(info.sensorPath.c_str(), &busname); 105 if (rc < 0) 106 { 107 std::fprintf(stderr, "Failed to get %s busname: %s\n", 108 info.sensorPath.c_str(), busname); 109 goto final; 110 } 111 112 interface->sensortype = info.sensorType; 113 strcpy(interface->bus, busname); 114 strcpy(interface->path, info.sensorPath.c_str()); 115 // Take the interface name from the beginning of the DbusInterfaceMap. This 116 // works for the Value interface but may not suffice for more complex 117 // sensors. 118 // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 119 strcpy(interface->interface, 120 info.propertyInterfaces.begin()->first.c_str()); 121 interface->sensornumber = num; 122 123 final: 124 free(busname); 125 return rc; 126 } 127 128 ///////////////////////////////////////////////////////////////////// 129 // 130 // Routines used by ipmi commands wanting to interact on the dbus 131 // 132 ///////////////////////////////////////////////////////////////////// 133 int set_sensor_dbus_state_s(uint8_t number, const char* method, 134 const char* value) 135 { 136 137 dbus_interface_t a; 138 int r; 139 sd_bus_error error = SD_BUS_ERROR_NULL; 140 sd_bus_message* m = NULL; 141 142 r = find_openbmc_path(number, &a); 143 144 if (r < 0) 145 { 146 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 147 return 0; 148 } 149 150 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 151 method); 152 if (r < 0) 153 { 154 std::fprintf(stderr, "Failed to create a method call: %s", 155 strerror(-r)); 156 goto final; 157 } 158 159 r = sd_bus_message_append(m, "v", "s", value); 160 if (r < 0) 161 { 162 std::fprintf(stderr, "Failed to create a input parameter: %s", 163 strerror(-r)); 164 goto final; 165 } 166 167 r = sd_bus_call(bus, m, 0, &error, NULL); 168 if (r < 0) 169 { 170 std::fprintf(stderr, "Failed to call the method: %s", strerror(-r)); 171 } 172 173 final: 174 sd_bus_error_free(&error); 175 m = sd_bus_message_unref(m); 176 177 return 0; 178 } 179 int set_sensor_dbus_state_y(uint8_t number, const char* method, 180 const uint8_t value) 181 { 182 183 dbus_interface_t a; 184 int r; 185 sd_bus_error error = SD_BUS_ERROR_NULL; 186 sd_bus_message* m = NULL; 187 188 r = find_openbmc_path(number, &a); 189 190 if (r < 0) 191 { 192 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 193 return 0; 194 } 195 196 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 197 method); 198 if (r < 0) 199 { 200 std::fprintf(stderr, "Failed to create a method call: %s", 201 strerror(-r)); 202 goto final; 203 } 204 205 r = sd_bus_message_append(m, "v", "i", value); 206 if (r < 0) 207 { 208 std::fprintf(stderr, "Failed to create a input parameter: %s", 209 strerror(-r)); 210 goto final; 211 } 212 213 r = sd_bus_call(bus, m, 0, &error, NULL); 214 if (r < 0) 215 { 216 std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); 217 } 218 219 final: 220 sd_bus_error_free(&error); 221 m = sd_bus_message_unref(m); 222 223 return 0; 224 } 225 226 uint8_t dbus_to_sensor_type(char* p) 227 { 228 229 sensorTypemap_t* s = g_SensorTypeMap; 230 char r = 0; 231 while (s->number != 0xFF) 232 { 233 if (!strcmp(s->dbusname, p)) 234 { 235 r = s->typecode; 236 break; 237 } 238 s++; 239 } 240 241 if (s->number == 0xFF) 242 printf("Failed to find Sensor Type %s\n", p); 243 244 return r; 245 } 246 247 uint8_t get_type_from_interface(dbus_interface_t dbus_if) 248 { 249 250 uint8_t type; 251 252 // This is where sensors that do not exist in dbus but do 253 // exist in the host code stop. This should indicate it 254 // is not a supported sensor 255 if (dbus_if.interface[0] == 0) 256 { 257 return 0; 258 } 259 260 // Fetch type from interface itself. 