1 #include "config.h"
2 
3 #include "sensorhandler.hpp"
4 
5 #include "fruread.hpp"
6 
7 #include <systemd/sd-bus.h>
8 
9 #include <ipmid/api.hpp>
10 #include <ipmid/entity_map_json.hpp>
11 #include <ipmid/types.hpp>
12 #include <ipmid/utils.hpp>
13 #include <phosphor-logging/elog-errors.hpp>
14 #include <phosphor-logging/lg2.hpp>
15 #include <sdbusplus/message/types.hpp>
16 #include <xyz/openbmc_project/Common/error.hpp>
17 #include <xyz/openbmc_project/Sensor/Value/server.hpp>
18 
19 #include <bitset>
20 #include <cmath>
21 #include <cstring>
22 #include <set>
23 
24 static constexpr uint8_t fruInventoryDevice = 0x10;
25 static constexpr uint8_t IPMIFruInventory = 0x02;
26 static constexpr uint8_t BMCTargetAddress = 0x20;
27 
28 extern int updateSensorRecordFromSSRAESC(const void*);
29 extern sd_bus* bus;
30 
31 namespace ipmi
32 {
33 namespace sensor
34 {
35 extern const IdInfoMap sensors;
36 } // namespace sensor
37 } // namespace ipmi
38 
39 extern const FruMap frus;
40 
41 using namespace phosphor::logging;
42 using InternalFailure =
43     sdbusplus::error::xyz::openbmc_project::common::InternalFailure;
44 
45 void register_netfn_sen_functions() __attribute__((constructor));
46 
47 struct sensorTypemap_t
48 {
49     uint8_t number;
50     uint8_t typecode;
51     char dbusname[32];
52 };
53 
54 sensorTypemap_t g_SensorTypeMap[] = {
55 
56     {0x01, 0x6F, "Temp"},
57     {0x0C, 0x6F, "DIMM"},
58     {0x0C, 0x6F, "MEMORY_BUFFER"},
59     {0x07, 0x6F, "PROC"},
60     {0x07, 0x6F, "CORE"},
61     {0x07, 0x6F, "CPU"},
62     {0x0F, 0x6F, "BootProgress"},
63     {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor
64                                // type code os 0x09
65     {0xC3, 0x6F, "BootCount"},
66     {0x1F, 0x6F, "OperatingSystemStatus"},
67     {0x12, 0x6F, "SYSTEM_EVENT"},
68     {0xC7, 0x03, "SYSTEM"},
69     {0xC7, 0x03, "MAIN_PLANAR"},
70     {0xC2, 0x6F, "PowerCap"},
71     {0x0b, 0xCA, "PowerSupplyRedundancy"},
72     {0xDA, 0x03, "TurboAllowed"},
73     {0xD8, 0xC8, "PowerSupplyDerating"},
74     {0xFF, 0x00, ""},
75 };
76 
77 struct sensor_data_t
78 {
79     uint8_t sennum;
80 } __attribute__((packed));
81 
82 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>;
83 SDRCacheMap sdrCacheMap __attribute__((init_priority(101)));
84 
85 using SensorThresholdMap =
86     std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>;
87 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101)));
88 
89 #ifdef FEATURE_SENSORS_CACHE
90 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches
91     __attribute__((init_priority(101)));
92 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches
93     __attribute__((init_priority(101)));
94 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches
95     __attribute__((init_priority(101)));
96 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch
97     __attribute__((init_priority(101)));
98 
99 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101)));
100 
101 // It is needed to know which objects belong to which service, so that when a
102 // service exits without interfacesRemoved signal, we could invaildate the cache
103 // that is related to the service. It uses below two variables:
104 // - idToServiceMap records which sensors are known to have a related service;
105 // - serviceToIdMap maps a service to the sensors.
106 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>;
107 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101)));
108 
109 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>;
110 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101)));
111 
112 static void fillSensorIdServiceMap(const std::string&,
113                                    const std::string& /*intf*/, uint8_t id,
114                                    const std::string& service)
115 {
116     if (idToServiceMap.find(id) != idToServiceMap.end())
117     {
118         return;
119     }
120     idToServiceMap[id] = service;
121     serviceToIdMap[service].insert(id);
122 }
123 
124 static void fillSensorIdServiceMap(const std::string& obj,
125                                    const std::string& intf, uint8_t id)
126 {
127     if (idToServiceMap.find(id) != idToServiceMap.end())
128     {
129         return;
130     }
131     try
132     {
133         sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
134         auto service = ipmi::getService(bus, intf, obj);
135         idToServiceMap[id] = service;
136         serviceToIdMap[service].insert(id);
137     }
138     catch (...)
139     {
140         // Ignore
141     }
142 }
143 
144 void initSensorMatches()
145 {
146     using namespace sdbusplus::bus::match::rules;
147     sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
148     for (const auto& s : ipmi::sensor::sensors)
149     {
150         sensorAddedMatches.emplace(
151             s.first,
152             std::make_unique<sdbusplus::bus::match_t>(
153                 bus, interfacesAdded() + argNpath(0, s.second.sensorPath),
154                 [id = s.first, obj = s.second.sensorPath,
155                  intf = s.second.propertyInterfaces.begin()->first](
156                     auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); }));
157         sensorRemovedMatches.emplace(
158             s.first,
159             std::make_unique<sdbusplus::bus::match_t>(
160                 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath),
161                 [id = s.first](auto& /*msg*/) {
162                     // Ideally this should work.
