1 #include "config.h"
2
3 #include "sensorhandler.hpp"
4
5 #include "fruread.hpp"
6
7 #include <systemd/sd-bus.h>
8
9 #include <ipmid/api.hpp>
10 #include <ipmid/entity_map_json.hpp>
11 #include <ipmid/types.hpp>
12 #include <ipmid/utils.hpp>
13 #include <phosphor-logging/elog-errors.hpp>
14 #include <phosphor-logging/lg2.hpp>
15 #include <sdbusplus/message/types.hpp>
16 #include <xyz/openbmc_project/Common/error.hpp>
17 #include <xyz/openbmc_project/Sensor/Threshold/Critical/common.hpp>
18 #include <xyz/openbmc_project/Sensor/Threshold/Warning/common.hpp>
19 #include <xyz/openbmc_project/Sensor/Value/server.hpp>
20
21 #include <bitset>
22 #include <cmath>
23 #include <cstring>
24 #include <set>
25
26 static constexpr uint8_t fruInventoryDevice = 0x10;
27 static constexpr uint8_t IPMIFruInventory = 0x02;
28 static constexpr uint8_t BMCTargetAddress = 0x20;
29
30 extern int updateSensorRecordFromSSRAESC(const void*);
31 extern sd_bus* bus;
32
33 namespace ipmi
34 {
35 namespace sensor
36 {
37 extern const IdInfoMap sensors;
38 } // namespace sensor
39 } // namespace ipmi
40
41 extern const FruMap frus;
42
43 using namespace phosphor::logging;
44 using InternalFailure =
45 sdbusplus::error::xyz::openbmc_project::common::InternalFailure;
46
47 using SensorValue = sdbusplus::common::xyz::openbmc_project::sensor::Value;
48 using SensorThresholdCritical =
49 sdbusplus::common::xyz::openbmc_project::sensor::threshold::Critical;
50 using SensorThresholdWarning =
51 sdbusplus::common::xyz::openbmc_project::sensor::threshold::Warning;
52
53 void registerNetFnSenFunctions() __attribute__((constructor));
54
55 struct sensorTypemap_t
56 {
57 uint8_t number;
58 uint8_t typecode;
59 char dbusname[32];
60 };
61
62 sensorTypemap_t g_SensorTypeMap[] = {
63
64 {0x01, 0x6F, "Temp"},
65 {0x0C, 0x6F, "DIMM"},
66 {0x0C, 0x6F, "MEMORY_BUFFER"},
67 {0x07, 0x6F, "PROC"},
68 {0x07, 0x6F, "CORE"},
69 {0x07, 0x6F, "CPU"},
70 {0x0F, 0x6F, "BootProgress"},
71 {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor
72 // type code os 0x09
73 {0xC3, 0x6F, "BootCount"},
74 {0x1F, 0x6F, "OperatingSystemStatus"},
75 {0x12, 0x6F, "SYSTEM_EVENT"},
76 {0xC7, 0x03, "SYSTEM"},
77 {0xC7, 0x03, "MAIN_PLANAR"},
78 {0xC2, 0x6F, "PowerCap"},
79 {0x0b, 0xCA, "PowerSupplyRedundancy"},
80 {0xDA, 0x03, "TurboAllowed"},
81 {0xD8, 0xC8, "PowerSupplyDerating"},
82 {0xFF, 0x00, ""},
83 };
84
85 struct sensor_data_t
86 {
87 uint8_t sennum;
88 } __attribute__((packed));
89
90 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>;
91 SDRCacheMap sdrCacheMap __attribute__((init_priority(101)));
92
93 using SensorThresholdMap =
94 std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>;
95 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101)));
96
97 #ifdef FEATURE_SENSORS_CACHE
98 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches
99 __attribute__((init_priority(101)));
100 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches
101 __attribute__((init_priority(101)));
102 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches
103 __attribute__((init_priority(101)));
104 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch
105 __attribute__((init_priority(101)));
106
107 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101)));
108
109 // It is needed to know which objects belong to which service, so that when a
110 // service exits without interfacesRemoved signal, we could invaildate the cache
111 // that is related to the service. It uses below two variables:
112 // - idToServiceMap records which sensors are known to have a related service;
113 // - serviceToIdMap maps a service to the sensors.
114 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>;
115 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101)));
116
117 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>;
118 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101)));
119
fillSensorIdServiceMap(const std::string &,const std::string &,uint8_t id,const std::string & service)120 static void fillSensorIdServiceMap(const std::string&,
121 const std::string& /*intf*/, uint8_t id,
122 const std::string& service)
123 {
124 if (idToServiceMap.find(id) != idToServiceMap.end())
125 {
126 return;
127 }
128 idToServiceMap[id] = service;
129 serviceToIdMap[service].insert(id);
130 }
131
fillSensorIdServiceMap(const std::string & obj,const std::string & intf,uint8_t id)132 static void fillSensorIdServiceMap(const std::string& obj,
133 const std::string& intf, uint8_t id)
134 {
135 if (idToServiceMap.find(id) != idToServiceMap.end())
136 {
137 return;
138 }
139 try
140 {
141 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
142 auto service = ipmi::getService(bus, intf, obj);
143 idToServiceMap[id] = service;
144 serviceToIdMap[service].insert(id);
145 }
146 catch (...)
147 {
148 // Ignore
149 }
150 }
151
initSensorMatches()152 void initSensorMatches()
153 {
154 using namespace sdbusplus::bus::match::rules;
155 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
156 for (const auto& s : ipmi::sensor::sensors)
157 {
158 sensorAddedMatches.emplace(
159 s.first,
160 std::make_unique<sdbusplus::bus::match_t>(
161 bus, interfacesAdded() + argNpath(0, s.second.sensorPath),
162 [id = s.first, obj = s.second.sensorPath,
163 intf = s.second.propertyInterfaces.begin()->first](
164 auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); }));
165 sensorRemovedMatches.emplace(
166 s.first,
167 std::make_unique<sdbusplus::bus::match_t>(
168 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath),
169 [id = s.first](auto& /*msg*/) {
170 // Ideally this should work.