261 if (dbus_if.sensortype != 0) 262 { 263 type = dbus_if.sensortype; 264 } 265 else 266 { 267 // Non InventoryItems 268 char* p = strrchr(dbus_if.path, '/'); 269 type = dbus_to_sensor_type(p + 1); 270 } 271 272 return type; 273 } 274 275 // Replaces find_sensor 276 uint8_t find_type_for_sensor_number(uint8_t num) 277 { 278 int r; 279 dbus_interface_t dbus_if; 280 r = find_openbmc_path(num, &dbus_if); 281 if (r < 0) 282 { 283 std::fprintf(stderr, "Could not find sensor %d\n", num); 284 return 0; 285 } 286 return get_type_from_interface(dbus_if); 287 } 288 289 /** 290 * @brief implements the get sensor type command. 291 * @param - sensorNumber 292 * 293 * @return IPMI completion code plus response data on success. 294 * - sensorType 295 * - eventType 296 **/ 297 298 ipmi::RspType<uint8_t, // sensorType 299 uint8_t // eventType 300 > 301 ipmiGetSensorType(uint8_t sensorNumber) 302 { 303 uint8_t sensorType = find_type_for_sensor_number(sensorNumber); 304 305 if (sensorType == 0) 306 { 307 return ipmi::responseSensorInvalid(); 308 } 309 310 constexpr uint8_t eventType = 0x6F; 311 return ipmi::responseSuccess(sensorType, eventType); 312 } 313 314 const std::set<std::string> analogSensorInterfaces = { 315 "xyz.openbmc_project.Sensor.Value", 316 "xyz.openbmc_project.Control.FanPwm", 317 }; 318 319 bool isAnalogSensor(const std::string& interface) 320 { 321 return (analogSensorInterfaces.count(interface)); 322 } 323 324 /** 325 @brief This command is used to set sensorReading. 326 327 @param 328 - sensorNumber 329 - operation 330 - reading 331 - assertOffset0_7 332 - assertOffset8_14 333 - deassertOffset0_7 334 - deassertOffset8_14 335 - eventData1 336 - eventData2 337 - eventData3 338 339 @return completion code on success. 340 **/ 341 342 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation, 343 uint8_t reading, uint8_t assertOffset0_7, 344 uint8_t assertOffset8_14, 345 uint8_t deassertOffset0_7, 346 uint8_t deassertOffset8_14, 347 uint8_t eventData1, uint8_t eventData2, 348 uint8_t eventData3) 349 { 350 log<level::DEBUG>("IPMI SET_SENSOR", 351 entry("SENSOR_NUM=0x%02x", sensorNumber)); 352 353 ipmi::sensor::SetSensorReadingReq cmdData; 354 355 cmdData.number = sensorNumber; 356 cmdData.operation = operation; 357 cmdData.reading = reading; 358 cmdData.assertOffset0_7 = assertOffset0_7; 359 cmdData.assertOffset8_14 = assertOffset8_14; 360 cmdData.deassertOffset0_7 = deassertOffset0_7; 361 cmdData.deassertOffset8_14 = deassertOffset8_14; 362 cmdData.eventData1 = eventData1; 363 cmdData.eventData2 = eventData2; 364 cmdData.eventData3 = eventData3; 365 366 // Check if the Sensor Number is present 367 const auto iter = ipmi::sensor::sensors.find(sensorNumber); 368 if (iter == ipmi::sensor::sensors.end()) 369 { 370 updateSensorRecordFromSSRAESC(&sensorNumber); 371 return ipmi::responseSuccess(); 372 } 373 374 try 375 { 376 if (ipmi::sensor::Mutability::Write != 377 (iter->second.mutability & ipmi::sensor::Mutability::Write)) 378 { 379 log<level::ERR>("Sensor Set operation is not allowed", 380 entry("SENSOR_NUM=%d", sensorNumber)); 381 return ipmi::responseIllegalCommand(); 382 } 383 auto ipmiRC = iter->second.updateFunc(cmdData, iter->second); 384 return ipmi::response(ipmiRC); 385 } 386 catch (InternalFailure& e) 387 { 388 log<level::ERR>("Set sensor failed", 389 entry("SENSOR_NUM=%d", sensorNumber)); 390 commit<InternalFailure>(); 391 return ipmi::responseUnspecifiedError(); 392 } 393 catch (const std::runtime_error& e) 394 { 395 log<level::ERR>(e.what()); 396 return ipmi::responseUnspecifiedError(); 397 } 398 } 399 400 /** @brief implements the get sensor reading command 401 * @param sensorNum - sensor number 402 * 403 * @returns IPMI completion code plus response data 404 * - senReading - sensor reading 405 * - reserved 406 * - readState - sensor reading state enabled 407 * - senScanState - sensor scan state disabled 408 * - allEventMessageState - all Event message state disabled 409 * - assertionStatesLsb - threshold levels states 410 * - assertionStatesMsb - discrete reading sensor states 411 */ 412 ipmi::RspType<uint8_t, // sensor reading 413 414 uint5_t, // reserved 415 bool, // reading state 416 bool, // 0 = sensor scanning state disabled 