1 #include "config.h" 2 3 #include "sensorhandler.hpp" 4 5 #include "fruread.hpp" 6 7 #include <systemd/sd-bus.h> 8 9 #include <ipmid/api.hpp> 10 #include <ipmid/entity_map_json.hpp> 11 #include <ipmid/types.hpp> 12 #include <ipmid/utils.hpp> 13 #include <phosphor-logging/elog-errors.hpp> 14 #include <phosphor-logging/lg2.hpp> 15 #include <sdbusplus/message/types.hpp> 16 #include <xyz/openbmc_project/Common/error.hpp> 17 #include <xyz/openbmc_project/Sensor/Value/server.hpp> 18 19 #include <bitset> 20 #include <cmath> 21 #include <cstring> 22 #include <set> 23 24 static constexpr uint8_t fruInventoryDevice = 0x10; 25 static constexpr uint8_t IPMIFruInventory = 0x02; 26 static constexpr uint8_t BMCTargetAddress = 0x20; 27 28 extern int updateSensorRecordFromSSRAESC(const void*); 29 extern sd_bus* bus; 30 31 namespace ipmi 32 { 33 namespace sensor 34 { 35 extern const IdInfoMap sensors; 36 } // namespace sensor 37 } // namespace ipmi 38 39 extern const FruMap frus; 40 41 using namespace phosphor::logging; 42 using InternalFailure = 43 sdbusplus::error::xyz::openbmc_project::common::InternalFailure; 44 45 void register_netfn_sen_functions() __attribute__((constructor)); 46 47 struct sensorTypemap_t 48 { 49 uint8_t number; 50 uint8_t typecode; 51 char dbusname[32]; 52 }; 53 54 sensorTypemap_t g_SensorTypeMap[] = { 55 56 {0x01, 0x6F, "Temp"}, 57 {0x0C, 0x6F, "DIMM"}, 58 {0x0C, 0x6F, "MEMORY_BUFFER"}, 59 {0x07, 0x6F, "PROC"}, 60 {0x07, 0x6F, "CORE"}, 61 {0x07, 0x6F, "CPU"}, 62 {0x0F, 0x6F, "BootProgress"}, 63 {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor 64 // type code os 0x09 65 {0xC3, 0x6F, "BootCount"}, 66 {0x1F, 0x6F, "OperatingSystemStatus"}, 67 {0x12, 0x6F, "SYSTEM_EVENT"}, 68 {0xC7, 0x03, "SYSTEM"}, 69 {0xC7, 0x03, "MAIN_PLANAR"}, 70 {0xC2, 0x6F, "PowerCap"}, 71 {0x0b, 0xCA, "PowerSupplyRedundancy"}, 72 {0xDA, 0x03, "TurboAllowed"}, 73 {0xD8, 0xC8, "PowerSupplyDerating"}, 74 {0xFF, 0x00, ""}, 75 }; 76 77 struct sensor_data_t 78 { 79 uint8_t sennum; 80 } __attribute__((packed)); 81 82 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>; 83 SDRCacheMap sdrCacheMap __attribute__((init_priority(101))); 84 85 using SensorThresholdMap = 86 std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>; 87 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101))); 88 89 #ifdef FEATURE_SENSORS_CACHE 90 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches 91 __attribute__((init_priority(101))); 92 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches 93 __attribute__((init_priority(101))); 94 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches 95 __attribute__((init_priority(101))); 96 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch 97 __attribute__((init_priority(101))); 98 99 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101))); 100 101 // It is needed to know which objects belong to which service, so that when a 102 // service exits without interfacesRemoved signal, we could invaildate the cache 103 // that is related to the service. It uses below two variables: 104 // - idToServiceMap records which sensors are known to have a related service; 105 // - serviceToIdMap maps a service to the sensors. 106 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>; 107 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101))); 108 109 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>; 110 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101))); 111 112 static void fillSensorIdServiceMap(const std::string&, 113 const std::string& /*intf*/, uint8_t id, 114 const std::string& service) 115 { 116 if (idToServiceMap.find(id) != idToServiceMap.end()) 117 { 118 return; 119 } 120 idToServiceMap[id] = service; 121 serviceToIdMap[service].insert(id); 122 } 123 124 static void fillSensorIdServiceMap(const std::string& obj, 125 const std::string& intf, uint8_t id) 126 { 127 if (idToServiceMap.find(id) != idToServiceMap.end()) 128 { 129 return; 130 } 131 try 132 { 133 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 134 auto service = ipmi::getService(bus, intf, obj); 135 idToServiceMap[id] = service; 136 serviceToIdMap[service].insert(id); 137 } 138 catch (...) 139 { 140 // Ignore 141 } 142 } 143 144 void initSensorMatches() 145 { 146 using namespace sdbusplus::bus::match::rules; 147 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 148 for (const auto& s : ipmi::sensor::sensors) 149 { 150 sensorAddedMatches.emplace( 151 s.first, 152 std::make_unique<sdbusplus::bus::match_t>( 153 bus, interfacesAdded() + argNpath(0, s.second.sensorPath), 154 [id = s.first, obj = s.second.sensorPath, 155 intf = s.second.propertyInterfaces.begin()->first]( 156 auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); })); 157 sensorRemovedMatches.emplace( 158 s.first, 159 std::make_unique<sdbusplus::bus::match_t>( 160 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath), 161 [id = s.first](auto& /*msg*/) { 162 // Ideally this should work. 163 // But when a service is terminated or crashed, it does not 164 // emit interfacesRemoved signal. In that case it's handled 165 // by sensorsOwnerMatch 166 sensorCacheMap[id].reset(); 167 })); 168 sensorUpdatedMatches.emplace( 169 s.first, 170 std::make_unique<sdbusplus::bus::match_t>( 171 bus, 172 type::signal() + path(s.second.sensorPath) + 173 member("PropertiesChanged"s) + 174 interface("org.freedesktop.DBus.Properties"s), 175 [&s](auto& msg) { 176 fillSensorIdServiceMap( 177 s.second.sensorPath, 178 s.second.propertyInterfaces.begin()->first, s.first); 179 try 180 { 181 // This is signal callback 182 std::string interfaceName; 183 msg.read(interfaceName); 184 ipmi::PropertyMap props; 185 msg.read(props); 186 s.second.getFunc(s.first, s.second, props); 187 } 188 catch (const std::exception& e) 189 { 190 sensorCacheMap[s.first].reset(); 191 } 192 })); 193 } 194 sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>( 195 bus, nameOwnerChanged(), [](auto& msg) { 196 std::string name; 197 std::string oldOwner; 