1 #include "config.h" 2 3 #include "sensorhandler.hpp" 4 5 #include "fruread.hpp" 6 7 #include <mapper.h> 8 #include <systemd/sd-bus.h> 9 10 #include <ipmid/api.hpp> 11 #include <ipmid/entity_map_json.hpp> 12 #include <ipmid/types.hpp> 13 #include <ipmid/utils.hpp> 14 #include <phosphor-logging/elog-errors.hpp> 15 #include <phosphor-logging/log.hpp> 16 #include <sdbusplus/message/types.hpp> 17 #include <xyz/openbmc_project/Common/error.hpp> 18 #include <xyz/openbmc_project/Sensor/Value/server.hpp> 19 20 #include <bitset> 21 #include <cmath> 22 #include <cstring> 23 #include <set> 24 25 static constexpr uint8_t fruInventoryDevice = 0x10; 26 static constexpr uint8_t IPMIFruInventory = 0x02; 27 static constexpr uint8_t BMCSlaveAddress = 0x20; 28 29 extern int updateSensorRecordFromSSRAESC(const void*); 30 extern sd_bus* bus; 31 32 namespace ipmi 33 { 34 namespace sensor 35 { 36 extern const IdInfoMap sensors; 37 } // namespace sensor 38 } // namespace ipmi 39 40 extern const FruMap frus; 41 42 using namespace phosphor::logging; 43 using InternalFailure = 44 sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure; 45 46 void register_netfn_sen_functions() __attribute__((constructor)); 47 48 struct sensorTypemap_t 49 { 50 uint8_t number; 51 uint8_t typecode; 52 char dbusname[32]; 53 }; 54 55 sensorTypemap_t g_SensorTypeMap[] = { 56 57 {0x01, 0x6F, "Temp"}, 58 {0x0C, 0x6F, "DIMM"}, 59 {0x0C, 0x6F, "MEMORY_BUFFER"}, 60 {0x07, 0x6F, "PROC"}, 61 {0x07, 0x6F, "CORE"}, 62 {0x07, 0x6F, "CPU"}, 63 {0x0F, 0x6F, "BootProgress"}, 64 {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor 65 // type code os 0x09 66 {0xC3, 0x6F, "BootCount"}, 67 {0x1F, 0x6F, "OperatingSystemStatus"}, 68 {0x12, 0x6F, "SYSTEM_EVENT"}, 69 {0xC7, 0x03, "SYSTEM"}, 70 {0xC7, 0x03, "MAIN_PLANAR"}, 71 {0xC2, 0x6F, "PowerCap"}, 72 {0x0b, 0xCA, "PowerSupplyRedundancy"}, 73 {0xDA, 0x03, "TurboAllowed"}, 74 {0xD8, 0xC8, "PowerSupplyDerating"}, 75 {0xFF, 0x00, ""}, 76 }; 77 78 struct sensor_data_t 79 { 80 uint8_t sennum; 81 } __attribute__((packed)); 82 83 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>; 84 SDRCacheMap sdrCacheMap __attribute__((init_priority(101))); 85 86 using SensorThresholdMap = 87 std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>; 88 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101))); 89 90 #ifdef FEATURE_SENSORS_CACHE 91 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches 92 __attribute__((init_priority(101))); 93 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches 94 __attribute__((init_priority(101))); 95 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches 96 __attribute__((init_priority(101))); 97 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch 98 __attribute__((init_priority(101))); 99 100 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101))); 101 102 // It is needed to know which objects belong to which service, so that when a 103 // service exits without interfacesRemoved signal, we could invaildate the cache 104 // that is related to the service. It uses below two variables: 105 // - idToServiceMap records which sensors are known to have a related service; 106 // - serviceToIdMap maps a service to the sensors. 107 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>; 108 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101))); 109 110 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>; 111 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101))); 112 113 static void fillSensorIdServiceMap(const std::string&, 114 const std::string& /*intf*/, uint8_t id, 115 const std::string& service) 116 { 117 if (idToServiceMap.find(id) != idToServiceMap.end()) 118 { 119 return; 120 } 121 idToServiceMap[id] = service; 122 serviceToIdMap[service].insert(id); 123 } 124 125 static void fillSensorIdServiceMap(const std::string& obj, 126 const std::string& intf, uint8_t id) 127 { 128 if (idToServiceMap.find(id) != idToServiceMap.end()) 129 { 130 return; 131 } 132 try 133 { 134 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 135 auto service = ipmi::getService(bus, intf, obj); 136 idToServiceMap[id] = service; 137 serviceToIdMap[service].insert(id); 138 } 139 catch (...) 140 { 141 // Ignore 142 } 143 } 144 145 void initSensorMatches() 146 { 147 using namespace sdbusplus::bus::match::rules; 148 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 149 for (const auto& s : ipmi::sensor::sensors) 150 { 151 sensorAddedMatches.emplace( 152 s.first, 153 std::make_unique<sdbusplus::bus::match_t>( 154 bus, interfacesAdded() + argNpath(0, s.second.sensorPath), 155 [id = s.first, obj = s.second.sensorPath, 156 intf = s.second.propertyInterfaces.begin()->first]( 157 auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); })); 158 sensorRemovedMatches.emplace( 159 s.first, 160 std::make_unique<sdbusplus::bus::match_t>( 161 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath), 162 [id = s.first](auto& /*msg*/) { 163 // Ideally this should work. 164 // But when a service is terminated or crashed, it does not 165 // emit interfacesRemoved signal. In that case it's handled 166 // by sensorsOwnerMatch 167 sensorCacheMap[id].reset(); 168 })); 169 sensorUpdatedMatches.emplace( 170 s.first, std::make_unique<sdbusplus::bus::match_t>( 171 bus, 172 type::signal() + path(s.second.sensorPath) + 173 member("PropertiesChanged"s) + 174 interface("org.freedesktop.DBus.Properties"s), 175 [&s](auto& msg) { 176 fillSensorIdServiceMap(s.second.sensorPath, 177 s.second.propertyInterfaces.begin()->first, 178 s.first); 179 try 180 { 181 // This is signal callback 182 std::string interfaceName; 183 msg.read(interfaceName); 184 ipmi::PropertyMap props; 185 msg.read(props); 186 s.second.getFunc(s.first, s.second, props); 187 } 188 catch (const std::exception& e) 189 { 190 sensorCacheMap[s.first].reset(); 191 } 192 })); 193 } 194 sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>( 195 bus, nameOwnerChanged(), [](auto& msg) { 196 