417 bool, // 0 = all event messages disabled 418 419 uint8_t, // threshold levels states 420 uint8_t // discrete reading sensor states 421 > 422 ipmiSensorGetSensorReading(uint8_t sensorNum) 423 { 424 if (sensorNum == 0xFF) 425 { 426 return ipmi::responseInvalidFieldRequest(); 427 } 428 429 const auto iter = ipmi::sensor::sensors.find(sensorNum); 430 if (iter == ipmi::sensor::sensors.end()) 431 { 432 return ipmi::responseSensorInvalid(); 433 } 434 if (ipmi::sensor::Mutability::Read != 435 (iter->second.mutability & ipmi::sensor::Mutability::Read)) 436 { 437 return ipmi::responseIllegalCommand(); 438 } 439 440 try 441 { 442 ipmi::sensor::GetSensorResponse getResponse = 443 iter->second.getFunc(iter->second); 444 445 return ipmi::responseSuccess(getResponse.reading, uint5_t(0), 446 getResponse.readingOrStateUnavailable, 447 getResponse.scanningEnabled, 448 getResponse.allEventMessagesEnabled, 449 getResponse.thresholdLevelsStates, 450 getResponse.discreteReadingSensorStates); 451 } 452 #ifdef UPDATE_FUNCTIONAL_ON_FAIL 453 catch (const SensorFunctionalError& e) 454 { 455 return ipmi::responseResponseError(); 456 } 457 #endif 458 catch (const std::exception& e) 459 { 460 // Intitilizing with default values 461 constexpr uint8_t senReading = 0; 462 constexpr uint5_t reserved{0}; 463 constexpr bool readState = true; 464 constexpr bool senScanState = false; 465 constexpr bool allEventMessageState = false; 466 constexpr uint8_t assertionStatesLsb = 0; 467 constexpr uint8_t assertionStatesMsb = 0; 468 469 return ipmi::responseSuccess(senReading, reserved, readState, 470 senScanState, allEventMessageState, 471 assertionStatesLsb, assertionStatesMsb); 472 } 473 } 474 475 get_sdr::GetSensorThresholdsResponse 476 getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 477 { 478 get_sdr::GetSensorThresholdsResponse resp{}; 479 constexpr auto warningThreshIntf = 480 "xyz.openbmc_project.Sensor.Threshold.Warning"; 481 constexpr auto criticalThreshIntf = 482 "xyz.openbmc_project.Sensor.Threshold.Critical"; 483 484 const auto iter = ipmi::sensor::sensors.find(sensorNum); 485 const auto info = iter->second; 486 487 std::string service; 488 boost::system::error_code ec; 489 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 490 if (ec) 491 { 492 return resp; 493 } 494 495 ipmi::PropertyMap warnThresholds; 496 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 497 warningThreshIntf, warnThresholds); 498 if (!ec) 499 { 500 double warnLow = std::visit(ipmi::VariantToDoubleVisitor(), 501 warnThresholds["WarningLow"]); 502 double warnHigh = std::visit(ipmi::VariantToDoubleVisitor(), 503 warnThresholds["WarningHigh"]); 504 505 if (std::isfinite(warnLow)) 506 { 507 warnLow *= std::pow(10, info.scale - info.exponentR); 508 resp.lowerNonCritical = static_cast<uint8_t>( 509 (warnLow - info.scaledOffset) / info.coefficientM); 510 resp.validMask |= static_cast<uint8_t>( 511 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); 512 } 513 514 if (std::isfinite(warnHigh)) 515 { 516 warnHigh *= std::pow(10, info.scale - info.exponentR); 517 resp.upperNonCritical = static_cast<uint8_t>( 518 (warnHigh - info.scaledOffset) / info.coefficientM); 519 resp.validMask |= static_cast<uint8_t>( 520 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); 521 } 522 } 523 524 ipmi::PropertyMap critThresholds; 525 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 526 criticalThreshIntf, critThresholds); 527 if (!ec) 528 { 529 double critLow = std::visit(ipmi::VariantToDoubleVisitor(), 530 critThresholds["CriticalLow"]); 531 double critHigh = std::visit(ipmi::VariantToDoubleVisitor(), 532 critThresholds["CriticalHigh"]); 533 534 if (std::isfinite(critLow)) 535 { 536 critLow *= std::pow(10, info.scale - info.exponentR); 537 resp.lowerCritical = static_cast<uint8_t>( 538 (critLow - info.scaledOffset) / info.coefficientM); 539 resp.validMask |= static_cast<uint8_t>( 540 