1 #include <attn/attn_common.hpp> 2 #include <attn/attn_dbus.hpp> 3 #include <attn/attn_logging.hpp> 4 #include <attn/pel/pel_common.hpp> 5 #include <attn/ti_handler.hpp> 6 #include <sdbusplus/bus.hpp> 7 #include <sdbusplus/exception.hpp> 8 9 #include <iomanip> 10 #include <iostream> 11 12 namespace attn 13 { 14 15 /** 16 * @brief Determine if this is a HB or PHYP TI event 17 * 18 * Use the TI info data area to determine if this is either a HB or a PHYP 19 * TI event then handle the event. 20 * 21 * @param i_tiDataArea pointer to the TI info data 22 */ 23 int tiHandler(TiDataArea* i_tiDataArea) 24 { 25 int rc = RC_SUCCESS; 26 27 // capture some additional data for logs/traces 28 addHbStatusRegs(); 29 30 // check TI data area if it is available 31 if (nullptr != i_tiDataArea) 32 { 33 // HB v. PHYP TI logic: Only hosboot will fill in hbTerminateType 34 // and it will be non-zero. Only hostboot will fill out source and 35 // it it will be non-zero. Only PHYP will fill in srcFormat and it 36 // will be non-zero. 37 if ((0 == i_tiDataArea->hbTerminateType) && 38 (0 == i_tiDataArea->source) && (0 != i_tiDataArea->srcFormat)) 39 { 40 handlePhypTi(i_tiDataArea); 41 } 42 else 43 { 44 handleHbTi(i_tiDataArea); 45 } 46 } 47 else 48 { 49 // TI data was not available This should not happen since we provide 50 // a default TI info in the case where get TI info was not successful. 51 eventAttentionFail((int)AttnSection::tiHandler | ATTN_INFO_NULL); 52 rc = RC_NOT_HANDLED; 53 } 54 55 return rc; 56 } 57 58 /** 59 * @brief Handle a PHYP terminate immediate special attention 60 * 61 * The TI info data area will contain information pertaining to the TI 62 * condition. We will wither quiesce the host or initiate a MPIPL depending 63 * depending on the auto reboot configuration. We will also create a PEL which 64 * will contain the TI info data and FFDC data captured in the system journal. 65 * 66 * @param i_tiDataArea pointer to TI information filled in by hostboot 67 */ 68 void handlePhypTi(TiDataArea* i_tiDataArea) 69 { 70 trace<level::INFO>("PHYP TI"); 71 72 // gather additional data for PEL 73 std::map<std::string, std::string> tiAdditionalData; 74 75 if (nullptr != i_tiDataArea) 76 { 77 parsePhypOpalTiInfo(tiAdditionalData, i_tiDataArea); 78 79 tiAdditionalData["Subsystem"] = 80 std::to_string(static_cast<uint8_t>(pel::SubsystemID::hypervisor)); 81 82 // Copy all ascii src chars to additional data 83 char srcChar[33]; // 32 ascii chars + null term 84 memcpy(srcChar, &(i_tiDataArea->asciiData0), 32); 85 srcChar[32] = 0; 86 tiAdditionalData["SrcAscii"] = std::string{srcChar}; 87 88 // TI event 89 eventTerminate(tiAdditionalData, (char*)i_tiDataArea); 90 } 91 else 92 { 93 // TI data was not available This should not happen since we provide 94 // a default TI info in the case where get TI info was not successful. 95 eventAttentionFail((int)AttnSection::handlePhypTi | ATTN_INFO_NULL); 96 } 97 98 // We are finished creating the event log entries so transition host to 99 // the required state. 