std::string name; 197 std::string oldOwner; 198 std::string newOwner; 199 msg.read(name, oldOwner, newOwner); 200 201 if (!name.empty() && newOwner.empty()) 202 { 203 // The service exits 204 const auto it = serviceToIdMap.find(name); 205 if (it == serviceToIdMap.end()) 206 { 207 return; 208 } 209 for (const auto& id : it->second) 210 { 211 // Invalidate cache 212 sensorCacheMap[id].reset(); 213 } 214 } 215 }); 216 } 217 #endif 218 219 int get_bus_for_path(const char* path, char** busname) 220 { 221 return mapper_get_service(bus, path, busname); 222 } 223 224 // Use a lookup table to find the interface name of a specific sensor 225 // This will be used until an alternative is found. this is the first 226 // step for mapping IPMI 227 int find_openbmc_path(uint8_t num, dbus_interface_t* interface) 228 { 229 int rc; 230 231 const auto& sensor_it = ipmi::sensor::sensors.find(num); 232 if (sensor_it == ipmi::sensor::sensors.end()) 233 { 234 // The sensor map does not contain the sensor requested 235 return -EINVAL; 236 } 237 238 const auto& info = sensor_it->second; 239 240 char* busname = nullptr; 241 rc = get_bus_for_path(info.sensorPath.c_str(), &busname); 242 if (rc < 0) 243 { 244 std::fprintf(stderr, "Failed to get %s busname: %s\n", 245 info.sensorPath.c_str(), busname); 246 goto final; 247 } 248 249 interface->sensortype = info.sensorType; 250 strcpy(interface->bus, busname); 251 strcpy(interface->path, info.sensorPath.c_str()); 252 // Take the interface name from the beginning of the DbusInterfaceMap. This 253 // works for the Value interface but may not suffice for more complex 254 // sensors. 255 // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 256 strcpy(interface->interface, 257 info.propertyInterfaces.begin()->first.c_str()); 258 interface->sensornumber = num; 259 260 final: 261 free(busname); 262 return rc; 263 } 264 265 ///////////////////////////////////////////////////////////////////// 266 // 267 // Routines used by ipmi commands wanting to interact on the dbus 268 // 269 ///////////////////////////////////////////////////////////////////// 270 int set_sensor_dbus_state_s(uint8_t number, const char* method, 271 const char* value) 272 { 273 dbus_interface_t a; 274 int r; 275 sd_bus_error error = SD_BUS_ERROR_NULL; 276 sd_bus_message* m = NULL; 277 278 r = find_openbmc_path(number, &a); 279 280 if (r < 0) 281 { 282 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 283 return 0; 284 } 285 286 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 287 method); 288 if (r < 0) 289 { 290 std::fprintf(stderr, "Failed to create a method call: %s", 291 strerror(-r)); 292 goto final; 293 } 294 295 r = sd_bus_message_append(m, "v", "s", value); 296 if (r < 0) 297 { 298 std::fprintf(stderr, "Failed to create a input parameter: %s", 299 strerror(-r)); 300 goto final; 301 } 302 303 r = sd_bus_call(bus, m, 0, &error, NULL); 304 if (r < 0) 305 { 306 std::fprintf(stderr, "Failed to call the method: %s", strerror(-r)); 307 } 308 309 final: 310 sd_bus_error_free(&error); 311 m = sd_bus_message_unref(m); 312 313 return 0; 314 } 315 int set_sensor_dbus_state_y(uint8_t number, const char* method, 316 const uint8_t value) 317 { 318 dbus_interface_t a; 319 int r; 320 sd_bus_error error = SD_BUS_ERROR_NULL; 321 sd_bus_message* m = NULL; 322 323 r = find_openbmc_path(number, &a); 324 325 if (r < 0) 326 { 327 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 328 return 0; 329 } 330 331 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 332 method); 333 if (r < 0) 334 { 335 std::fprintf(stderr, "Failed to create a method call: %s", 336 strerror(-r)); 337 goto final; 338 } 339 340 r = sd_bus_message_append(m, "v", "i", value); 341 if (r < 0) 342 { 343 std::fprintf(stderr, "Failed to create a input parameter: %s", 344 strerror(-r)); 345 goto final; 346 } 347 348 r = sd_bus_call(bus, m, 0, &error, NULL); 349 if (r < 0) 350 { 351 std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); 352 } 353 354 final: 355 sd_bus_error_free(&error); 356 m = sd_bus_message_unref(m); 357 358 return 0; 359 } 360 361 uint8_t dbus_to_sensor_type(char* p) 362 { 363 sensorTypemap_t* s = g_SensorTypeMap; 364 char r = 0; 365 while (s->number != 0xFF) 366 { 367 if (!strcmp(s->dbusname, p)) 368 { 369 r = s->typecode; 370 break; 371 } 372 s++; 373 } 374 375 if (s->number == 0xFF) 376 printf("Failed to find Sensor Type %s\n", p); 377 378 return r; 379 } 380 381 uint8_t get_type_from_interface(dbus_interface_t dbus_if) 382 { 383 uint8_t type; 384 385 // This is where sensors that do not exist in dbus but do 386 // exist in the host code stop. This should indicate it 387 // is not a supported sensor 388 if (dbus_if.interface[0] == 0) 389 { 390 return 0; 391 } 392 393 // Fetch type from interface itself. 394 if (dbus_if.sensortype != 0) 395 { 396 type = dbus_if.sensortype; 397 } 398 else 399 { 400 // Non InventoryItems 401 char* p = strrchr(dbus_if.path, '/'); 402 type = dbus_to_sensor_type(p + 1); 403 } 404 405 return type; 406 } 407 408 // Replaces find_sensor 409 uint8_t find_type_for_sensor_number(uint8_t num) 410 { 411 int r; 412 dbus_interface_t dbus_if; 413 r = find_openbmc_path(num, &dbus_if); 414 if (r < 0) 415 { 416 std::fprintf(stderr, "Could not find sensor %d\n", num); 417 return 0; 418 } 419 return get_type_from_interface(dbus_if); 420 } 421 422 /** 423 * @brief implements the get sensor type command. 424 * @param - sensorNumber 425 * 426 * @return IPMI completion code plus response data on success. 427 * - sensorType 428 * - eventType 429 **/ 430 431 ipmi::RspType<uint8_t, // sensorType 432 uint8_t // eventType 433 > 434 ipmiGetSensorType(uint8_t sensorNumber) 435 { 436 const auto it = ipmi::sensor::sensors.find(sensorNumber); 437 if (it == ipmi::sensor::sensors.end()) 438 { 439 // The sensor map does not contain the sensor requested 440 return ipmi::responseSensorInvalid(); 441 } 442 443 const auto& info = it->second; 444 uint8_t sensorType = info.sensorType; 445 uint8_t eventType = info.sensorReadingType; 446 447 return ipmi::responseSuccess(sensorType, eventType); 448 } 449 450 const std::set<std::string> analogSensorInterfaces = { 451 "xyz.openbmc_project.Sensor.Value", 452 "xyz.openbmc_project.Control.FanPwm", 453 }; 454 455 bool isAnalogSensor(const std::string& interface) 456 { 457 return (analogSensorInterfaces.count(interface)); 458 } 459 460 /** 461 @brief This command is used to set sensorReading. 