198 std::string newOwner; 199 msg.read(name, oldOwner, newOwner); 200 201 if (!name.empty() && newOwner.empty()) 202 { 203 // The service exits 204 const auto it = serviceToIdMap.find(name); 205 if (it == serviceToIdMap.end()) 206 { 207 return; 208 } 209 for (const auto& id : it->second) 210 { 211 // Invalidate cache 212 sensorCacheMap[id].reset(); 213 } 214 } 215 }); 216 } 217 #endif 218 219 // Use a lookup table to find the interface name of a specific sensor 220 // This will be used until an alternative is found. this is the first 221 // step for mapping IPMI 222 int find_openbmc_path(uint8_t num, dbus_interface_t* interface) 223 { 224 const auto& sensor_it = ipmi::sensor::sensors.find(num); 225 if (sensor_it == ipmi::sensor::sensors.end()) 226 { 227 // The sensor map does not contain the sensor requested 228 return -EINVAL; 229 } 230 231 const auto& info = sensor_it->second; 232 233 std::string serviceName{}; 234 try 235 { 236 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; 237 serviceName = 238 ipmi::getService(bus, info.sensorInterface, info.sensorPath); 239 } 240 catch (const sdbusplus::exception_t&) 241 { 242 std::fprintf(stderr, "Failed to get %s busname: %s\n", 243 info.sensorPath.c_str(), serviceName.c_str()); 244 return -EINVAL; 245 } 246 247 interface->sensortype = info.sensorType; 248 strcpy(interface->bus, serviceName.c_str()); 249 strcpy(interface->path, info.sensorPath.c_str()); 250 // Take the interface name from the beginning of the DbusInterfaceMap. This 251 // works for the Value interface but may not suffice for more complex 252 // sensors. 253 // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 254 strcpy(interface->interface, 255 info.propertyInterfaces.begin()->first.c_str()); 256 interface->sensornumber = num; 257 258 return 0; 259 } 260 261 ///////////////////////////////////////////////////////////////////// 262 // 263 // Routines used by ipmi commands wanting to interact on the dbus 264 // 265 ///////////////////////////////////////////////////////////////////// 266 int set_sensor_dbus_state_s(uint8_t number, const char* method, 267 const char* value) 268 { 269 dbus_interface_t a; 270 int r; 271 sd_bus_error error = SD_BUS_ERROR_NULL; 272 sd_bus_message* m = NULL; 273 274 r = find_openbmc_path(number, &a); 275 276 if (r < 0) 277 { 278 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 279 return 0; 280 } 281 282 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 283 method); 284 if (r < 0) 285 { 286 std::fprintf(stderr, "Failed to create a method call: %s", 287 strerror(-r)); 288 goto final; 289 } 290 291 r = sd_bus_message_append(m, "v", "s", value); 292 if (r < 0) 293 { 294 std::fprintf(stderr, "Failed to create a input parameter: %s", 295 strerror(-r)); 296 goto final; 297 } 298 299 r = sd_bus_call(bus, m, 0, &error, NULL); 300 if (r < 0) 301 { 302 std::fprintf(stderr, "Failed to call the method: %s", strerror(-r)); 303 } 304 305 final: 306 sd_bus_error_free(&error); 307 m = sd_bus_message_unref(m); 308 309 return 0; 310 } 311 int set_sensor_dbus_state_y(uint8_t number, const char* method, 312 const uint8_t value) 313 { 314 dbus_interface_t a; 315 int r; 316 sd_bus_error error = SD_BUS_ERROR_NULL; 317 sd_bus_message* m = NULL; 318 319 r = find_openbmc_path(number, &a); 320 321 if (r < 0) 322 { 323 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); 324 return 0; 325 } 326 327 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, 328 method); 329 if (r < 0) 330 { 331 std::fprintf(stderr, "Failed to create a method call: %s", 332 strerror(-r)); 333 goto final; 334 } 335 336 r = sd_bus_message_append(m, "v", "i", value); 337 if (r < 0) 338 { 339 std::fprintf(stderr, "Failed to create a input parameter: %s", 340 strerror(-r)); 341 goto final; 342 } 343 344 r = sd_bus_call(bus, m, 0, &error, NULL); 345 if (r < 0) 346 { 347 std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); 348 } 349 350 final: 351 sd_bus_error_free(&error); 352 m = sd_bus_message_unref(m); 353 354 return 0; 355 } 356 357 uint8_t dbus_to_sensor_type(char* p) 358 { 359 sensorTypemap_t* s = g_SensorTypeMap; 360 char r = 0; 361 while (s->number != 0xFF) 362 { 363 if (!strcmp(s->dbusname, p)) 364 { 365 r = s->typecode; 366 break; 367 } 368 s++; 369 } 370 371 if (s->number == 0xFF) 372 printf("Failed to find Sensor Type %s\n", p); 373 374 return r; 375 } 376 377 uint8_t get_type_from_interface(dbus_interface_t dbus_if) 378 { 379 uint8_t type; 380 381 // This is where sensors that do not exist in dbus but do 382 // exist in the host code stop. This should indicate it 383 // is not a supported sensor 384 if (dbus_if.interface[0] == 0) 385 { 386 return 0; 387 } 388 389 // Fetch type from interface itself. 390 if (dbus_if.sensortype != 0) 391 { 392 type = dbus_if.sensortype; 393 } 394 else 395 { 396 // Non InventoryItems 397 char* p = strrchr(dbus_if.path, '/'); 398 type = dbus_to_sensor_type(p + 1); 399 } 400 401 return type; 402 } 403 404 // Replaces find_sensor 405 uint8_t find_type_for_sensor_number(uint8_t num) 406 { 407 int r; 408 dbus_interface_t dbus_if; 409 r = find_openbmc_path(num, &dbus_if); 410 if (r < 0) 411 { 412 std::fprintf(stderr, "Could not find sensor %d\n", num); 413 return 0; 414 } 415 return get_type_from_interface(dbus_if); 416 } 417 418 /** 419 * @brief implements the get sensor type command. 420 * @param - sensorNumber 421 * 422 * @return IPMI completion code plus response data on success. 423 * - sensorType 424 * - eventType 425 **/ 426 427 ipmi::RspType<uint8_t, // sensorType 428 uint8_t // eventType 429 > 430 ipmiGetSensorType(uint8_t sensorNumber) 431 { 432 const auto it = ipmi::sensor::sensors.find(sensorNumber); 433 if (it == ipmi::sensor::sensors.end()) 434 { 435 // The sensor map does not contain the sensor requested 436 return ipmi::responseSensorInvalid(); 437 } 438 439 const auto& info = it->second; 440 uint8_t sensorType = info.sensorType; 441 uint8_t eventType = info.sensorReadingType; 442 443 return ipmi::responseSuccess(sensorType, eventType); 444 } 445 446 const std::set<std::string> analogSensorInterfaces = { 447 "xyz.openbmc_project.Sensor.Value", 448 "xyz.openbmc_project.Control.FanPwm", 449 }; 450 451 bool isAnalogSensor(const std::string& interface) 452 { 453 return (analogSensorInterfaces.count(interface)); 454 } 455 456 /** 457 @brief This command is used to set sensorReading. 