1 #include "config.h"
2
3 #include "sensorhandler.hpp"
4
5 #include "fruread.hpp"
6
7 #include <systemd/sd-bus.h>
8
9 #include <ipmid/api.hpp>
10 #include <ipmid/entity_map_json.hpp>
11 #include <ipmid/types.hpp>
12 #include <ipmid/utils.hpp>
13 #include <phosphor-logging/elog-errors.hpp>
14 #include <phosphor-logging/lg2.hpp>
15 #include <sdbusplus/message/types.hpp>
16 #include <xyz/openbmc_project/Common/error.hpp>
17 #include <xyz/openbmc_project/Sensor/Value/server.hpp>
18
19 #include <bitset>
20 #include <cmath>
21 #include <cstring>
22 #include <set>
23
24 static constexpr uint8_t fruInventoryDevice = 0x10;
25 static constexpr uint8_t IPMIFruInventory = 0x02;
26 static constexpr uint8_t BMCTargetAddress = 0x20;
27
28 extern int updateSensorRecordFromSSRAESC(const void*);
29 extern sd_bus* bus;
30
31 namespace ipmi
32 {
33 namespace sensor
34 {
35 extern const IdInfoMap sensors;
36 } // namespace sensor
37 } // namespace ipmi
38
39 extern const FruMap frus;
40
41 using namespace phosphor::logging;
42 using InternalFailure =
43 sdbusplus::error::xyz::openbmc_project::common::InternalFailure;
44
45 void registerNetFnSenFunctions() __attribute__((constructor));
46
47 struct sensorTypemap_t
48 {
49 uint8_t number;
50 uint8_t typecode;
51 char dbusname[32];
52 };
53
54 sensorTypemap_t g_SensorTypeMap[] = {
55
56 {0x01, 0x6F, "Temp"},
57 {0x0C, 0x6F, "DIMM"},
58 {0x0C, 0x6F, "MEMORY_BUFFER"},
59 {0x07, 0x6F, "PROC"},
60 {0x07, 0x6F, "CORE"},
61 {0x07, 0x6F, "CPU"},
62 {0x0F, 0x6F, "BootProgress"},
63 {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor
64 // type code os 0x09
65 {0xC3, 0x6F, "BootCount"},
66 {0x1F, 0x6F, "OperatingSystemStatus"},
67 {0x12, 0x6F, "SYSTEM_EVENT"},
68 {0xC7, 0x03, "SYSTEM"},
69 {0xC7, 0x03, "MAIN_PLANAR"},
70 {0xC2, 0x6F, "PowerCap"},
71 {0x0b, 0xCA, "PowerSupplyRedundancy"},
72 {0xDA, 0x03, "TurboAllowed"},
73 {0xD8, 0xC8, "PowerSupplyDerating"},
74 {0xFF, 0x00, ""},
75 };
76
77 struct sensor_data_t
78 {
79 uint8_t sennum;
80 } __attribute__((packed));
81
82 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>;
83 SDRCacheMap sdrCacheMap __attribute__((init_priority(101)));
84
85 using SensorThresholdMap =
86 std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>;
87 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101)));
88
89 #ifdef FEATURE_SENSORS_CACHE
90 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches
91 __attribute__((init_priority(101)));
92 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches
93 __attribute__((init_priority(101)));
94 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches
95 __attribute__((init_priority(101)));
96 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch
97 __attribute__((init_priority(101)));
98
99 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101)));
100
101 // It is needed to know which objects belong to which service, so that when a
102 // service exits without interfacesRemoved signal, we could invaildate the cache
103 // that is related to the service. It uses below two variables:
104 // - idToServiceMap records which sensors are known to have a related service;
105 // - serviceToIdMap maps a service to the sensors.
106 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>;
107 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101)));
108
109 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>;
110 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101)));
111
fillSensorIdServiceMap(const std::string &,const std::string &,uint8_t id,const std::string & service)112 static void fillSensorIdServiceMap(const std::string&,
113 const std::string& /*intf*/, uint8_t id,
114 const std::string& service)
115 {
116 if (idToServiceMap.find(id) != idToServiceMap.end())
117 {
118 return;
119 }
120 idToServiceMap[id] = service;
121 serviceToIdMap[service].insert(id);
122 }
123
fillSensorIdServiceMap(const std::string & obj,const std::string & intf,uint8_t id)124 static void fillSensorIdServiceMap(const std::string& obj,
125 const std::string& intf, uint8_t id)
126 {
127 if (idToServiceMap.find(id) != idToServiceMap.end())
128 {
129 return;
130 }
131 try
132 {
133 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
134 auto service = ipmi::getService(bus, intf, obj);
135 idToServiceMap[id] = service;
136 serviceToIdMap[service].insert(id);
137 }
138 catch (...)
139 {
140 // Ignore
141 }
142 }
143
initSensorMatches()144 void initSensorMatches()
145 {
146 using namespace sdbusplus::bus::match::rules;
147 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
148 for (const auto& s : ipmi::sensor::sensors)
149 {
150 sensorAddedMatches.emplace(
151 s.first,
152 std::make_unique<sdbusplus::bus::match_t>(
153 bus, interfacesAdded() + argNpath(0, s.second.sensorPath),
154 [id = s.first, obj = s.second.sensorPath,
155 intf = s.second.propertyInterfaces.begin()->first](
156 auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); }));
157 sensorRemovedMatches.emplace(
158 s.first,
159 std::make_unique<sdbusplus::bus::match_t>(
160 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath),
161 [id = s.first](auto& /*msg*/) {
162 // Ideally this should work.
163 // But when a service is terminated or crashed, it does not
164 // emit interfacesRemoved signal. In that case it's handled
165 // by sensorsOwnerMatch
166 sensorCacheMap[id].reset();
167 }));
168 sensorUpdatedMatches.emplace(
169 s.first,
170 std::make_unique<sdbusplus::bus::match_t>(
171 bus,
172 type::signal() + path(s.second.sensorPath) +
173 member("PropertiesChanged"s) +
174 interface("org.freedesktop.DBus.Properties"s),
175 [&s](auto& msg) {
176 fillSensorIdServiceMap(
177 s.second.sensorPath,
178 s.second.propertyInterfaces.begin()->first, s.first);
179 try
180 {
181 // This is signal callback
182 std::string interfaceName;
183 msg.read(interfaceName);
184 ipmi::PropertyMap props;
185 msg.read(props);
186 s.second.getFunc(s.first, s.second, props);
187 }
188 catch (const std::exception& e)
189 {
190 sensorCacheMap[s.first].reset();
191 }
192 }));
193 }
194 sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>(
195 bus, nameOwnerChanged(), [](auto& msg) {
196 std::string name;
197 std::string oldOwner;
198 std::string newOwner;
199 msg.read(name, oldOwner, newOwner);
200
201 if (!name.empty() && newOwner.empty())
202 {
203 // The service exits
204 const auto it = serviceToIdMap.find(name);
205 if (it == serviceToIdMap.end())
206 {
207 return;
208 }
209 for (const auto& id : it->second)
210 {
211 // Invalidate cache
212 sensorCacheMap[id].reset();
213 }
214 }
215 });
216 }
217 #endif
218
219 // Use a lookup table to find the interface name of a specific sensor
220 // This will be used until an alternative is found. this is the first
221 // step for mapping IPMI
find_openbmc_path(uint8_t num,dbus_interface_t * interface)222 int find_openbmc_path(uint8_t num, dbus_interface_t* interface)
223 {
224 const auto& sensor_it = ipmi::sensor::sensors.find(num);
225 if (sensor_it == ipmi::sensor::sensors.end())
226 {
227 // The sensor map does not contain the sensor requested
228 return -EINVAL;
229 }
230
231 const auto& info = sensor_it->second;
232
233 std::string serviceName{};
234 try
235 {
236 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
237 serviceName =
238 ipmi::getService(bus, info.sensorInterface, info.sensorPath);
239 }
240 catch (const sdbusplus::exception_t&)
241 {
242 std::fprintf(stderr, "Failed to get %s busname: %s\n",
243 info.sensorPath.c_str(), serviceName.c_str());
244 return -EINVAL;
245 }
246
247 interface->sensortype = info.sensorType;
248 strcpy(interface->bus, serviceName.c_str());
249 strcpy(interface->path, info.sensorPath.c_str());
250 // Take the interface name from the beginning of the DbusInterfaceMap. This
251 // works for the Value interface but may not suffice for more complex
252 // sensors.