163                     // But when a service is terminated or crashed, it does not
164                     // emit interfacesRemoved signal. In that case it's handled
165                     // by sensorsOwnerMatch
166                     sensorCacheMap[id].reset();
167                 }));
168         sensorUpdatedMatches.emplace(
169             s.first,
170             std::make_unique<sdbusplus::bus::match_t>(
171                 bus,
172                 type::signal() + path(s.second.sensorPath) +
173                     member("PropertiesChanged"s) +
174                     interface("org.freedesktop.DBus.Properties"s),
175                 [&s](auto& msg) {
176                     fillSensorIdServiceMap(
177                         s.second.sensorPath,
178                         s.second.propertyInterfaces.begin()->first, s.first);
179                     try
180                     {
181                         // This is signal callback
182                         std::string interfaceName;
183                         msg.read(interfaceName);
184                         ipmi::PropertyMap props;
185                         msg.read(props);
186                         s.second.getFunc(s.first, s.second, props);
187                     }
188                     catch (const std::exception& e)
189                     {
190                         sensorCacheMap[s.first].reset();
191                     }
192                 }));
193     }
194     sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>(
195         bus, nameOwnerChanged(), [](auto& msg) {
196             std::string name;
197             std::string oldOwner;
198             std::string newOwner;
199             msg.read(name, oldOwner, newOwner);
200 
201             if (!name.empty() && newOwner.empty())
202             {
203                 // The service exits
204                 const auto it = serviceToIdMap.find(name);
205                 if (it == serviceToIdMap.end())
206                 {
207                     return;
208                 }
209                 for (const auto& id : it->second)
210                 {
211                     // Invalidate cache
212                     sensorCacheMap[id].reset();
213                 }
214             }
215         });
216 }
217 #endif
218 
219 // Use a lookup table to find the interface name of a specific sensor
220 // This will be used until an alternative is found.  this is the first
221 // step for mapping IPMI
222 int find_openbmc_path(uint8_t num, dbus_interface_t* interface)
223 {
224     const auto& sensor_it = ipmi::sensor::sensors.find(num);
225     if (sensor_it == ipmi::sensor::sensors.end())
226     {
227         // The sensor map does not contain the sensor requested
228         return -EINVAL;
229     }
230 
231     const auto& info = sensor_it->second;
232 
233     std::string serviceName{};
234     try
235     {
236         sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
237         serviceName =
238             ipmi::getService(bus, info.sensorInterface, info.sensorPath);
239     }
240     catch (const sdbusplus::exception_t&)
241     {
242         std::fprintf(stderr, "Failed to get %s busname: %s\n",
243                      info.sensorPath.c_str(), serviceName.c_str());
244         return -EINVAL;
245     }
246 
247     interface->sensortype = info.sensorType;
248     strcpy(interface->bus, serviceName.c_str());
249     strcpy(interface->path, info.sensorPath.c_str());
250     // Take the interface name from the beginning of the DbusInterfaceMap. This
251     // works for the Value interface but may not suffice for more complex
252     // sensors.
253     // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103
254     strcpy(interface->interface,
255            info.propertyInterfaces.begin()->first.c_str());
256     interface->sensornumber = num;
257 
258     return 0;
259 }
260 
261 /////////////////////////////////////////////////////////////////////
262 //
263 // Routines used by ipmi commands wanting to interact on the dbus
264 //
265 /////////////////////////////////////////////////////////////////////
266 int set_sensor_dbus_state_s(uint8_t number, const char* method,
267                             const char* value)
268 {
269     dbus_interface_t a;
270     int r;
271     sd_bus_error error = SD_BUS_ERROR_NULL;
272     sd_bus_message* m = NULL;
273 
274     r = find_openbmc_path(number, &a);
275 
276     if (r < 0)
277     {
278         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
279         return 0;
280     }
281 
282     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
283                                        method);
284     if (r < 0)
285     {
286         std::fprintf(stderr, "Failed to create a method call: %s",
287                      strerror(-r));
288         goto final;
289     }
290 
291     r = sd_bus_message_append(m, "v", "s", value);
292     if (r < 0)
293     {
294         std::fprintf(stderr, "Failed to create a input parameter: %s",
295                      strerror(-r));
296         goto final;
297     }
298 
299     r = sd_bus_call(bus, m, 0, &error, NULL);
300     if (r < 0)
301     {
302         std::fprintf(stderr, "Failed to call the method: %s", strerror(-r));
303     }
304 
305 final:
306     sd_bus_error_free(&error);
307     m = sd_bus_message_unref(m);
308 
309     return 0;
310 }
311 int set_sensor_dbus_state_y(uint8_t number, const char* method,
312                             const uint8_t value)
313 {
314     dbus_interface_t a;
315     int r;
316     sd_bus_error error = SD_BUS_ERROR_NULL;
317     sd_bus_message* m = NULL;
318 
319     r = find_openbmc_path(number, &a);
320 
321     if (r < 0)
322     {
323         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
324         return 0;
325     }
326 
327     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
328                                        method);
329     if (r < 0)
330     {
331         std::fprintf(stderr, "Failed to create a method call: %s",
332                      strerror(-r));
333         goto final;
334     }
335 
336     r = sd_bus_message_append(m, "v", "i", value);
337     if (r < 0)
338     {
339         std::fprintf(stderr, "Failed to create a input parameter: %s",
340                      strerror(-r));
341         goto final;
342     }
343 
344     r = sd_bus_call(bus, m, 0, &error, NULL);
345     if (r < 0)
346     {
347         std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r));
348     }
349 
350 final:
351     sd_bus_error_free(&error);
352     m = sd_bus_message_unref(m);
353 
354     return 0;
355 }
356 
357 uint8_t dbus_to_sensor_type(char* p)
358 {
359     sensorTypemap_t* s = g_SensorTypeMap;
360     char r = 0;
361     while (s->number != 0xFF)
362     {
363         if (!strcmp(s->dbusname, p))
364         {
365             r = s->typecode;
366             break;
367         }
368         s++;
369     }
370 
371     if (s->number == 0xFF)
372         printf("Failed to find Sensor Type %s\n", p);
373 
374     return r;
375 }
376 
377 uint8_t get_type_from_interface(dbus_interface_t dbus_if)
378 {
379     uint8_t type;
380 
381     // This is where sensors that do not exist in dbus but do
382     // exist in the host code stop.  This should indicate it
383     // is not a supported sensor
384     if (dbus_if.interface[0] == 0)
385     {
386         return 0;
387     }
388 
389     // Fetch type from interface itself.
390     if (dbus_if.sensortype != 0)
391     {
392         type = dbus_if.sensortype;
393     }
394     else
395     {
396         // Non InventoryItems
397         char* p = strrchr(dbus_if.path, '/');
398         type = dbus_to_sensor_type(p + 1);
399     }
400 
401     return type;
402 }
403 
404 // Replaces find_sensor
405 uint8_t find_type_for_sensor_number(uint8_t num)
406 {
407     int r;
408     dbus_interface_t dbus_if;
409     r = find_openbmc_path(num, &dbus_if);
410     if (r < 0)
411     {
412         std::fprintf(stderr, "Could not find sensor %d\n", num);
413         return 0;
414     }
415     return get_type_from_interface(dbus_if);
416 }
417 
418 /**
419  *  @brief implements the get sensor type command.
420  *  @param - sensorNumber
421  *
422  *  @return IPMI completion code plus response data on success.