462 463 @param 464 - sensorNumber 465 - operation 466 - reading 467 - assertOffset0_7 468 - assertOffset8_14 469 - deassertOffset0_7 470 - deassertOffset8_14 471 - eventData1 472 - eventData2 473 - eventData3 474 475 @return completion code on success. 476 **/ 477 478 ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation, 479 uint8_t reading, uint8_t assertOffset0_7, 480 uint8_t assertOffset8_14, 481 uint8_t deassertOffset0_7, 482 uint8_t deassertOffset8_14, 483 uint8_t eventData1, uint8_t eventData2, 484 uint8_t eventData3) 485 { 486 log<level::DEBUG>("IPMI SET_SENSOR", 487 entry("SENSOR_NUM=0x%02x", sensorNumber)); 488 489 if (sensorNumber == 0xFF) 490 { 491 return ipmi::responseInvalidFieldRequest(); 492 } 493 ipmi::sensor::SetSensorReadingReq cmdData; 494 495 cmdData.number = sensorNumber; 496 cmdData.operation = operation; 497 cmdData.reading = reading; 498 cmdData.assertOffset0_7 = assertOffset0_7; 499 cmdData.assertOffset8_14 = assertOffset8_14; 500 cmdData.deassertOffset0_7 = deassertOffset0_7; 501 cmdData.deassertOffset8_14 = deassertOffset8_14; 502 cmdData.eventData1 = eventData1; 503 cmdData.eventData2 = eventData2; 504 cmdData.eventData3 = eventData3; 505 506 // Check if the Sensor Number is present 507 const auto iter = ipmi::sensor::sensors.find(sensorNumber); 508 if (iter == ipmi::sensor::sensors.end()) 509 { 510 updateSensorRecordFromSSRAESC(&sensorNumber); 511 return ipmi::responseSuccess(); 512 } 513 514 try 515 { 516 if (ipmi::sensor::Mutability::Write != 517 (iter->second.mutability & ipmi::sensor::Mutability::Write)) 518 { 519 log<level::ERR>("Sensor Set operation is not allowed", 520 entry("SENSOR_NUM=%d", sensorNumber)); 521 return ipmi::responseIllegalCommand(); 522 } 523 auto ipmiRC = iter->second.updateFunc(cmdData, iter->second); 524 return ipmi::response(ipmiRC); 525 } 526 catch (const InternalFailure& e) 527 { 528 log<level::ERR>("Set sensor failed", 529 entry("SENSOR_NUM=%d", sensorNumber)); 530 commit<InternalFailure>(); 531 return ipmi::responseUnspecifiedError(); 532 } 533 catch (const std::runtime_error& e) 534 { 535 log<level::ERR>(e.what()); 536 return ipmi::responseUnspecifiedError(); 537 } 538 } 539 540 /** @brief implements the get sensor reading command 541 * @param sensorNum - sensor number 542 * 543 * @returns IPMI completion code plus response data 544 * - senReading - sensor reading 545 * - reserved 546 * - readState - sensor reading state enabled 547 * - senScanState - sensor scan state disabled 548 * - allEventMessageState - all Event message state disabled 549 * - assertionStatesLsb - threshold levels states 550 * - assertionStatesMsb - discrete reading sensor states 551 */ 552 ipmi::RspType<uint8_t, // sensor reading 553 554 uint5_t, // reserved 555 bool, // reading state 556 bool, // 0 = sensor scanning state disabled 557 bool, // 0 = all event messages disabled 558 559 uint8_t, // threshold levels states 560 uint8_t // discrete reading sensor states 561 > 562 ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx, 563 uint8_t sensorNum) 564 { 565 if (sensorNum == 0xFF) 566 { 567 return ipmi::responseInvalidFieldRequest(); 568 } 569 570 const auto iter = ipmi::sensor::sensors.find(sensorNum); 571 if (iter == ipmi::sensor::sensors.end()) 572 { 573 return ipmi::responseSensorInvalid(); 574 } 575 if (ipmi::sensor::Mutability::Read != 576 (iter->second.mutability & ipmi::sensor::Mutability::Read)) 577 { 578 return ipmi::responseIllegalCommand(); 579 } 580 581 try 582 { 583 #ifdef FEATURE_SENSORS_CACHE 584 auto& sensorData = sensorCacheMap[sensorNum]; 585 if (!sensorData.has_value()) 586 { 587 // No cached value, try read it 588 std::string service; 589 boost::system::error_code ec; 590 const auto& sensorInfo = iter->second; 591 ec = ipmi::getService(ctx, sensorInfo.sensorInterface, 592 sensorInfo.sensorPath, service); 593 if (ec) 594 { 595 return ipmi::responseUnspecifiedError(); 596 } 597 fillSensorIdServiceMap(sensorInfo.sensorPath, 598 sensorInfo.propertyInterfaces.begin()->first, 599 iter->first, service); 600 601 ipmi::PropertyMap props; 602 ec = ipmi::getAllDbusProperties( 603 ctx, service, sensorInfo.sensorPath, 604 sensorInfo.propertyInterfaces.begin()->first, props); 605 if (ec) 606 { 607 fprintf(stderr, "Failed to get sensor %s, %d: %s\n", 608 sensorInfo.sensorPath.c_str(), ec.value(), 609 ec.message().c_str()); 610 // Intitilizing with default values 611 constexpr uint8_t senReading = 0; 612 constexpr uint5_t reserved{0}; 613 constexpr bool readState = true; 614 constexpr bool senScanState = false; 615 constexpr bool allEventMessageState = false; 616 constexpr uint8_t assertionStatesLsb = 0; 617 constexpr uint8_t assertionStatesMsb = 0; 618 619 return ipmi::responseSuccess(senReading, reserved, readState, 620 senScanState, allEventMessageState, 621 assertionStatesLsb, 622 assertionStatesMsb); 623 } 624 sensorInfo.getFunc(sensorNum, sensorInfo, props); 625 } 626 return ipmi::responseSuccess( 627 sensorData->response.reading, uint5_t(0), 628 sensorData->response.readingOrStateUnavailable, 629 sensorData->response.scanningEnabled, 630 sensorData->response.allEventMessagesEnabled, 631 sensorData->response.thresholdLevelsStates, 632 sensorData->response.discreteReadingSensorStates); 633 634 #else 635 ipmi::sensor::GetSensorResponse getResponse = 636 iter->second.getFunc(iter->second); 637 638 return ipmi::responseSuccess(getResponse.reading, uint5_t(0), 639 getResponse.readingOrStateUnavailable, 640 getResponse.scanningEnabled, 641 