458 459 @param 460 - sensorNumber 461 - operation 462 - reading 463 - assertOffset0_7 464 - assertOffset8_14 465 - deassertOffset0_7 466 - deassertOffset8_14 467 - eventData1 468 - eventData2 469 - eventData3 470 471 @return completion code on success. 472 **/ 473 474 ipmi::RspType<> ipmiSetSensorReading( 475 uint8_t sensorNumber, uint8_t operation, uint8_t reading, 476 uint8_t assertOffset0_7, uint8_t assertOffset8_14, 477 uint8_t deassertOffset0_7, uint8_t deassertOffset8_14, uint8_t eventData1, 478 uint8_t eventData2, uint8_t eventData3) 479 { 480 lg2::debug("IPMI SET_SENSOR, sensorNumber: {SENSOR_NUM}", "SENSOR_NUM", 481 lg2::hex, sensorNumber); 482 483 if (sensorNumber == 0xFF) 484 { 485 return ipmi::responseInvalidFieldRequest(); 486 } 487 ipmi::sensor::SetSensorReadingReq cmdData; 488 489 cmdData.number = sensorNumber; 490 cmdData.operation = operation; 491 cmdData.reading = reading; 492 cmdData.assertOffset0_7 = assertOffset0_7; 493 cmdData.assertOffset8_14 = assertOffset8_14; 494 cmdData.deassertOffset0_7 = deassertOffset0_7; 495 cmdData.deassertOffset8_14 = deassertOffset8_14; 496 cmdData.eventData1 = eventData1; 497 cmdData.eventData2 = eventData2; 498 cmdData.eventData3 = eventData3; 499 500 // Check if the Sensor Number is present 501 const auto iter = ipmi::sensor::sensors.find(sensorNumber); 502 if (iter == ipmi::sensor::sensors.end()) 503 { 504 updateSensorRecordFromSSRAESC(&sensorNumber); 505 return ipmi::responseSuccess(); 506 } 507 508 try 509 { 510 if (ipmi::sensor::Mutability::Write != 511 (iter->second.mutability & ipmi::sensor::Mutability::Write)) 512 { 513 lg2::error("Sensor Set operation is not allowed, " 514 "sensorNumber: {SENSOR_NUM}", 515 "SENSOR_NUM", lg2::hex, sensorNumber); 516 return ipmi::responseIllegalCommand(); 517 } 518 auto ipmiRC = iter->second.updateFunc(cmdData, iter->second); 519 return ipmi::response(ipmiRC); 520 } 521 catch (const InternalFailure& e) 522 { 523 lg2::error("Set sensor failed, sensorNumber: {SENSOR_NUM}", 524 "SENSOR_NUM", lg2::hex, sensorNumber); 525 commit<InternalFailure>(); 526 return ipmi::responseUnspecifiedError(); 527 } 528 catch (const std::runtime_error& e) 529 { 530 lg2::error("runtime error: {ERROR}", "ERROR", e); 531 return ipmi::responseUnspecifiedError(); 532 } 533 } 534 535 /** @brief implements the get sensor reading command 536 * @param sensorNum - sensor number 537 * 538 * @returns IPMI completion code plus response data 539 * - senReading - sensor reading 540 * - reserved 541 * - readState - sensor reading state enabled 542 * - senScanState - sensor scan state disabled 543 * - allEventMessageState - all Event message state disabled 544 * - assertionStatesLsb - threshold levels states 545 * - assertionStatesMsb - discrete reading sensor states 546 */ 547 ipmi::RspType<uint8_t, // sensor reading 548 549 uint5_t, // reserved 550 bool, // reading state 551 bool, // 0 = sensor scanning state disabled 552 bool, // 0 = all event messages disabled 553 554 uint8_t, // threshold levels states 555 uint8_t // discrete reading sensor states 556 > 557 ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx, 558 uint8_t sensorNum) 559 { 560 if (sensorNum == 0xFF) 561 { 562 return ipmi::responseInvalidFieldRequest(); 563 } 564 565 const auto iter = ipmi::sensor::sensors.find(sensorNum); 566 if (iter == ipmi::sensor::sensors.end()) 567 { 568 return ipmi::responseSensorInvalid(); 569 } 570 if (ipmi::sensor::Mutability::Read != 571 (iter->second.mutability & ipmi::sensor::Mutability::Read)) 572 { 573 return ipmi::responseIllegalCommand(); 574 } 575 576 try 577 { 578 #ifdef FEATURE_SENSORS_CACHE 579 auto& sensorData = sensorCacheMap[sensorNum]; 580 if (!sensorData.has_value()) 581 { 582 // No cached value, try read it 583 std::string service; 584 boost::system::error_code ec; 585 const auto& sensorInfo = iter->second; 586 ec = ipmi::getService(ctx, sensorInfo.sensorInterface, 587 sensorInfo.sensorPath, service); 588 if (ec) 589 { 590 return ipmi::responseUnspecifiedError(); 591 } 592 fillSensorIdServiceMap(sensorInfo.sensorPath, 593 sensorInfo.propertyInterfaces.begin()->first, 594 iter->first, service); 595 596 ipmi::PropertyMap props; 597 ec = ipmi::getAllDbusProperties( 598 ctx, service, sensorInfo.sensorPath, 599 sensorInfo.propertyInterfaces.begin()->first, props); 600 if (ec) 601 { 602 fprintf(stderr, "Failed to get sensor %s, %d: %s\n", 603 sensorInfo.sensorPath.c_str(), ec.value(), 604 ec.message().c_str()); 605 // Intitilizing with default values 606 constexpr uint8_t senReading = 0; 607 constexpr uint5_t reserved{0}; 608 constexpr bool readState = true; 609 constexpr bool senScanState = false; 610 constexpr bool allEventMessageState = false; 611 constexpr uint8_t assertionStatesLsb = 0; 612 constexpr uint8_t assertionStatesMsb = 0; 613 614 return ipmi::responseSuccess( 615 senReading, reserved, readState, senScanState, 616 allEventMessageState, assertionStatesLsb, 617 assertionStatesMsb); 618 } 619 sensorInfo.getFunc(sensorNum, sensorInfo, props); 620 } 621 return ipmi::responseSuccess( 622 sensorData->response.reading, uint5_t(0), 623 sensorData->response.readingOrStateUnavailable, 624 sensorData->response.scanningEnabled, 625 sensorData->response.allEventMessagesEnabled, 626 sensorData->response.thresholdLevelsStates, 627 sensorData->response.discreteReadingSensorStates); 628 629 #else 630 ipmi::sensor::GetSensorResponse getResponse = 631 iter->second.getFunc(iter->second); 632 633 return ipmi::responseSuccess( 634 getResponse.reading, uint5_t(0), 635 getResponse.readingOrStateUnavailable, getResponse.scanningEnabled, 636 