423  *   - sensorType
424  *   - eventType
425  **/
426 
427 ipmi::RspType<uint8_t, // sensorType
428               uint8_t  // eventType
429               >
430     ipmiGetSensorType(uint8_t sensorNumber)
431 {
432     const auto it = ipmi::sensor::sensors.find(sensorNumber);
433     if (it == ipmi::sensor::sensors.end())
434     {
435         // The sensor map does not contain the sensor requested
436         return ipmi::responseSensorInvalid();
437     }
438 
439     const auto& info = it->second;
440     uint8_t sensorType = info.sensorType;
441     uint8_t eventType = info.sensorReadingType;
442 
443     return ipmi::responseSuccess(sensorType, eventType);
444 }
445 
446 const std::set<std::string> analogSensorInterfaces = {
447     "xyz.openbmc_project.Sensor.Value",
448     "xyz.openbmc_project.Control.FanPwm",
449 };
450 
451 bool isAnalogSensor(const std::string& interface)
452 {
453     return (analogSensorInterfaces.count(interface));
454 }
455 
456 /**
457 @brief This command is used to set sensorReading.
458 
459 @param
460     -  sensorNumber
461     -  operation
462     -  reading
463     -  assertOffset0_7
464     -  assertOffset8_14
465     -  deassertOffset0_7
466     -  deassertOffset8_14
467     -  eventData1
468     -  eventData2
469     -  eventData3
470 
471 @return completion code on success.
472 **/
473 
474 ipmi::RspType<> ipmiSetSensorReading(
475     uint8_t sensorNumber, uint8_t operation, uint8_t reading,
476     uint8_t assertOffset0_7, uint8_t assertOffset8_14,
477     uint8_t deassertOffset0_7, uint8_t deassertOffset8_14, uint8_t eventData1,
478     uint8_t eventData2, uint8_t eventData3)
479 {
480     lg2::debug("IPMI SET_SENSOR, sensorNumber: {SENSOR_NUM}", "SENSOR_NUM",
481                lg2::hex, sensorNumber);
482 
483     if (sensorNumber == 0xFF)
484     {
485         return ipmi::responseInvalidFieldRequest();
486     }
487     ipmi::sensor::SetSensorReadingReq cmdData;
488 
489     cmdData.number = sensorNumber;
490     cmdData.operation = operation;
491     cmdData.reading = reading;
492     cmdData.assertOffset0_7 = assertOffset0_7;
493     cmdData.assertOffset8_14 = assertOffset8_14;
494     cmdData.deassertOffset0_7 = deassertOffset0_7;
495     cmdData.deassertOffset8_14 = deassertOffset8_14;
496     cmdData.eventData1 = eventData1;
497     cmdData.eventData2 = eventData2;
498     cmdData.eventData3 = eventData3;
499 
500     // Check if the Sensor Number is present
501     const auto iter = ipmi::sensor::sensors.find(sensorNumber);
502     if (iter == ipmi::sensor::sensors.end())
503     {
504         updateSensorRecordFromSSRAESC(&sensorNumber);
505         return ipmi::responseSuccess();
506     }
507 
508     try
509     {
510         if (ipmi::sensor::Mutability::Write !=
511             (iter->second.mutability & ipmi::sensor::Mutability::Write))
512         {
513             lg2::error("Sensor Set operation is not allowed, "
514                        "sensorNumber: {SENSOR_NUM}",
515                        "SENSOR_NUM", lg2::hex, sensorNumber);
516             return ipmi::responseIllegalCommand();
517         }
518         auto ipmiRC = iter->second.updateFunc(cmdData, iter->second);
519         return ipmi::response(ipmiRC);
520     }
521     catch (const InternalFailure& e)
522     {
523         lg2::error("Set sensor failed, sensorNumber: {SENSOR_NUM}",
524                    "SENSOR_NUM", lg2::hex, sensorNumber);
525         commit<InternalFailure>();
526         return ipmi::responseUnspecifiedError();
527     }
528     catch (const std::runtime_error& e)
529     {
530         lg2::error("runtime error: {ERROR}", "ERROR", e);
531         return ipmi::responseUnspecifiedError();
532     }
533 }
534 
535 /** @brief implements the get sensor reading command
536  *  @param sensorNum - sensor number
537  *
538  *  @returns IPMI completion code plus response data
539  *   - senReading           - sensor reading
540  *   - reserved
541  *   - readState            - sensor reading state enabled
542  *   - senScanState         - sensor scan state disabled
543  *   - allEventMessageState - all Event message state disabled
544  *   - assertionStatesLsb   - threshold levels states
545  *   - assertionStatesMsb   - discrete reading sensor states
546  */
547 ipmi::RspType<uint8_t, // sensor reading
548 
549               uint5_t, // reserved
550               bool,    // reading state
551               bool,    // 0 = sensor scanning state disabled
552               bool,    // 0 = all event messages disabled
553 
554               uint8_t, // threshold levels states
555               uint8_t  // discrete reading sensor states
556               >
557     ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx,
558                                uint8_t sensorNum)
559 {
560     if (sensorNum == 0xFF)
561     {
562         return ipmi::responseInvalidFieldRequest();
563     }
564 
565     const auto iter = ipmi::sensor::sensors.find(sensorNum);
566     if (iter == ipmi::sensor::sensors.end())
567     {
568         return ipmi::responseSensorInvalid();
569     }
570     if (ipmi::sensor::Mutability::Read !=
571         (iter->second.mutability & ipmi::sensor::Mutability::Read))
572     {
573         return ipmi::responseIllegalCommand();
574     }
575 
576     try
577     {
578 #ifdef FEATURE_SENSORS_CACHE
579         auto& sensorData = sensorCacheMap[sensorNum];
580         if (!sensorData.has_value())
581         {
582             // No cached value, try read it
583             std::string service;
584             boost::system::error_code ec;
585             const auto& sensorInfo = iter->second;
586             ec = ipmi::getService(ctx, sensorInfo.sensorInterface,
587                                   sensorInfo.sensorPath, service);
588             if (ec)
589             {
590                 return ipmi::responseUnspecifiedError();
591             }
592             fillSensorIdServiceMap(sensorInfo.sensorPath,
593                                    sensorInfo.propertyInterfaces.begin()->first,
594                                    iter->first, service);
595 
596             ipmi::PropertyMap props;
597             ec = ipmi::getAllDbusProperties(
598                 ctx, service, sensorInfo.sensorPath,
599                 sensorInfo.propertyInterfaces.begin()->first, props);
600             if (ec)
601             {
602                 fprintf(stderr, "Failed to get sensor %s, %d: %s\n",
603                         sensorInfo.sensorPath.c_str(), ec.value(),
604                         ec.message().c_str());
605                 // Intitilizing with default values
606                 constexpr uint8_t senReading = 0;
607                 constexpr uint5_t reserved{0};
608                 constexpr bool readState = true;
609                 constexpr bool senScanState = false;
610                 constexpr bool allEventMessageState = false;
611                 constexpr uint8_t assertionStatesLsb = 0;
612                 constexpr uint8_t assertionStatesMsb = 0;
613 
614                 return ipmi::responseSuccess(
615                     senReading, reserved, readState, senScanState,
616                     allEventMessageState, assertionStatesLsb,
617                     assertionStatesMsb);
618             }
619             sensorInfo.getFunc(sensorNum, sensorInfo, props);