100 if (autoRebootEnabled()) 101 { 102 // If autoreboot is enabled we will start crash (mpipl) mode target 103 transitionHost(HostState::Crash); 104 } 105 else 106 { 107 // If autoreboot is disabled we will quiesce the host 108 transitionHost(HostState::Quiesce); 109 } 110 } 111 112 /** 113 * @brief Handle a hostboot terminate immediate special attention 114 * 115 * The TI info data area will contain information pertaining to the TI 116 * condition. The course of action to take regarding the host state will 117 * depend on the contents of the TI info data area. We will also create a 118 * PEL containing the TI info data and FFDC data captured in the system 119 * journal. 120 * 121 * @param i_tiDataArea pointer to TI information filled in by hostboot 122 */ 123 void handleHbTi(TiDataArea* i_tiDataArea) 124 { 125 trace<level::INFO>("HB TI"); 126 127 bool hbDumpRequested = true; // HB dump is common case 128 bool generatePel = true; // assume PEL will be created 129 bool terminateHost = true; // transition host state 130 131 // handle specific hostboot reason codes 132 if (nullptr != i_tiDataArea) 133 { 134 std::stringstream ss; // stream object for tracing 135 std::string strobj; // string object for tracing 136 137 switch (i_tiDataArea->hbTerminateType) 138 { 139 case TI_WITH_PLID: 140 case TI_WITH_EID: 141 142 // trace this value 143 ss.str(std::string()); // empty the stream 144 ss.clear(); // clear the stream 145 ss << "TI with PLID/EID: " << std::hex << std::showbase 146 << std::setw(8) << std::setfill('0') 147 << be32toh(i_tiDataArea->asciiData1); 148 strobj = ss.str(); 149 trace<level::INFO>(strobj.c_str()); 150 151 // see if HB dump is requested 152 if (0 == i_tiDataArea->hbDumpFlag) 153 { 154 hbDumpRequested = false; // no HB dump requested 155 } 156 break; 157 case TI_WITH_SRC: 158 // Reason code is byte 2 and 3 of 4 byte srcWord12HbWord0 159 uint16_t reasonCode = be32toh(i_tiDataArea->srcWord12HbWord0); 160 161 // trace this value 162 ss.str(std::string()); // empty the stream 163 ss.clear(); // clear the stream 164 ss << "TI with SRC: " << std::hex << std::showbase 165 << std::setw(4) << std::setfill('0') << (int)reasonCode; 166 strobj = ss.str(); 167 trace<level::INFO>(strobj.c_str()); 168 169 switch (reasonCode) 170 { 171 case HB_SRC_SHUTDOWN_REQUEST: 172 trace<level::INFO>("shutdown request"); 173 generatePel = false; 174 hbDumpRequested = false; 175 break; 176 case HB_SRC_KEY_TRANSITION: 177 // Note: Should never see this so lets leave 178 // hbDumpRequested == true so we can figure out why 179 // we are here. 180 trace<level::INFO>("key transition"); 181 terminateHost = false; 182 break; 183 case HB_SRC_INSUFFICIENT_HW: 184 trace<level::INFO>("insufficient hardware"); 185 break; 186 case HB_SRC_TPM_FAIL: 187 trace<level::INFO>("TPM fail"); 188 break; 189 case HB_SRC_ROM_VERIFY: 190 trace<level::INFO>("ROM verify"); 191 break; 192 case HB_SRC_EXT_MISMATCH: 193 trace<level::INFO>("EXT mismatch"); 194 break; 195 case HB_SRC_ECC_UE: 196 trace<level::INFO>("ECC UE"); 197 break; 198 case HB_SRC_UNSUPPORTED_MODE: 199 trace<level::INFO>("unsupported mode"); 200 break; 201 case HB_SRC_UNSUPPORTED_SFCRANGE: 202 trace<level::INFO>("unsupported SFC range"); 203 break; 204 case HB_SRC_PARTITION_TABLE: 205 trace<level::INFO>("partition table