171 // But when a service is terminated or crashed, it does not
172 // emit interfacesRemoved signal. In that case it's handled
173 // by sensorsOwnerMatch
174 sensorCacheMap[id].reset();
175 }));
176 sensorUpdatedMatches.emplace(
177 s.first,
178 std::make_unique<sdbusplus::bus::match_t>(
179 bus,
180 type::signal() + path(s.second.sensorPath) +
181 member("PropertiesChanged"s) +
182 interface("org.freedesktop.DBus.Properties"s),
183 [&s](auto& msg) {
184 fillSensorIdServiceMap(
185 s.second.sensorPath,
186 s.second.propertyInterfaces.begin()->first, s.first);
187 try
188 {
189 // This is signal callback
190 auto interfaceName = msg.unpack<std::string>();
191
192 auto props = msg.unpack<ipmi::PropertyMap>();
193
194 s.second.getFunc(s.first, s.second, props);
195 }
196 catch (const std::exception& e)
197 {
198 sensorCacheMap[s.first].reset();
199 }
200 }));
201 }
202 sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>(
203 bus, nameOwnerChanged(), [](auto& msg) {
204 std::string name;
205 std::string oldOwner;
206 std::string newOwner;
207 msg.read(name, oldOwner, newOwner);
208
209 if (!name.empty() && newOwner.empty())
210 {
211 // The service exits
212 const auto it = serviceToIdMap.find(name);
213 if (it == serviceToIdMap.end())
214 {
215 return;
216 }
217 for (const auto& id : it->second)
218 {
219 // Invalidate cache
220 sensorCacheMap[id].reset();
221 }
222 }
223 });
224 }
225 #endif
226
227 // Use a lookup table to find the interface name of a specific sensor
228 // This will be used until an alternative is found. this is the first
229 // step for mapping IPMI
find_openbmc_path(uint8_t num,dbus_interface_t * interface)230 int find_openbmc_path(uint8_t num, dbus_interface_t* interface)
231 {
232 const auto& sensor_it = ipmi::sensor::sensors.find(num);
233 if (sensor_it == ipmi::sensor::sensors.end())
234 {
235 // The sensor map does not contain the sensor requested
236 return -EINVAL;
237 }
238
239 const auto& info = sensor_it->second;
240
241 std::string serviceName{};
242 try
243 {
244 sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
245 serviceName =
246 ipmi::getService(bus, info.sensorInterface, info.sensorPath);
247 }
248 catch (const sdbusplus::exception_t&)
249 {
250 std::fprintf(stderr, "Failed to get %s busname: %s\n",
251 info.sensorPath.c_str(), serviceName.c_str());
252 return -EINVAL;
253 }
254
255 interface->sensortype = info.sensorType;
256 strcpy(interface->bus, serviceName.c_str());
257 strcpy(interface->path, info.sensorPath.c_str());
258 // Take the interface name from the beginning of the DbusInterfaceMap. This
259 // works for the Value interface but may not suffice for more complex
260 // sensors.
261 // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103
262 strcpy(interface->interface,
263 info.propertyInterfaces.begin()->first.c_str());
264 interface->sensornumber = num;
265
266 return 0;
267 }
268
269 /////////////////////////////////////////////////////////////////////
270 //
271 // Routines used by ipmi commands wanting to interact on the dbus
272 //
273 /////////////////////////////////////////////////////////////////////
set_sensor_dbus_state_s(uint8_t number,const char * method,const char * value)274 int set_sensor_dbus_state_s(uint8_t number, const char* method,
275 const char* value)
276 {
277 dbus_interface_t a;
278 int r;
279 sd_bus_error error = SD_BUS_ERROR_NULL;
280 sd_bus_message* m = nullptr;
281
282 r = find_openbmc_path(number, &a);
283
284 if (r < 0)
285 {
286 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
287 return 0;
288 }
289
290 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
291 method);
292 if (r < 0)
293 {
294 std::fprintf(stderr, "Failed to create a method call: %s",
295 strerror(-r));
296 goto final;
297 }
298
299 r = sd_bus_message_append(m, "v", "s", value);
300 if (r < 0)
301 {
302 std::fprintf(stderr, "Failed to create a input parameter: %s",
303 strerror(-r));
304 goto final;
305 }
306
307 r = sd_bus_call(bus, m, 0, &error, nullptr);
308 if (r < 0)
309 {
310 std::fprintf(stderr, "Failed to call the method: %s", strerror(-r));
311 }
312
313 final:
314 sd_bus_error_free(&error);
315 m = sd_bus_message_unref(m);
316
317 return 0;
318 }
set_sensor_dbus_state_y(uint8_t number,const char * method,const uint8_t value)319 int set_sensor_dbus_state_y(uint8_t number, const char* method,
320 const uint8_t value)
321 {
322 dbus_interface_t a;
323 int r;
324 sd_bus_error error = SD_BUS_ERROR_NULL;
325 sd_bus_message* m = nullptr;
326
327 r = find_openbmc_path(number, &a);
328
329 if (r < 0)
330 {
331 std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
332 return 0;
333 }
334
335 r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
336 method);
337 if (r < 0)
338 {
339 std::fprintf(stderr, "Failed to create a method call: %s",
340 strerror(-r));
341 goto final;
342 }
343
344 r = sd_bus_message_append(m, "v", "i", value);
345 if (r < 0)
346 {
347 std::fprintf(stderr, "Failed to create a input parameter: %s",
348 strerror(-r));
349 goto final;
350 }
351
352 r = sd_bus_call(bus, m, 0, &error, nullptr);
353 if (r < 0)
354 {
355 std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r));
356 }
357
358 final:
359 sd_bus_error_free(&error);
360 m = sd_bus_message_unref(m);
361
362 return 0;
363 }
364
dbus_to_sensor_type(char * p)365 uint8_t dbus_to_sensor_type(char* p)
366 {
367 sensorTypemap_t* s = g_SensorTypeMap;
368 char r = 0;
369 while (s->number != 0xFF)
370 {
371 if (!strcmp(s->dbusname, p))
372 {
373 r = s->typecode;
374 break;
375 }
376 s++;
377 }
378
379 if (s->number == 0xFF)
380 printf("Failed to find Sensor Type %s\n", p);
381
382 return r;
383 }
384
get_type_from_interface(dbus_interface_t dbus_if)385 uint8_t get_type_from_interface(dbus_interface_t dbus_if)
386 {
387 uint8_t type;
388
389 // This is where sensors that do not exist in dbus but do
390 // exist in the host code stop. This should indicate it
391 // is not a supported sensor
392 if (dbus_if.interface[0] == 0)
393 {
394 return 0;
395 }
396
397 // Fetch type from interface itself.
398 if (dbus_if.sensortype != 0)
399 {
400 type = dbus_if.sensortype;
401 }
402 else
403 {
404 // Non InventoryItems
405 char* p = strrchr(dbus_if.path, '/');
406 type = dbus_to_sensor_type(p + 1);
407 }
408
409 return type;
410 }
411
412 // Replaces find_sensor
find_type_for_sensor_number(uint8_t num)413 uint8_t find_type_for_sensor_number(uint8_t num)
414 {
415 int r;
416 dbus_interface_t dbus_if;
417 r = find_openbmc_path(num, &dbus_if);
418 if (r < 0)
419 {
420 std::fprintf(stderr, "Could not find sensor %d\n", num);
421 return 0;
422 }
423 return get_type_from_interface(dbus_if);
424 }
425
426 /**
427 * @brief implements the get sensor type command.
428 * @param - sensorNumber
429 *
430 * @return IPMI completion code plus response data on success.
431 * - sensorType
432 * - eventType
433 **/
434
435 ipmi::RspType<uint8_t, // sensorType
436 uint8_t // eventType
437 >
ipmiGetSensorType(uint8_t sensorNumber)438 ipmiGetSensorType(uint8_t sensorNumber)
439 {
440 const auto it = ipmi::sensor::sensors.find(sensorNumber);
441 if (it == ipmi::sensor::sensors.end())
442 {
443 // The sensor map does not contain the sensor requested
444 return ipmi::responseSensorInvalid();
445 }
446
447 const auto& info = it->second;
448 uint8_t sensorType = info.sensorType;
449 uint8_t eventType = info.sensorReadingType;
450
451 return ipmi::responseSuccess(sensorType, eventType);
452 }
453
454 const std::set<std::string> analogSensorInterfaces = {
455 SensorValue::interface,
456 "xyz.openbmc_project.Control.FanPwm",
457 };
458
isAnalogSensor(const std::string & interface)459 bool isAnalogSensor(const std::string& interface)
460 {
461 return (analogSensorInterfaces.count(interface));
462 }
463
464 /**
465 @brief This command is used to set sensorReading.