620         }
621         return ipmi::responseSuccess(
622             sensorData->response.reading, uint5_t(0),
623             sensorData->response.readingOrStateUnavailable,
624             sensorData->response.scanningEnabled,
625             sensorData->response.allEventMessagesEnabled,
626             sensorData->response.thresholdLevelsStates,
627             sensorData->response.discreteReadingSensorStates);
628 
629 #else
630         ipmi::sensor::GetSensorResponse getResponse =
631             iter->second.getFunc(iter->second);
632 
633         return ipmi::responseSuccess(
634             getResponse.reading, uint5_t(0),
635             getResponse.readingOrStateUnavailable, getResponse.scanningEnabled,
636             getResponse.allEventMessagesEnabled,
637             getResponse.thresholdLevelsStates,
638             getResponse.discreteReadingSensorStates);
639 #endif
640     }
641 #ifdef UPDATE_FUNCTIONAL_ON_FAIL
642     catch (const SensorFunctionalError& e)
643     {
644         return ipmi::responseResponseError();
645     }
646 #endif
647     catch (const std::exception& e)
648     {
649         // Intitilizing with default values
650         constexpr uint8_t senReading = 0;
651         constexpr uint5_t reserved{0};
652         constexpr bool readState = true;
653         constexpr bool senScanState = false;
654         constexpr bool allEventMessageState = false;
655         constexpr uint8_t assertionStatesLsb = 0;
656         constexpr uint8_t assertionStatesMsb = 0;
657 
658         return ipmi::responseSuccess(senReading, reserved, readState,
659                                      senScanState, allEventMessageState,
660                                      assertionStatesLsb, assertionStatesMsb);
661     }
662 }
663 
664 get_sdr::GetSensorThresholdsResponse
665     getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
666 {
667     get_sdr::GetSensorThresholdsResponse resp{};
668     constexpr auto warningThreshIntf =
669         "xyz.openbmc_project.Sensor.Threshold.Warning";
670     constexpr auto criticalThreshIntf =
671         "xyz.openbmc_project.Sensor.Threshold.Critical";
672 
673     const auto iter = ipmi::sensor::sensors.find(sensorNum);
674     const auto info = iter->second;
675 
676     std::string service;
677     boost::system::error_code ec;
678     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
679     if (ec)
680     {
681         return resp;
682     }
683 
684     ipmi::PropertyMap warnThresholds;
685     ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
686                                     warningThreshIntf, warnThresholds);
687     int32_t minClamp;
688     int32_t maxClamp;
689     int32_t rawData;
690     constexpr uint8_t sensorUnitsSignedBits = 2 << 6;
691     constexpr uint8_t signedDataFormat = 0x80;
692     if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat)
693     {
694         minClamp = std::numeric_limits<int8_t>::lowest();
695         maxClamp = std::numeric_limits<int8_t>::max();
696     }
697     else
698     {
699         minClamp = std::numeric_limits<uint8_t>::lowest();
700         maxClamp = std::numeric_limits<uint8_t>::max();
701     }
702     if (!ec)
703     {
704         double warnLow = ipmi::mappedVariant<double>(
705             warnThresholds, "WarningLow",
706             std::numeric_limits<double>::quiet_NaN());
707         double warnHigh = ipmi::mappedVariant<double>(
708             warnThresholds, "WarningHigh",
709             std::numeric_limits<double>::quiet_NaN());
710 
711         if (std::isfinite(warnLow))
712         {
713             warnLow *= std::pow(10, info.scale - info.exponentR);
714             rawData = round((warnLow - info.scaledOffset) / info.coefficientM);
715             resp.lowerNonCritical =
716                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
717             resp.validMask |= static_cast<uint8_t>(
718                 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK);
719         }
720 
721         if (std::isfinite(warnHigh))
722         {
723             warnHigh *= std::pow(10, info.scale - info.exponentR);
724             rawData = round((warnHigh - info.scaledOffset) / info.coefficientM);
725             resp.upperNonCritical =
726                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
727             resp.validMask |= static_cast<uint8_t>(
728                 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK);
729         }
730     }
731 
732     ipmi::PropertyMap critThresholds;
733     ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
734                                     criticalThreshIntf, critThresholds);
735     if (!ec)
736     {
737         double critLow = ipmi::mappedVariant<double>(
738             critThresholds, "CriticalLow",
739             std::numeric_limits<double>::quiet_NaN());
740         double critHigh = ipmi::mappedVariant<double>(
741             critThresholds, "CriticalHigh",
742             std::numeric_limits<double>::quiet_NaN());
743 
744         if (std::isfinite(critLow))
745         {
746             critLow *= std::pow(10, info.scale - info.exponentR);
747             rawData = round((critLow - info.scaledOffset) / info.coefficientM);
748             resp.lowerCritical =
749                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
750             resp.validMask |= static_cast<uint8_t>(
751                 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK);
752         }
753 
754         if (std::isfinite(critHigh))
755         {
756             critHigh *= std::pow(10, info.scale - info.exponentR);
757             rawData = round((critHigh - info.scaledOffset) / info.coefficientM);
758             resp.upperCritical =
759                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
760             resp.validMask |= static_cast<uint8_t>(
761                 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK);
762         }
763     }
764 
765     return resp;
766 }
767 
768 /** @brief implements the get sensor thresholds command
769  *  @param ctx - IPMI context pointer
770  *  @param sensorNum - sensor number
771  *
772  *  @returns IPMI completion code plus response data
773  *   - validMask - threshold mask
774  *   - lower non-critical threshold - IPMI messaging state
775  *   - lower critical threshold - link authentication state
776  *   - lower non-recoverable threshold - callback state
777  *   - upper non-critical threshold
778  *   - upper critical
779  *   - upper non-recoverable
780  */
781 ipmi::RspType<uint8_t, // validMask
782               uint8_t, // lowerNonCritical
783               uint8_t, // lowerCritical
784               uint8_t, // lowerNonRecoverable
785               uint8_t, // upperNonCritical
786               uint8_t, // upperCritical
787               uint8_t  // upperNonRecoverable
788               >
789     ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
790 {
791     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
792 
793     const auto iter = ipmi::sensor::sensors.find(sensorNum);
794     if (iter == ipmi::sensor::sensors.end())
795     {
796         return ipmi::responseSensorInvalid();
797     }
798 
799     const auto info = iter->second;
800 
801     // Proceed only if the sensor value interface is implemented.