getResponse.allEventMessagesEnabled, 637 getResponse.thresholdLevelsStates, 638 getResponse.discreteReadingSensorStates); 639 #endif 640 } 641 #ifdef UPDATE_FUNCTIONAL_ON_FAIL 642 catch (const SensorFunctionalError& e) 643 { 644 return ipmi::responseResponseError(); 645 } 646 #endif 647 catch (const std::exception& e) 648 { 649 // Intitilizing with default values 650 constexpr uint8_t senReading = 0; 651 constexpr uint5_t reserved{0}; 652 constexpr bool readState = true; 653 constexpr bool senScanState = false; 654 constexpr bool allEventMessageState = false; 655 constexpr uint8_t assertionStatesLsb = 0; 656 constexpr uint8_t assertionStatesMsb = 0; 657 658 return ipmi::responseSuccess(senReading, reserved, readState, 659 senScanState, allEventMessageState, 660 assertionStatesLsb, assertionStatesMsb); 661 } 662 } 663 664 get_sdr::GetSensorThresholdsResponse 665 getSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 666 { 667 get_sdr::GetSensorThresholdsResponse resp{}; 668 constexpr auto warningThreshIntf = 669 "xyz.openbmc_project.Sensor.Threshold.Warning"; 670 constexpr auto criticalThreshIntf = 671 "xyz.openbmc_project.Sensor.Threshold.Critical"; 672 673 const auto iter = ipmi::sensor::sensors.find(sensorNum); 674 const auto info = iter->second; 675 676 std::string service; 677 boost::system::error_code ec; 678 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 679 if (ec) 680 { 681 return resp; 682 } 683 684 ipmi::PropertyMap warnThresholds; 685 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 686 warningThreshIntf, warnThresholds); 687 int32_t minClamp; 688 int32_t maxClamp; 689 int32_t rawData; 690 constexpr uint8_t sensorUnitsSignedBits = 2 << 6; 691 constexpr uint8_t signedDataFormat = 0x80; 692 if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat) 693 { 694 minClamp = std::numeric_limits<int8_t>::lowest(); 695 maxClamp = std::numeric_limits<int8_t>::max(); 696 } 697 else 698 { 699 minClamp = std::numeric_limits<uint8_t>::lowest(); 700 maxClamp = std::numeric_limits<uint8_t>::max(); 701 } 702 if (!ec) 703 { 704 double warnLow = ipmi::mappedVariant<double>( 705 warnThresholds, "WarningLow", 706 std::numeric_limits<double>::quiet_NaN()); 707 double warnHigh = ipmi::mappedVariant<double>( 708 warnThresholds, "WarningHigh", 709 std::numeric_limits<double>::quiet_NaN()); 710 711 if (std::isfinite(warnLow)) 712 { 713 warnLow *= std::pow(10, info.scale - info.exponentR); 714 rawData = round((warnLow - info.scaledOffset) / info.coefficientM); 715 resp.lowerNonCritical = 716 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 717 resp.validMask |= static_cast<uint8_t>( 718 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); 719 } 720 721 if (std::isfinite(warnHigh)) 722 { 723 warnHigh *= std::pow(10, info.scale - info.exponentR); 724 rawData = round((warnHigh - info.scaledOffset) / info.coefficientM); 725 resp.upperNonCritical = 726 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 727 resp.validMask |= static_cast<uint8_t>( 728 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); 729 } 730 } 731 732 ipmi::PropertyMap critThresholds; 733 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 734 criticalThreshIntf, critThresholds); 735 if (!ec) 736 { 737 double critLow = ipmi::mappedVariant<double>( 738 critThresholds, "CriticalLow", 739 std::numeric_limits<double>::quiet_NaN()); 740 double critHigh = ipmi::mappedVariant<double>( 741 critThresholds, "CriticalHigh", 742 std::numeric_limits<double>::quiet_NaN()); 743 744 if (std::isfinite(critLow)) 745 { 746 critLow *= std::pow(10, info.scale - info.exponentR); 747 rawData = round((critLow - info.scaledOffset) / info.coefficientM); 748 resp.lowerCritical = 749 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 750 resp.validMask |= static_cast<uint8_t>( 751 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); 752 } 753 754 if (std::isfinite(critHigh)) 755 { 756 critHigh *= std::pow(10, info.scale - info.exponentR); 757 rawData = round((critHigh - info.scaledOffset) / info.coefficientM); 758 resp.upperCritical = 759 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp)); 760 resp.validMask |= static_cast<uint8_t>( 761 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); 762 } 763 } 764 765 return resp; 766 } 767 768 /** @brief implements the get sensor thresholds command 769 * @param ctx - IPMI context pointer 770 * @param sensorNum - sensor number 771 * 772 * @returns IPMI completion code plus response data 773 * - validMask - threshold mask 774 * - lower non-critical threshold - IPMI messaging state 775 * - lower critical threshold - link authentication state 776 * - lower non-recoverable threshold - callback state 777 * - upper non-critical threshold 778 * - upper critical 779 * - upper non-recoverable 780 */ 781 ipmi::RspType<uint8_t, // validMask 782 uint8_t, // lowerNonCritical 783 uint8_t, // lowerCritical 784 uint8_t, // lowerNonRecoverable 785 uint8_t, // upperNonCritical 786 uint8_t, // upperCritical 787 uint8_t // upperNonRecoverable 788 > 789 ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum) 790 { 791 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 792 793 const auto iter = ipmi::sensor::sensors.find(sensorNum); 794 if (iter == ipmi::sensor::sensors.end()) 795 { 796 return ipmi::responseSensorInvalid(); 797 } 798 799 const auto info = iter->second; 800 801 // Proceed only if the sensor value interface is implemented. 