invalid"); 206 break; 207 case HB_SRC_UNSUPPORTED_HARDWARE: 208 trace<level::INFO>("unsupported hardware"); 209 break; 210 case HB_SRC_PNOR_CORRUPTION: 211 trace<level::INFO>("PNOR corruption"); 212 break; 213 default: 214 trace<level::INFO>("reason: other"); 215 } 216 217 break; // case TI_WITH_SRC 218 } 219 } 220 221 if (true == generatePel) 222 { 223 if (nullptr != i_tiDataArea) 224 { 225 // gather additional data for PEL 226 std::map<std::string, std::string> tiAdditionalData; 227 228 parseHbTiInfo(tiAdditionalData, i_tiDataArea); 229 230 tiAdditionalData["Subsystem"] = std::to_string( 231 static_cast<uint8_t>(pel::SubsystemID::hostboot)); 232 233 // Translate hex src value to ascii. This results in an 8 234 // character SRC (hostboot SRC is 32 bits) 235 std::stringstream src; 236 src << std::setw(8) << std::setfill('0') << std::uppercase 237 << std::hex << be32toh(i_tiDataArea->srcWord12HbWord0); 238 tiAdditionalData["SrcAscii"] = src.str(); 239 240 // Request dump after generating event log? 241 tiAdditionalData["Dump"] = 242 (true == hbDumpRequested) ? "true" : "false"; 243 244 // Generate event log 245 eventTerminate(tiAdditionalData, (char*)i_tiDataArea); 246 } 247 else 248 { 249 // TI data was not available This should not happen. 250 eventAttentionFail((int)AttnSection::handleHbTi | ATTN_INFO_NULL); 251 } 252 } 253 254 if (true == terminateHost) 255 { 256 transitionHost(HostState::Quiesce); 257 } 258 } 259 260 /** @brief Parse the TI info data area into map as PHYP/OPAL data */ 261 void parsePhypOpalTiInfo(std::map<std::string, std::string>& i_map, 262 TiDataArea* i_tiDataArea) 263 { 264 if (nullptr == i_tiDataArea) 265 { 266 return; 267 } 268 269 std::stringstream ss; 270 271 ss << "0x00 TI Area Valid:" << std::setw(2) << std::setfill('0') << std::hex 272 << (int)i_tiDataArea->tiAreaValid << ":"; 273 ss << "0x01 Command:" << std::setw(2) << std::setfill('0') << std::hex 274 << (int)i_tiDataArea->command << ":"; 275 ss << "0x02 Num. Data Bytes:" << std::setw(4) << std::setfill('0') 276 << std::hex << be16toh(i_tiDataArea->numDataBytes) << ":"; 277 ss << "0x04 Reserved:" << std::setw(2) << std::setfill('0') << std::hex 278 << (int)i_tiDataArea->reserved1 << ":"; 279 ss << "0x06 HWDump Type:" << std::setw(4) << std::setfill('0') << std::hex 280 << be16toh(i_tiDataArea->hardwareDumpType) << ":"; 281 ss << "0x08 SRC Format:" << std::setw(2) << std::setfill('0') << std::hex 282 << (int)i_tiDataArea->srcFormat << ":"; 283 ss << "0x09 SRC Flags:" << std::setw(2) << std::setfill('0') << std::hex 284 << (int)i_tiDataArea->srcFlags << ":"; 285 ss << "0x0a Num. ASCII Words:" << std::setw(2) << std::setfill('0') 286 << std::hex << (int)i_tiDataArea->numAsciiWords << ":"; 287 ss << "0x0b Num. Hex Words:" << std::setw(2) << std::setfill('0') 288 << std::hex << (int)i_tiDataArea->numHexWords << ":"; 289 ss << "0x0e Length of SRC:" << std::setw(4) << std::setfill('0') << std::hex 290 << be16toh(i_tiDataArea->lenSrc) << ":"; 291 ss << "0x10 SRC Word 12:" << std::setw(8) << std::setfill('0') << std::hex 292 << be32toh(i_tiDataArea->srcWord12HbWord0) << ":"; 293 ss << "0x14 SRC Word 13:" << std::setw(8) << std::setfill('0') << std::hex 