802     if (info.propertyInterfaces.find(valueInterface) ==
803         info.propertyInterfaces.end())
804     {
805         // return with valid mask as 0
806         return ipmi::responseSuccess();
807     }
808 
809     auto it = sensorThresholdMap.find(sensorNum);
810     if (it == sensorThresholdMap.end())
811     {
812         sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum);
813     }
814 
815     const auto& resp = sensorThresholdMap[sensorNum];
816 
817     return ipmi::responseSuccess(
818         resp.validMask, resp.lowerNonCritical, resp.lowerCritical,
819         resp.lowerNonRecoverable, resp.upperNonCritical, resp.upperCritical,
820         resp.upperNonRecoverable);
821 }
822 
823 /** @brief implements the Set Sensor threshold command
824  *  @param sensorNumber        - sensor number
825  *  @param lowerNonCriticalThreshMask
826  *  @param lowerCriticalThreshMask
827  *  @param lowerNonRecovThreshMask
828  *  @param upperNonCriticalThreshMask
829  *  @param upperCriticalThreshMask
830  *  @param upperNonRecovThreshMask
831  *  @param reserved
832  *  @param lowerNonCritical    - lower non-critical threshold
833  *  @param lowerCritical       - Lower critical threshold
834  *  @param lowerNonRecoverable - Lower non recovarable threshold
835  *  @param upperNonCritical    - Upper non-critical threshold
836  *  @param upperCritical       - Upper critical
837  *  @param upperNonRecoverable - Upper Non-recoverable
838  *
839  *  @returns IPMI completion code
840  */
841 ipmi::RspType<> ipmiSenSetSensorThresholds(
842     ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask,
843     bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask,
844     bool upperNonCriticalThreshMask, bool upperCriticalThreshMask,
845     bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical,
846     uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical,
847     uint8_t upperCritical, uint8_t)
848 {
849     if (reserved)
850     {
851         return ipmi::responseInvalidFieldRequest();
852     }
853 
854     // lower nc and upper nc not suppported on any sensor
855     if (lowerNonRecovThreshMask || upperNonRecovThreshMask)
856     {
857         return ipmi::responseInvalidFieldRequest();
858     }
859 
860     // if none of the threshold mask are set, nothing to do
861     if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask |
862           lowerNonRecovThreshMask | upperNonCriticalThreshMask |
863           upperCriticalThreshMask | upperNonRecovThreshMask))
864     {
865         return ipmi::responseSuccess();
866     }
867 
868     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
869 
870     const auto iter = ipmi::sensor::sensors.find(sensorNum);
871     if (iter == ipmi::sensor::sensors.end())
872     {
873         return ipmi::responseSensorInvalid();
874     }
875 
876     const auto& info = iter->second;
877 
878     // Proceed only if the sensor value interface is implemented.
879     if (info.propertyInterfaces.find(valueInterface) ==
880         info.propertyInterfaces.end())
881     {
882         // return with valid mask as 0
883         return ipmi::responseSuccess();
884     }
885 
886     constexpr auto warningThreshIntf =
887         "xyz.openbmc_project.Sensor.Threshold.Warning";
888     constexpr auto criticalThreshIntf =
889         "xyz.openbmc_project.Sensor.Threshold.Critical";
890 
891     std::string service;
892     boost::system::error_code ec;
893     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
894     if (ec)
895     {
896         return ipmi::responseResponseError();
897     }
898     // store a vector of property name, value to set, and interface
899     std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet;
900 
901     // define the indexes of the tuple
902     constexpr uint8_t propertyName = 0;
903     constexpr uint8_t thresholdValue = 1;
904     constexpr uint8_t interface = 2;
905     // verifiy all needed fields are present
906     if (lowerCriticalThreshMask || upperCriticalThreshMask)
907     {
908         ipmi::PropertyMap findThreshold;
909         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
910                                         criticalThreshIntf, findThreshold);
911 
912         if (!ec)
913         {
914             if (lowerCriticalThreshMask)
915             {
916                 auto findLower = findThreshold.find("CriticalLow");
917                 if (findLower == findThreshold.end())
918                 {
919                     return ipmi::responseInvalidFieldRequest();
920                 }
921                 thresholdsToSet.emplace_back("CriticalLow", lowerCritical,
922                                              criticalThreshIntf);
923             }
924             if (upperCriticalThreshMask)
925             {
926                 auto findUpper = findThreshold.find("CriticalHigh");
927                 if (findUpper == findThreshold.end())
928                 {
929                     return ipmi::responseInvalidFieldRequest();
930                 }
931                 thresholdsToSet.emplace_back("CriticalHigh", upperCritical,
932                                              criticalThreshIntf);
933             }
934         }
935     }
936     if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask)
937     {
938         ipmi::PropertyMap findThreshold;
939         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
940                                         warningThreshIntf, findThreshold);
941 
942         if (!ec)
943         {
944             if (lowerNonCriticalThreshMask)
945             {
946                 auto findLower = findThreshold.find("WarningLow");
947                 if (findLower == findThreshold.end())
948                 {
949                     return ipmi::responseInvalidFieldRequest();
950                 }
951                 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical,
952                                              warningThreshIntf);
953             }
954             if (upperNonCriticalThreshMask)
955             {
956                 auto findUpper = findThreshold.find("WarningHigh");
957                 if (findUpper == findThreshold.end())
958                 {
959                     return ipmi::responseInvalidFieldRequest();
960                 }
961                 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical,
962                                              warningThreshIntf);
963             }
964         }
965     }
966     for (const auto& property : thresholdsToSet)
967     {
968         // from section 36.3 in the IPMI Spec, assume all linear
969         double valueToSet =
970             ((info.coefficientM * std::get<thresholdValue>(property)) +
971              (info.scaledOffset * std::pow(10.0, info.scale))) *
972             std::pow(10.0, info.exponentR);
973         ipmi::setDbusProperty(
974             ctx, service, info.sensorPath, std::get<interface>(property),
975             std::get<propertyName>(property), ipmi::Value(valueToSet));
976     }
977 
978     // Invalidate the cache
979     sensorThresholdMap.erase(sensorNum);
980     return ipmi::responseSuccess();
981 }
982 
983 /** @brief implements the get SDR Info command
984  *  @param count - Operation
985  *
986  *  @returns IPMI completion code plus response data
987  *   - sdrCount - sensor/SDR count
988  *   - lunsAndDynamicPopulation - static/Dynamic sensor population flag
989  */
990 ipmi::RspType<uint8_t, // respcount
991               uint8_t  // dynamic population flags
992               >
993     ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)
994 {
995     uint8_t sdrCount;
996     // multiple LUNs not supported.