802 if (info.propertyInterfaces.find(valueInterface) == 803 info.propertyInterfaces.end()) 804 { 805 // return with valid mask as 0 806 return ipmi::responseSuccess(); 807 } 808 809 auto it = sensorThresholdMap.find(sensorNum); 810 if (it == sensorThresholdMap.end()) 811 { 812 sensorThresholdMap[sensorNum] = getSensorThresholds(ctx, sensorNum); 813 } 814 815 const auto& resp = sensorThresholdMap[sensorNum]; 816 817 return ipmi::responseSuccess( 818 resp.validMask, resp.lowerNonCritical, resp.lowerCritical, 819 resp.lowerNonRecoverable, resp.upperNonCritical, resp.upperCritical, 820 resp.upperNonRecoverable); 821 } 822 823 /** @brief implements the Set Sensor threshold command 824 * @param sensorNumber - sensor number 825 * @param lowerNonCriticalThreshMask 826 * @param lowerCriticalThreshMask 827 * @param lowerNonRecovThreshMask 828 * @param upperNonCriticalThreshMask 829 * @param upperCriticalThreshMask 830 * @param upperNonRecovThreshMask 831 * @param reserved 832 * @param lowerNonCritical - lower non-critical threshold 833 * @param lowerCritical - Lower critical threshold 834 * @param lowerNonRecoverable - Lower non recovarable threshold 835 * @param upperNonCritical - Upper non-critical threshold 836 * @param upperCritical - Upper critical 837 * @param upperNonRecoverable - Upper Non-recoverable 838 * 839 * @returns IPMI completion code 840 */ 841 ipmi::RspType<> ipmiSenSetSensorThresholds( 842 ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask, 843 bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask, 844 bool upperNonCriticalThreshMask, bool upperCriticalThreshMask, 845 bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical, 846 uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical, 847 uint8_t upperCritical, uint8_t) 848 { 849 if (reserved) 850 { 851 return ipmi::responseInvalidFieldRequest(); 852 } 853 854 // lower nc and upper nc not suppported on any sensor 855 if (lowerNonRecovThreshMask || upperNonRecovThreshMask) 856 { 857 return ipmi::responseInvalidFieldRequest(); 858 } 859 860 // if none of the threshold mask are set, nothing to do 861 if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask | 862 lowerNonRecovThreshMask | upperNonCriticalThreshMask | 863 upperCriticalThreshMask | upperNonRecovThreshMask)) 864 { 865 return ipmi::responseSuccess(); 866 } 867 868 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; 869 870 const auto iter = ipmi::sensor::sensors.find(sensorNum); 871 if (iter == ipmi::sensor::sensors.end()) 872 { 873 return ipmi::responseSensorInvalid(); 874 } 875 876 const auto& info = iter->second; 877 878 // Proceed only if the sensor value interface is implemented. 879 if (info.propertyInterfaces.find(valueInterface) == 880 info.propertyInterfaces.end()) 881 { 882 // return with valid mask as 0 883 return ipmi::responseSuccess(); 884 } 885 886 constexpr auto warningThreshIntf = 887 "xyz.openbmc_project.Sensor.Threshold.Warning"; 888 constexpr auto criticalThreshIntf = 889 "xyz.openbmc_project.Sensor.Threshold.Critical"; 890 891 std::string service; 892 boost::system::error_code ec; 893 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service); 894 if (ec) 895 { 896 return ipmi::responseResponseError(); 897 } 898 // store a vector of property name, value to set, and interface 899 std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet; 900 901 // define the indexes of the tuple 902 constexpr uint8_t propertyName = 0; 903 constexpr uint8_t thresholdValue = 1; 904 constexpr uint8_t interface = 2; 905 // verifiy all needed fields are present 906 if (lowerCriticalThreshMask || upperCriticalThreshMask) 907 { 908 ipmi::PropertyMap findThreshold; 909 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 910 criticalThreshIntf, findThreshold); 911 912 if (!ec) 913 { 914 if (lowerCriticalThreshMask) 915 { 916 auto findLower = findThreshold.find("CriticalLow"); 917 if (findLower == findThreshold.end()) 918 { 919 return ipmi::responseInvalidFieldRequest(); 920 } 921 thresholdsToSet.emplace_back("CriticalLow", lowerCritical, 922 criticalThreshIntf); 923 } 924 if (upperCriticalThreshMask) 925 { 926 auto findUpper = findThreshold.find("CriticalHigh"); 927 if (findUpper == findThreshold.end()) 928 { 929 return ipmi::responseInvalidFieldRequest(); 930 } 931 thresholdsToSet.emplace_back("CriticalHigh", upperCritical, 932 criticalThreshIntf); 933 } 934 } 935 } 936 if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask) 937 { 938 ipmi::PropertyMap findThreshold; 939 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath, 940 warningThreshIntf, findThreshold); 941 942 if (!ec) 943 { 944 if (lowerNonCriticalThreshMask) 945 { 946 auto findLower = findThreshold.find("WarningLow"); 947 if (findLower == findThreshold.end()) 948 { 949 return ipmi::responseInvalidFieldRequest(); 950 } 951 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical, 952 warningThreshIntf); 953 } 954 if (upperNonCriticalThreshMask) 955 { 956 auto findUpper = findThreshold.find("WarningHigh"); 957 if (findUpper == findThreshold.end()) 958 { 959 return ipmi::responseInvalidFieldRequest(); 960 } 961 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical, 962 warningThreshIntf); 963 } 964 } 965 } 966 for (const auto& property : thresholdsToSet) 967 { 968 // from section 36.3 in the IPMI Spec, assume all linear 969 double valueToSet = 970 ((info.coefficientM * std::get<thresholdValue>(property)) + 971 (info.scaledOffset * std::pow(10.0, info.scale))) * 972 std::pow(10.0, info.exponentR); 973 ipmi::setDbusProperty( 974 ctx, service, info.sensorPath, std::get<interface>(property), 975 std::get<propertyName>(property), ipmi::Value(valueToSet)); 976 } 977 978 // Invalidate the cache 979 sensorThresholdMap.erase(sensorNum); 980 return ipmi::responseSuccess(); 981 } 982 983 /** @brief implements the get SDR Info command 984 * @param count - Operation 985 * 986 * @returns IPMI completion code plus response data 987 * - sdrCount - sensor/SDR count 988 * - lunsAndDynamicPopulation - static/Dynamic sensor population flag 989 */ 990 ipmi::RspType<uint8_t, // respcount 991 uint8_t // dynamic population flags 992 > 993 ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count) 994 { 995 uint8_t sdrCount; 996 // multiple LUNs not supported. 997 constexpr uint8_t lunsAndDynamicPopulation = 1; 998 constexpr uint8_t getSdrCount = 0x01; 999 constexpr uint8_t getSensorCount = 0x00; 1000 1001 if (count.value_or(0) == getSdrCount) 1002 { 1003 // Get SDR count. This returns the total number of SDRs in the device. 