253 // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103
254 strcpy(interface->interface,
255 info.propertyInterfaces.begin()->first.c_str());
256 interface->sensornumber = num;
257
258 return 0;
259 }
260
261 /////////////////////////////////////////////////////////////////////
262 //
263 // Routines used by ipmi commands wanting to interact on the dbus
264 //
265 /////////////////////////////////////////////////////////////////////
set_sensor_dbus_state_s(uint8_t number,const char * method,const char * value)266 int set_sensor_dbus_state_s(uint8_t number, const char* method,
267 const char* value)
268 {
269 dbus_interface_t a;
270 int r;
271 sd_bus_error error = SD_BUS_ERROR_NULL;
272 sd_bus_message* m = nullptr;
273
274 r = find_openbmc_path(number, &a);
275
276 if (r < 0)
277 {
278 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
279 return 0;
280 }
281
282 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
283 method);
284 if (r < 0)
285 {
286 std::fprintf(stderr, "Failed to create a method call: %s",
287 strerror(-r));
288 goto final;
289 }
290
291 r = sd_bus_message_append(m, "v", "s", value);
292 if (r < 0)
293 {
294 std::fprintf(stderr, "Failed to create a input parameter: %s",
295 strerror(-r));
296 goto final;
297 }
298
299 r = sd_bus_call(bus, m, 0, &error, nullptr);
300 if (r < 0)
301 {
302 std::fprintf(stderr, "Failed to call the method: %s", strerror(-r));
303 }
304
305 final:
306 sd_bus_error_free(&error);
307 m = sd_bus_message_unref(m);
308
309 return 0;
310 }
set_sensor_dbus_state_y(uint8_t number,const char * method,const uint8_t value)311 int set_sensor_dbus_state_y(uint8_t number, const char* method,
312 const uint8_t value)
313 {
314 dbus_interface_t a;
315 int r;
316 sd_bus_error error = SD_BUS_ERROR_NULL;
317 sd_bus_message* m = nullptr;
318
319 r = find_openbmc_path(number, &a);
320
321 if (r < 0)
322 {
323 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
324 return 0;
325 }
326
327 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
328 method);
329 if (r < 0)
330 {
331 std::fprintf(stderr, "Failed to create a method call: %s",
332 strerror(-r));
333 goto final;
334 }
335
336 r = sd_bus_message_append(m, "v", "i", value);
337 if (r < 0)
338 {
339 std::fprintf(stderr, "Failed to create a input parameter: %s",
340 strerror(-r));
341 goto final;
342 }
343
344 r = sd_bus_call(bus, m, 0, &error, nullptr);
345 if (r < 0)
346 {
347 std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r));
348 }
349
350 final:
351 sd_bus_error_free(&error);
352 m = sd_bus_message_unref(m);
353
354 return 0;
355 }
356
dbus_to_sensor_type(char * p)357 uint8_t dbus_to_sensor_type(char* p)
358 {
359 sensorTypemap_t* s = g_SensorTypeMap;
360 char r = 0;
361 while (s->number != 0xFF)
362 {
363 if (!strcmp(s->dbusname, p))
364 {
365 r = s->typecode;
366 break;
367 }
368 s++;
369 }
370
371 if (s->number == 0xFF)
372 printf("Failed to find Sensor Type %s\n", p);
373
374 return r;
375 }
376
get_type_from_interface(dbus_interface_t dbus_if)377 uint8_t get_type_from_interface(dbus_interface_t dbus_if)
378 {
379 uint8_t type;
380
381 // This is where sensors that do not exist in dbus but do
382 // exist in the host code stop. This should indicate it
383 // is not a supported sensor
384 if (dbus_if.interface[0] == 0)
385 {
386 return 0;
387 }
388
389 // Fetch type from interface itself.
390 if (dbus_if.sensortype != 0)
391 {
392 type = dbus_if.sensortype;
393 }
394 else
395 {
396 // Non InventoryItems
397 char* p = strrchr(dbus_if.path, '/');
398 type = dbus_to_sensor_type(p + 1);
399 }
400
401 return type;
402 }
403
404 // Replaces find_sensor
find_type_for_sensor_number(uint8_t num)405 uint8_t find_type_for_sensor_number(uint8_t num)
406 {
407 int r;
408 dbus_interface_t dbus_if;
409 r = find_openbmc_path(num, &dbus_if);
410 if (r < 0)
411 {
412 std::fprintf(stderr, "Could not find sensor %d\n", num);
413 return 0;
414 }
415 return get_type_from_interface(dbus_if);
416 }
417
418 /**
419 * @brief implements the get sensor type command.
420 * @param - sensorNumber
421 *
422 * @return IPMI completion code plus response data on success.
423 * - sensorType
424 * - eventType
425 **/
426
427 ipmi::RspType<uint8_t, // sensorType
428 uint8_t // eventType
429 >
ipmiGetSensorType(uint8_t sensorNumber)430 ipmiGetSensorType(uint8_t sensorNumber)
431 {
432 const auto it = ipmi::sensor::sensors.find(sensorNumber);
433 if (it == ipmi::sensor::sensors.end())
434 {
435 // The sensor map does not contain the sensor requested
436 return ipmi::responseSensorInvalid();
437 }
438
439 const auto& info = it->second;
440 uint8_t sensorType = info.sensorType;
441 uint8_t eventType = info.sensorReadingType;
442
443 return ipmi::responseSuccess(sensorType, eventType);
444 }
445
446 const std::set<std::string> analogSensorInterfaces = {
447 "xyz.openbmc_project.Sensor.Value",
448 "xyz.openbmc_project.Control.FanPwm",
449 };
450
isAnalogSensor(const std::string & interface)451 bool isAnalogSensor(const std::string& interface)
452 {
453 return (analogSensorInterfaces.count(interface));
454 }
455
456 /**
457 @brief This command is used to set sensorReading.