294 << be32toh(i_tiDataArea->srcWord13HbWord2) << ":"; 295 ss << "0x18 SRC Word 14:" << std::setw(8) << std::setfill('0') << std::hex 296 << be32toh(i_tiDataArea->srcWord14HbWord3) << ":"; 297 ss << "0x1c SRC Word 15:" << std::setw(8) << std::setfill('0') << std::hex 298 << be32toh(i_tiDataArea->srcWord15HbWord4) << ":"; 299 ss << "0x20 SRC Word 16:" << std::setw(8) << std::setfill('0') << std::hex 300 << be32toh(i_tiDataArea->srcWord16HbWord5) << ":"; 301 ss << "0x24 SRC Word 17:" << std::setw(8) << std::setfill('0') << std::hex 302 << be32toh(i_tiDataArea->srcWord17HbWord6) << ":"; 303 ss << "0x28 SRC Word 18:" << std::setw(8) << std::setfill('0') << std::hex 304 << be32toh(i_tiDataArea->srcWord18HbWord7) << ":"; 305 ss << "0x2c SRC Word 19:" << std::setw(8) << std::setfill('0') << std::hex 306 << be32toh(i_tiDataArea->srcWord19HbWord8) << ":"; 307 ss << "0x30 ASCII Data:" << std::setw(8) << std::setfill('0') << std::hex 308 << be32toh(i_tiDataArea->asciiData0) << ":"; 309 ss << "0x34 ASCII Data:" << std::setw(8) << std::setfill('0') << std::hex 310 << be32toh(i_tiDataArea->asciiData1) << ":"; 311 ss << "0x38 ASCII Data:" << std::setw(8) << std::setfill('0') << std::hex 312 << be32toh(i_tiDataArea->asciiData2) << ":"; 313 ss << "0x3c ASCII Data:" << std::setw(8) << std::setfill('0') << std::hex 314 << be32toh(i_tiDataArea->asciiData3) << ":"; 315 ss << "0x40 ASCII Data:" << std::setw(8) << std::setfill('0') << std::hex 316 << be32toh(i_tiDataArea->asciiData4) << ":"; 317 ss << "0x44 ASCII Data:" << std::setw(8) << std::setfill('0') << std::hex 318 << be32toh(i_tiDataArea->asciiData5) << ":"; 319 ss << "0x48 ASCII Data:" << std::setw(8) << std::setfill('0') << std::hex 320 << be32toh(i_tiDataArea->asciiData6) << ":"; 321 ss << "0x4c ASCII Data:" << std::setw(8) << std::setfill('0') << std::hex 322 << be32toh(i_tiDataArea->asciiData7) << ":"; 323 ss << "0x50 Location:" << std::setw(2) << std::setfill('0') << std::hex 324 << (int)i_tiDataArea->location << ":"; 325 ss << "0x51 Code Sections:" << std::setw(2) << std::setfill('0') << std::hex 326 << (int)i_tiDataArea->codeSection << ":"; 327 ss << "0x52 Additional Size:" << std::setw(2) << std::setfill('0') 328 << std::hex << (int)i_tiDataArea->additionalSize << ":"; 329 ss << "0x53 Additional Data:" << std::setw(2) << std::setfill('0') 330 << std::hex << (int)i_tiDataArea->andData; 331 332 std::string key, value; 333 char delim = ':'; 334 335 while (std::getline(ss, key, delim)) 336 { 337 std::getline(ss, value, delim); 338 i_map[key] = value; 339 } 340 } 341 342 /** @brief Parse the TI info data area into map as hostboot data */ 343 void parseHbTiInfo(std::map<std::string, std::string>& i_map, 344 TiDataArea* i_tiDataArea) 345 { 346 if (nullptr == i_tiDataArea) 347 { 348 return; 349 } 350 351 std::stringstream ss; 352 353 ss << "0x00 TI Area Valid:" << std::setw(2) << std::setfill('0') << std::hex 354 << (int)i_tiDataArea->tiAreaValid << ":"; 355 ss << "0x04 Reserved:" << std::setw(2) << std::setfill('0') << std::hex 356 << (int)i_tiDataArea->reserved1 << ":"; 357 ss << "0x05 HB_Term. Type:" << std::setw(2) << std::setfill('0') << std::hex 