getResponse.allEventMessagesEnabled, 642 getResponse.thresholdLevelsStates, 643 getResponse.discreteReadingSensorStates); 644 #endif 645 } 646 #ifdef UPDATE_FUNCTIONAL_ON_FAIL 647 catch (const SensorFunctionalError& e) 648 { 649 return ipmi::responseResponseError(); 650 } 651 #endif 652 catch (const std::exception& e) 653 { 654 // Intitilizing with default values 655 constexpr uint8_t senReading = 0; 656 constexpr uint5_t reserved{0}; 657 constexpr bool readState = true; 658 constexpr bool senScanState = false; 659 constexpr bool allEventMessageState = false; 660 constexpr uint8_t assertionStatesLsb = 0; 661 constexpr uint8_t assertionStatesMsb = 0; 662 663 return ipmi::responseSuccess(senReading, reserved, readState, 664 senScanState, allEventMessageState, 665 assertionStatesLsb, assertionStatesMsb); 666 } 667 } 668 669 get_sdr::GetSensorThresholdsResponse 670 getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 671 { 672 get_sdr::GetSensorThresholdsResponse resp{}; 673 constexpr auto warningThreshIntf = 674 "xyz.openbmc_project.Sensor.Threshold.Warning"; 675 constexpr auto criticalThreshIntf = 676 "xyz.openbmc_project.Sensor.Threshold.Critical"; 677 678 const auto iter = ipmi::sensor::sensors.find(sensorNum); 679 const auto info = iter->second; 680 681 std::string service; 682 boost::system::error_code ec; 683 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 684 if (ec) 685 { 686 return resp; 687 } 688 689 ipmi::PropertyMap warnThresholds; 690 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 691 warningThreshIntf, warnThresholds); 692 int32_t minClamp; 693 int32_t maxClamp; 694 int32_t rawData; 695 constexpr uint8_t sensorUnitsSignedBits = 2 << 6; 696 constexpr uint8_t signedDataFormat = 0x80; 697 if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat) 698 { 699 minClamp = std::numeric_limits<int8_t>::lowest(); 700 maxClamp = std::numeric_limits<int8_t>::max(); 701 } 702 else 703 { 704 minClamp = std::numeric_limits<uint8_t>::lowest(); 705 maxClamp = std::numeric_limits<uint8_t>::max(); 706 } 707 if (!ec) 708 { 709 double warnLow = ipmi::mappedVariant<double>( 710 warnThresholds, "WarningLow", 711 std::numeric_limits<double>::quiet_NaN()); 712 double warnHigh = ipmi::mappedVariant<double>( 713 warnThresholds, "WarningHigh", 714 std::numeric_limits<double>::quiet_NaN()); 715 716 if (std::isfinite(warnLow)) 717 { 718 warnLow *= std::pow(10, info.scale - info.exponentR); 719 rawData = round((warnLow - info.scaledOffset) / info.coefficientM); 720 resp.lowerNonCritical = 721 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 722 resp.validMask |= static_cast<uint8_t>( 723 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); 724 } 725 726 if (std::isfinite(warnHigh)) 727 { 728 warnHigh *= std::pow(10, info.scale - info.exponentR); 729 rawData = round((warnHigh - info.scaledOffset) / info.coefficientM); 730 resp.upperNonCritical = 731 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 732 resp.validMask |= static_cast<uint8_t>( 733 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); 734 } 735 } 736 737 ipmi::PropertyMap critThresholds; 738 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 739 criticalThreshIntf, critThresholds); 740 if (!ec) 741 { 742 double critLow = ipmi::mappedVariant<double>( 743 critThresholds, "CriticalLow", 744 std::numeric_limits<double>::quiet_NaN()); 745 double critHigh = ipmi::mappedVariant<double>( 746 critThresholds, "CriticalHigh", 747 std::numeric_limits<double>::quiet_NaN()); 748 749 if (std::isfinite(critLow)) 750 { 751 critLow *= std::pow(10, info.scale - info.exponentR); 752 rawData = round((critLow - info.scaledOffset) / info.coefficientM); 753 resp.lowerCritical = 754 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 755 resp.validMask |= static_cast<uint8_t>( 756 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); 757 } 758 759 if (std::isfinite(critHigh)) 760 { 761 critHigh *= std::pow(10, info.scale - info.exponentR); 762 rawData = round((critHigh - info.scaledOffset) / info.coefficientM); 763 resp.upperCritical = 764 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 765 resp.validMask |= static_cast<uint8_t>( 766 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); 767 } 768 } 769 770 return resp; 771 } 772 773 /** @brief implements the get sensor thresholds command 774 * @param ctx - IPMI context pointer 775 * @param sensorNum - sensor number 776 * 777 * @returns IPMI completion code plus response data 778 * - validMask - threshold mask 779 * - lower non-critical threshold - IPMI messaging state 780 * - lower critical threshold - link authentication state 781 * - lower non-recoverable threshold - callback state 782 * - upper non-critical threshold 783 * - upper critical 784 * - upper non-recoverable 785 */ 786 ipmi::RspType<uint8_t, // validMask 787 uint8_t, // lowerNonCritical 788 uint8_t, // lowerCritical 789 uint8_t, // lowerNonRecoverable 790 uint8_t, // upperNonCritical 791 uint8_t, // upperCritical 792 uint8_t // upperNonRecoverable 793 > 794 ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 795 { 796 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 797 798 const auto iter = ipmi::sensor::sensors.find(sensorNum); 799 if (iter == ipmi::sensor::sensors.end()) 800 { 801 return ipmi::responseSensorInvalid(); 802 } 803 804 const auto info = iter->second; 805 806 // Proceed only if the sensor value interface is implemented. 