458
459 @param
460 - sensorNumber
461 - operation
462 - reading
463 - assertOffset0_7
464 - assertOffset8_14
465 - deassertOffset0_7
466 - deassertOffset8_14
467 - eventData1
468 - eventData2
469 - eventData3
470
471 @return completion code on success.
472 **/
473
ipmiSetSensorReading(uint8_t sensorNumber,uint8_t operation,uint8_t reading,uint8_t assertOffset0_7,uint8_t assertOffset8_14,uint8_t deassertOffset0_7,uint8_t deassertOffset8_14,uint8_t eventData1,uint8_t eventData2,uint8_t eventData3)474 ipmi::RspType<> ipmiSetSensorReading(
475 uint8_t sensorNumber, uint8_t operation, uint8_t reading,
476 uint8_t assertOffset0_7, uint8_t assertOffset8_14,
477 uint8_t deassertOffset0_7, uint8_t deassertOffset8_14, uint8_t eventData1,
478 uint8_t eventData2, uint8_t eventData3)
479 {
480 lg2::debug("IPMI SET_SENSOR, sensorNumber: {SENSOR_NUM}", "SENSOR_NUM",
481 lg2::hex, sensorNumber);
482
483 if (sensorNumber == 0xFF)
484 {
485 return ipmi::responseInvalidFieldRequest();
486 }
487 ipmi::sensor::SetSensorReadingReq cmdData;
488
489 cmdData.number = sensorNumber;
490 cmdData.operation = operation;
491 cmdData.reading = reading;
492 cmdData.assertOffset0_7 = assertOffset0_7;
493 cmdData.assertOffset8_14 = assertOffset8_14;
494 cmdData.deassertOffset0_7 = deassertOffset0_7;
495 cmdData.deassertOffset8_14 = deassertOffset8_14;
496 cmdData.eventData1 = eventData1;
497 cmdData.eventData2 = eventData2;
498 cmdData.eventData3 = eventData3;
499
500 // Check if the Sensor Number is present
501 const auto iter = ipmi::sensor::sensors.find(sensorNumber);
502 if (iter == ipmi::sensor::sensors.end())
503 {
504 updateSensorRecordFromSSRAESC(&sensorNumber);
505 return ipmi::responseSuccess();
506 }
507
508 try
509 {
510 if (ipmi::sensor::Mutability::Write !=
511 (iter->second.mutability & ipmi::sensor::Mutability::Write))
512 {
513 lg2::error("Sensor Set operation is not allowed, "
514 "sensorNumber: {SENSOR_NUM}",
515 "SENSOR_NUM", lg2::hex, sensorNumber);
516 return ipmi::responseIllegalCommand();
517 }
518 auto ipmiRC = iter->second.updateFunc(cmdData, iter->second);
519 return ipmi::response(ipmiRC);
520 }
521 catch (const InternalFailure& e)
522 {
523 lg2::error("Set sensor failed, sensorNumber: {SENSOR_NUM}",
524 "SENSOR_NUM", lg2::hex, sensorNumber);
525 commit<InternalFailure>();
526 return ipmi::responseUnspecifiedError();
527 }
528 catch (const std::runtime_error& e)
529 {
530 lg2::error("runtime error: {ERROR}", "ERROR", e);
531 return ipmi::responseUnspecifiedError();
532 }
533 }
534
535 /** @brief implements the get sensor reading command
536 * @param sensorNum - sensor number
537 *
538 * @returns IPMI completion code plus response data
539 * - senReading - sensor reading
540 * - reserved
541 * - readState - sensor reading state enabled
542 * - senScanState - sensor scan state disabled
543 * - allEventMessageState - all Event message state disabled
544 * - assertionStatesLsb - threshold levels states
545 * - assertionStatesMsb - discrete reading sensor states
546 */
547 ipmi::RspType<uint8_t, // sensor reading
548
549 uint5_t, // reserved
550 bool, // reading state
551 bool, // 0 = sensor scanning state disabled
552 bool, // 0 = all event messages disabled
553
554 uint8_t, // threshold levels states
555 uint8_t // discrete reading sensor states
556 >
ipmiSensorGetSensorReading(ipmi::Context::ptr & ctx,uint8_t sensorNum)557 ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx,
558 uint8_t sensorNum)
559 {
560 if (sensorNum == 0xFF)
561 {
562 return ipmi::responseInvalidFieldRequest();
563 }
564
565 const auto iter = ipmi::sensor::sensors.find(sensorNum);
566 if (iter == ipmi::sensor::sensors.end())
567 {
568 return ipmi::responseSensorInvalid();
569 }
570 if (ipmi::sensor::Mutability::Read !=
571 (iter->second.mutability & ipmi::sensor::Mutability::Read))
572 {
573 return ipmi::responseIllegalCommand();
574 }
575
576 try
577 {
578 #ifdef FEATURE_SENSORS_CACHE
579 auto& sensorData = sensorCacheMap[sensorNum];
580 if (!sensorData.has_value())
581 {
582 // No cached value, try read it
583 std::string service;
584 boost::system::error_code ec;
585 const auto& sensorInfo = iter->second;
586 ec = ipmi::getService(ctx, sensorInfo.sensorInterface,
587 sensorInfo.sensorPath, service);
588 if (ec)
589 {
590 return ipmi::responseUnspecifiedError();
591 }
592 fillSensorIdServiceMap(sensorInfo.sensorPath,
593 sensorInfo.propertyInterfaces.begin()->first,
594 iter->first, service);
595
596 ipmi::PropertyMap props;
597 ec = ipmi::getAllDbusProperties(
598 ctx, service, sensorInfo.sensorPath,
599 sensorInfo.propertyInterfaces.begin()->first, props);
600 if (ec)
601 {
602 fprintf(stderr, "Failed to get sensor %s, %d: %s\n",
603 sensorInfo.sensorPath.c_str(), ec.value(),
604 ec.message().c_str());
605 // Intitilizing with default values
606 constexpr uint8_t senReading = 0;
607 constexpr uint5_t reserved{0};
608 constexpr bool readState = true;
609 constexpr bool senScanState = false;
610 constexpr bool allEventMessageState = false;
611 constexpr uint8_t assertionStatesLsb = 0;
612 constexpr uint8_t assertionStatesMsb = 0;
613
614 return ipmi::responseSuccess(
615 senReading, reserved, readState, senScanState,
616 allEventMessageState, assertionStatesLsb,
617 assertionStatesMsb);
618 }
619 sensorInfo.getFunc(sensorNum, sensorInfo, props);
620 }
621 return ipmi::responseSuccess(
622 sensorData->response.reading, uint5_t(0),
623 sensorData->response.readingOrStateUnavailable,
624 sensorData->response.scanningEnabled,
625 sensorData->response.allEventMessagesEnabled,
626 sensorData->response.thresholdLevelsStates,
627 sensorData->response.discreteReadingSensorStates);
628
629 #else
630 ipmi::sensor::GetSensorResponse getResponse =
631 iter->second.getFunc(iter->second);
632
633 return ipmi::responseSuccess(
634 getResponse.reading, uint5_t(0),
635 getResponse.readingOrStateUnavailable, getResponse.scanningEnabled,
636 getResponse.allEventMessagesEnabled,
637 getResponse.thresholdLevelsStates,
638 getResponse.discreteReadingSensorStates);
639 #endif
640 }
641 #ifdef UPDATE_FUNCTIONAL_ON_FAIL
642 catch (const SensorFunctionalError& e)
643 {
644 return ipmi::responseResponseError();
645 }
646 #endif
647 catch (const std::exception& e)
648 {