358 << (int)i_tiDataArea->hbTerminateType << ":"; 359 ss << "0x0c HB Dump Flag:" << std::setw(2) << std::setfill('0') << std::hex 360 << (int)i_tiDataArea->hbDumpFlag << ":"; 361 ss << "0x0d Source:" << std::setw(2) << std::setfill('0') << std::hex 362 << (int)i_tiDataArea->source << ":"; 363 ss << "0x10 HB Word 0:" << std::setw(8) << std::setfill('0') << std::hex 364 << be32toh(i_tiDataArea->srcWord12HbWord0) << ":"; 365 ss << "0x14 HB Word 2:" << std::setw(8) << std::setfill('0') << std::hex 366 << be32toh(i_tiDataArea->srcWord13HbWord2) << ":"; 367 ss << "0x18 HB Word 3:" << std::setw(8) << std::setfill('0') << std::hex 368 << be32toh(i_tiDataArea->srcWord14HbWord3) << ":"; 369 ss << "0x1c HB Word 4:" << std::setw(8) << std::setfill('0') << std::hex 370 << be32toh(i_tiDataArea->srcWord15HbWord4) << ":"; 371 ss << "0x20 HB Word 5:" << std::setw(8) << std::setfill('0') << std::hex 372 << be32toh(i_tiDataArea->srcWord16HbWord5) << ":"; 373 ss << "0x24 HB Word 6:" << std::setw(8) << std::setfill('0') << std::hex 374 << be32toh(i_tiDataArea->srcWord17HbWord6) << ":"; 375 ss << "0x28 HB Word 7:" << std::setw(8) << std::setfill('0') << std::hex 376 << be32toh(i_tiDataArea->srcWord18HbWord7) << ":"; 377 ss << "0x2c HB Word 8:" << std::setw(8) << std::setfill('0') << std::hex 378 << be32toh(i_tiDataArea->srcWord19HbWord8) << ":"; 379 ss << "0x30 error_data:" << std::setw(8) << std::setfill('0') << std::hex 380 << be32toh(i_tiDataArea->asciiData0) << ":"; 381 ss << "0x34 EID:" << std::setw(8) << std::setfill('0') << std::hex 382 << be32toh(i_tiDataArea->asciiData1); 383 384 std::string key, value; 385 char delim = ':'; 386 387 while (std::getline(ss, key, delim)) 388 { 389 std::getline(ss, value, delim); 390 i_map[key] = value; 391 } 392 } 393 394 /** @brief Read state of autoreboot propertyi via dbus */ 395 bool autoRebootEnabled() 396 { 397 // Use dbus get-property interface to read the autoreboot property 398 auto bus = sdbusplus::bus::new_system(); 399 auto method = 400 bus.new_method_call("xyz.openbmc_project.Settings", 401 "/xyz/openbmc_project/control/host0/auto_reboot", 402 "org.freedesktop.DBus.Properties", "Get"); 403 404 method.append("xyz.openbmc_project.Control.Boot.RebootPolicy", 405 "AutoReboot"); 406 407 bool autoReboot = false; // assume autoreboot attribute not available 408 409 try 410 { 411 auto reply = bus.call(method); 412 413 std::variant<bool> result; 414 reply.read(result); 415 autoReboot = std::get<bool>(result); 416 } 417 catch (const sdbusplus::exception::SdBusError& e) 418 { 419 trace<level::INFO>("autoRebootEnbabled exception"); 420 std::string traceMsg = std::string(e.what(), maxTraceLen); 421 trace<level::ERROR>(traceMsg.c_str()); 422 } 423 424 return autoReboot; 425 } 426 427 /** 428 * Callback for dump request properties change signal monitor 429 * 430 * @param[in] i_msg Dbus message from the dbus match infrastructure 431 * @param[in] i_path The object path we are monitoring 432 * @param[out] o_inProgress Used to break out of our dbus wait loop 433 * @reutn Always non-zero indicating no error, no cascading callbacks 434 */ 435 uint dumpStatusChanged(sdbusplus::message::message& i_msg, std::string