466
467 @param
468 - sensorNumber
469 - operation
470 - reading
471 - assertOffset0_7
472 - assertOffset8_14
473 - deassertOffset0_7
474 - deassertOffset8_14
475 - eventData1
476 - eventData2
477 - eventData3
478
479 @return completion code on success.
480 **/
481
ipmiSetSensorReading(uint8_t sensorNumber,uint8_t operation,uint8_t reading,uint8_t assertOffset0_7,uint8_t assertOffset8_14,uint8_t deassertOffset0_7,uint8_t deassertOffset8_14,uint8_t eventData1,uint8_t eventData2,uint8_t eventData3)482 ipmi::RspType<> ipmiSetSensorReading(
483 uint8_t sensorNumber, uint8_t operation, uint8_t reading,
484 uint8_t assertOffset0_7, uint8_t assertOffset8_14,
485 uint8_t deassertOffset0_7, uint8_t deassertOffset8_14, uint8_t eventData1,
486 uint8_t eventData2, uint8_t eventData3)
487 {
488 lg2::debug("IPMI SET_SENSOR, sensorNumber: {SENSOR_NUM}", "SENSOR_NUM",
489 lg2::hex, sensorNumber);
490
491 if (sensorNumber == 0xFF)
492 {
493 return ipmi::responseInvalidFieldRequest();
494 }
495 ipmi::sensor::SetSensorReadingReq cmdData;
496
497 cmdData.number = sensorNumber;
498 cmdData.operation = operation;
499 cmdData.reading = reading;
500 cmdData.assertOffset0_7 = assertOffset0_7;
501 cmdData.assertOffset8_14 = assertOffset8_14;
502 cmdData.deassertOffset0_7 = deassertOffset0_7;
503 cmdData.deassertOffset8_14 = deassertOffset8_14;
504 cmdData.eventData1 = eventData1;
505 cmdData.eventData2 = eventData2;
506 cmdData.eventData3 = eventData3;
507
508 // Check if the Sensor Number is present
509 const auto iter = ipmi::sensor::sensors.find(sensorNumber);
510 if (iter == ipmi::sensor::sensors.end())
511 {
512 updateSensorRecordFromSSRAESC(&sensorNumber);
513 return ipmi::responseSuccess();
514 }
515
516 try
517 {
518 if (ipmi::sensor::Mutability::Write !=
519 (iter->second.mutability & ipmi::sensor::Mutability::Write))
520 {
521 lg2::error("Sensor Set operation is not allowed, "
522 "sensorNumber: {SENSOR_NUM}",
523 "SENSOR_NUM", lg2::hex, sensorNumber);
524 return ipmi::responseIllegalCommand();
525 }
526 auto ipmiRC = iter->second.updateFunc(cmdData, iter->second);
527 return ipmi::response(ipmiRC);
528 }
529 catch (const InternalFailure& e)
530 {
531 lg2::error("Set sensor failed, sensorNumber: {SENSOR_NUM}",
532 "SENSOR_NUM", lg2::hex, sensorNumber);
533 commit<InternalFailure>();
534 return ipmi::responseUnspecifiedError();
535 }
536 catch (const std::runtime_error& e)
537 {
538 lg2::error("runtime error: {ERROR}", "ERROR", e);
539 return ipmi::responseUnspecifiedError();
540 }
541 }
542
543 /** @brief implements the get sensor reading command
544 * @param sensorNum - sensor number
545 *
546 * @returns IPMI completion code plus response data
547 * - senReading - sensor reading
548 * - reserved
549 * - readState - sensor reading state enabled
550 * - senScanState - sensor scan state disabled
551 * - allEventMessageState - all Event message state disabled
552 * - assertionStatesLsb - threshold levels states
553 * - assertionStatesMsb - discrete reading sensor states
554 */
555 ipmi::RspType<uint8_t, // sensor reading
556
557 uint5_t, // reserved
558 bool, // reading state
559 bool, // 0 = sensor scanning state disabled
560 bool, // 0 = all event messages disabled
561
562 uint8_t, // threshold levels states
563 uint8_t // discrete reading sensor states
564 >
ipmiSensorGetSensorReading(ipmi::Context::ptr & ctx,uint8_t sensorNum)565 ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx,
566 uint8_t sensorNum)
567 {
568 if (sensorNum == 0xFF)
569 {
570 return ipmi::responseInvalidFieldRequest();
571 }
572
573 const auto iter = ipmi::sensor::sensors.find(sensorNum);
574 if (iter == ipmi::sensor::sensors.end())
575 {
576 return ipmi::responseSensorInvalid();
577 }
578 if (ipmi::sensor::Mutability::Read !=
579 (iter->second.mutability & ipmi::sensor::Mutability::Read))
580 {
581 return ipmi::responseIllegalCommand();
582 }
583
584 try
585 {
586 #ifdef FEATURE_SENSORS_CACHE
587 auto& sensorData = sensorCacheMap[sensorNum];
588 if (!sensorData.has_value())
589 {
590 // No cached value, try read it
591 std::string service;
592 boost::system::error_code ec;
593 const auto& sensorInfo = iter->second;
594 ec = ipmi::getService(ctx, sensorInfo.sensorInterface,
595 sensorInfo.sensorPath, service);
596 if (ec)
597 {
598 return ipmi::responseUnspecifiedError();
599 }
600 fillSensorIdServiceMap(sensorInfo.sensorPath,
601 sensorInfo.propertyInterfaces.begin()->first,
602 iter->first, service);
603
604 ipmi::PropertyMap props;
605 ec = ipmi::getAllDbusProperties(
606 ctx, service, sensorInfo.sensorPath,
607 sensorInfo.propertyInterfaces.begin()->first, props);
608 if (ec)
609 {
610 fprintf(stderr, "Failed to get sensor %s, %d: %s\n",
611 sensorInfo.sensorPath.c_str(), ec.value(),
612 ec.message().c_str());
613 // Intitilizing with default values
614 constexpr uint8_t senReading = 0;
615 constexpr uint5_t reserved{0};
616 constexpr bool readState = true;
617 constexpr bool senScanState = false;
618 constexpr bool allEventMessageState = false;
619 constexpr uint8_t assertionStatesLsb = 0;
620 constexpr uint8_t assertionStatesMsb = 0;
621
622 return ipmi::responseSuccess(
623 senReading, reserved, readState, senScanState,
624 allEventMessageState, assertionStatesLsb,
625 assertionStatesMsb);
626 }
627 sensorInfo.getFunc(sensorNum, sensorInfo, props);
628 }
629 return ipmi::responseSuccess(
630 sensorData->response.reading, uint5_t(0),
631 sensorData->response.readingOrStateUnavailable,
632 sensorData->response.scanningEnabled,
633 sensorData->response.allEventMessagesEnabled,
634 sensorData->response.thresholdLevelsStates,
635 sensorData->response.discreteReadingSensorStates);
636
637 #else
638 ipmi::sensor::GetSensorResponse getResponse =
639 iter->second.getFunc(iter->second);
640
641 return ipmi::responseSuccess(
642 getResponse.reading, uint5_t(0),
643 getResponse.readingOrStateUnavailable, getResponse.scanningEnabled,
644 getResponse.allEventMessagesEnabled,
645 getResponse.thresholdLevelsStates,
646 getResponse.discreteReadingSensorStates);
647 #endif
648 }
649 #ifdef UPDATE_FUNCTIONAL_ON_FAIL
650 catch (const SensorFunctionalError& e)
651 {
652 return ipmi::responseResponseError();
653 }
654 #endif
655 catch (const std::exception& e)