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); 541 } 542 543 if (std::isfinite(critHigh)) 544 { 545 critHigh *= std::pow(10, info.scale - info.exponentR); 546 resp.upperCritical = static_cast<uint8_t>( 547 (critHigh - info.scaledOffset) / info.coefficientM); 548 resp.validMask |= static_cast<uint8_t>( 549 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); 550 } 551 } 552 553 return resp; 554 } 555 556 /** @brief implements the get sensor thresholds command 557 * @param ctx - IPMI context pointer 558 * @param sensorNum - sensor number 559 * 560 * @returns IPMI completion code plus response data 561 * - validMask - threshold mask 562 * - lower non-critical threshold - IPMI messaging state 563 * - lower critical threshold - link authentication state 564 * - lower non-recoverable threshold - callback state 565 * - upper non-critical threshold 566 * - upper critical 567 * - upper non-recoverable 568 */ 569 ipmi::RspType<uint8_t, // validMask 570 uint8_t, // lowerNonCritical 571 uint8_t, // lowerCritical 572 uint8_t, // lowerNonRecoverable 573 uint8_t, // upperNonCritical 574 uint8_t, // upperCritical 575 uint8_t // upperNonRecoverable 576 > 577 ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 578 { 579 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 580 581 const auto iter = ipmi::sensor::sensors.find(sensorNum); 582 if (iter == ipmi::sensor::sensors.end()) 583 { 584 return ipmi::responseSensorInvalid(); 585 } 586 587 const auto info = iter->second; 588 589 // Proceed only if the sensor value interface is implemented. 590 if (info.propertyInterfaces.find(valueInterface) == 591 info.propertyInterfaces.end()) 592 { 593 // return with valid mask as 0 594 return ipmi::responseSuccess(); 595 } 596 597 get_sdr::GetSensorThresholdsResponse resp{}; 598 resp = getSensorThresholds(ctx, sensorNum); 599 600 return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical, 601 resp.lowerCritical, resp.lowerNonRecoverable, 602 resp.upperNonCritical, resp.upperCritical, 603 resp.upperNonRecoverable); 604 } 605 606 /** @brief implements the get SDR Info command 607 * @param count - Operation 608 * 609 * @returns IPMI completion code plus response data 610 * - sdrCount - sensor/SDR count 611 * - lunsAndDynamicPopulation - static/Dynamic sensor population flag 612 */ 613 ipmi::RspType<uint8_t, // respcount 614 uint8_t // dynamic population flags 615 > 616 ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count) 617 { 618 uint8_t sdrCount; 619 // multiple LUNs not supported. 620 constexpr uint8_t lunsAndDynamicPopulation = 1; 621 constexpr uint8_t getSdrCount = 0x01; 622 constexpr uint8_t getSensorCount = 0x00; 623 624 if (count.value_or(0) == getSdrCount) 625 { 626 // Get SDR count. This returns the total number of SDRs in the device. 627 const auto& entityRecords = 628 ipmi::sensor::EntityInfoMapContainer::getContainer() 629 ->getIpmiEntityRecords(); 630 sdrCount = 631 ipmi::sensor::sensors.size() + frus.size() + entityRecords.size(); 632 } 633 else if (count.value_or(0) == getSensorCount) 634 { 635 // Get Sensor count. This returns the number of sensors 636 sdrCount = ipmi::sensor::sensors.size(); 637 } 638 else 639 { 640 return ipmi::responseInvalidCommandOnLun(); 641 } 642 643 return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation); 644 } 645 646 /** @brief implements the reserve SDR command 647 * @returns IPMI completion code plus response data 648 * - reservationID - reservation ID 649 */ 650 ipmi::RspType<uint16_t> ipmiSensorReserveSdr() 651 { 652 // A constant reservation ID is okay until we implement add/remove SDR. 653 constexpr uint16_t reservationID = 1; 654 655 return ipmi::responseSuccess(reservationID); 656 } 657 658 void setUnitFieldsForObject(const ipmi::sensor::Info* info, 659 get_sdr::SensorDataFullRecordBody* body) 660 { 661 namespace server = sdbusplus::xyz::openbmc_project::Sensor::server; 662 try 663 { 664 auto unit = server::Value::convertUnitFromString(info->unit); 