807 if (info.propertyInterfaces.find(valueInterface) == 808 info.propertyInterfaces.end()) 809 { 810 // return with valid mask as 0 811 return ipmi::responseSuccess(); 812 } 813 814 auto it = sensorThresholdMap.find(sensorNum); 815 if (it == sensorThresholdMap.end()) 816 { 817 sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum); 818 } 819 820 const auto& resp = sensorThresholdMap[sensorNum]; 821 822 return ipmi::responseSuccess(resp.validMask, resp.lowerNonCritical, 823 resp.lowerCritical, resp.lowerNonRecoverable, 824 resp.upperNonCritical, resp.upperCritical, 825 resp.upperNonRecoverable); 826 } 827 828 /** @brief implements the Set Sensor threshold command 829 * @param sensorNumber - sensor number 830 * @param lowerNonCriticalThreshMask 831 * @param lowerCriticalThreshMask 832 * @param lowerNonRecovThreshMask 833 * @param upperNonCriticalThreshMask 834 * @param upperCriticalThreshMask 835 * @param upperNonRecovThreshMask 836 * @param reserved 837 * @param lowerNonCritical - lower non-critical threshold 838 * @param lowerCritical - Lower critical threshold 839 * @param lowerNonRecoverable - Lower non recovarable threshold 840 * @param upperNonCritical - Upper non-critical threshold 841 * @param upperCritical - Upper critical 842 * @param upperNonRecoverable - Upper Non-recoverable 843 * 844 * @returns IPMI completion code 845 */ 846 ipmi::RspType<> ipmiSenSetSensorThresholds( 847 ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask, 848 bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask, 849 bool upperNonCriticalThreshMask, bool upperCriticalThreshMask, 850 bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical, 851 uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical, 852 uint8_t upperCritical, uint8_t) 853 { 854 if (reserved) 855 { 856 return ipmi::responseInvalidFieldRequest(); 857 } 858 859 // lower nc and upper nc not suppported on any sensor 860 if (lowerNonRecovThreshMask || upperNonRecovThreshMask) 861 { 862 return ipmi::responseInvalidFieldRequest(); 863 } 864 865 // if none of the threshold mask are set, nothing to do 866 if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask | 867 lowerNonRecovThreshMask | upperNonCriticalThreshMask | 868 upperCriticalThreshMask | upperNonRecovThreshMask)) 869 { 870 return ipmi::responseSuccess(); 871 } 872 873 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 874 875 const auto iter = ipmi::sensor::sensors.find(sensorNum); 876 if (iter == ipmi::sensor::sensors.end()) 877 { 878 return ipmi::responseSensorInvalid(); 879 } 880 881 const auto& info = iter->second; 882 883 // Proceed only if the sensor value interface is implemented. 884 if (info.propertyInterfaces.find(valueInterface) == 885 info.propertyInterfaces.end()) 886 { 887 // return with valid mask as 0 888 return ipmi::responseSuccess(); 889 } 890 891 constexpr auto warningThreshIntf = 892 "xyz.openbmc_project.Sensor.Threshold.Warning"; 893 constexpr auto criticalThreshIntf = 894 "xyz.openbmc_project.Sensor.Threshold.Critical"; 895 896 std::string service; 897 boost::system::error_code ec; 898 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 899 if (ec) 900 { 901 return ipmi::responseResponseError(); 902 } 903 // store a vector of property name, value to set, and interface 904 std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet; 905 906 // define the indexes of the tuple 907 constexpr uint8_t propertyName = 0; 908 constexpr uint8_t thresholdValue = 1; 909 constexpr uint8_t interface = 2; 910 // verifiy all needed fields are present 911 if (lowerCriticalThreshMask || upperCriticalThreshMask) 912 { 913 ipmi::PropertyMap findThreshold; 914 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 915 criticalThreshIntf, findThreshold); 916 917 if (!ec) 918 { 919 if (lowerCriticalThreshMask) 920 { 921 auto findLower = findThreshold.find("CriticalLow"); 922 if (findLower == findThreshold.end()) 923 { 924 return ipmi::responseInvalidFieldRequest(); 925 } 926 thresholdsToSet.emplace_back("CriticalLow", lowerCritical, 927 criticalThreshIntf); 928 } 929 if (upperCriticalThreshMask) 930 { 931 auto findUpper = findThreshold.find("CriticalHigh"); 932 if (findUpper == findThreshold.end()) 933 { 934 return ipmi::responseInvalidFieldRequest(); 935 } 936 thresholdsToSet.emplace_back("CriticalHigh", upperCritical, 937 criticalThreshIntf); 938 } 939 } 940 } 941 if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask) 942 { 943 ipmi::PropertyMap findThreshold; 944 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 945 warningThreshIntf, findThreshold); 946 947 if (!ec) 948 { 949 if (lowerNonCriticalThreshMask) 950 { 951 auto findLower = findThreshold.find("WarningLow"); 952 if (findLower == findThreshold.end()) 953 { 954 return ipmi::responseInvalidFieldRequest(); 955 } 956 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical, 957 warningThreshIntf); 958 } 959 if (upperNonCriticalThreshMask) 960 { 961 auto findUpper = findThreshold.find("WarningHigh"); 962 if (findUpper == findThreshold.end()) 963 { 964 return ipmi::responseInvalidFieldRequest(); 965 } 966 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical, 967 warningThreshIntf); 968 } 969 } 970 } 971 for (const auto& property : thresholdsToSet) 972 { 973 // from section 36.3 in the IPMI Spec, assume all linear 974 double valueToSet = 975 ((info.coefficientM * std::get<thresholdValue>(property)) + 976 (info.scaledOffset * std::pow(10.0, info.scale))) * 977 std::pow(10.0, info.exponentR); 978 ipmi::setDbusProperty( 979 ctx, service, info.sensorPath, std::get<interface>(property), 980 std::get<propertyName>(property), ipmi::Value(valueToSet)); 981 } 982 983 // Invalidate the cache 984 sensorThresholdMap.erase(sensorNum); 985 return ipmi::responseSuccess(); 986 } 987 988 /** @brief implements the get SDR Info command 989 * @param count - Operation 990 * 991 * @returns IPMI completion code plus response data 992 * - sdrCount - sensor/SDR count 993 * - lunsAndDynamicPopulation - static/Dynamic sensor population flag 994 */ 995 ipmi::RspType<uint8_t, // respcount 996 uint8_t // dynamic population flags 997 > 998 ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count) 999 { 1000 uint8_t sdrCount; 1001 // multiple LUNs not supported. 1002 constexpr uint8_t lunsAndDynamicPopulation = 1; 1003 constexpr uint8_t getSdrCount = 0x01; 1004 constexpr uint8_t getSensorCount = 0x00; 1005 1006 if (count.value_or(0) == getSdrCount) 1007 { 1008 // Get SDR count. This returns the total number of SDRs in the device. 