656 {
657 // Intitilizing with default values
658 constexpr uint8_t senReading = 0;
659 constexpr uint5_t reserved{0};
660 constexpr bool readState = true;
661 constexpr bool senScanState = false;
662 constexpr bool allEventMessageState = false;
663 constexpr uint8_t assertionStatesLsb = 0;
664 constexpr uint8_t assertionStatesMsb = 0;
665
666 return ipmi::responseSuccess(senReading, reserved, readState,
667 senScanState, allEventMessageState,
668 assertionStatesLsb, assertionStatesMsb);
669 }
670 }
671
updateWarningThreshold(uint8_t lowerValue,uint8_t upperValue,get_sdr::GetSensorThresholdsResponse & resp)672 void updateWarningThreshold(uint8_t lowerValue, uint8_t upperValue,
673 get_sdr::GetSensorThresholdsResponse& resp)
674 {
675 resp.lowerNonCritical = lowerValue;
676 resp.upperNonCritical = upperValue;
677 if (lowerValue)
678 {
679 resp.validMask |= static_cast<uint8_t>(
680 ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK);
681 }
682
683 if (upperValue)
684 {
685 resp.validMask |= static_cast<uint8_t>(
686 ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK);
687 }
688 }
689
updateCriticalThreshold(uint8_t lowerValue,uint8_t upperValue,get_sdr::GetSensorThresholdsResponse & resp)690 void updateCriticalThreshold(uint8_t lowerValue, uint8_t upperValue,
691 get_sdr::GetSensorThresholdsResponse& resp)
692 {
693 resp.lowerCritical = lowerValue;
694 resp.upperCritical = upperValue;
695 if (lowerValue)
696 {
697 resp.validMask |= static_cast<uint8_t>(
698 ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK);
699 }
700
701 if (upperValue)
702 {
703 resp.validMask |= static_cast<uint8_t>(
704 ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK);
705 }
706 }
707
updateNonRecoverableThreshold(uint8_t lowerValue,uint8_t upperValue,get_sdr::GetSensorThresholdsResponse & resp)708 void updateNonRecoverableThreshold(uint8_t lowerValue, uint8_t upperValue,
709 get_sdr::GetSensorThresholdsResponse& resp)
710 {
711 resp.lowerNonRecoverable = lowerValue;
712 resp.upperNonRecoverable = upperValue;
713 if (lowerValue)
714 {
715 resp.validMask |= static_cast<uint8_t>(
716 ipmi::sensor::ThresholdMask::NON_RECOVERABLE_LOW_MASK);
717 }
718
719 if (upperValue)
720 {
721 resp.validMask |= static_cast<uint8_t>(
722 ipmi::sensor::ThresholdMask::NON_RECOVERABLE_HIGH_MASK);
723 }
724 }
725
getSensorThresholds(ipmi::Context::ptr & ctx,uint8_t sensorNum)726 get_sdr::GetSensorThresholdsResponse getSensorThresholds(
727 ipmi::Context::ptr& ctx, uint8_t sensorNum)
728 {
729 get_sdr::GetSensorThresholdsResponse resp{};
730 const auto iter = ipmi::sensor::sensors.find(sensorNum);
731 const auto info = iter->second;
732
733 std::string service;
734 boost::system::error_code ec;
735 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
736 if (ec)
737 {
738 return resp;
739 }
740
741 int32_t minClamp;
742 int32_t maxClamp;
743 int32_t rawData;
744 constexpr uint8_t sensorUnitsSignedBits = 2 << 6;
745 constexpr uint8_t signedDataFormat = 0x80;
746 if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat)
747 {
748 minClamp = std::numeric_limits<int8_t>::lowest();
749 maxClamp = std::numeric_limits<int8_t>::max();
750 }
751 else
752 {
753 minClamp = std::numeric_limits<uint8_t>::lowest();
754 maxClamp = std::numeric_limits<uint8_t>::max();
755 }
756
757 static std::vector<std::string> thresholdNames{"Warning", "Critical",
758 "NonRecoverable"};
759
760 for (const auto& thresholdName : thresholdNames)
761 {
762 std::string thresholdInterface =
763 "xyz.openbmc_project.Sensor.Threshold." + thresholdName;
764 std::string thresholdLow = thresholdName + "Low";
765 std::string thresholdHigh = thresholdName + "High";
766
767 ipmi::PropertyMap thresholds;
768 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
769 thresholdInterface, thresholds);
770 if (ec)
771 {
772 continue;
773 }
774
775 double lowValue = ipmi::mappedVariant<double>(
776 thresholds, thresholdLow, std::numeric_limits<double>::quiet_NaN());
777 double highValue = ipmi::mappedVariant<double>(
778 thresholds, thresholdHigh,
779 std::numeric_limits<double>::quiet_NaN());
780
781 uint8_t lowerValue = 0;
782 uint8_t upperValue = 0;
783 if (std::isfinite(lowValue))
784 {
785 lowValue *= std::pow(10, info.scale - info.exponentR);
786 rawData = round((lowValue - info.scaledOffset) / info.coefficientM);
787 lowerValue =
788 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
789 }
790
791 if (std::isfinite(highValue))
792 {
793 highValue *= std::pow(10, info.scale - info.exponentR);
794 rawData =
795 round((highValue - info.scaledOffset) / info.coefficientM);
796 upperValue =
797 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
798 }
799
800 if (thresholdName == "Warning")
801 {
802 updateWarningThreshold(lowerValue, upperValue, resp);
803 }
804 else if (thresholdName == "Critical")
805 {
806 updateCriticalThreshold(lowerValue, upperValue, resp);
807 }
808 else if (thresholdName == "NonRecoverable")
809 {
810 updateNonRecoverableThreshold(lowerValue, upperValue, resp);
811 }
812 }
813
814 return resp;
815 }
816
817 /** @brief implements the get sensor thresholds command
818 * @param ctx - IPMI context pointer
819 * @param sensorNum - sensor number
820 *
821 * @returns IPMI completion code plus response data
822 * - validMask - threshold mask
823 * - lower non-critical threshold - IPMI messaging state
824 * - lower critical threshold - link authentication state
825 * - lower non-recoverable threshold - callback state
826 * - upper non-critical threshold
827 * - upper critical
828 * - upper non-recoverable
829 */
830 ipmi::RspType<uint8_t, // validMask
831 uint8_t, // lowerNonCritical
832 uint8_t, // lowerCritical
833 uint8_t, // lowerNonRecoverable
834 uint8_t, // upperNonCritical
835 uint8_t, // upperCritical
836 uint8_t // upperNonRecoverable
837 >
ipmiSensorGetSensorThresholds(ipmi::Context::ptr & ctx,uint8_t sensorNum)838 ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
839 {
840 const auto iter = ipmi::sensor::sensors.find(sensorNum);
841 if (iter == ipmi::sensor::sensors.end())
842 {
843 return ipmi::responseSensorInvalid();
844 }
845
846 const auto info = iter->second;
847
848 // Proceed only if the sensor value interface is implemented.