665 // Unit strings defined in 666 // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml 667 switch (unit) 668 { 669 case server::Value::Unit::DegreesC: 670 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; 671 break; 672 case server::Value::Unit::RPMS: 673 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM; 674 break; 675 case server::Value::Unit::Volts: 676 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; 677 break; 678 case server::Value::Unit::Meters: 679 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; 680 break; 681 case server::Value::Unit::Amperes: 682 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; 683 break; 684 case server::Value::Unit::Joules: 685 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; 686 break; 687 case server::Value::Unit::Watts: 688 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; 689 break; 690 default: 691 // Cannot be hit. 692 std::fprintf(stderr, "Unknown value unit type: = %s\n", 693 info->unit.c_str()); 694 } 695 } 696 catch (const sdbusplus::exception::InvalidEnumString& e) 697 { 698 log<level::WARNING>("Warning: no unit provided for sensor!"); 699 } 700 } 701 702 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, 703 const ipmi::sensor::Info* info, 704 ipmi_data_len_t data_len) 705 { 706 /* Functional sensor case */ 707 if (isAnalogSensor(info->propertyInterfaces.begin()->first)) 708 { 709 710 body->sensor_units_1 = 0; // unsigned, no rate, no modifier, not a % 711 712 /* Unit info */ 713 setUnitFieldsForObject(info, body); 714 715 get_sdr::body::set_b(info->coefficientB, body); 716 get_sdr::body::set_m(info->coefficientM, body); 717 get_sdr::body::set_b_exp(info->exponentB, body); 718 get_sdr::body::set_r_exp(info->exponentR, body); 719 720 get_sdr::body::set_id_type(0b00, body); // 00 = unicode 721 } 722 723 /* ID string */ 724 auto id_string = info->sensorName; 725 726 if (id_string.empty()) 727 { 728 id_string = info->sensorNameFunc(*info); 729 } 730 731 if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) 732 { 733 get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); 734 } 735 else 736 { 737 get_sdr::body::set_id_strlen(id_string.length(), body); 738 } 739 strncpy(body->id_string, id_string.c_str(), 740 get_sdr::body::get_id_strlen(body)); 741 742 return IPMI_CC_OK; 743 }; 744 745 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, 746 ipmi_data_len_t data_len) 747 { 748 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 749 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 750 get_sdr::SensorDataFruRecord record{}; 751 auto dataLength = 0; 752 753 auto fru = frus.begin(); 754 uint8_t fruID{}; 755 auto recordID = get_sdr::request::get_record_id(req); 756 757 fruID = recordID - FRU_RECORD_ID_START; 758 fru = frus.find(fruID); 759 if (fru == frus.end()) 760 { 761 return IPMI_CC_SENSOR_INVALID; 762 } 763 764 /* Header */ 765 get_sdr::header::set_record_id(recordID, &(record.header)); 766 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 767 record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; 768 record.header.record_length = sizeof(record.key) + sizeof(record.body); 769 770 /* Key */ 771 record.key.fruID = fruID; 772 record.key.accessLun |= IPMI_LOGICAL_FRU; 773 record.key.deviceAddress = BMCSlaveAddress; 774 775 /* Body */ 776 record.body.entityID = fru->second[0].entityID; 777 record.body.entityInstance = fru->second[0].entityInstance; 778 record.body.deviceType = fruInventoryDevice; 779 record.body.deviceTypeModifier = IPMIFruInventory; 780 781 /* Device ID string */ 782 auto deviceID = 783 fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, 784 fru->second[0].path.length()); 785 786 if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) 787 { 788 get_sdr::body::set_device_id_strlen( 789 get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); 790 } 791 else 792 { 793 get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); 794 } 795 796 strncpy(record.body.deviceID, deviceID.c_str(), 797 get_sdr::body::get_device_id_strlen(&(record.body))); 798 799 if (++fru == frus.end()) 800 { 801 // we have reached till end of fru, so assign the next record id to 802 // 512(Max fru ID = 511) + Entity Record ID(may start with 0). 