649 // Intitilizing with default values
650 constexpr uint8_t senReading = 0;
651 constexpr uint5_t reserved{0};
652 constexpr bool readState = true;
653 constexpr bool senScanState = false;
654 constexpr bool allEventMessageState = false;
655 constexpr uint8_t assertionStatesLsb = 0;
656 constexpr uint8_t assertionStatesMsb = 0;
657
658 return ipmi::responseSuccess(senReading, reserved, readState,
659 senScanState, allEventMessageState,
660 assertionStatesLsb, assertionStatesMsb);
661 }
662 }
663
updateWarningThreshold(uint8_t lowerValue,uint8_t upperValue,get_sdr::GetSensorThresholdsResponse & resp)664 void updateWarningThreshold(uint8_t lowerValue, uint8_t upperValue,
665 get_sdr::GetSensorThresholdsResponse& resp)
666 {
667 resp.lowerNonCritical = lowerValue;
668 resp.upperNonCritical = upperValue;
669 if (lowerValue)
670 {
671 resp.validMask |= static_cast<uint8_t>(
672 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK);
673 }
674
675 if (upperValue)
676 {
677 resp.validMask |= static_cast<uint8_t>(
678 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK);
679 }
680 }
681
updateCriticalThreshold(uint8_t lowerValue,uint8_t upperValue,get_sdr::GetSensorThresholdsResponse & resp)682 void updateCriticalThreshold(uint8_t lowerValue, uint8_t upperValue,
683 get_sdr::GetSensorThresholdsResponse& resp)
684 {
685 resp.lowerCritical = lowerValue;
686 resp.upperCritical = upperValue;
687 if (lowerValue)
688 {
689 resp.validMask |= static_cast<uint8_t>(
690 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK);
691 }
692
693 if (upperValue)
694 {
695 resp.validMask |= static_cast<uint8_t>(
696 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK);
697 }
698 }
699
updateNonRecoverableThreshold(uint8_t lowerValue,uint8_t upperValue,get_sdr::GetSensorThresholdsResponse & resp)700 void updateNonRecoverableThreshold(uint8_t lowerValue, uint8_t upperValue,
701 get_sdr::GetSensorThresholdsResponse& resp)
702 {
703 resp.lowerNonRecoverable = lowerValue;
704 resp.upperNonRecoverable = upperValue;
705 if (lowerValue)
706 {
707 resp.validMask |= static_cast<uint8_t>(
708 ipmi::sensor::ThresholdMask::NON_RECOVERABLE_LOW_MASK);
709 }
710
711 if (upperValue)
712 {
713 resp.validMask |= static_cast<uint8_t>(
714 ipmi::sensor::ThresholdMask::NON_RECOVERABLE_HIGH_MASK);
715 }
716 }
717
getSensorThresholds(ipmi::Context::ptr & ctx,uint8_t sensorNum)718 get_sdr::GetSensorThresholdsResponse getSensorThresholds(
719 ipmi::Context::ptr& ctx, uint8_t sensorNum)
720 {
721 get_sdr::GetSensorThresholdsResponse resp{};
722 const auto iter = ipmi::sensor::sensors.find(sensorNum);
723 const auto info = iter->second;
724
725 std::string service;
726 boost::system::error_code ec;
727 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
728 if (ec)
729 {
730 return resp;
731 }
732
733 int32_t minClamp;
734 int32_t maxClamp;
735 int32_t rawData;
736 constexpr uint8_t sensorUnitsSignedBits = 2 << 6;
737 constexpr uint8_t signedDataFormat = 0x80;
738 if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat)
739 {
740 minClamp = std::numeric_limits<int8_t>::lowest();
741 maxClamp = std::numeric_limits<int8_t>::max();
742 }
743 else
744 {
745 minClamp = std::numeric_limits<uint8_t>::lowest();
746 maxClamp = std::numeric_limits<uint8_t>::max();
747 }
748
749 static std::vector<std::string> thresholdNames{"Warning", "Critical",
750 "NonRecoverable"};
751
752 for (const auto& thresholdName : thresholdNames)
753 {
754 std::string thresholdInterface =
755 "xyz.openbmc_project.Sensor.Threshold." + thresholdName;
756 std::string thresholdLow = thresholdName + "Low";
757 std::string thresholdHigh = thresholdName + "High";
758
759 ipmi::PropertyMap thresholds;
760 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
761 thresholdInterface, thresholds);
762 if (ec)
763 {
764 continue;
765 }
766
767 double lowValue = ipmi::mappedVariant<double>(
768 thresholds, thresholdLow, std::numeric_limits<double>::quiet_NaN());
769 double highValue = ipmi::mappedVariant<double>(
770 thresholds, thresholdHigh,
771 std::numeric_limits<double>::quiet_NaN());
772
773 uint8_t lowerValue = 0;
774 uint8_t upperValue = 0;
775 if (std::isfinite(lowValue))
776 {
777 lowValue *= std::pow(10, info.scale - info.exponentR);
778 rawData = round((lowValue - info.scaledOffset) / info.coefficientM);
779 lowerValue =
780 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
781 }
782
783 if (std::isfinite(highValue))
784 {
785 highValue *= std::pow(10, info.scale - info.exponentR);
786 rawData =
787 round((highValue - info.scaledOffset) / info.coefficientM);
788 upperValue =
789 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
790 }
791
792 if (thresholdName == "Warning")
793 {
794 updateWarningThreshold(lowerValue, upperValue, resp);
795 }
796 else if (thresholdName == "Critical")
797 {
798 updateCriticalThreshold(lowerValue, upperValue, resp);
799 }
800 else if (thresholdName == "NonRecoverable")
801 {
802 updateNonRecoverableThreshold(lowerValue, upperValue, resp);
803 }
804 }
805
806 return resp;
807 }
808
809 /** @brief implements the get sensor thresholds command
810 * @param ctx - IPMI context pointer
811 * @param sensorNum - sensor number
812 *
813 * @returns IPMI completion code plus response data
814 * - validMask - threshold mask
815 * - lower non-critical threshold - IPMI messaging state
816 * - lower critical threshold - link authentication state
817 * - lower non-recoverable threshold - callback state
818 * - upper non-critical threshold
819 * - upper critical
820 * - upper non-recoverable
821 */
822 ipmi::RspType<uint8_t, // validMask
823 uint8_t, // lowerNonCritical
824 uint8_t, // lowerCritical
825 uint8_t, // lowerNonRecoverable
826 uint8_t, // upperNonCritical
827 uint8_t, // upperCritical
828 uint8_t // upperNonRecoverable
829 >
ipmiSensorGetSensorThresholds(ipmi::Context::ptr & ctx,uint8_t sensorNum)830 ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
831 {
832 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
833
834 const auto iter = ipmi::sensor::sensors.find(sensorNum);
835 if (iter == ipmi::sensor::sensors.end())
836 {
837 return ipmi::responseSensorInvalid();
838 }
839
840 const auto info = iter->second;
841
842 // Proceed only if the sensor value interface is implemented.