849 if (info.propertyInterfaces.find(SensorValue::interface) ==
850 info.propertyInterfaces.end())
851 {
852 // return with valid mask as 0
853 return ipmi::responseSuccess();
854 }
855
856 auto it = sensorThresholdMap.find(sensorNum);
857 if (it == sensorThresholdMap.end())
858 {
859 auto resp = getSensorThresholds(ctx, sensorNum);
860 if (resp.validMask == 0)
861 {
862 return ipmi::responseSensorInvalid();
863 }
864 sensorThresholdMap[sensorNum] = std::move(resp);
865 }
866
867 const auto& resp = sensorThresholdMap[sensorNum];
868
869 return ipmi::responseSuccess(
870 resp.validMask, resp.lowerNonCritical, resp.lowerCritical,
871 resp.lowerNonRecoverable, resp.upperNonCritical, resp.upperCritical,
872 resp.upperNonRecoverable);
873 }
874
875 /** @brief implements the Set Sensor threshold command
876 * @param sensorNumber - sensor number
877 * @param lowerNonCriticalThreshMask
878 * @param lowerCriticalThreshMask
879 * @param lowerNonRecovThreshMask
880 * @param upperNonCriticalThreshMask
881 * @param upperCriticalThreshMask
882 * @param upperNonRecovThreshMask
883 * @param reserved
884 * @param lowerNonCritical - lower non-critical threshold
885 * @param lowerCritical - Lower critical threshold
886 * @param lowerNonRecoverable - Lower non recovarable threshold
887 * @param upperNonCritical - Upper non-critical threshold
888 * @param upperCritical - Upper critical
889 * @param upperNonRecoverable - Upper Non-recoverable
890 *
891 * @returns IPMI completion code
892 */
ipmiSenSetSensorThresholds(ipmi::Context::ptr & ctx,uint8_t sensorNum,bool lowerNonCriticalThreshMask,bool lowerCriticalThreshMask,bool lowerNonRecovThreshMask,bool upperNonCriticalThreshMask,bool upperCriticalThreshMask,bool upperNonRecovThreshMask,uint2_t reserved,uint8_t lowerNonCritical,uint8_t lowerCritical,uint8_t,uint8_t upperNonCritical,uint8_t upperCritical,uint8_t)893 ipmi::RspType<> ipmiSenSetSensorThresholds(
894 ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask,
895 bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask,
896 bool upperNonCriticalThreshMask, bool upperCriticalThreshMask,
897 bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical,
898 uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical,
899 uint8_t upperCritical, uint8_t)
900 {
901 if (reserved)
902 {
903 return ipmi::responseInvalidFieldRequest();
904 }
905
906 // lower nc and upper nc not suppported on any sensor
907 if (lowerNonRecovThreshMask || upperNonRecovThreshMask)
908 {
909 return ipmi::responseInvalidFieldRequest();
910 }
911
912 // if none of the threshold mask are set, nothing to do
913 if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask |
914 lowerNonRecovThreshMask | upperNonCriticalThreshMask |
915 upperCriticalThreshMask | upperNonRecovThreshMask))
916 {
917 return ipmi::responseSuccess();
918 }
919
920 const auto iter = ipmi::sensor::sensors.find(sensorNum);
921 if (iter == ipmi::sensor::sensors.end())
922 {
923 return ipmi::responseSensorInvalid();
924 }
925
926 const auto& info = iter->second;
927
928 // Proceed only if the sensor value interface is implemented.
929 if (info.propertyInterfaces.find(SensorValue::interface) ==
930 info.propertyInterfaces.end())
931 {
932 // return with valid mask as 0
933 return ipmi::responseSuccess();
934 }
935
936 std::string service;
937 boost::system::error_code ec;
938 ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
939 if (ec)
940 {
941 return ipmi::responseResponseError();
942 }
943 // store a vector of property name, value to set, and interface
944 std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet;
945
946 // define the indexes of the tuple
947 constexpr uint8_t propertyName = 0;
948 constexpr uint8_t thresholdValue = 1;
949 constexpr uint8_t interface = 2;
950 // verifiy all needed fields are present
951 if (lowerCriticalThreshMask || upperCriticalThreshMask)
952 {
953 ipmi::PropertyMap findThreshold;
954 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
955 SensorThresholdCritical::interface,
956 findThreshold);
957
958 if (!ec)
959 {
960 if (lowerCriticalThreshMask)
961 {
962 auto findLower = findThreshold.find(
963 SensorThresholdCritical::property_names::critical_low);
964 if (findLower == findThreshold.end())
965 {
966 return ipmi::responseInvalidFieldRequest();
967 }
968 thresholdsToSet.emplace_back(
969 SensorThresholdCritical::property_names::critical_low,
970 lowerCritical, SensorThresholdCritical::interface);
971 }
972 if (upperCriticalThreshMask)
973 {
974 auto findUpper = findThreshold.find(
975 SensorThresholdCritical::property_names::critical_high);
976 if (findUpper == findThreshold.end())
977 {
978 return ipmi::responseInvalidFieldRequest();
979 }
980 thresholdsToSet.emplace_back(
981 SensorThresholdCritical::property_names::critical_high,
982 upperCritical, SensorThresholdCritical::interface);
983 }
984 }
985 }
986 if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask)
987 {
988 ipmi::PropertyMap findThreshold;
989 ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
990 SensorThresholdWarning::interface,
991 findThreshold);
992
993 if (!ec)
994 {
995 if (lowerNonCriticalThreshMask)
996 {
997 auto findLower = findThreshold.find(
998 SensorThresholdWarning::property_names::warning_low);
999 if (findLower == findThreshold.end())
1000 {
1001 return ipmi::responseInvalidFieldRequest();
1002 }
1003 thresholdsToSet.emplace_back(
1004 SensorThresholdWarning::property_names::warning_low,
1005 lowerNonCritical, SensorThresholdWarning::interface);
1006 }
1007 if (upperNonCriticalThreshMask)
1008 {
1009 auto findUpper = findThreshold.find(
1010 SensorThresholdWarning::property_names::warning_high);
1011 if (findUpper == findThreshold.end())
1012 {
1013 return ipmi::responseInvalidFieldRequest();
1014 }
1015 thresholdsToSet.emplace_back(
1016 SensorThresholdWarning::property_names::warning_high,
1017 upperNonCritical, SensorThresholdWarning::interface);
1018 }
1019 }
1020 }
1021 for (const auto& property : thresholdsToSet)
1022 {
1023 // from section 36.3 in the IPMI Spec, assume all linear
1024 double valueToSet =
1025 ((info.coefficientM * std::get<thresholdValue>(property)) +
1026 (info.scaledOffset * std::pow(10.0, info.scale))) *
1027 std::pow(10.0, info.exponentR);
1028 ipmi::setDbusProperty(
1029 ctx, service, info.sensorPath, std::get<interface>(property),
1030 std::get<propertyName>(property), ipmi::Value(valueToSet));
1031 }
1032
1033 // Invalidate the cache
1034 sensorThresholdMap.erase(sensorNum);
1035 return ipmi::responseSuccess();
1036 }
1037
1038 /** @brief implements the get SDR Info command
1039 * @param count - Operation
1040 *
1041 * @returns IPMI completion code plus response data
1042 * - sdrCount - sensor/SDR count
1043 * - lunsAndDynamicPopulation - static/Dynamic sensor population flag
1044 */
1045 ipmi::RspType<uint8_t, // respcount
1046 uint8_t // dynamic population flags
1047 >
ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)1048 ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)
1049 {
1050 uint8_t sdrCount;
1051 // multiple LUNs not supported.