1009 const auto& entityRecords = 1010 ipmi::sensor::EntityInfoMapContainer::getContainer() 1011 ->getIpmiEntityRecords(); 1012 sdrCount = ipmi::sensor::sensors.size() + frus.size() + 1013 entityRecords.size(); 1014 } 1015 else if (count.value_or(0) == getSensorCount) 1016 { 1017 // Get Sensor count. This returns the number of sensors 1018 sdrCount = ipmi::sensor::sensors.size(); 1019 } 1020 else 1021 { 1022 return ipmi::responseInvalidCommandOnLun(); 1023 } 1024 1025 return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation); 1026 } 1027 1028 /** @brief implements the reserve SDR command 1029 * @returns IPMI completion code plus response data 1030 * - reservationID - reservation ID 1031 */ 1032 ipmi::RspType<uint16_t> ipmiSensorReserveSdr() 1033 { 1034 // A constant reservation ID is okay until we implement add/remove SDR. 1035 constexpr uint16_t reservationID = 1; 1036 1037 return ipmi::responseSuccess(reservationID); 1038 } 1039 1040 void setUnitFieldsForObject(const ipmi::sensor::Info* info, 1041 get_sdr::SensorDataFullRecordBody* body) 1042 { 1043 namespace server = sdbusplus::xyz::openbmc_project::Sensor::server; 1044 try 1045 { 1046 auto unit = server::Value::convertUnitFromString(info->unit); 1047 // Unit strings defined in 1048 // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml 1049 switch (unit) 1050 { 1051 case server::Value::Unit::DegreesC: 1052 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; 1053 break; 1054 case server::Value::Unit::RPMS: 1055 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM; 1056 break; 1057 case server::Value::Unit::Volts: 1058 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; 1059 break; 1060 case server::Value::Unit::Meters: 1061 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; 1062 break; 1063 case server::Value::Unit::Amperes: 1064 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; 1065 break; 1066 case server::Value::Unit::Joules: 1067 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; 1068 break; 1069 case server::Value::Unit::Watts: 1070 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; 1071 break; 1072 default: 1073 // Cannot be hit. 1074 std::fprintf(stderr, "Unknown value unit type: = %s\n", 1075 info->unit.c_str()); 1076 } 1077 } 1078 catch (const sdbusplus::exception::InvalidEnumString& e) 1079 { 1080 log<level::WARNING>("Warning: no unit provided for sensor!"); 1081 } 1082 } 1083 1084 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, 1085 const ipmi::sensor::Info* info, 1086 ipmi_data_len_t) 1087 { 1088 /* Functional sensor case */ 1089 if (isAnalogSensor(info->propertyInterfaces.begin()->first)) 1090 { 1091 body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no 1092 // rate, no modifier, not a % 1093 /* Unit info */ 1094 setUnitFieldsForObject(info, body); 1095 1096 get_sdr::body::set_b(info->coefficientB, body); 1097 get_sdr::body::set_m(info->coefficientM, body); 1098 get_sdr::body::set_b_exp(info->exponentB, body); 1099 get_sdr::body::set_r_exp(info->exponentR, body); 1100 } 1101 1102 /* ID string */ 1103 auto id_string = info->sensorName; 1104 1105 if (id_string.empty()) 1106 { 1107 id_string = info->sensorNameFunc(*info); 1108 } 1109 1110 if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) 1111 { 1112 get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); 1113 } 1114 else 1115 { 1116 get_sdr::body::set_id_strlen(id_string.length(), body); 1117 } 1118 get_sdr::body::set_id_type(3, body); // "8-bit ASCII + Latin 1" 1119 strncpy(body->id_string, id_string.c_str(), 1120 get_sdr::body::get_id_strlen(body)); 1121 1122 return IPMI_CC_OK; 1123 }; 1124 1125 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, 1126 ipmi_data_len_t data_len) 1127 { 1128 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1129 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1130 get_sdr::SensorDataFruRecord record{}; 1131 auto dataLength = 0; 1132 1133 auto fru = frus.begin(); 1134 uint8_t fruID{}; 1135 auto recordID = get_sdr::request::get_record_id(req); 1136 1137 fruID = recordID - FRU_RECORD_ID_START; 1138 fru = frus.find(fruID); 1139 if (fru == frus.end()) 1140 { 1141 return IPMI_CC_SENSOR_INVALID; 1142 } 1143 1144 /* Header */ 1145 get_sdr::header::set_record_id(recordID, &(record.header)); 1146 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1147 record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; 1148 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1149 1150 /* Key */ 1151 record.key.fruID = fruID; 1152 record.key.accessLun |= IPMI_LOGICAL_FRU; 1153 record.key.deviceAddress = BMCSlaveAddress; 1154 1155 /* Body */ 1156 record.body.entityID = fru->second[0].entityID; 1157 record.body.entityInstance = fru->second[0].entityInstance; 1158 record.body.deviceType = fruInventoryDevice; 1159 record.body.deviceTypeModifier = IPMIFruInventory; 1160 1161 /* Device ID string */ 1162 auto deviceID = 1163 fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, 1164 fru->second[0].path.length()); 1165 1166 if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) 1167 { 1168 get_sdr::body::set_device_id_strlen( 1169 get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); 1170 } 1171 else 1172 { 1173 get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); 1174 } 1175 1176 strncpy(record.body.deviceID, deviceID.c_str(), 1177 get_sdr::body::get_device_id_strlen(&(record.body))); 1178 1179 if (++fru == frus.end()) 1180 { 1181 // we have reached till end of fru, so assign the next record id to 1182 // 512(Max fru ID = 511) + Entity Record ID(may start with 0). 