i_path, 436 bool& o_inProgress) 437 { 438 // reply (msg) will be a property change message 439 std::string interface; 440 std::map<std::string, std::variant<std::string, uint8_t>> property; 441 i_msg.read(interface, property); 442 443 // looking for property Status changes 444 std::string propertyType = "Status"; 445 auto dumpStatus = property.find(propertyType); 446 447 if (dumpStatus != property.end()) 448 { 449 const std::string* status = 450 std::get_if<std::string>(&(dumpStatus->second)); 451 452 if ((nullptr != status) && ("xyz.openbmc_project.Common.Progress." 453 "OperationStatus.InProgress" != *status)) 454 { 455 // dump is done, trace some info and change in progress flag 456 trace<level::INFO>(i_path.c_str()); 457 trace<level::INFO>((*status).c_str()); 458 o_inProgress = false; 459 } 460 } 461 462 return 1; // non-negative return code for successful callback 463 } 464 465 /** 466 * Register a callback for dump progress status changes 467 * 468 * @param[in] i_path The object path of the dump to monitor 469 */ 470 void monitorDump(const std::string& i_path) 471 { 472 bool inProgress = true; // callback will update this 473 474 // setup the signal match rules and callback 475 std::string matchInterface = "xyz.openbmc_project.Common.Progress"; 476 auto bus = sdbusplus::bus::new_system(); 477 478 std::unique_ptr<sdbusplus::bus::match_t> match = 479 std::make_unique<sdbusplus::bus::match_t>( 480 bus, 481 sdbusplus::bus::match::rules::propertiesChanged( 482 i_path.c_str(), matchInterface.c_str()), 483 [&](auto& msg) { 484 return dumpStatusChanged(msg, i_path, inProgress); 485 }); 486 487 // wait for dump status to be completed (complete == true) 488 trace<level::INFO>("hbdump requested"); 489 while (true == inProgress) 490 { 491 bus.wait(0); 492 bus.process_discard(); 493 } 494 trace<level::INFO>("hbdump completed"); 495 } 496 497 /** Request a dump from the dump manager */ 498 void requestDump(const uint32_t logId) 499 { 500 constexpr auto path = "/org/openpower/dump"; 501 constexpr auto interface = "xyz.openbmc_project.Dump.Create"; 502 constexpr auto function = "CreateDump"; 503 504 sdbusplus::message::message method; 505 506 if (0 == dbusMethod(path, interface, function, method)) 507 { 508 try 509 { 510 // dbus call arguments 511 std::map<std::string, std::variant<std::string, uint64_t>> 512 createParams; 513 createParams["com.ibm.Dump.Create.CreateParameters.DumpType"] = 514 "com.ibm.Dump.Create.DumpType.Hostboot"; 515 createParams["com.ibm.Dump.Create.CreateParameters.ErrorLogId"] = 516 uint64_t(logId); 517 method.append(createParams); 518 519 // using system dbus 520 auto bus = sdbusplus::bus::new_system(); 521 auto response = bus.call(method); 522 523 // reply will be type dbus::ObjectPath 524 sdbusplus::message::object_path reply; 525 response.read(reply); 526 527 // monitor dump progress 528 monitorDump(reply); 529 } 530 catch (const sdbusplus::exception::SdBusError& e) 531 { 532 trace<level::ERROR>("requestDump exception"); 533 std::string traceMsg = std::string(e.what(), maxTraceLen); 534 trace<level::ERROR>(traceMsg.c_str()); 535 } 536 } 537 } 538 539 } // namespace attn 540