1052 constexpr uint8_t lunsAndDynamicPopulation = 1;
1053 constexpr uint8_t getSdrCount = 0x01;
1054 constexpr uint8_t getSensorCount = 0x00;
1055
1056 if (count.value_or(0) == getSdrCount)
1057 {
1058 // Get SDR count. This returns the total number of SDRs in the device.
1059 const auto& entityRecords =
1060 ipmi::sensor::EntityInfoMapContainer::getContainer()
1061 ->getIpmiEntityRecords();
1062 sdrCount = ipmi::sensor::sensors.size() + frus.size() +
1063 entityRecords.size();
1064 }
1065 else if (count.value_or(0) == getSensorCount)
1066 {
1067 // Get Sensor count. This returns the number of sensors
1068 sdrCount = ipmi::sensor::sensors.size();
1069 }
1070 else
1071 {
1072 return ipmi::responseInvalidCommandOnLun();
1073 }
1074
1075 return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation);
1076 }
1077
1078 /** @brief implements the reserve SDR command
1079 * @returns IPMI completion code plus response data
1080 * - reservationID - reservation ID
1081 */
ipmiSensorReserveSdr()1082 ipmi::RspType<uint16_t> ipmiSensorReserveSdr()
1083 {
1084 // A constant reservation ID is okay until we implement add/remove SDR.
1085 constexpr uint16_t reservationID = 1;
1086
1087 return ipmi::responseSuccess(reservationID);
1088 }
1089
setUnitFieldsForObject(const ipmi::sensor::Info & info,get_sdr::SensorDataFullRecordBody & body)1090 void setUnitFieldsForObject(const ipmi::sensor::Info& info,
1091 get_sdr::SensorDataFullRecordBody& body)
1092 {
1093 namespace server = sdbusplus::server::xyz::openbmc_project::sensor;
1094 body.sensorUnits1 = info.sensorUnits1; // default is 0. unsigned, no rate,
1095 // no modifier, not a %
1096 try
1097 {
1098 auto unit = server::Value::convertUnitFromString(info.unit);
1099 // Unit strings defined in
1100 // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml
1101 switch (unit)
1102 {
1103 case server::Value::Unit::DegreesC:
1104 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_DEGREES_C;
1105 break;
1106 case server::Value::Unit::RPMS:
1107 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_RPM;
1108 break;
1109 case server::Value::Unit::Volts:
1110 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_VOLTS;
1111 break;
1112 case server::Value::Unit::Meters:
1113 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_METERS;
1114 break;
1115 case server::Value::Unit::Amperes:
1116 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_AMPERES;
1117 break;
1118 case server::Value::Unit::Joules:
1119 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_JOULES;
1120 break;
1121 case server::Value::Unit::Watts:
1122 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_WATTS;
1123 break;
1124 case server::Value::Unit::Percent:
1125 get_sdr::body::setPercentage(body);
1126 break;
1127 default:
1128 // Cannot be hit.
1129 std::fprintf(stderr, "Unknown value unit type: = %s\n",
1130 info.unit.c_str());
1131 }
1132 }
1133 catch (const sdbusplus::exception::InvalidEnumString& e)
1134 {
1135 lg2::warning("Warning: no unit provided for sensor!");
1136 }
1137 }
1138
populateRecordFromDbus(const ipmi::sensor::Info & info,get_sdr::SensorDataFullRecordBody & body)1139 ipmi::Cc populateRecordFromDbus(const ipmi::sensor::Info& info,
1140 get_sdr::SensorDataFullRecordBody& body)
1141 {
1142 /* Functional sensor case */
1143 if (isAnalogSensor(info.propertyInterfaces.begin()->first))
1144 {
1145 /* Unit info */
1146 setUnitFieldsForObject(info, body);
1147
1148 get_sdr::body::setB(info.coefficientB, body);
1149 get_sdr::body::setM(info.coefficientM, body);
1150 get_sdr::body::setBexp(info.exponentB, body);
1151 get_sdr::body::setRexp(info.exponentR, body);
1152 }
1153
1154 /* ID string */
1155 auto idString = info.sensorName;
1156
1157 if (idString.empty())
1158 {
1159 idString = info.sensorNameFunc(info);
1160 }
1161
1162 if (idString.length() > FULL_RECORD_ID_STR_MAX_LENGTH)
1163 {
1164 get_sdr::body::setIdStrLen(FULL_RECORD_ID_STR_MAX_LENGTH, body);
1165 }
1166 else
1167 {
1168 get_sdr::body::setIdStrLen(idString.length(), body);
1169 }
1170 get_sdr::body::setIdType(3, body); // "8-bit ASCII + Latin 1"
1171 strncpy(body.idString, idString.c_str(), get_sdr::body::getIdStrLen(body));
1172
1173 return ipmi::ccSuccess;
1174 };
1175
1176 ipmi::RspType<uint16_t, // nextRecordId
1177 std::vector<uint8_t> // recordData
1178 >
ipmiFruGetSdr(uint16_t recordID,uint8_t offset,uint8_t bytesToRead)1179 ipmiFruGetSdr(uint16_t recordID, uint8_t offset, uint8_t bytesToRead)
1180 {
1181 auto fru = frus.begin();
1182 uint8_t fruID{};
1183
1184 fruID = recordID - FRU_RECORD_ID_START;
1185 fru = frus.find(fruID);
1186 if (fru == frus.end())
1187 {
1188 return ipmi::responseSensorInvalid();
1189 }
1190
1191 get_sdr::SensorDataFruRecord record{};
1192 /* Header */
1193 record.header.recordId = recordID;
1194 record.header.sdrVersion = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1195 record.header.recordType = get_sdr::SENSOR_DATA_FRU_RECORD;
1196 record.header.recordLength = sizeof(record.key) + sizeof(record.body);
1197
1198 /* Key */
1199 record.key.fruID = fruID;
1200 record.key.accessLun |= IPMI_LOGICAL_FRU;
1201 record.key.deviceAddress = BMCTargetAddress;
1202
1203 /* Body */
1204 record.body.entityID = fru->second[0].entityID;
1205 record.body.entityInstance = fru->second[0].entityInstance;
1206 record.body.deviceType = fruInventoryDevice;
1207 record.body.deviceTypeModifier = IPMIFruInventory;
1208
1209 /* Device ID string */
1210 auto deviceID =
1211 fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1,
1212 fru->second[0].path.length());
1213
1214 if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH)
1215 {
1216 get_sdr::body::setDeviceIdStrLen(
1217 get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, record.body);
1218 }
1219 else
1220 {
1221 get_sdr::body::setDeviceIdStrLen(deviceID.length(), record.body);
1222 }
1223
1224 uint16_t nextRecordId{};
1225 strncpy(record.body.deviceID, deviceID.c_str(),
1226 get_sdr::body::getDeviceIdStrLen(record.body));
1227
1228 if (++fru == frus.end())
1229 {
1230 // we have reached till end of fru, so assign the next record id to
1231 // 512(Max fru ID = 511) + Entity Record ID(may start with 0).