1183 const auto& entityRecords = 1184 ipmi::sensor::EntityInfoMapContainer::getContainer() 1185 ->getIpmiEntityRecords(); 1186 auto next_record_id = (entityRecords.size()) 1187 ? entityRecords.begin()->first + 1188 ENTITY_RECORD_ID_START 1189 : END_OF_RECORD; 1190 get_sdr::response::set_next_record_id(next_record_id, resp); 1191 } 1192 else 1193 { 1194 get_sdr::response::set_next_record_id( 1195 (FRU_RECORD_ID_START + fru->first), resp); 1196 } 1197 1198 // Check for invalid offset size 1199 if (req->offset > sizeof(record)) 1200 { 1201 return IPMI_CC_PARM_OUT_OF_RANGE; 1202 } 1203 1204 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1205 sizeof(record) - req->offset); 1206 1207 std::memcpy(resp->record_data, 1208 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1209 1210 *data_len = dataLength; 1211 *data_len += 2; // additional 2 bytes for next record ID 1212 1213 return IPMI_CC_OK; 1214 } 1215 1216 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response, 1217 ipmi_data_len_t data_len) 1218 { 1219 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1220 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1221 get_sdr::SensorDataEntityRecord record{}; 1222 auto dataLength = 0; 1223 1224 const auto& entityRecords = 1225 ipmi::sensor::EntityInfoMapContainer::getContainer() 1226 ->getIpmiEntityRecords(); 1227 auto entity = entityRecords.begin(); 1228 uint8_t entityRecordID; 1229 auto recordID = get_sdr::request::get_record_id(req); 1230 1231 entityRecordID = recordID - ENTITY_RECORD_ID_START; 1232 entity = entityRecords.find(entityRecordID); 1233 if (entity == entityRecords.end()) 1234 { 1235 return IPMI_CC_SENSOR_INVALID; 1236 } 1237 1238 /* Header */ 1239 get_sdr::header::set_record_id(recordID, &(record.header)); 1240 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1241 record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD; 1242 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1243 1244 /* Key */ 1245 record.key.containerEntityId = entity->second.containerEntityId; 1246 record.key.containerEntityInstance = entity->second.containerEntityInstance; 1247 get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked, 1248 &(record.key)); 1249 record.key.entityId1 = entity->second.containedEntities[0].first; 1250 record.key.entityInstance1 = entity->second.containedEntities[0].second; 1251 1252 /* Body */ 1253 record.body.entityId2 = entity->second.containedEntities[1].first; 1254 record.body.entityInstance2 = entity->second.containedEntities[1].second; 1255 record.body.entityId3 = entity->second.containedEntities[2].first; 1256 record.body.entityInstance3 = entity->second.containedEntities[2].second; 1257 record.body.entityId4 = entity->second.containedEntities[3].first; 1258 record.body.entityInstance4 = entity->second.containedEntities[3].second; 1259 1260 if (++entity == entityRecords.end()) 1261 { 1262 get_sdr::response::set_next_record_id(END_OF_RECORD, 1263 resp); // last record 1264 } 1265 else 1266 { 1267 get_sdr::response::set_next_record_id( 1268 (ENTITY_RECORD_ID_START + entity->first), resp); 1269 } 1270 1271 // Check for invalid offset size 1272 if (req->offset > sizeof(record)) 1273 { 1274 return IPMI_CC_PARM_OUT_OF_RANGE; 1275 } 1276 1277 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1278 sizeof(record) - req->offset); 1279 1280 std::memcpy(resp->record_data, 1281 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1282 1283 *data_len = dataLength; 1284 *data_len += 2; // additional 2 bytes for next record ID 1285 1286 return IPMI_CC_OK; 1287 } 1288 1289 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, 1290 ipmi_response_t response, ipmi_data_len_t data_len, 1291 ipmi_context_t) 1292 { 1293 ipmi_ret_t ret = IPMI_CC_OK; 1294 get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; 1295 get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; 1296 1297 // Note: we use an iterator so we can provide the next ID at the end of 1298 // the call. 1299 auto sensor = ipmi::sensor::sensors.begin(); 1300 auto recordID = get_sdr::request::get_record_id(req); 1301 1302 // At the beginning of a scan, the host side will send us id=0. 1303 if (recordID != 0) 1304 { 1305 // recordID 0 to 255 means it is a FULL record. 1306 // recordID 256 to 511 means it is a FRU record. 1307 // recordID greater then 511 means it is a Entity Association 1308 // record. Currently we are supporting three record types: FULL 1309 // record, FRU record and Enttiy Association record. 1310 if (recordID >= ENTITY_RECORD_ID_START) 1311 { 1312 return ipmi_entity_get_sdr(request, response, data_len); 1313 } 1314 else if (recordID >= FRU_RECORD_ID_START && 1315 recordID < ENTITY_RECORD_ID_START) 1316 { 1317 return ipmi_fru_get_sdr(request, response, data_len); 1318 } 1319 else 1320 { 1321 sensor = ipmi::sensor::sensors.find(recordID); 1322 if (sensor == ipmi::sensor::sensors.end()) 1323 { 1324 return IPMI_CC_SENSOR_INVALID; 1325 } 1326 } 1327 } 1328 1329 uint8_t sensor_id = sensor->first; 1330 1331 auto it = sdrCacheMap.find(sensor_id); 1332 if (it == sdrCacheMap.end()) 1333 { 1334 /* Header */ 1335 get_sdr::SensorDataFullRecord record = {}; 1336 get_sdr::header::set_record_id(sensor_id, &(record.header)); 1337 record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 1338 record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; 1339 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1340 1341 /* Key */ 1342 get_sdr::key::set_owner_id_bmc(&(record.key)); 1343 record.key.sensor_number = sensor_id; 1344 1345 /* Body */ 1346 record.body.entity_id = sensor->second.entityType; 1347 record.body.sensor_type = sensor->second.sensorType; 1348 record.body.event_reading_type = sensor->second.sensorReadingType; 1349 record.body.entity_instance = sensor->second.instance; 1350 if (ipmi::sensor::Mutability::Write == 1351 (sensor->second.mutability & ipmi::sensor::Mutability::Write)) 1352 { 1353 get_sdr::body::init_settable_state(true, &(record.body)); 1354 } 1355 1356 // Set the type-specific details given the DBus interface 1357 populate_record_from_dbus(&(record.body), &(sensor->second), data_len); 1358 sdrCacheMap[sensor_id] = std::move(record); 1359 } 1360 1361 const auto& record = sdrCacheMap[sensor_id]; 1362 1363 if (++sensor == ipmi::sensor::sensors.end()) 1364 { 1365 // we have reached till end of sensor, so assign the next record id 1366 // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). 