803 const auto& entityRecords = 804 ipmi::sensor::EntityInfoMapContainer::getContainer() 805 ->getIpmiEntityRecords(); 806 auto next_record_id = 807 (entityRecords.size()) 808 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START 809 : END_OF_RECORD; 810 get_sdr::response::set_next_record_id(next_record_id, resp); 811 } 812 else 813 { 814 get_sdr::response::set_next_record_id( 815 (FRU_RECORD_ID_START + fru->first), resp); 816 } 817 818 // Check for invalid offset size 819 if (req->offset > sizeof(record)) 820 { 821 return IPMI_CC_PARM_OUT_OF_RANGE; 822 } 823 824 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 825 sizeof(record) - req->offset); 826 827 std::memcpy(resp->record_data, 828 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 829 830 *data_len = dataLength; 831 *data_len += 2; // additional 2 bytes for next record ID 832 833 return IPMI_CC_OK; 834 } 835 836 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response, 837 ipmi_data_len_t data_len) 838 { 839 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 840 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 841 get_sdr::SensorDataEntityRecord record{}; 842 auto dataLength = 0; 843 844 const auto& entityRecords = 845 ipmi::sensor::EntityInfoMapContainer::getContainer() 846 ->getIpmiEntityRecords(); 847 auto entity = entityRecords.begin(); 848 uint8_t entityRecordID; 849 auto recordID = get_sdr::request::get_record_id(req); 850 851 entityRecordID = recordID - ENTITY_RECORD_ID_START; 852 entity = entityRecords.find(entityRecordID); 853 if (entity == entityRecords.end()) 854 { 855 return IPMI_CC_SENSOR_INVALID; 856 } 857 858 /* Header */ 859 get_sdr::header::set_record_id(recordID, &(record.header)); 860 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 861 record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD; 862 record.header.record_length = sizeof(record.key) + sizeof(record.body); 863 864 /* Key */ 865 record.key.containerEntityId = entity->second.containerEntityId; 866 record.key.containerEntityInstance = entity->second.containerEntityInstance; 867 get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked, 868 &(record.key)); 869 record.key.entityId1 = entity->second.containedEntities[0].first; 870 record.key.entityInstance1 = entity->second.containedEntities[0].second; 871 872 /* Body */ 873 record.body.entityId2 = entity->second.containedEntities[1].first; 874 record.body.entityInstance2 = entity->second.containedEntities[1].second; 875 record.body.entityId3 = entity->second.containedEntities[2].first; 876 record.body.entityInstance3 = entity->second.containedEntities[2].second; 877 record.body.entityId4 = entity->second.containedEntities[3].first; 878 record.body.entityInstance4 = entity->second.containedEntities[3].second; 879 880 if (++entity == entityRecords.end()) 881 { 882 get_sdr::response::set_next_record_id(END_OF_RECORD, 883 resp); // last record 884 } 885 else 886 { 887 get_sdr::response::set_next_record_id( 888 (ENTITY_RECORD_ID_START + entity->first), resp); 889 } 890 891 // Check for invalid offset size 892 if (req->offset > sizeof(record)) 893 { 894 return IPMI_CC_PARM_OUT_OF_RANGE; 895 } 896 897 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 898 sizeof(record) - req->offset); 899 900 std::memcpy(resp->record_data, 901 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 902 903 *data_len = dataLength; 904 *data_len += 2; // additional 2 bytes for next record ID 905 906 return IPMI_CC_OK; 907 } 908 909 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t netfn, ipmi_cmd_t cmd, 910 ipmi_request_t request, ipmi_response_t response, 911 ipmi_data_len_t data_len, ipmi_context_t context) 912 { 913 ipmi_ret_t ret = IPMI_CC_OK; 914 get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; 915 get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; 916 get_sdr::SensorDataFullRecord record = {0}; 917 918 // Note: we use an iterator so we can provide the next ID at the end of 919 // the call. 920 auto sensor = ipmi::sensor::sensors.begin(); 921 auto recordID = get_sdr::request::get_record_id(req); 922 923 // At the beginning of a scan, the host side will send us id=0. 