1232 const auto& entityRecords =
1233 ipmi::sensor::EntityInfoMapContainer::getContainer()
1234 ->getIpmiEntityRecords();
1235 nextRecordId =
1236 (entityRecords.size())
1237 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START
1238 : END_OF_RECORD;
1239 }
1240 else
1241 {
1242 nextRecordId = FRU_RECORD_ID_START + fru->first;
1243 }
1244
1245 // Check for invalid offset size
1246 if (offset > sizeof(record))
1247 {
1248 return ipmi::responseParmOutOfRange();
1249 }
1250
1251 size_t dataLen =
1252 std::min(static_cast<size_t>(bytesToRead), sizeof(record) - offset);
1253
1254 std::vector<uint8_t> recordData(dataLen);
1255 std::memcpy(recordData.data(),
1256 reinterpret_cast<const uint8_t*>(&record) + offset, dataLen);
1257
1258 return ipmi::responseSuccess(nextRecordId, recordData);
1259 }
1260
1261 ipmi::RspType<uint16_t, // nextRecordId
1262 std::vector<uint8_t> // recordData
1263 >
ipmiEntityGetSdr(uint16_t recordID,uint8_t offset,uint8_t bytesToRead)1264 ipmiEntityGetSdr(uint16_t recordID, uint8_t offset, uint8_t bytesToRead)
1265 {
1266 const auto& entityRecords =
1267 ipmi::sensor::EntityInfoMapContainer::getContainer()
1268 ->getIpmiEntityRecords();
1269 auto entity = entityRecords.begin();
1270 uint8_t entityRecordID;
1271
1272 entityRecordID = recordID - ENTITY_RECORD_ID_START;
1273 entity = entityRecords.find(entityRecordID);
1274 if (entity == entityRecords.end())
1275 {
1276 return ipmi::responseSensorInvalid();
1277 }
1278
1279 get_sdr::SensorDataEntityRecord record{};
1280 /* Header */
1281 record.header.recordId = recordID;
1282 record.header.sdrVersion = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1283 record.header.recordType = get_sdr::SENSOR_DATA_ENTITY_RECORD;
1284 record.header.recordLength = sizeof(record.key) + sizeof(record.body);
1285
1286 /* Key */
1287 record.key.containerEntityId = entity->second.containerEntityId;
1288 record.key.containerEntityInstance = entity->second.containerEntityInstance;
1289 get_sdr::key::setFlags(entity->second.isList, entity->second.isLinked,
1290 record.key);
1291 record.key.entityId1 = entity->second.containedEntities[0].first;
1292 record.key.entityInstance1 = entity->second.containedEntities[0].second;
1293
1294 /* Body */
1295 record.body.entityId2 = entity->second.containedEntities[1].first;
1296 record.body.entityInstance2 = entity->second.containedEntities[1].second;
1297 record.body.entityId3 = entity->second.containedEntities[2].first;
1298 record.body.entityInstance3 = entity->second.containedEntities[2].second;
1299 record.body.entityId4 = entity->second.containedEntities[3].first;
1300 record.body.entityInstance4 = entity->second.containedEntities[3].second;
1301
1302 uint16_t nextRecordId{};
1303 if (++entity == entityRecords.end())
1304 {
1305 nextRecordId = END_OF_RECORD;
1306 }
1307 else
1308 {
1309 nextRecordId = entity->first + ENTITY_RECORD_ID_START;
1310 }
1311
1312 // Check for invalid offset size
1313 if (offset > sizeof(record))
1314 {
1315 return ipmi::responseParmOutOfRange();
1316 }
1317
1318 size_t dataLen =
1319 std::min(static_cast<size_t>(bytesToRead), sizeof(record) - offset);
1320
1321 std::vector<uint8_t> recordData(dataLen);
1322 std::memcpy(recordData.data(),
1323 reinterpret_cast<const uint8_t*>(&record) + offset, dataLen);
1324
1325 return ipmi::responseSuccess(nextRecordId, recordData);
1326 }
1327
1328 ipmi::RspType<uint16_t, // nextRecordId
1329 std::vector<uint8_t> // recordData
1330 >
ipmiSensorGetSdr(uint16_t,uint16_t recordID,uint8_t offset,uint8_t bytesToRead)1331 ipmiSensorGetSdr(uint16_t /* reservationId */, uint16_t recordID,
1332 uint8_t offset, uint8_t bytesToRead)
1333 {
1334 // Note: we use an iterator so we can provide the next ID at the end of
1335 // the call.
1336 auto sensor = ipmi::sensor::sensors.begin();
1337
1338 // At the beginning of a scan, the host side will send us id=0.
1339 if (recordID != 0)
1340 {
1341 // recordID 0 to 255 means it is a FULL record.
1342 // recordID 256 to 511 means it is a FRU record.
1343 // recordID greater then 511 means it is a Entity Association
1344 // record. Currently we are supporting three record types: FULL
1345 // record, FRU record and Enttiy Association record.
1346 if (recordID >= ENTITY_RECORD_ID_START)
1347 {
1348 return ipmiEntityGetSdr(recordID, offset, bytesToRead);
1349 }
1350 else if (recordID >= FRU_RECORD_ID_START &&
1351 recordID < ENTITY_RECORD_ID_START)
1352 {
1353 return ipmiFruGetSdr(recordID, offset, bytesToRead);
1354 }
1355 else
1356 {
1357 sensor = ipmi::sensor::sensors.find(recordID);
1358 if (sensor == ipmi::sensor::sensors.end())
1359 {
1360 return ipmi::responseSensorInvalid();
1361 }
1362 }
1363 }
1364
1365 uint8_t sensorId = sensor->first;
1366
1367 auto it = sdrCacheMap.find(sensorId);
1368 if (it == sdrCacheMap.end())
1369 {
1370 /* Header */
1371 get_sdr::SensorDataFullRecord record = {};
1372 record.header.recordId = sensorId;
1373 record.header.sdrVersion = 0x51; // Based on IPMI Spec v2.0 rev 1.1
1374 record.header.recordType = get_sdr::SENSOR_DATA_FULL_RECORD;
1375 record.header.recordLength = sizeof(record.key) + sizeof(record.body);
1376
1377 /* Key */
1378 get_sdr::key::setOwnerIdBmc(record.key);
1379 record.key.sensorNumber = sensorId;
1380
1381 /* Body */
1382 record.body.entityId = sensor->second.entityType;
1383 record.body.sensorType = sensor->second.sensorType;
1384 record.body.eventReadingType = sensor->second.sensorReadingType;
1385 record.body.entityInstance = sensor->second.instance;
1386 if (ipmi::sensor::Mutability::Write ==
1387 (sensor->second.mutability & ipmi::sensor::Mutability::Write))
1388 {
1389 get_sdr::body::initSettableState(true, record.body);
1390 }
1391
1392 // Set the type-specific details given the DBus interface
1393 populateRecordFromDbus(sensor->second, record.body);
1394 sdrCacheMap[sensorId] = std::move(record);
1395 }
1396
1397 uint16_t nextRecordId{};
1398 const auto& record = sdrCacheMap[sensorId];
1399
1400 if (++sensor == ipmi::sensor::sensors.end())
1401 {
1402 // we have reached till end of sensor, so assign the next record id
1403 // to 256(Max Sensor ID = 255) + FRU ID(may start with 0).