843 if (info.propertyInterfaces.find(valueInterface) ==
844 info.propertyInterfaces.end())
845 {
846 // return with valid mask as 0
847 return ipmi::responseSuccess();
848 }
849
850 auto it = sensorThresholdMap.find(sensorNum);
851 if (it == sensorThresholdMap.end())
852 {
853 auto resp = getSensorThresholds(ctx, sensorNum);
854 if (resp.validMask == 0)
855 {
856 return ipmi::responseSensorInvalid();
857 }
858 sensorThresholdMap[sensorNum] = std::move(resp);
859 }
860
861 const auto& resp = sensorThresholdMap[sensorNum];
862
863 return ipmi::responseSuccess(
864 resp.validMask, resp.lowerNonCritical, resp.lowerCritical,
865 resp.lowerNonRecoverable, resp.upperNonCritical, resp.upperCritical,
866 resp.upperNonRecoverable);
867 }
868
869 /** @brief implements the Set Sensor threshold command
870 * @param sensorNumber - sensor number
871 * @param lowerNonCriticalThreshMask
872 * @param lowerCriticalThreshMask
873 * @param lowerNonRecovThreshMask
874 * @param upperNonCriticalThreshMask
875 * @param upperCriticalThreshMask
876 * @param upperNonRecovThreshMask
877 * @param reserved
878 * @param lowerNonCritical - lower non-critical threshold
879 * @param lowerCritical - Lower critical threshold
880 * @param lowerNonRecoverable - Lower non recovarable threshold
881 * @param upperNonCritical - Upper non-critical threshold
882 * @param upperCritical - Upper critical
883 * @param upperNonRecoverable - Upper Non-recoverable
884 *
885 * @returns IPMI completion code
886 */
ipmiSenSetSensorThresholds(ipmi::Context::ptr & ctx,uint8_t sensorNum,bool lowerNonCriticalThreshMask,bool lowerCriticalThreshMask,bool lowerNonRecovThreshMask,bool upperNonCriticalThreshMask,bool upperCriticalThreshMask,bool upperNonRecovThreshMask,uint2_t reserved,uint8_t lowerNonCritical,uint8_t lowerCritical,uint8_t,uint8_t upperNonCritical,uint8_t upperCritical,uint8_t)887 ipmi::RspType<> ipmiSenSetSensorThresholds(
888 ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask,
889 bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask,
890 bool upperNonCriticalThreshMask, bool upperCriticalThreshMask,
891 bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical,
892 uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical,
893 uint8_t upperCritical, uint8_t)
894 {
895 if (reserved)
896 {
897 return ipmi::responseInvalidFieldRequest();
898 }
899
900 // lower nc and upper nc not suppported on any sensor
901 if (lowerNonRecovThreshMask || upperNonRecovThreshMask)
902 {
903 return ipmi::responseInvalidFieldRequest();
904 }
905
906 // if none of the threshold mask are set, nothing to do
907 if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask |
908 lowerNonRecovThreshMask | upperNonCriticalThreshMask |
909 upperCriticalThreshMask | upperNonRecovThreshMask))
910 {
911 return ipmi::responseSuccess();
912 }
913
914 constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
915
916 const auto iter = ipmi::sensor::sensors.find(sensorNum);
917 if (iter == ipmi::sensor::sensors.end())
918 {
919 return ipmi::responseSensorInvalid();
920 }
921
922 const auto& info = iter->second;
923
924 // Proceed only if the sensor value interface is implemented.
925 if (info.propertyInterfaces.find(valueInterface) ==
926 info.propertyInterfaces.end())
927 {
928 // return with valid mask as 0
929 return ipmi::responseSuccess();
930 }
931
932 constexpr auto warningThreshIntf =
933 "xyz.openbmc_project.Sensor.Threshold.Warning";
934 constexpr auto criticalThreshIntf =
935 "xyz.openbmc_project.Sensor.Threshold.Critical";
936
937 std::string service;
938 boost::system::error_code ec;
939 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
940 if (ec)
941 {
942 return ipmi::responseResponseError();
943 }
944 // store a vector of property name, value to set, and interface
945 std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet;
946
947 // define the indexes of the tuple
948 constexpr uint8_t propertyName = 0;
949 constexpr uint8_t thresholdValue = 1;
950 constexpr uint8_t interface = 2;
951 // verifiy all needed fields are present
952 if (lowerCriticalThreshMask || upperCriticalThreshMask)
953 {
954 ipmi::PropertyMap findThreshold;
955 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
956 criticalThreshIntf, findThreshold);
957
958 if (!ec)
959 {
960 if (lowerCriticalThreshMask)
961 {
962 auto findLower = findThreshold.find("CriticalLow");
963 if (findLower == findThreshold.end())
964 {
965 return ipmi::responseInvalidFieldRequest();
966 }
967 thresholdsToSet.emplace_back("CriticalLow", lowerCritical,
968 criticalThreshIntf);
969 }
970 if (upperCriticalThreshMask)
971 {
972 auto findUpper = findThreshold.find("CriticalHigh");
973 if (findUpper == findThreshold.end())
974 {
975 return ipmi::responseInvalidFieldRequest();
976 }
977 thresholdsToSet.emplace_back("CriticalHigh", upperCritical,
978 criticalThreshIntf);
979 }
980 }
981 }
982 if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask)
983 {
984 ipmi::PropertyMap findThreshold;
985 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
986 warningThreshIntf, findThreshold);
987
988 if (!ec)
989 {
990 if (lowerNonCriticalThreshMask)
991 {
992 auto findLower = findThreshold.find("WarningLow");
993 if (findLower == findThreshold.end())
994 {
995 return ipmi::responseInvalidFieldRequest();
996 }
997 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical,
998 warningThreshIntf);
999 }
1000 if (upperNonCriticalThreshMask)
1001 {
1002 auto findUpper = findThreshold.find("WarningHigh");
1003 if (findUpper == findThreshold.end())
1004 {
1005 return ipmi::responseInvalidFieldRequest();
1006 }
1007 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical,
1008 warningThreshIntf);
1009 }
1010 }
1011 }
1012 for (const auto& property : thresholdsToSet)
1013 {
1014 // from section 36.3 in the IPMI Spec, assume all linear
1015 double valueToSet =
1016 ((info.coefficientM * std::get<thresholdValue>(property)) +
1017 (info.scaledOffset * std::pow(10.0, info.scale))) *
1018 std::pow(10.0, info.exponentR);
1019 ipmi::setDbusProperty(
1020 ctx, service, info.sensorPath, std::get<interface>(property),
1021 std::get<propertyName>(property), ipmi::Value(valueToSet));
1022 }
1023
1024 // Invalidate the cache
1025 sensorThresholdMap.erase(sensorNum);
1026 return ipmi::responseSuccess();
1027 }
1028
1029 /** @brief implements the get SDR Info command
1030 * @param count - Operation
1031 *
1032 * @returns IPMI completion code plus response data
1033 * - sdrCount - sensor/SDR count
1034 * - lunsAndDynamicPopulation - static/Dynamic sensor population flag
1035 */
1036 ipmi::RspType<uint8_t, // respcount
1037 uint8_t // dynamic population flags
1038 >
ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)1039 ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)
1040 {
1041 uint8_t sdrCount;
1042 // multiple LUNs not supported.