997     constexpr uint8_t lunsAndDynamicPopulation = 1;
998     constexpr uint8_t getSdrCount = 0x01;
999     constexpr uint8_t getSensorCount = 0x00;
1000 
1001     if (count.value_or(0) == getSdrCount)
1002     {
1003         // Get SDR count. This returns the total number of SDRs in the device.
1004         const auto& entityRecords =
1005             ipmi::sensor::EntityInfoMapContainer::getContainer()
1006                 ->getIpmiEntityRecords();
1007         sdrCount = ipmi::sensor::sensors.size() + frus.size() +
1008                    entityRecords.size();
1009     }
1010     else if (count.value_or(0) == getSensorCount)
1011     {
1012         // Get Sensor count. This returns the number of sensors
1013         sdrCount = ipmi::sensor::sensors.size();
1014     }
1015     else
1016     {
1017         return ipmi::responseInvalidCommandOnLun();
1018     }
1019 
1020     return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation);
1021 }
1022 
1023 /** @brief implements the reserve SDR command
1024  *  @returns IPMI completion code plus response data
1025  *   - reservationID - reservation ID
1026  */
1027 ipmi::RspType<uint16_t> ipmiSensorReserveSdr()
1028 {
1029     // A constant reservation ID is okay until we implement add/remove SDR.
1030     constexpr uint16_t reservationID = 1;
1031 
1032     return ipmi::responseSuccess(reservationID);
1033 }
1034 
1035 void setUnitFieldsForObject(const ipmi::sensor::Info* info,
1036                             get_sdr::SensorDataFullRecordBody* body)
1037 {
1038     namespace server = sdbusplus::server::xyz::openbmc_project::sensor;
1039     try
1040     {
1041         auto unit = server::Value::convertUnitFromString(info->unit);
1042         // Unit strings defined in
1043         // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml
1044         switch (unit)
1045         {
1046             case server::Value::Unit::DegreesC:
1047                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C;
1048                 break;
1049             case server::Value::Unit::RPMS:
1050                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM;
1051                 break;
1052             case server::Value::Unit::Volts:
1053                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS;
1054                 break;
1055             case server::Value::Unit::Meters:
1056                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS;
1057                 break;
1058             case server::Value::Unit::Amperes:
1059                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES;
1060                 break;
1061             case server::Value::Unit::Joules:
1062                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES;
1063                 break;
1064             case server::Value::Unit::Watts:
1065                 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS;
1066                 break;
1067             default:
1068                 // Cannot be hit.
1069                 std::fprintf(stderr, "Unknown value unit type: = %s\n",
1070                              info->unit.c_str());
1071         }
1072     }
1073     catch (const sdbusplus::exception::InvalidEnumString& e)
1074     {
1075         lg2::warning("Warning: no unit provided for sensor!");
1076     }
1077 }
1078 
1079 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body,
1080                                      const ipmi::sensor::Info* info,
1081                                      ipmi_data_len_t)
1082 {
1083     /* Functional sensor case */
1084     if (isAnalogSensor(info->propertyInterfaces.begin()->first))
1085     {
1086         body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no
1087                                                    // rate, no modifier, not a %
1088         /* Unit info */
1089         setUnitFieldsForObject(info, body);
1090 
1091         get_sdr::body::set_b(info->coefficientB, body);
1092         get_sdr::body::set_m(info->coefficientM, body);
1093         get_sdr::body::set_b_exp(info->exponentB, body);
1094         get_sdr::body::set_r_exp(info->exponentR, body);
1095     }
1096 
1097     /* ID string */
1098     auto id_string = info->sensorName;
1099 
1100     if (id_string.empty())
1101     {
1102         id_string = info->sensorNameFunc(*info);
1103     }
1104 
1105     if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH)
1106     {
1107         get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body);
1108     }
1109     else
1110     {
1111         get_sdr::body::set_id_strlen(id_string.length(), body);
1112     }
1113     get_sdr::body::set_id_type(3, body); // "8-bit ASCII + Latin 1"
1114     strncpy(body->id_string, id_string.c_str(),
1115             get_sdr::body::get_id_strlen(body));
1116 
1117     return IPMI_CC_OK;
1118 };
1119 
1120 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response,
1121                             ipmi_data_len_t data_len)
1122 {
1123     auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
1124     auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
1125     get_sdr::SensorDataFruRecord record{};
1126     auto dataLength = 0;
1127 
1128     auto fru = frus.begin();
1129     uint8_t fruID{};
1130     auto recordID = get_sdr::request::get_record_id(req);
1131 
1132     fruID = recordID - FRU_RECORD_ID_START;
1133     fru = frus.find(fruID);
1134     if (fru == frus.end())
1135     {
1136         return IPMI_CC_SENSOR_INVALID;
1137     }
1138 
1139     /* Header */
1140     get_sdr::header::set_record_id(recordID, &(record.header));
1141     record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1142     record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD;
1143     record.header.record_length = sizeof(record.key) + sizeof(record.body);
1144 
1145     /* Key */
1146     record.key.fruID = fruID;
1147     record.key.accessLun |= IPMI_LOGICAL_FRU;
1148     record.key.deviceAddress = BMCTargetAddress;
1149 
1150     /* Body */
1151     record.body.entityID = fru->second[0].entityID;
1152     record.body.entityInstance = fru->second[0].entityInstance;
1153     record.body.deviceType = fruInventoryDevice;
1154     record.body.deviceTypeModifier = IPMIFruInventory;
1155 
1156     /* Device ID string */
1157     auto deviceID =
1158         fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1,
1159                                    fru->second[0].path.length());
1160 
1161     if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH)
1162     {
1163         get_sdr::body::set_device_id_strlen(
1164             get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body));
1165     }
1166     else
1167     {
1168         get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body));
1169     }
1170 
1171     strncpy(record.body.deviceID, deviceID.c_str(),
1172             get_sdr::body::get_device_id_strlen(&(record.body)));
1173 
1174     if (++fru == frus.end())
1175     {
1176         // we have reached till end of fru, so assign the next record id to
1177         // 512(Max fru ID = 511) + Entity Record ID(may start with 0).