1004 const auto& entityRecords = 1005 ipmi::sensor::EntityInfoMapContainer::getContainer() 1006 ->getIpmiEntityRecords(); 1007 sdrCount = ipmi::sensor::sensors.size() + frus.size() + 1008 entityRecords.size(); 1009 } 1010 else if (count.value_or(0) == getSensorCount) 1011 { 1012 // Get Sensor count. This returns the number of sensors 1013 sdrCount = ipmi::sensor::sensors.size(); 1014 } 1015 else 1016 { 1017 return ipmi::responseInvalidCommandOnLun(); 1018 } 1019 1020 return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation); 1021 } 1022 1023 /** @brief implements the reserve SDR command 1024 * @returns IPMI completion code plus response data 1025 * - reservationID - reservation ID 1026 */ 1027 ipmi::RspType<uint16_t> ipmiSensorReserveSdr() 1028 { 1029 // A constant reservation ID is okay until we implement add/remove SDR. 1030 constexpr uint16_t reservationID = 1; 1031 1032 return ipmi::responseSuccess(reservationID); 1033 } 1034 1035 void setUnitFieldsForObject(const ipmi::sensor::Info* info, 1036 get_sdr::SensorDataFullRecordBody* body) 1037 { 1038 namespace server = sdbusplus::server::xyz::openbmc_project::sensor; 1039 try 1040 { 1041 auto unit = server::Value::convertUnitFromString(info->unit); 1042 // Unit strings defined in 1043 // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml 1044 switch (unit) 1045 { 1046 case server::Value::Unit::DegreesC: 1047 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; 1048 break; 1049 case server::Value::Unit::RPMS: 1050 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM; 1051 break; 1052 case server::Value::Unit::Volts: 1053 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; 1054 break; 1055 case server::Value::Unit::Meters: 1056 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; 1057 break; 1058 case server::Value::Unit::Amperes: 1059 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; 1060 break; 1061 case server::Value::Unit::Joules: 1062 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; 1063 break; 1064 case server::Value::Unit::Watts: 1065 body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; 1066 break; 1067 default: 1068 // Cannot be hit. 1069 std::fprintf(stderr, "Unknown value unit type: = %s\n", 1070 info->unit.c_str()); 1071 } 1072 } 1073 catch (const sdbusplus::exception::InvalidEnumString& e) 1074 { 1075 lg2::warning("Warning: no unit provided for sensor!"); 1076 } 1077 } 1078 1079 ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, 1080 const ipmi::sensor::Info* info, 1081 ipmi_data_len_t) 1082 { 1083 /* Functional sensor case */ 1084 if (isAnalogSensor(info->propertyInterfaces.begin()->first)) 1085 { 1086 body->sensor_units_1 = info->sensorUnits1; // default is 0. unsigned, no 1087 // rate, no modifier, not a % 1088 /* Unit info */ 1089 setUnitFieldsForObject(info, body); 1090 1091 get_sdr::body::set_b(info->coefficientB, body); 1092 get_sdr::body::set_m(info->coefficientM, body); 1093 get_sdr::body::set_b_exp(info->exponentB, body); 1094 get_sdr::body::set_r_exp(info->exponentR, body); 1095 } 1096 1097 /* ID string */ 1098 auto id_string = info->sensorName; 1099 1100 if (id_string.empty()) 1101 { 1102 id_string = info->sensorNameFunc(*info); 1103 } 1104 1105 if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) 1106 { 1107 get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); 1108 } 1109 else 1110 { 1111 get_sdr::body::set_id_strlen(id_string.length(), body); 1112 } 1113 get_sdr::body::set_id_type(3, body); // "8-bit ASCII + Latin 1" 1114 strncpy(body->id_string, id_string.c_str(), 1115 get_sdr::body::get_id_strlen(body)); 1116 1117 return IPMI_CC_OK; 1118 }; 1119 1120 ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, 1121 ipmi_data_len_t data_len) 1122 { 1123 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1124 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1125 get_sdr::SensorDataFruRecord record{}; 1126 auto dataLength = 0; 1127 1128 auto fru = frus.begin(); 1129 uint8_t fruID{}; 1130 auto recordID = get_sdr::request::get_record_id(req); 1131 1132 fruID = recordID - FRU_RECORD_ID_START; 1133 fru = frus.find(fruID); 1134 if (fru == frus.end()) 1135 { 1136 return IPMI_CC_SENSOR_INVALID; 1137 } 1138 1139 /* Header */ 1140 get_sdr::header::set_record_id(recordID, &(record.header)); 1141 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1142 record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; 1143 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1144 1145 /* Key */ 1146 record.key.fruID = fruID; 1147 record.key.accessLun |= IPMI_LOGICAL_FRU; 1148 record.key.deviceAddress = BMCTargetAddress; 1149 1150 /* Body */ 1151 record.body.entityID = fru->second[0].entityID; 1152 record.body.entityInstance = fru->second[0].entityInstance; 1153 record.body.deviceType = fruInventoryDevice; 1154 record.body.deviceTypeModifier = IPMIFruInventory; 1155 1156 /* Device ID string */ 1157 auto deviceID = 1158 fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, 1159 fru->second[0].path.length()); 1160 1161 if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) 1162 { 1163 get_sdr::body::set_device_id_strlen( 1164 get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); 1165 } 1166 else 1167 { 1168 get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); 1169 } 1170 1171 strncpy(record.body.deviceID, deviceID.c_str(), 1172 get_sdr::body::get_device_id_strlen(&(record.body))); 1173 1174 if (++fru == frus.end()) 1175 { 1176 // we have reached till end of fru, so assign the next record id to 1177 // 512(Max fru ID = 511) + Entity Record ID(may start with 0). 