1043 constexpr uint8_t lunsAndDynamicPopulation = 1;
1044 constexpr uint8_t getSdrCount = 0x01;
1045 constexpr uint8_t getSensorCount = 0x00;
1046
1047 if (count.value_or(0) == getSdrCount)
1048 {
1049 // Get SDR count. This returns the total number of SDRs in the device.
1050 const auto& entityRecords =
1051 ipmi::sensor::EntityInfoMapContainer::getContainer()
1052 ->getIpmiEntityRecords();
1053 sdrCount = ipmi::sensor::sensors.size() + frus.size() +
1054 entityRecords.size();
1055 }
1056 else if (count.value_or(0) == getSensorCount)
1057 {
1058 // Get Sensor count. This returns the number of sensors
1059 sdrCount = ipmi::sensor::sensors.size();
1060 }
1061 else
1062 {
1063 return ipmi::responseInvalidCommandOnLun();
1064 }
1065
1066 return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation);
1067 }
1068
1069 /** @brief implements the reserve SDR command
1070 * @returns IPMI completion code plus response data
1071 * - reservationID - reservation ID
1072 */
ipmiSensorReserveSdr()1073 ipmi::RspType<uint16_t> ipmiSensorReserveSdr()
1074 {
1075 // A constant reservation ID is okay until we implement add/remove SDR.
1076 constexpr uint16_t reservationID = 1;
1077
1078 return ipmi::responseSuccess(reservationID);
1079 }
1080
setUnitFieldsForObject(const ipmi::sensor::Info & info,get_sdr::SensorDataFullRecordBody & body)1081 void setUnitFieldsForObject(const ipmi::sensor::Info& info,
1082 get_sdr::SensorDataFullRecordBody& body)
1083 {
1084 namespace server = sdbusplus::server::xyz::openbmc_project::sensor;
1085 body.sensorUnits1 = info.sensorUnits1; // default is 0. unsigned, no rate,
1086 // no modifier, not a %
1087 try
1088 {
1089 auto unit = server::Value::convertUnitFromString(info.unit);
1090 // Unit strings defined in
1091 // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml
1092 switch (unit)
1093 {
1094 case server::Value::Unit::DegreesC:
1095 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_DEGREES_C;
1096 break;
1097 case server::Value::Unit::RPMS:
1098 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_RPM;
1099 break;
1100 case server::Value::Unit::Volts:
1101 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_VOLTS;
1102 break;
1103 case server::Value::Unit::Meters:
1104 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_METERS;
1105 break;
1106 case server::Value::Unit::Amperes:
1107 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_AMPERES;
1108 break;
1109 case server::Value::Unit::Joules:
1110 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_JOULES;
1111 break;
1112 case server::Value::Unit::Watts:
1113 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_WATTS;
1114 break;
1115 case server::Value::Unit::Percent:
1116 get_sdr::body::setPercentage(body);
1117 break;
1118 default:
1119 // Cannot be hit.
1120 std::fprintf(stderr, "Unknown value unit type: = %s\n",
1121 info.unit.c_str());
1122 }
1123 }
1124 catch (const sdbusplus::exception::InvalidEnumString& e)
1125 {
1126 lg2::warning("Warning: no unit provided for sensor!");
1127 }
1128 }
1129
populateRecordFromDbus(const ipmi::sensor::Info & info,get_sdr::SensorDataFullRecordBody & body)1130 ipmi::Cc populateRecordFromDbus(const ipmi::sensor::Info& info,
1131 get_sdr::SensorDataFullRecordBody& body)
1132 {
1133 /* Functional sensor case */
1134 if (isAnalogSensor(info.propertyInterfaces.begin()->first))
1135 {
1136 /* Unit info */
1137 setUnitFieldsForObject(info, body);
1138
1139 get_sdr::body::setB(info.coefficientB, body);
1140 get_sdr::body::setM(info.coefficientM, body);
1141 get_sdr::body::setBexp(info.exponentB, body);
1142 get_sdr::body::setRexp(info.exponentR, body);
1143 }
1144
1145 /* ID string */
1146 auto idString = info.sensorName;
1147
1148 if (idString.empty())
1149 {
1150 idString = info.sensorNameFunc(info);
1151 }
1152
1153 if (idString.length() > FULL_RECORD_ID_STR_MAX_LENGTH)
1154 {
1155 get_sdr::body::setIdStrLen(FULL_RECORD_ID_STR_MAX_LENGTH, body);
1156 }
1157 else
1158 {
1159 get_sdr::body::setIdStrLen(idString.length(), body);
1160 }
1161 get_sdr::body::setIdType(3, body); // "8-bit ASCII + Latin 1"
1162 strncpy(body.idString, idString.c_str(), get_sdr::body::getIdStrLen(body));
1163
1164 return ipmi::ccSuccess;
1165 };
1166
1167 ipmi::RspType<uint16_t, // nextRecordId
1168 std::vector<uint8_t> // recordData
1169 >
ipmiFruGetSdr(uint16_t recordID,uint8_t offset,uint8_t bytesToRead)1170 ipmiFruGetSdr(uint16_t recordID, uint8_t offset, uint8_t bytesToRead)
1171 {
1172 auto fru = frus.begin();
1173 uint8_t fruID{};
1174
1175 fruID = recordID - FRU_RECORD_ID_START;
1176 fru = frus.find(fruID);
1177 if (fru == frus.end())
1178 {
1179 return ipmi::responseSensorInvalid();
1180 }
1181
1182 get_sdr::SensorDataFruRecord record{};
1183 /* Header */
1184 record.header.recordId = recordID;
1185 record.header.sdrVersion = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1186 record.header.recordType = get_sdr::SENSOR_DATA_FRU_RECORD;
1187 record.header.recordLength = sizeof(record.key) + sizeof(record.body);
1188
1189 /* Key */
1190 record.key.fruID = fruID;
1191 record.key.accessLun |= IPMI_LOGICAL_FRU;
1192 record.key.deviceAddress = BMCTargetAddress;
1193
1194 /* Body */
1195 record.body.entityID = fru->second[0].entityID;
1196 record.body.entityInstance = fru->second[0].entityInstance;
1197 record.body.deviceType = fruInventoryDevice;
1198 record.body.deviceTypeModifier = IPMIFruInventory;
1199
1200 /* Device ID string */
1201 auto deviceID =
1202 fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1,
1203 fru->second[0].path.length());
1204
1205 if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH)
1206 {
1207 get_sdr::body::setDeviceIdStrLen(
1208 get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, record.body);
1209 }
1210 else
1211 {
1212 get_sdr::body::setDeviceIdStrLen(deviceID.length(), record.body);
1213 }
1214
1215 uint16_t nextRecordId{};
1216 strncpy(record.body.deviceID, deviceID.c_str(),
1217 get_sdr::body::getDeviceIdStrLen(record.body));
1218
1219 if (++fru == frus.end())
1220 {
1221 // we have reached till end of fru, so assign the next record id to
1222 // 512(Max fru ID = 511) + Entity Record ID(may start with 0).