1367 auto next_record_id = (frus.size()) 1368 ? frus.begin()->first + FRU_RECORD_ID_START 1369 : END_OF_RECORD; 1370 1371 get_sdr::response::set_next_record_id(next_record_id, resp); 1372 } 1373 else 1374 { 1375 get_sdr::response::set_next_record_id(sensor->first, resp); 1376 } 1377 1378 if (req->offset > sizeof(record)) 1379 { 1380 return IPMI_CC_PARM_OUT_OF_RANGE; 1381 } 1382 1383 // data_len will ultimately be the size of the record, plus 1384 // the size of the next record ID: 1385 *data_len = std::min(static_cast<size_t>(req->bytes_to_read), 1386 sizeof(record) - req->offset); 1387 1388 std::memcpy(resp->record_data, 1389 reinterpret_cast<const uint8_t*>(&record) + req->offset, 1390 *data_len); 1391 1392 // data_len should include the LSB and MSB: 1393 *data_len += sizeof(resp->next_record_id_lsb) + 1394 sizeof(resp->next_record_id_msb); 1395 1396 return ret; 1397 } 1398 1399 static bool isFromSystemChannel() 1400 { 1401 // TODO we could not figure out where the request is from based on IPMI 1402 // command handler parameters. because of it, we can not differentiate 1403 // request from SMS/SMM or IPMB channel 1404 return true; 1405 } 1406 1407 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t, 1408 ipmi_request_t request, ipmi_response_t, 1409 ipmi_data_len_t dataLen, ipmi_context_t) 1410 { 1411 uint16_t generatorID; 1412 size_t count; 1413 bool assert = true; 1414 std::string sensorPath; 1415 size_t paraLen = *dataLen; 1416 PlatformEventRequest* req; 1417 *dataLen = 0; 1418 1419 if ((paraLen < selSystemEventSizeWith1Bytes) || 1420 (paraLen > selSystemEventSizeWith3Bytes)) 1421 { 1422 return IPMI_CC_REQ_DATA_LEN_INVALID; 1423 } 1424 1425 if (isFromSystemChannel()) 1426 { // first byte for SYSTEM Interface is Generator ID 1427 // +1 to get common struct 1428 req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1); 1429 // Capture the generator ID 1430 generatorID = *reinterpret_cast<uint8_t*>(request); 1431 // Platform Event usually comes from other firmware, like BIOS. 1432 // Unlike BMC sensor, it does not have BMC DBUS sensor path. 1433 sensorPath = "System"; 1434 } 1435 else 1436 { 1437 req = reinterpret_cast<PlatformEventRequest*>(request); 1438 // TODO GenratorID for IPMB is combination of RqSA and RqLUN 1439 generatorID = 0xff; 1440 sensorPath = "IPMB"; 1441 } 1442 // Content of event data field depends on sensor class. 1443 // When data0 bit[5:4] is non-zero, valid data counts is 3. 1444 // When data0 bit[7:6] is non-zero, valid data counts is 2. 1445 if (((req->data[0] & byte3EnableMask) != 0 && 1446 paraLen < selSystemEventSizeWith3Bytes) || 1447 ((req->data[0] & byte2EnableMask) != 0 && 1448 paraLen < selSystemEventSizeWith2Bytes)) 1449 { 1450 return IPMI_CC_REQ_DATA_LEN_INVALID; 1451 } 1452 1453 // Count bytes of Event Data 1454 if ((req->data[0] & byte3EnableMask) != 0) 1455 { 1456 count = 3; 1457 } 1458 else if ((req->data[0] & byte2EnableMask) != 0) 1459 { 1460 count = 2; 1461 } 1462 else 1463 { 1464 count = 1; 1465 } 1466 assert = req->eventDirectionType & directionMask ? false : true; 1467 std::vector<uint8_t> eventData(req->data, req->data + count); 1468 1469 sdbusplus::bus_t dbus(bus); 1470 std::string service = ipmi::getService(dbus, ipmiSELAddInterface, 1471 ipmiSELPath); 1472 sdbusplus::message_t writeSEL = dbus.new_method_call( 1473 service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd"); 1474 writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert, 1475 generatorID); 1476 try 1477 { 1478 dbus.call(writeSEL); 1479 } 1480 catch (const sdbusplus::exception_t& e) 1481 { 1482 phosphor::logging::log<phosphor::logging::level::ERR>(e.what()); 1483 return IPMI_CC_UNSPECIFIED_ERROR; 1484 } 1485 return IPMI_CC_OK; 1486 } 1487 1488 void register_netfn_sen_functions() 1489 { 1490 // Handlers with dbus-sdr handler implementation. 1491 // Do not register the hander if it dynamic sensors stack is used. 1492 1493 #ifndef FEATURE_DYNAMIC_SENSORS 1494 1495 #ifdef FEATURE_SENSORS_CACHE 1496 // Initialize the sensor matches 1497 initSensorMatches(); 1498 #endif 1499 1500 // <Set Sensor Reading and Event Status> 1501 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1502 ipmi::sensor_event::cmdSetSensorReadingAndEvtSts, 1503 ipmi::Privilege::Operator, ipmiSetSensorReading); 1504 // <Get Sensor Reading> 1505 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1506 ipmi::sensor_event::cmdGetSensorReading, 1507 ipmi::Privilege::User, ipmiSensorGetSensorReading); 1508 1509 // <Reserve Device SDR Repository> 1510 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1511 ipmi::sensor_event::cmdReserveDeviceSdrRepository, 1512 ipmi::Privilege::User, ipmiSensorReserveSdr); 1513 1514 // <Get Device SDR Info> 1515 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1516 ipmi::sensor_event::cmdGetDeviceSdrInfo, 1517 ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo); 1518 1519 // <Get Sensor Thresholds> 1520 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1521 ipmi::sensor_event::cmdGetSensorThreshold, 1522 ipmi::Privilege::User, ipmiSensorGetSensorThresholds); 1523 1524 // <Set Sensor Thresholds> 1525 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1526 ipmi::sensor_event::cmdSetSensorThreshold, 1527 ipmi::Privilege::User, ipmiSenSetSensorThresholds); 1528 1529 // <Get Device SDR> 1530 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, 1531 ipmi_sen_get_sdr, PRIVILEGE_USER); 1532 1533 #endif 1534 1535 // Common Handers used by both implementation. 1536 1537 // <Platform Event Message> 1538 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr, 1539 ipmicmdPlatformEvent, PRIVILEGE_OPERATOR); 1540 1541 // <Get Sensor Type> 1542 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1543 ipmi::sensor_event::cmdGetSensorType, 1544 ipmi::Privilege::User, ipmiGetSensorType); 1545 1546 return; 1547 } 1548