924 if (recordID != 0) 925 { 926 // recordID 0 to 255 means it is a FULL record. 927 // recordID 256 to 511 means it is a FRU record. 928 // recordID greater then 511 means it is a Entity Association 929 // record. Currently we are supporting three record types: FULL 930 // record, FRU record and Enttiy Association record. 931 if (recordID >= ENTITY_RECORD_ID_START) 932 { 933 return ipmi_entity_get_sdr(request, response, data_len); 934 } 935 else if (recordID >= FRU_RECORD_ID_START && 936 recordID < ENTITY_RECORD_ID_START) 937 { 938 return ipmi_fru_get_sdr(request, response, data_len); 939 } 940 else 941 { 942 sensor = ipmi::sensor::sensors.find(recordID); 943 if (sensor == ipmi::sensor::sensors.end()) 944 { 945 return IPMI_CC_SENSOR_INVALID; 946 } 947 } 948 } 949 950 uint8_t sensor_id = sensor->first; 951 952 /* Header */ 953 get_sdr::header::set_record_id(sensor_id, &(record.header)); 954 record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 955 record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; 956 record.header.record_length = sizeof(record.key) + sizeof(record.body); 957 958 /* Key */ 959 get_sdr::key::set_owner_id_bmc(&(record.key)); 960 record.key.sensor_number = sensor_id; 961 962 /* Body */ 963 record.body.entity_id = sensor->second.entityType; 964 record.body.sensor_type = sensor->second.sensorType; 965 record.body.event_reading_type = sensor->second.sensorReadingType; 966 record.body.entity_instance = sensor->second.instance; 967 if (ipmi::sensor::Mutability::Write == 968 (sensor->second.mutability & ipmi::sensor::Mutability::Write)) 969 { 970 get_sdr::body::init_settable_state(true, &(record.body)); 971 } 972 973 // Set the type-specific details given the DBus interface 974 ret = 975 populate_record_from_dbus(&(record.body), &(sensor->second), data_len); 976 977 if (++sensor == ipmi::sensor::sensors.end()) 978 { 979 // we have reached till end of sensor, so assign the next record id 980 // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). 981 auto next_record_id = (frus.size()) 982 ? frus.begin()->first + FRU_RECORD_ID_START 983 : END_OF_RECORD; 984 985 get_sdr::response::set_next_record_id(next_record_id, resp); 986 } 987 else 988 { 989 get_sdr::response::set_next_record_id(sensor->first, resp); 990 } 991 992 if (req->offset > sizeof(record)) 993 { 994 return IPMI_CC_PARM_OUT_OF_RANGE; 995 } 996 997 // data_len will ultimately be the size of the record, plus 998 // the size of the next record ID: 999 *data_len = std::min(static_cast<size_t>(req->bytes_to_read), 1000 sizeof(record) - req->offset); 1001 1002 std::memcpy(resp->record_data, 1003 reinterpret_cast<uint8_t*>(&record) + req->offset, *data_len); 1004 1005 // data_len should include the LSB and MSB: 1006 *data_len += 1007 sizeof(resp->next_record_id_lsb) + sizeof(resp->next_record_id_msb); 1008 1009 return ret; 1010 } 1011 1012 static bool isFromSystemChannel() 1013 { 1014 // TODO we could not figure out where the request is from based on IPMI 1015 // command handler parameters. because of it, we can not differentiate 1016 // request from SMS/SMM or IPMB channel 1017 return true; 1018 } 1019 1020 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t netfn, ipmi_cmd_t cmd, 1021 ipmi_request_t request, 1022 ipmi_response_t response, 1023 ipmi_data_len_t dataLen, ipmi_context_t context) 1024 { 1025 uint16_t generatorID; 1026 size_t