1223 const auto& entityRecords =
1224 ipmi::sensor::EntityInfoMapContainer::getContainer()
1225 ->getIpmiEntityRecords();
1226 nextRecordId =
1227 (entityRecords.size())
1228 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START
1229 : END_OF_RECORD;
1230 }
1231 else
1232 {
1233 nextRecordId = FRU_RECORD_ID_START + fru->first;
1234 }
1235
1236 // Check for invalid offset size
1237 if (offset > sizeof(record))
1238 {
1239 return ipmi::responseParmOutOfRange();
1240 }
1241
1242 size_t dataLen =
1243 std::min(static_cast<size_t>(bytesToRead), sizeof(record) - offset);
1244
1245 std::vector<uint8_t> recordData(dataLen);
1246 std::memcpy(recordData.data(),
1247 reinterpret_cast<const uint8_t*>(&record) + offset, dataLen);
1248
1249 return ipmi::responseSuccess(nextRecordId, recordData);
1250 }
1251
1252 ipmi::RspType<uint16_t, // nextRecordId
1253 std::vector<uint8_t> // recordData
1254 >
ipmiEntityGetSdr(uint16_t recordID,uint8_t offset,uint8_t bytesToRead)1255 ipmiEntityGetSdr(uint16_t recordID, uint8_t offset, uint8_t bytesToRead)
1256 {
1257 const auto& entityRecords =
1258 ipmi::sensor::EntityInfoMapContainer::getContainer()
1259 ->getIpmiEntityRecords();
1260 auto entity = entityRecords.begin();
1261 uint8_t entityRecordID;
1262
1263 entityRecordID = recordID - ENTITY_RECORD_ID_START;
1264 entity = entityRecords.find(entityRecordID);
1265 if (entity == entityRecords.end())
1266 {
1267 return ipmi::responseSensorInvalid();
1268 }
1269
1270 get_sdr::SensorDataEntityRecord record{};
1271 /* Header */
1272 record.header.recordId = recordID;
1273 record.header.sdrVersion = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1274 record.header.recordType = get_sdr::SENSOR_DATA_ENTITY_RECORD;
1275 record.header.recordLength = sizeof(record.key) + sizeof(record.body);
1276
1277 /* Key */
1278 record.key.containerEntityId = entity->second.containerEntityId;
1279 record.key.containerEntityInstance = entity->second.containerEntityInstance;
1280 get_sdr::key::setFlags(entity->second.isList, entity->second.isLinked,
1281 record.key);
1282 record.key.entityId1 = entity->second.containedEntities[0].first;
1283 record.key.entityInstance1 = entity->second.containedEntities[0].second;
1284
1285 /* Body */
1286 record.body.entityId2 = entity->second.containedEntities[1].first;
1287 record.body.entityInstance2 = entity->second.containedEntities[1].second;
1288 record.body.entityId3 = entity->second.containedEntities[2].first;
1289 record.body.entityInstance3 = entity->second.containedEntities[2].second;
1290 record.body.entityId4 = entity->second.containedEntities[3].first;
1291 record.body.entityInstance4 = entity->second.containedEntities[3].second;
1292
1293 uint16_t nextRecordId{};
1294 if (++entity == entityRecords.end())
1295 {
1296 nextRecordId = END_OF_RECORD;
1297 }
1298 else
1299 {
1300 nextRecordId = entity->first + ENTITY_RECORD_ID_START;
1301 }
1302
1303 // Check for invalid offset size
1304 if (offset > sizeof(record))
1305 {
1306 return ipmi::responseParmOutOfRange();
1307 }
1308
1309 size_t dataLen =
1310 std::min(static_cast<size_t>(bytesToRead), sizeof(record) - offset);
1311
1312 std::vector<uint8_t> recordData(dataLen);
1313 std::memcpy(recordData.data(),
1314 reinterpret_cast<const uint8_t*>(&record) + offset, dataLen);
1315
1316 return ipmi::responseSuccess(nextRecordId, recordData);
1317 }
1318
1319 ipmi::RspType<uint16_t, // nextRecordId
1320 std::vector<uint8_t> // recordData
1321 >
ipmiSensorGetSdr(uint16_t,uint16_t recordID,uint8_t offset,uint8_t bytesToRead)1322 ipmiSensorGetSdr(uint16_t /* reservationId */, uint16_t recordID,
1323 uint8_t offset, uint8_t bytesToRead)
1324 {
1325 // Note: we use an iterator so we can provide the next ID at the end of
1326 // the call.
1327 auto sensor = ipmi::sensor::sensors.begin();
1328
1329 // At the beginning of a scan, the host side will send us id=0.
1330 if (recordID != 0)
1331 {
1332 // recordID 0 to 255 means it is a FULL record.
1333 // recordID 256 to 511 means it is a FRU record.
1334 // recordID greater then 511 means it is a Entity Association
1335 // record. Currently we are supporting three record types: FULL
1336 // record, FRU record and Enttiy Association record.
1337 if (recordID >= ENTITY_RECORD_ID_START)
1338 {
1339 return ipmiEntityGetSdr(recordID, offset, bytesToRead);
1340 }
1341 else if (recordID >= FRU_RECORD_ID_START &&
1342 recordID < ENTITY_RECORD_ID_START)
1343 {
1344 return ipmiFruGetSdr(recordID, offset, bytesToRead);
1345 }
1346 else
1347 {
1348 sensor = ipmi::sensor::sensors.find(recordID);
1349 if (sensor == ipmi::sensor::sensors.end())
1350 {
1351 return ipmi::responseSensorInvalid();
1352 }
1353 }
1354 }
1355
1356 uint8_t sensorId = sensor->first;
1357
1358 auto it = sdrCacheMap.find(sensorId);
1359 if (it == sdrCacheMap.end())
1360 {
1361 /* Header */
1362 get_sdr::SensorDataFullRecord record = {};
1363 record.header.recordId = sensorId;
1364 record.header.sdrVersion = 0x51; // Based on IPMI Spec v2.0 rev 1.1
1365 record.header.recordType = get_sdr::SENSOR_DATA_FULL_RECORD;
1366 record.header.recordLength = sizeof(record.key) + sizeof(record.body);
1367
1368 /* Key */
1369 get_sdr::key::setOwnerIdBmc(record.key);
1370 record.key.sensorNumber = sensorId;
1371
1372 /* Body */
1373 record.body.entityId = sensor->second.entityType;
1374 record.body.sensorType = sensor->second.sensorType;
1375 record.body.eventReadingType = sensor->second.sensorReadingType;
1376 record.body.entityInstance = sensor->second.instance;
1377 if (ipmi::sensor::Mutability::Write ==
1378 (sensor->second.mutability & ipmi::sensor::Mutability::Write))
1379 {
1380 get_sdr::body::initSettableState(true, record.body);
1381 }
1382
1383 // Set the type-specific details given the DBus interface
1384 populateRecordFromDbus(sensor->second, record.body);
1385 sdrCacheMap[sensorId] = std::move(record);
1386 }
1387
1388 uint16_t nextRecordId{};
1389 const auto& record = sdrCacheMap[sensorId];
1390
1391 if (++sensor == ipmi::sensor::sensors.end())
1392 {
1393 // we have reached till end of sensor, so assign the next record id
1394 // to 256(Max Sensor ID = 255) + FRU ID(may start with 0).