1178         const auto& entityRecords =
1179             ipmi::sensor::EntityInfoMapContainer::getContainer()
1180                 ->getIpmiEntityRecords();
1181         auto next_record_id =
1182             (entityRecords.size())
1183                 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START
1184                 : END_OF_RECORD;
1185         get_sdr::response::set_next_record_id(next_record_id, resp);
1186     }
1187     else
1188     {
1189         get_sdr::response::set_next_record_id(
1190             (FRU_RECORD_ID_START + fru->first), resp);
1191     }
1192 
1193     // Check for invalid offset size
1194     if (req->offset > sizeof(record))
1195     {
1196         return IPMI_CC_PARM_OUT_OF_RANGE;
1197     }
1198 
1199     dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
1200                           sizeof(record) - req->offset);
1201 
1202     std::memcpy(resp->record_data,
1203                 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
1204 
1205     *data_len = dataLength;
1206     *data_len += 2; // additional 2 bytes for next record ID
1207 
1208     return IPMI_CC_OK;
1209 }
1210 
1211 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response,
1212                                ipmi_data_len_t data_len)
1213 {
1214     auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request);
1215     auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response);
1216     get_sdr::SensorDataEntityRecord record{};
1217     auto dataLength = 0;
1218 
1219     const auto& entityRecords =
1220         ipmi::sensor::EntityInfoMapContainer::getContainer()
1221             ->getIpmiEntityRecords();
1222     auto entity = entityRecords.begin();
1223     uint8_t entityRecordID;
1224     auto recordID = get_sdr::request::get_record_id(req);
1225 
1226     entityRecordID = recordID - ENTITY_RECORD_ID_START;
1227     entity = entityRecords.find(entityRecordID);
1228     if (entity == entityRecords.end())
1229     {
1230         return IPMI_CC_SENSOR_INVALID;
1231     }
1232 
1233     /* Header */
1234     get_sdr::header::set_record_id(recordID, &(record.header));
1235     record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1236     record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD;
1237     record.header.record_length = sizeof(record.key) + sizeof(record.body);
1238 
1239     /* Key */
1240     record.key.containerEntityId = entity->second.containerEntityId;
1241     record.key.containerEntityInstance = entity->second.containerEntityInstance;
1242     get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked,
1243                             &(record.key));
1244     record.key.entityId1 = entity->second.containedEntities[0].first;
1245     record.key.entityInstance1 = entity->second.containedEntities[0].second;
1246 
1247     /* Body */
1248     record.body.entityId2 = entity->second.containedEntities[1].first;
1249     record.body.entityInstance2 = entity->second.containedEntities[1].second;
1250     record.body.entityId3 = entity->second.containedEntities[2].first;
1251     record.body.entityInstance3 = entity->second.containedEntities[2].second;
1252     record.body.entityId4 = entity->second.containedEntities[3].first;
1253     record.body.entityInstance4 = entity->second.containedEntities[3].second;
1254 
1255     if (++entity == entityRecords.end())
1256     {
1257         get_sdr::response::set_next_record_id(END_OF_RECORD,
1258                                               resp); // last record
1259     }
1260     else
1261     {
1262         get_sdr::response::set_next_record_id(
1263             (ENTITY_RECORD_ID_START + entity->first), resp);
1264     }
1265 
1266     // Check for invalid offset size
1267     if (req->offset > sizeof(record))
1268     {
1269         return IPMI_CC_PARM_OUT_OF_RANGE;
1270     }
1271 
1272     dataLength = std::min(static_cast<size_t>(req->bytes_to_read),
1273                           sizeof(record) - req->offset);
1274 
1275     std::memcpy(resp->record_data,
1276                 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength);
1277 
1278     *data_len = dataLength;
1279     *data_len += 2; // additional 2 bytes for next record ID
1280 
1281     return IPMI_CC_OK;
1282 }
1283 
1284 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request,
1285                             ipmi_response_t response, ipmi_data_len_t data_len,
1286                             ipmi_context_t)
1287 {
1288     ipmi_ret_t ret = IPMI_CC_OK;
1289     get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request;
1290     get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response;
1291 
1292     // Note: we use an iterator so we can provide the next ID at the end of
1293     // the call.
1294     auto sensor = ipmi::sensor::sensors.begin();
1295     auto recordID = get_sdr::request::get_record_id(req);
1296 
1297     // At the beginning of a scan, the host side will send us id=0.
1298     if (recordID != 0)
1299     {
1300         // recordID 0 to 255 means it is a FULL record.
1301         // recordID 256 to 511 means it is a FRU record.
1302         // recordID greater then 511 means it is a Entity Association
1303         // record. Currently we are supporting three record types: FULL
1304         // record, FRU record and Enttiy Association record.
1305         if (recordID >= ENTITY_RECORD_ID_START)
1306         {
1307             return ipmi_entity_get_sdr(request, response, data_len);
1308         }
1309         else if (recordID >= FRU_RECORD_ID_START &&
1310                  recordID < ENTITY_RECORD_ID_START)
1311         {
1312             return ipmi_fru_get_sdr(request, response, data_len);
1313         }
1314         else
1315         {
1316             sensor = ipmi::sensor::sensors.find(recordID);
1317             if (sensor == ipmi::sensor::sensors.end())
1318             {
1319                 return IPMI_CC_SENSOR_INVALID;
1320             }
1321         }
1322     }
1323 
1324     uint8_t sensor_id = sensor->first;
1325 
1326     auto it = sdrCacheMap.find(sensor_id);
1327     if (it == sdrCacheMap.end())
1328     {
1329         /* Header */
1330         get_sdr::SensorDataFullRecord record = {};
1331         get_sdr::header::set_record_id(sensor_id, &(record.header));
1332         record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1
1333         record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD;
1334         record.header.record_length = sizeof(record.key) + sizeof(record.body);
1335 
1336         /* Key */
1337         get_sdr::key::set_owner_id_bmc(&(record.key));
1338         record.key.sensor_number = sensor_id;
1339 
1340         /* Body */
1341         record.body.entity_id = sensor->second.entityType;
1342         record.body.sensor_type = sensor->second.sensorType;
1343         record.body.event_reading_type = sensor->second.sensorReadingType;
1344         record.body.entity_instance = sensor->second.instance;
1345         if (ipmi::sensor::Mutability::Write ==
1346             (sensor->second.mutability & ipmi::sensor::Mutability::Write))
1347         {
1348             get_sdr::body::init_settable_state(true, &(record.body));
1349         }
1350 
1351         // Set the type-specific details given the DBus interface
1352         populate_record_from_dbus(&(record.body), &(sensor->second), data_len);
1353         sdrCacheMap[sensor_id] = std::move(record);
1354     }
1355 
1356     const auto& record = sdrCacheMap[sensor_id];
1357 
1358     if (++sensor == ipmi::sensor::sensors.end())
1359     {
1360         // we have reached till end of sensor, so assign the next record id
1361         // to 256(Max Sensor ID = 255) + FRU ID(may start with 0).