count; 1027 bool assert = true; 1028 std::string sensorPath; 1029 size_t paraLen = *dataLen; 1030 PlatformEventRequest* req; 1031 *dataLen = 0; 1032 1033 if ((paraLen < selSystemEventSizeWith1Bytes) || 1034 (paraLen > selSystemEventSizeWith3Bytes)) 1035 { 1036 return IPMI_CC_REQ_DATA_LEN_INVALID; 1037 } 1038 1039 if (isFromSystemChannel()) 1040 { // first byte for SYSTEM Interface is Generator ID 1041 // +1 to get common struct 1042 req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1); 1043 // Capture the generator ID 1044 generatorID = *reinterpret_cast<uint8_t*>(request); 1045 // Platform Event usually comes from other firmware, like BIOS. 1046 // Unlike BMC sensor, it does not have BMC DBUS sensor path. 1047 sensorPath = "System"; 1048 } 1049 else 1050 { 1051 req = reinterpret_cast<PlatformEventRequest*>(request); 1052 // TODO GenratorID for IPMB is combination of RqSA and RqLUN 1053 generatorID = 0xff; 1054 sensorPath = "IPMB"; 1055 } 1056 // Content of event data field depends on sensor class. 1057 // When data0 bit[5:4] is non-zero, valid data counts is 3. 1058 // When data0 bit[7:6] is non-zero, valid data counts is 2. 1059 if (((req->data[0] & byte3EnableMask) != 0 && 1060 paraLen < selSystemEventSizeWith3Bytes) || 1061 ((req->data[0] & byte2EnableMask) != 0 && 1062 paraLen < selSystemEventSizeWith2Bytes)) 1063 { 1064 return IPMI_CC_REQ_DATA_LEN_INVALID; 1065 } 1066 1067 // Count bytes of Event Data 1068 if ((req->data[0] & byte3EnableMask) != 0) 1069 { 1070 count = 3; 1071 } 1072 else if ((req->data[0] & byte2EnableMask) != 0) 1073 { 1074 count = 2; 1075 } 1076 else 1077 { 1078 count = 1; 1079 } 1080 assert = req->eventDirectionType & directionMask ? false : true; 1081 std::vector<uint8_t> eventData(req->data, req->data + count); 1082 1083 sdbusplus::bus::bus dbus(bus); 1084 std::string service = 1085 ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath); 1086 sdbusplus::message::message writeSEL = dbus.new_method_call( 1087 service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd"); 1088 writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert, 1089 generatorID); 1090 try 1091 { 1092 dbus.call(writeSEL); 1093 } 1094 catch (sdbusplus::exception_t& e) 1095 { 1096 phosphor::logging::log<phosphor::logging::level::ERR>(e.what()); 1097 return IPMI_CC_UNSPECIFIED_ERROR; 1098 } 1099 return IPMI_CC_OK; 1100 } 1101 1102 void register_netfn_sen_functions() 1103 { 1104 // <Platform Event Message> 1105 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr, 1106 ipmicmdPlatformEvent, PRIVILEGE_OPERATOR); 1107 1108 // <Get Sensor Type> 1109 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1110 ipmi::sensor_event::cmdGetSensorType, 1111 ipmi::Privilege::User, ipmiGetSensorType); 1112 1113 // <Set Sensor Reading and Event Status> 1114 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1115 ipmi::sensor_event::cmdSetSensorReadingAndEvtSts, 1116 ipmi::Privilege::Operator, ipmiSetSensorReading); 1117 // <Get Sensor Reading> 1118 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1119 ipmi::sensor_event::cmdGetSensorReading, 1120 ipmi::Privilege::User, ipmiSensorGetSensorReading); 1121 1122 // <Reserve Device SDR Repository> 1123 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1124 ipmi::sensor_event::cmdReserveDeviceSdrRepository, 1125 ipmi::Privilege::User, ipmiSensorReserveSdr); 1126 1127 // <Get Device SDR Info> 1128 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1129 ipmi::sensor_event::cmdGetDeviceSdrInfo, 1130 ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo); 1131 1132 // <Get Device SDR> 1133 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, 1134 ipmi_sen_get_sdr, PRIVILEGE_USER); 1135 1136 // <Get Sensor Thresholds> 1137 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1138 ipmi::sensor_event::cmdGetSensorThreshold, 1139 ipmi::Privilege::User, ipmiSensorGetSensorThresholds); 1140 1141 return; 1142 } 1143