1395 nextRecordId = (frus.size()) ? frus.begin()->first + FRU_RECORD_ID_START
1396 : END_OF_RECORD;
1397 }
1398 else
1399 {
1400 nextRecordId = sensor->first;
1401 }
1402
1403 if (offset > sizeof(record))
1404 {
1405 return ipmi::responseParmOutOfRange();
1406 }
1407
1408 size_t dataLen =
1409 std::min(static_cast<size_t>(bytesToRead), sizeof(record) - offset);
1410
1411 std::vector<uint8_t> recordData(dataLen);
1412 std::memcpy(recordData.data(),
1413 reinterpret_cast<const uint8_t*>(&record) + offset, dataLen);
1414
1415 return ipmi::responseSuccess(nextRecordId, recordData);
1416 }
1417
isFromSystemChannel()1418 static bool isFromSystemChannel()
1419 {
1420 // TODO we could not figure out where the request is from based on IPMI
1421 // command handler parameters. because of it, we can not differentiate
1422 // request from SMS/SMM or IPMB channel
1423 return true;
1424 }
1425
ipmicmdPlatformEvent(ipmi::Context::ptr & ctx,const std::vector<uint8_t> & data)1426 ipmi::RspType<> ipmicmdPlatformEvent(ipmi::Context::ptr& ctx,
1427 const std::vector<uint8_t>& data)
1428 {
1429 size_t paraLen = data.size();
1430 if (paraLen < selSystemEventSizeWith1Bytes ||
1431 paraLen > selSystemEventSizeWith3Bytes)
1432 {
1433 return ipmi::responseReqDataLenInvalid();
1434 }
1435
1436 uint16_t generatorID = 0xff;
1437 std::string sensorPath = "IPMB";
1438 const uint8_t* raw = data.data();
1439 const PlatformEventRequest* req = nullptr;
1440 if (isFromSystemChannel())
1441 {
1442 // first byte for SYSTEM Interface is Generator ID +1 to get common
1443 // struct
1444 req = reinterpret_cast<const PlatformEventRequest*>(raw + 1);
1445 // Capture the generator ID
1446 generatorID = *raw;
1447 // Platform Event usually comes from other firmware, like BIOS.
1448 // Unlike BMC sensor, it does not have BMC DBUS sensor path.
1449 sensorPath = "System";
1450 }
1451 else
1452 {
1453 req = reinterpret_cast<const PlatformEventRequest*>(raw);
1454 // TODO GenratorID for IPMB is combination of RqSA and RqLUN
1455 }
1456
1457 // Content of event data field depends on sensor class.
1458 // When data0 bit[5:4] is non-zero, valid data counts is 3.
1459 // When data0 bit[7:6] is non-zero, valid data counts is 2.
1460 if (((req->data[0] & byte3EnableMask) != 0 &&
1461 paraLen < selSystemEventSizeWith3Bytes) ||
1462 ((req->data[0] & byte2EnableMask) != 0 &&
1463 paraLen < selSystemEventSizeWith2Bytes))
1464 {
1465 return ipmi::responseReqDataLenInvalid();
1466 }
1467
1468 // Count bytes of Event Data
1469 size_t count;
1470 if ((req->data[0] & byte3EnableMask) != 0)
1471 {
1472 count = 3;
1473 }
1474 else if ((req->data[0] & byte2EnableMask) != 0)
1475 {
1476 count = 2;
1477 }
1478 else
1479 {
1480 count = 1;
1481 }
1482 bool assert = req->eventDirectionType & directionMask ? false : true;
1483 std::vector<uint8_t> eventData(req->data, req->data + count);
1484
1485 auto ec = ipmi::callDbusMethod(
1486 ctx, ipmiSELObject, ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd",
1487 ipmiSELAddMessage, sensorPath, eventData, assert, generatorID);
1488 if (ec)
1489 {
1490 lg2::error("IpmiSelAdd call failed: {ERROR}", "ERROR", ec.message());
1491 return ipmi::responseUnspecifiedError();
1492 }
1493
1494 return ipmi::responseSuccess();
1495 }
1496
registerNetFnSenFunctions()1497 void registerNetFnSenFunctions()
1498 {
1499 // Handlers with dbus-sdr handler implementation.
1500 // Do not register the hander if it dynamic sensors stack is used.
1501
1502 #ifndef FEATURE_DYNAMIC_SENSORS
1503
1504 #ifdef FEATURE_SENSORS_CACHE
1505 // Initialize the sensor matches
1506 initSensorMatches();
1507 #endif
1508
1509 // <Set Sensor Reading and Event Status>
1510 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1511 ipmi::sensor_event::cmdSetSensorReadingAndEvtSts,
1512 ipmi::Privilege::Operator, ipmiSetSensorReading);
1513 // <Get Sensor Reading>
1514 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1515 ipmi::sensor_event::cmdGetSensorReading,
1516 ipmi::Privilege::User, ipmiSensorGetSensorReading);
1517
1518 // <Reserve Device SDR Repository>
1519 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1520 ipmi::sensor_event::cmdReserveDeviceSdrRepository,
1521 ipmi::Privilege::User, ipmiSensorReserveSdr);
1522
1523 // <Get Device SDR Info>
1524 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1525 ipmi::sensor_event::cmdGetDeviceSdrInfo,
1526 ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo);
1527
1528 // <Get Sensor Thresholds>
1529 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1530 ipmi::sensor_event::cmdGetSensorThreshold,
1531 ipmi::Privilege::User, ipmiSensorGetSensorThresholds);
1532
1533 // <Set Sensor Thresholds>
1534 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1535 ipmi::sensor_event::cmdSetSensorThreshold,
1536 ipmi::Privilege::User, ipmiSenSetSensorThresholds);
1537
1538 // <Get Device SDR>
1539 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1540 ipmi::sensor_event::cmdGetDeviceSdr,
1541 ipmi::Privilege::User, ipmiSensorGetSdr);
1542
1543 #endif
1544
1545 // Common Handers used by both implementation.
1546
1547 // <Platform Event Message>
1548 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1549 ipmi::sensor_event::cmdPlatformEvent,
1550 ipmi::Privilege::Operator, ipmicmdPlatformEvent);
1551
1552 // <Get Sensor Type>
1553 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1554 ipmi::sensor_event::cmdGetSensorType,
1555 ipmi::Privilege::User, ipmiGetSensorType);
1556
1557 return;
1558 }
1559