1362         auto next_record_id = (frus.size())
1363                                   ? frus.begin()->first + FRU_RECORD_ID_START
1364                                   : END_OF_RECORD;
1365 
1366         get_sdr::response::set_next_record_id(next_record_id, resp);
1367     }
1368     else
1369     {
1370         get_sdr::response::set_next_record_id(sensor->first, resp);
1371     }
1372 
1373     if (req->offset > sizeof(record))
1374     {
1375         return IPMI_CC_PARM_OUT_OF_RANGE;
1376     }
1377 
1378     // data_len will ultimately be the size of the record, plus
1379     // the size of the next record ID:
1380     *data_len = std::min(static_cast<size_t>(req->bytes_to_read),
1381                          sizeof(record) - req->offset);
1382 
1383     std::memcpy(resp->record_data,
1384                 reinterpret_cast<const uint8_t*>(&record) + req->offset,
1385                 *data_len);
1386 
1387     // data_len should include the LSB and MSB:
1388     *data_len += sizeof(resp->next_record_id_lsb) +
1389                  sizeof(resp->next_record_id_msb);
1390 
1391     return ret;
1392 }
1393 
1394 static bool isFromSystemChannel()
1395 {
1396     // TODO we could not figure out where the request is from based on IPMI
1397     // command handler parameters. because of it, we can not differentiate
1398     // request from SMS/SMM or IPMB channel
1399     return true;
1400 }
1401 
1402 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t,
1403                                 ipmi_request_t request, ipmi_response_t,
1404                                 ipmi_data_len_t dataLen, ipmi_context_t)
1405 {
1406     uint16_t generatorID;
1407     size_t count;
1408     bool assert = true;
1409     std::string sensorPath;
1410     size_t paraLen = *dataLen;
1411     PlatformEventRequest* req;
1412     *dataLen = 0;
1413 
1414     if ((paraLen < selSystemEventSizeWith1Bytes) ||
1415         (paraLen > selSystemEventSizeWith3Bytes))
1416     {
1417         return IPMI_CC_REQ_DATA_LEN_INVALID;
1418     }
1419 
1420     if (isFromSystemChannel())
1421     { // first byte for SYSTEM Interface is Generator ID
1422         // +1 to get common struct
1423         req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1);
1424         // Capture the generator ID
1425         generatorID = *reinterpret_cast<uint8_t*>(request);
1426         // Platform Event usually comes from other firmware, like BIOS.
1427         // Unlike BMC sensor, it does not have BMC DBUS sensor path.
1428         sensorPath = "System";
1429     }
1430     else
1431     {
1432         req = reinterpret_cast<PlatformEventRequest*>(request);
1433         // TODO GenratorID for IPMB is combination of RqSA and RqLUN
1434         generatorID = 0xff;
1435         sensorPath = "IPMB";
1436     }
1437     // Content of event data field depends on sensor class.
1438     // When data0 bit[5:4] is non-zero, valid data counts is 3.
1439     // When data0 bit[7:6] is non-zero, valid data counts is 2.
1440     if (((req->data[0] & byte3EnableMask) != 0 &&
1441          paraLen < selSystemEventSizeWith3Bytes) ||
1442         ((req->data[0] & byte2EnableMask) != 0 &&
1443          paraLen < selSystemEventSizeWith2Bytes))
1444     {
1445         return IPMI_CC_REQ_DATA_LEN_INVALID;
1446     }
1447 
1448     // Count bytes of Event Data
1449     if ((req->data[0] & byte3EnableMask) != 0)
1450     {
1451         count = 3;
1452     }
1453     else if ((req->data[0] & byte2EnableMask) != 0)
1454     {
1455         count = 2;
1456     }
1457     else
1458     {
1459         count = 1;
1460     }
1461     assert = req->eventDirectionType & directionMask ? false : true;
1462     std::vector<uint8_t> eventData(req->data, req->data + count);
1463 
1464     sdbusplus::bus_t dbus(bus);
1465     std::string service =
1466         ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath);
1467     sdbusplus::message_t writeSEL = dbus.new_method_call(
1468         service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd");
1469     writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert,
1470                     generatorID);
1471     try
1472     {
1473         dbus.call(writeSEL);
1474     }
1475     catch (const sdbusplus::exception_t& e)
1476     {
1477         lg2::error("exception message: {ERROR}", "ERROR", e);
1478         return IPMI_CC_UNSPECIFIED_ERROR;
1479     }
1480     return IPMI_CC_OK;
1481 }
1482 
1483 void register_netfn_sen_functions()
1484 {
1485     // Handlers with dbus-sdr handler implementation.
1486     // Do not register the hander if it dynamic sensors stack is used.
1487 
1488 #ifndef FEATURE_DYNAMIC_SENSORS
1489 
1490 #ifdef FEATURE_SENSORS_CACHE
1491     // Initialize the sensor matches
1492     initSensorMatches();
1493 #endif
1494 
1495     // <Set Sensor Reading and Event Status>
1496     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1497                           ipmi::sensor_event::cmdSetSensorReadingAndEvtSts,
1498                           ipmi::Privilege::Operator, ipmiSetSensorReading);
1499     // <Get Sensor Reading>
1500     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1501                           ipmi::sensor_event::cmdGetSensorReading,
1502                           ipmi::Privilege::User, ipmiSensorGetSensorReading);
1503 
1504     // <Reserve Device SDR Repository>
1505     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1506                           ipmi::sensor_event::cmdReserveDeviceSdrRepository,
1507                           ipmi::Privilege::User, ipmiSensorReserveSdr);
1508 
1509     // <Get Device SDR Info>
1510     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1511                           ipmi::sensor_event::cmdGetDeviceSdrInfo,
1512                           ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo);
1513 
1514     // <Get Sensor Thresholds>
1515     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1516                           ipmi::sensor_event::cmdGetSensorThreshold,
1517                           ipmi::Privilege::User, ipmiSensorGetSensorThresholds);
1518 
1519     // <Set Sensor Thresholds>
1520     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1521                           ipmi::sensor_event::cmdSetSensorThreshold,
1522                           ipmi::Privilege::User, ipmiSenSetSensorThresholds);
1523 
1524     // <Get Device SDR>
1525     ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr,
1526                            ipmi_sen_get_sdr, PRIVILEGE_USER);
1527 
1528 #endif
1529 
1530     // Common Handers used by both implementation.
1531 
1532     // <Platform Event Message>
1533     ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr,
1534                            ipmicmdPlatformEvent, PRIVILEGE_OPERATOR);
1535 
1536     // <Get Sensor Type>
1537     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1538                           ipmi::sensor_event::cmdGetSensorType,
1539                           ipmi::Privilege::User, ipmiGetSensorType);
1540 
1541     return;
1542 }
1543