1178 const auto& entityRecords = 1179 ipmi::sensor::EntityInfoMapContainer::getContainer() 1180 ->getIpmiEntityRecords(); 1181 auto next_record_id = 1182 (entityRecords.size()) 1183 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START 1184 : END_OF_RECORD; 1185 get_sdr::response::set_next_record_id(next_record_id, resp); 1186 } 1187 else 1188 { 1189 get_sdr::response::set_next_record_id( 1190 (FRU_RECORD_ID_START + fru->first), resp); 1191 } 1192 1193 // Check for invalid offset size 1194 if (req->offset > sizeof(record)) 1195 { 1196 return IPMI_CC_PARM_OUT_OF_RANGE; 1197 } 1198 1199 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1200 sizeof(record) - req->offset); 1201 1202 std::memcpy(resp->record_data, 1203 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1204 1205 *data_len = dataLength; 1206 *data_len += 2; // additional 2 bytes for next record ID 1207 1208 return IPMI_CC_OK; 1209 } 1210 1211 ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response, 1212 ipmi_data_len_t data_len) 1213 { 1214 auto req = reinterpret_cast<get_sdr::GetSdrReq*>(request); 1215 auto resp = reinterpret_cast<get_sdr::GetSdrResp*>(response); 1216 get_sdr::SensorDataEntityRecord record{}; 1217 auto dataLength = 0; 1218 1219 const auto& entityRecords = 1220 ipmi::sensor::EntityInfoMapContainer::getContainer() 1221 ->getIpmiEntityRecords(); 1222 auto entity = entityRecords.begin(); 1223 uint8_t entityRecordID; 1224 auto recordID = get_sdr::request::get_record_id(req); 1225 1226 entityRecordID = recordID - ENTITY_RECORD_ID_START; 1227 entity = entityRecords.find(entityRecordID); 1228 if (entity == entityRecords.end()) 1229 { 1230 return IPMI_CC_SENSOR_INVALID; 1231 } 1232 1233 /* Header */ 1234 get_sdr::header::set_record_id(recordID, &(record.header)); 1235 record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 1236 record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD; 1237 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1238 1239 /* Key */ 1240 record.key.containerEntityId = entity->second.containerEntityId; 1241 record.key.containerEntityInstance = entity->second.containerEntityInstance; 1242 get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked, 1243 &(record.key)); 1244 record.key.entityId1 = entity->second.containedEntities[0].first; 1245 record.key.entityInstance1 = entity->second.containedEntities[0].second; 1246 1247 /* Body */ 1248 record.body.entityId2 = entity->second.containedEntities[1].first; 1249 record.body.entityInstance2 = entity->second.containedEntities[1].second; 1250 record.body.entityId3 = entity->second.containedEntities[2].first; 1251 record.body.entityInstance3 = entity->second.containedEntities[2].second; 1252 record.body.entityId4 = entity->second.containedEntities[3].first; 1253 record.body.entityInstance4 = entity->second.containedEntities[3].second; 1254 1255 if (++entity == entityRecords.end()) 1256 { 1257 get_sdr::response::set_next_record_id(END_OF_RECORD, 1258 resp); // last record 1259 } 1260 else 1261 { 1262 get_sdr::response::set_next_record_id( 1263 (ENTITY_RECORD_ID_START + entity->first), resp); 1264 } 1265 1266 // Check for invalid offset size 1267 if (req->offset > sizeof(record)) 1268 { 1269 return IPMI_CC_PARM_OUT_OF_RANGE; 1270 } 1271 1272 dataLength = std::min(static_cast<size_t>(req->bytes_to_read), 1273 sizeof(record) - req->offset); 1274 1275 std::memcpy(resp->record_data, 1276 reinterpret_cast<uint8_t*>(&record) + req->offset, dataLength); 1277 1278 *data_len = dataLength; 1279 *data_len += 2; // additional 2 bytes for next record ID 1280 1281 return IPMI_CC_OK; 1282 } 1283 1284 ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, 1285 ipmi_response_t response, ipmi_data_len_t data_len, 1286 ipmi_context_t) 1287 { 1288 ipmi_ret_t ret = IPMI_CC_OK; 1289 get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; 1290 get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; 1291 1292 // Note: we use an iterator so we can provide the next ID at the end of 1293 // the call. 1294 auto sensor = ipmi::sensor::sensors.begin(); 1295 auto recordID = get_sdr::request::get_record_id(req); 1296 1297 // At the beginning of a scan, the host side will send us id=0. 1298 if (recordID != 0) 1299 { 1300 // recordID 0 to 255 means it is a FULL record. 1301 // recordID 256 to 511 means it is a FRU record. 1302 // recordID greater then 511 means it is a Entity Association 1303 // record. Currently we are supporting three record types: FULL 1304 // record, FRU record and Enttiy Association record. 1305 if (recordID >= ENTITY_RECORD_ID_START) 1306 { 1307 return ipmi_entity_get_sdr(request, response, data_len); 1308 } 1309 else if (recordID >= FRU_RECORD_ID_START && 1310 recordID < ENTITY_RECORD_ID_START) 1311 { 1312 return ipmi_fru_get_sdr(request, response, data_len); 1313 } 1314 else 1315 { 1316 sensor = ipmi::sensor::sensors.find(recordID); 1317 if (sensor == ipmi::sensor::sensors.end()) 1318 { 1319 return IPMI_CC_SENSOR_INVALID; 1320 } 1321 } 1322 } 1323 1324 uint8_t sensor_id = sensor->first; 1325 1326 auto it = sdrCacheMap.find(sensor_id); 1327 if (it == sdrCacheMap.end()) 1328 { 1329 /* Header */ 1330 get_sdr::SensorDataFullRecord record = {}; 1331 get_sdr::header::set_record_id(sensor_id, &(record.header)); 1332 record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 1333 record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; 1334 record.header.record_length = sizeof(record.key) + sizeof(record.body); 1335 1336 /* Key */ 1337 get_sdr::key::set_owner_id_bmc(&(record.key)); 1338 record.key.sensor_number = sensor_id; 1339 1340 /* Body */ 1341 record.body.entity_id = sensor->second.entityType; 1342 record.body.sensor_type = sensor->second.sensorType; 1343 record.body.event_reading_type = sensor->second.sensorReadingType; 1344 record.body.entity_instance = sensor->second.instance; 1345 if (ipmi::sensor::Mutability::Write == 1346 (sensor->second.mutability & ipmi::sensor::Mutability::Write)) 1347 { 1348 get_sdr::body::init_settable_state(true, &(record.body)); 1349 } 1350 1351 // Set the type-specific details given the DBus interface 1352 populate_record_from_dbus(&(record.body), &(sensor->second), data_len); 1353 sdrCacheMap[sensor_id] = std::move(record); 1354 } 1355 1356 const auto& record = sdrCacheMap[sensor_id]; 1357 1358 if (++sensor == ipmi::sensor::sensors.end()) 1359 { 1360 // we have reached till end of sensor, so assign the next record id 1361 // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). 