1404 nextRecordId = (frus.size()) ? frus.begin()->first + FRU_RECORD_ID_START
1405 : END_OF_RECORD;
1406 }
1407 else
1408 {
1409 nextRecordId = sensor->first;
1410 }
1411
1412 if (offset > sizeof(record))
1413 {
1414 return ipmi::responseParmOutOfRange();
1415 }
1416
1417 size_t dataLen =
1418 std::min(static_cast<size_t>(bytesToRead), sizeof(record) - offset);
1419
1420 std::vector<uint8_t> recordData(dataLen);
1421 std::memcpy(recordData.data(),
1422 reinterpret_cast<const uint8_t*>(&record) + offset, dataLen);
1423
1424 return ipmi::responseSuccess(nextRecordId, recordData);
1425 }
1426
isFromSystemChannel()1427 static bool isFromSystemChannel()
1428 {
1429 // TODO we could not figure out where the request is from based on IPMI
1430 // command handler parameters. because of it, we can not differentiate
1431 // request from SMS/SMM or IPMB channel
1432 return true;
1433 }
1434
ipmicmdPlatformEvent(ipmi::Context::ptr & ctx,const std::vector<uint8_t> & data)1435 ipmi::RspType<> ipmicmdPlatformEvent(ipmi::Context::ptr& ctx,
1436 const std::vector<uint8_t>& data)
1437 {
1438 size_t paraLen = data.size();
1439 if (paraLen < selSystemEventSizeWith1Bytes ||
1440 paraLen > selSystemEventSizeWith3Bytes)
1441 {
1442 return ipmi::responseReqDataLenInvalid();
1443 }
1444
1445 uint16_t generatorID = 0xff;
1446 std::string sensorPath = "IPMB";
1447 const uint8_t* raw = data.data();
1448 const PlatformEventRequest* req = nullptr;
1449 if (isFromSystemChannel())
1450 {
1451 // first byte for SYSTEM Interface is Generator ID +1 to get common
1452 // struct
1453 req = reinterpret_cast<const PlatformEventRequest*>(raw + 1);
1454 // Capture the generator ID
1455 generatorID = *raw;
1456 // Platform Event usually comes from other firmware, like BIOS.
1457 // Unlike BMC sensor, it does not have BMC DBUS sensor path.
1458 sensorPath = "System";
1459 }
1460 else
1461 {
1462 req = reinterpret_cast<const PlatformEventRequest*>(raw);
1463 // TODO GenratorID for IPMB is combination of RqSA and RqLUN
1464 }
1465
1466 // Content of event data field depends on sensor class.
1467 // When data0 bit[5:4] is non-zero, valid data counts is 3.
1468 // When data0 bit[7:6] is non-zero, valid data counts is 2.
1469 if (((req->data[0] & byte3EnableMask) != 0 &&
1470 paraLen < selSystemEventSizeWith3Bytes) ||
1471 ((req->data[0] & byte2EnableMask) != 0 &&
1472 paraLen < selSystemEventSizeWith2Bytes))
1473 {
1474 return ipmi::responseReqDataLenInvalid();
1475 }
1476
1477 // Count bytes of Event Data
1478 size_t count;
1479 if ((req->data[0] & byte3EnableMask) != 0)
1480 {
1481 count = 3;
1482 }
1483 else if ((req->data[0] & byte2EnableMask) != 0)
1484 {
1485 count = 2;
1486 }
1487 else
1488 {
1489 count = 1;
1490 }
1491 bool assert = req->eventDirectionType & directionMask ? false : true;
1492 std::vector<uint8_t> eventData(req->data, req->data + count);
1493
1494 auto ec = ipmi::callDbusMethod(
1495 ctx, ipmiSELObject, ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd",
1496 ipmiSELAddMessage, sensorPath, eventData, assert, generatorID);
1497 if (ec)
1498 {
1499 lg2::error("IpmiSelAdd call failed: {ERROR}", "ERROR", ec.message());
1500 return ipmi::responseUnspecifiedError();
1501 }
1502
1503 return ipmi::responseSuccess();
1504 }
1505
registerNetFnSenFunctions()1506 void registerNetFnSenFunctions()
1507 {
1508 // Handlers with dbus-sdr handler implementation.
1509 // Do not register the hander if it dynamic sensors stack is used.
1510
1511 #ifndef FEATURE_DYNAMIC_SENSORS
1512
1513 #ifdef FEATURE_SENSORS_CACHE
1514 // Initialize the sensor matches
1515 initSensorMatches();
1516 #endif
1517
1518 // <Set Sensor Reading and Event Status>
1519 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1520 ipmi::sensor_event::cmdSetSensorReadingAndEvtSts,
1521 ipmi::Privilege::Operator, ipmiSetSensorReading);
1522 // <Get Sensor Reading>
1523 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1524 ipmi::sensor_event::cmdGetSensorReading,
1525 ipmi::Privilege::User, ipmiSensorGetSensorReading);
1526
1527 // <Reserve Device SDR Repository>
1528 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1529 ipmi::sensor_event::cmdReserveDeviceSdrRepository,
1530 ipmi::Privilege::User, ipmiSensorReserveSdr);
1531
1532 // <Get Device SDR Info>
1533 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1534 ipmi::sensor_event::cmdGetDeviceSdrInfo,
1535 ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo);
1536
1537 // <Get Sensor Thresholds>
1538 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1539 ipmi::sensor_event::cmdGetSensorThreshold,
1540 ipmi::Privilege::User, ipmiSensorGetSensorThresholds);
1541
1542 // <Set Sensor Thresholds>
1543 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1544 ipmi::sensor_event::cmdSetSensorThreshold,
1545 ipmi::Privilege::User, ipmiSenSetSensorThresholds);
1546
1547 // <Get Device SDR>
1548 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1549 ipmi::sensor_event::cmdGetDeviceSdr,
1550 ipmi::Privilege::User, ipmiSensorGetSdr);
1551
1552 #endif
1553
1554 // Common Handers used by both implementation.
1555
1556 // <Platform Event Message>
1557 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1558 ipmi::sensor_event::cmdPlatformEvent,
1559 ipmi::Privilege::Operator, ipmicmdPlatformEvent);
1560
1561 // <Get Sensor Type>
1562 ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1563 ipmi::sensor_event::cmdGetSensorType,
1564 ipmi::Privilege::User, ipmiGetSensorType);
1565
1566 return;
1567 }
1568