1362 auto next_record_id = (frus.size()) 1363 ? frus.begin()->first + FRU_RECORD_ID_START 1364 : END_OF_RECORD; 1365 1366 get_sdr::response::set_next_record_id(next_record_id, resp); 1367 } 1368 else 1369 { 1370 get_sdr::response::set_next_record_id(sensor->first, resp); 1371 } 1372 1373 if (req->offset > sizeof(record)) 1374 { 1375 return IPMI_CC_PARM_OUT_OF_RANGE; 1376 } 1377 1378 // data_len will ultimately be the size of the record, plus 1379 // the size of the next record ID: 1380 *data_len = std::min(static_cast<size_t>(req->bytes_to_read), 1381 sizeof(record) - req->offset); 1382 1383 std::memcpy(resp->record_data, 1384 reinterpret_cast<const uint8_t*>(&record) + req->offset, 1385 *data_len); 1386 1387 // data_len should include the LSB and MSB: 1388 *data_len += sizeof(resp->next_record_id_lsb) + 1389 sizeof(resp->next_record_id_msb); 1390 1391 return ret; 1392 } 1393 1394 static bool isFromSystemChannel() 1395 { 1396 // TODO we could not figure out where the request is from based on IPMI 1397 // command handler parameters. because of it, we can not differentiate 1398 // request from SMS/SMM or IPMB channel 1399 return true; 1400 } 1401 1402 ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t, ipmi_cmd_t, 1403 ipmi_request_t request, ipmi_response_t, 1404 ipmi_data_len_t dataLen, ipmi_context_t) 1405 { 1406 uint16_t generatorID; 1407 size_t count; 1408 bool assert = true; 1409 std::string sensorPath; 1410 size_t paraLen = *dataLen; 1411 PlatformEventRequest* req; 1412 *dataLen = 0; 1413 1414 if ((paraLen < selSystemEventSizeWith1Bytes) || 1415 (paraLen > selSystemEventSizeWith3Bytes)) 1416 { 1417 return IPMI_CC_REQ_DATA_LEN_INVALID; 1418 } 1419 1420 if (isFromSystemChannel()) 1421 { // first byte for SYSTEM Interface is Generator ID 1422 // +1 to get common struct 1423 req = reinterpret_cast<PlatformEventRequest*>((uint8_t*)request + 1); 1424 // Capture the generator ID 1425 generatorID = *reinterpret_cast<uint8_t*>(request); 1426 // Platform Event usually comes from other firmware, like BIOS. 1427 // Unlike BMC sensor, it does not have BMC DBUS sensor path. 1428 sensorPath = "System"; 1429 } 1430 else 1431 { 1432 req = reinterpret_cast<PlatformEventRequest*>(request); 1433 // TODO GenratorID for IPMB is combination of RqSA and RqLUN 1434 generatorID = 0xff; 1435 sensorPath = "IPMB"; 1436 } 1437 // Content of event data field depends on sensor class. 1438 // When data0 bit[5:4] is non-zero, valid data counts is 3. 1439 // When data0 bit[7:6] is non-zero, valid data counts is 2. 1440 if (((req->data[0] & byte3EnableMask) != 0 && 1441 paraLen < selSystemEventSizeWith3Bytes) || 1442 ((req->data[0] & byte2EnableMask) != 0 && 1443 paraLen < selSystemEventSizeWith2Bytes)) 1444 { 1445 return IPMI_CC_REQ_DATA_LEN_INVALID; 1446 } 1447 1448 // Count bytes of Event Data 1449 if ((req->data[0] & byte3EnableMask) != 0) 1450 { 1451 count = 3; 1452 } 1453 else if ((req->data[0] & byte2EnableMask) != 0) 1454 { 1455 count = 2; 1456 } 1457 else 1458 { 1459 count = 1; 1460 } 1461 assert = req->eventDirectionType & directionMask ? false : true; 1462 std::vector<uint8_t> eventData(req->data, req->data + count); 1463 1464 sdbusplus::bus_t dbus(bus); 1465 std::string service = 1466 ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath); 1467 sdbusplus::message_t writeSEL = dbus.new_method_call( 1468 service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd"); 1469 writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert, 1470 generatorID); 1471 try 1472 { 1473 dbus.call(writeSEL); 1474 } 1475 catch (const sdbusplus::exception_t& e) 1476 { 1477 lg2::error("exception message: {ERROR}", "ERROR", e); 1478 return IPMI_CC_UNSPECIFIED_ERROR; 1479 } 1480 return IPMI_CC_OK; 1481 } 1482 1483 void register_netfn_sen_functions() 1484 { 1485 // Handlers with dbus-sdr handler implementation. 1486 // Do not register the hander if it dynamic sensors stack is used. 1487 1488 #ifndef FEATURE_DYNAMIC_SENSORS 1489 1490 #ifdef FEATURE_SENSORS_CACHE 1491 // Initialize the sensor matches 1492 initSensorMatches(); 1493 #endif 1494 1495 // <Set Sensor Reading and Event Status> 1496 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1497 ipmi::sensor_event::cmdSetSensorReadingAndEvtSts, 1498 ipmi::Privilege::Operator, ipmiSetSensorReading); 1499 // <Get Sensor Reading> 1500 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1501 ipmi::sensor_event::cmdGetSensorReading, 1502 ipmi::Privilege::User, ipmiSensorGetSensorReading); 1503 1504 // <Reserve Device SDR Repository> 1505 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1506 ipmi::sensor_event::cmdReserveDeviceSdrRepository, 1507 ipmi::Privilege::User, ipmiSensorReserveSdr); 1508 1509 // <Get Device SDR Info> 1510 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1511 ipmi::sensor_event::cmdGetDeviceSdrInfo, 1512 ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo); 1513 1514 // <Get Sensor Thresholds> 1515 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1516 ipmi::sensor_event::cmdGetSensorThreshold, 1517 ipmi::Privilege::User, ipmiSensorGetSensorThresholds); 1518 1519 // <Set Sensor Thresholds> 1520 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1521 ipmi::sensor_event::cmdSetSensorThreshold, 1522 ipmi::Privilege::User, ipmiSenSetSensorThresholds); 1523 1524 // <Get Device SDR> 1525 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, 1526 ipmi_sen_get_sdr, PRIVILEGE_USER); 1527 1528 #endif 1529 1530 // Common Handers used by both implementation. 1531 1532 // <Platform Event Message> 1533 ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr, 1534 ipmicmdPlatformEvent, PRIVILEGE_OPERATOR); 1535 1536 // <Get Sensor Type> 1537 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, 1538 ipmi::sensor_event::cmdGetSensorType, 1539 ipmi::Privilege::User, ipmiGetSensorType); 1540 1541 return; 1542 } 1543